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PMJDM: a multi-task joint
detection model for plant
disease identification
Rui Fu, Xuewei Wang, Shiyu Wang and Hao Sun*

Shandong Province University Laboratory for Protected Horticulture, Weifang University of Science
and Technology, Weifang, China
Introduction: Plant disease detection is critical for ensuring agricultural

productivity, yet traditional methods often suffer from inefficiencies and

inaccuracies due to manual processes and limited adaptability.

Methods: This paper presents the PlantDisease Multi-task Joint Detection Model

(PMJDM), which integrates an enhanced ConvNeXt-based shared feature

extraction, a texture-augmented N-RPN module with HOG/LBP metrics, multi-

task branches for simultaneous plant species classification and disease detection,

and CRF-based post-processing for spatial consistency. A dynamic weight

adjustment mechanism is also employed to optimize task balance and

improve robustness.

Results: Evaluated on a 26,073-image dataset, PMJDM achieves 71.84%

precision, 61.96% recall, and 61.83% mAP50, surpassing Faster - RCNN (51.49%

mAP50) and YOLOv10x (59.52% mAP50) by 10.34% and 2.31%, respectively.

Discussion: The superior performance of PMJDM is driven by multi-task synergy

and texture - enhanced region proposals, offering an efficient solution for

precision agriculture.
KEYWORDS

plant disease detection, multi-task learning, candidate region generation, conditional
random fields, dynamic weight adjustment
1 Introduction

Plant disease detection is a cornerstone of precision agriculture, significantly

influencing crop yield, quality, and sustainability. With global food demand projected to

increase by 70% by 2050, timely and accurate disease identification is critical to minimizing

yield losses and reducing reliance on chemical pesticides. Traditional manual detection,

which relies on expert visual inspection and laboratory analysis, is labor-intensive,

subjective, and prone to errors under complex field conditions, as illustrated in Figure 1.

Automated solutions based on computer vision and machine learning have emerged as

scalable and efficient alternatives. However, these methods face significant challenges in
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real-world agricultural environments, highlighting the need for

innovative approaches to enhance detection accuracy

and robustness.

Despite advancements, key technical gaps remain in automated

plant disease detection. First, multitask learning frameworks often

face gradient conflicts between plant species classification and

disease localization, leading to suboptimal model performance.

Second, traditional region proposal methods like those in Faster-

RCNN struggle to generate robust candidate regions in complex

scenes with blurred leaf edges, multi-scale disease targets, or varying

lighting conditions, as shown in Figure 2. Third, existing models are

sensitive to local noise and texture variations, reducing classification

and detection accuracy in diverse agricultural environments. These

challenges drive the need for a unified model that can jointly

optimize multiple tasks while maintaining robustness across

varied conditions.

This study proposes the Plant Disease Multi-task Joint

Detection Model (PMJDM), a novel framework addressing these

technical gaps. PMJDM integrates: (1) a shared feature extraction

module using an improved ConvNeXt backbone, (2) a texture-

enhanced region proposal network (N-RPN) with HOG/LBP

metrics, (3) multi-task branches for simultaneous classification

and detection, and (4) conditional random field (CRF)-based

post-processing for spatial consistency. A dynamic weight

adjustment mechanism enables balanced multi-task optimization.

Evaluation on a 26,073-image dataset shows PMJDM achieves

71.84% precision, 61.96% recall , and 61.83% mAP50,
Frontiers in Plant Science 02
outperforming state-of-the-art models including Faster-RCNN

and YOLOv10x. The key contributions are:
• Dual-Task Joint Inference Framework: We construct a

shared feature extraction module based on an improved

ConvNeXt network, combined with a dual-branch parallel

structure. This framework enables simultaneous plant

multi-label classification and disease target detection

wi th in a s ing le mode l , s ign ificant ly reducing

computational redundancy;

• Dynamic Gradient Balancing Mechanism: An adaptive

weight adjustment function based on loss ratios is

proposed, which calculates loss differences between

classification and detection tasks in real-time to

dynamically optimize task weights, thereby alleviating

multi-task conflicts;

• Texture-Enhanced Candidate Region Generation: The

region proposal network (N-RPN) incorporates HOG/

LBP texture similarity metrics with geometrically adaptive

sampling strategies using deformable convolution,

improving detection robustness for multi-scale targets in

complex backgrounds;

• Context-Aware Post-Processing Optimization: A

Conditional Random Field (CRF) correction module is

designed for plant classification tasks, integrating spatial

constraints with texture feature optimization to effectively

suppress local noise interference;
FIGURE 2

Diseased leaves of various plants, highlighting challenges in complex backgrounds and multiscale targets.
FIGURE 1

Detection of plant diseases using conventional manual methods.
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Fron
• High-Efficiency Deployment Validation: The model

achieves 61.83% mAP50 detection accuracy with 49.1M

parameters through channel attention compression and

multi-scale feature fusion, reaching an inference speed of

113 FPS.
2 Literature review

Plant disease detection has evolved significantly, transitioning

from manual inspection to automated systems leveraging image

processing, machine learning, and deep learning. This section

reviews key developments, categorizing them into traditional

methods, machine learning approaches, deep learning models,

and multi-task learning frameworks, while highlighting their

limitations and the gaps addressed by PMJDM.
2.1 Traditional methods

Early plant disease detection relied on expert manual inspection

through visual symptom analysis and laboratory tests. While

foundational, these methods are inefficient and subjective, as

shown in Figure 2. Automated traditional approaches employed

image processing techniques to extract color and texture features.

For example, Loranger et al. (2024) developed a “Colour Analyzer”

tool using HSV and Lab* color models to precisely measure leaf

lesion areas, supporting plant immunity research. Similarly,

Bhujade et al. (2024) proposed the OptCFA method combining

GABF, AmPel, and E SGF for image denoising, outperforming

conventional filters. Nevertheless, these methods remain limited in

adapting to diverse plant species and complex backgrounds,

restricting their practical application.
2.2 Machine learning approaches

Machine learning enabled automated feature extraction and

classification, outperforming traditional methods in efficiency. Sahu

and Pandey (2023) developed the HRF-MCSVM model

incorporating spatial fuzzy C-means for segmentation and feature

preprocessing, which improved leaf disease detection accuracy.

Selvaraj and Ananth (2023) created a SqueezeNet model with

RCSO for root disease classification, achieving high sensitivity

under low-power constraints. Luaces et al. (2011) implemented

an early warning system for coffee rust that reduced pesticide

application. Xie et al. (2023) proposed a Salp Swarm-based

feature selection method to enhance classification efficiency.

While these approaches represent significant advances, machine

learning models still face challenges in generalizing across diverse

datasets and depend heavily on manual feature engineering,

constraining their scalability.
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2.3 Deep learning models

Deep learning has revolutionized plant disease detection by

enabling end-to-end feature learning. Singletask models like Faster-

RCNN (Ren et al., 2015) and YOLO variants (Huang et al., 2023)

excel in detection but lack integrated classification capabilities. For

example, Li et al. (2025) proposed APNet, achieving 87.1% accuracy

on apricot tree diseases using an adaptive thresholding module.

Deng et al. (2023) introduced MC-UNet, a lightweight

segmentation model with 91.32% accuracy on tomato leaf

diseases. Shafik et al. (2024) developed PDDNet models,

achieving up to 97.79% accuracy on the PlantVillage dataset.

Singh et al. (2024) combined LeafyGAN and MobileViT, reaching

99.92% accuracy on PlantVillage. However, these models often

focus on single tasks, facing challenges in multi-task integration

and computational efficiency in resource-constrained settings. In a

related application, Vaghela et al. (2025) demonstrated YOLO V8’s

effectiveness in land cover classification for agricultural field

identification, achieving high accuracy with different

model variants.
2.4 Multi-task and lightweight models

Multi-task learning addresses the need for simultaneous

classification and detection. Lin et al. (2024) proposed a dual-

branch network combining CNN and Vision Transformer

features, achieving 88.74% accuracy on the AI Challenger 2018

dataset. Li and Shen (2024) introduced DiCaN, enhancing

performance through wavelet decomposition and cross-frequency

attention. Wu et al. (2024) fused Transformer and CNN features for

marine red tide classification, achieving 87% accuracy. Lightweight

models, such as Huang et al. (2023)’s YOLOR-based student models

(60.4% mAP@.5) and Zhang et al. (2024)’s U-shaped Transformer,

prioritize efficiency but compromise accuracy in complex scenes.

Nawaz et al. (2024) proposed CoffeeNet, achieving 98.54% accuracy

with an improved CenterNet, though its single-task focus limits

applicability. Similarly, Srinivasu et al. (2024) developed an XAI-

driven crop recommendation system using neural networks and

optimization techniques, demonstrating AI’s potential in

precision agriculture.
2.5 Limitations and gaps

Existing methods face several limitations. Single-task deep

learning models cannot jointly optimize classification and

detection, resulting in computational redundancy. Multi-task

models experience gradient conflicts that lead to unbalanced

optimization. Traditional region proposal networks, such as those

in FasterRCNN, demonstrate poor robustness in complex

agricultural scenes with multi-scale targets or illumination

variations. Additionally, their sensitivity to local noise and texture
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changes degrades performance. PMJDM addresses these gaps

through: (1) a dual-task joint framework, (2) texture-enhanced

region proposals with HOG/LBP metrics, (3) dynamic weight

balancing, and (4) CRF-based post-processing, achieving superior

accuracy and efficiency for real-world plant disease detection.
3 Method

This study proposes the Plant Disease Multi-task Joint

Detection Model (PMJDM), a novel framework designed for

simultaneous plant species classification and disease localization

in complex agricultural environments, as shown in Figure 3a.

PMJDM addresses key challenges in plant disease detection,

including multi-task gradient conflicts, poor robustness in diverse

backgrounds, and sensitivity to local noise. The model processes

640×640 input images with initial preprocessing for normalization

and noise reduction. A shared feature extraction module based on

an improved ConvNeXt backbone produces multi-scale semantic

features. An adaptive candidate region generation module (N-RPN)

subsequently identifies potential disease regions. Multi-task
Frontiers in Plant Science 04
branches execute parallel plant classification and disease

detection, followed by conditional random field (CRF)-based

post-processing to improve spatial consistency. A dynamic weight

adjustment mechanism balances task losses during training to

ensure coordinated optimization. Soft non-maximum suppression

(NMS) refines de tec t ion outputs , wh i l e end- to-end

backpropagation optimizes the model. Below, we detail each

module, emphasizing technical design, theoretical rationale, and

their role in overcoming specific challenges.
3.1 Shared feature extraction

In the shared feature extraction module, this method starts with

the input image I (640×640×3), first passing it through a

preprocessing layer for normalization and noise suppression.

Then, an improved ConvNeXt backbone network is used to

extract features from the image. The improvement lies in

embedding a multi-scale adaptive attention mechanism into the

traditional ConvNeXt network (Liu et al., 2022), which can

automatically adjust the convolution kernel parameters based on
FIGURE 3

Complete structure diagram of PMJDM. (a) shows the overall architecture: input images first pass through the shared feature extraction module to
generate feature map F, which is processed by the candidate region generation module. The features then feed into parallel plant classification and
disease detection branches to produce respective outputs. Finally, results from both branches are integrated to generate the final output, with total
loss updated via dynamic weight adjustment. (b) details the channel attention module, producing weighted feature map Foutthrough global average
pooling, fully connected layers, and Sigmoid activation. (c) illustrates the post-processing module, containing pairwise potential calculation, unary
potential calculation, and mean-field approximation iterative optimization, outputting smoothed probability distribution Q(i,l). (d) presents the
candidate region generation module, including sliding window, anchor refinement, deformable convolution, confidence branch, and local texture
measurement to generate candidate regions. (e) details the ConvNeXt Block structure, comprising 7×7 depth-wise convolution, layer normalization
(LN), 1×1 convolutions with channel expansion/compression, GELU activation, and residual connections.
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local feature statistics. Additionally, an extra channel attention

module is introduced in the intermediate layers to enhance local

details and edge features, as shown in Figure 3b. Specifically, after

initial dynamic convolution processing, the image data enters the

ConvNeXt backbone network, where it undergoes successive

convolution, normalization, activation, and downsampling

operations to obtain the multi-channel feature map F ∈
RH/16×W/16×768. The backbone begins with a stem layer using a

7×7 convolution with stride 2 for initial downsampling, followed by

multiple ConvNeXt Blocks with stride 1 to preserve spatial

resolution in deeper layers. Each ConvNeXt Block, as shown in

Figure 3e, follows the standard design (Liu et al., 2022). It starts with

a 7×7 depth-wise convolution (maintaining the input channel

dimension), followed by layer normalization (LN), a 1×1 point-

wise convolution expanding to a larger channel dimension, a GELU

activation, and another 1×1 point-wise convolution compressing

back to the original channel dimension. A residual connection adds

the input to the output, ensuring training stability. In the final stage,

the backbone outputs 768 channels, achieved through a series of

Blocks with progressively increasing channel dimensions, following

the standard ConvNeXt-Tiny configuration.During this process, a

set of parameterized adaptive weighting functions A(·) is introduced

within the network, which fuses features from different scales using

local gradients and statistical information, ultimately yielding the

final enhanced feature representation. As shown in Equation 1:

F = A(B(I)), (1)

Where B( · ) represents the convolution operation process of

the traditional ConvNeXt network. Specifically, the computation

of the adaptive weighting function A( · ) can be expressed as

Equation 2:

A(F) = o
s∈S

as(F) · Fs, (2)

Where S denotes the set of features at different scales, Fsis the

feature map at scale s, and as(F) is the adaptive weight coefficient

related to scale s, dynamically generated from the local gradient

information and inter-channel statistical distribution of the feature

map F. As shown in Equation 3:

as(F) = s (Ws · GAP(F) + bs), (3)

Where Ws and bs are learnable parameters, GAP(·) represents

the global average pooling operation, and s ( · ) is the Sigmoid

activation function. This design effectively enhances the feature

responses of plant leaf edges and disease spots, thereby providing

more refined semantic and local information for subsequent

candidate region generation.
3.2 Candidate region generation

The candidate region generation module, termed N-RPN,

efficiently identifies potential disease regions on the shared feature

map F, as shown in Figure 3d. Traditional region proposal networks

(e.g., in Faster-RCNN) rely solely on intersection-over-union (IoU)
Frontiers in Plant Science 05
metrics, often failing in scenes with overlapping or multi-scale

targets. N-RPN addresses this by integrating Histogram of

Oriented Gradients (HOG) and Local Binary Patterns (LBP) for

texture similarity, selected for their robustness to illumination

changes and capacity to capture edge orientations (HOG) and

local texture patterns (LBP). These metrics complement IoU,

improving region quality in complex backgrounds.

The module employs a sliding window strategy to generate K =

9 anchor boxes per location, combining three scales (8, 16, 32) and

three aspect ratios (0.5, 1, 2). A lightweight feedforward network

refines anchors using 1×1 convolutions for channel reduction (768

to 384, then 384 to 96) and a 3×3 convolution for spatial feature

extraction, all with stride 1 to preserve resolution. As shown in

Equations 4–6:

f1 = ReLU (BN (Conv768→384
1�1 (Flocal))), f1 ∈ RH�W�384, (4)

f2 = ReLU (BN (Conv384→96
1�1 (f1))), f2 ∈ RH�W�96, (5)

f3 = ReLU (BN (Conv3� 3(f2))), f3 ∈ RH�W�96 : (6)

An offset branch predicts bounding box adjustments. As shown

in Equation 7:

D = Convoffset3�3 (f3), D ∈ RH�W�4K , (7)

where D = (Dx,Dy,Dw,Dh) adjusts anchor coordinates and

scales. A confidence branch predicts region scores. As shown in

Equation 8:

p = s (Convconf3�3 (f3)), p ∈ RH�W�K : (8)

Deformable convolution further adapts feature sampling to

irregular disease shapes. As shown in Equation 9:

F0 =o
i
wi · F(x + Dxi, y + Dyi), (9)

where wi are learnable weights. An adaptive suppression

mechanism combines IoU and texture similarity. As shown in

Equation 10:

S(Ri,Rj) = l1 · IoU (Ri,Rj) + l2 · TextureSim (Ri,Rj), (10)

with l1 = 0.7 and l2 = 0.3, ensuring robust region selection.

The final candidate regions as shown in Equation 11:

Rif gNi=1= N − RPN (F;Qrpn) : (11)

This design enhances detection of multi-scale and overlapping

disease targets, critical for agricultural scenes.
3.3 Multi-task branches

The multi-task branches process fixed-size features Fi (7×7×256)

extracted via ROIAlign from each candidate region Ri, enabling

simultaneous plant species classification and disease detection. The

plant classification branch uses a multi-label approach, as a single

region may contain multiple species (e.g., mixed crops). Features are
frontiersin.org
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processed through a 1×1 convolution (384 channels), batch

normalization, and ReLU, followed by a multi-layer perceptron

(MLP) with attention weights to enhance semantic representation.

The Sigmoid activation ensures multi-label probabilities. As shown

in Equation 12:

Pi = Sigmoid (W2*Dropout (ReLU (BN (W1*Fi + b1))) + b2), (12)

with loss computed via binary cross-entropy. As shown in

Equation 13:

Lplant = −
1
Co

C

c=1
½yi,clog (pi,c) + (1 − yi,c)log (1 − pi,c)� : (13)

Sigmoid is chosen over Softmax to handle non-exclusive labels,

addressing the multi-label nature of plant classification.

The disease detection branch employs a feature encoder with

convolutional layers, batch normalization, and LeakyReLU (slope 0.1)

to capture local disease patterns. It splits into regression and

classification sub-branches. The regression sub-branch predicts

bounding box coordinates using L1 and generalized IoU (GIoU)

losses. As shown in Equation 14:

Lreg =
1
Mi
o
Mi

j=1
½a · bij − b*ij

���
���
1
+b · (1 − GIoU (bij, b*ij))�, (14)

with a = 0:5, b = 1:0. The classification sub-branch uses focal

loss to address class imbalance. As shown in Equation 15:

Lcls = −
1
Mi
o
Mi

j=1
½(1 − sij)

g log (sij)�, (15)

with g = 2.0. The total disease detection loss is. As shown in

Equation 16:

Ldisease = Lcls + Lreg : (16)

Focal loss prioritizes hard-to-classify disease instances,

improving detection in cluttered scenes. The branch outputs. As

shown in Equation 17:

Di = (bij, cij, sij)
� �Mi

j=1: (17)

This dual-branch design minimizes computational redundancy

while addressing the distinct requirements of classification

and detection.
3.4 Post-processing of plant category
branch - conditional random field

The plant classification branch’s preliminary predictions Pi may

suffer from local noise due to uneven illumination or texture

variations. Since plant regions exhibit spatial continuity, we

employ a CRF-based post-processing module, as shown in

Figure 3c, to enforce spatial consistency. CRF models the

probability distribution over plant labels by combining unary and
Frontiers in Plant Science 06
pairwise potentials. The unary potential measures the cost of

assigning label l to a pixel or sub-region. As shown in Equation 18:

Ui(l) = −log p̂ i,l , (18)

where p̂ i,l is the preliminary probability for label l. The pairwise

potential incorporates spatial and texture constraints. As shown

in Equation 19:

Vij(l, l
0) = m(l, l0) · exp ( −

pi − pj
�� ��2

2s 2
a

−
Ii − Ij

�� ��2
2s 2

b
), (19)

where m(l, l0) = ⊮l≠l0 , pi, pj are spatial coordinates, Ii, Ij are

texture features, and sa = 5, sb = 3 control spatial and texture

influence. Mean-field approximation iteratively updates the

smoothed probability. As shown in Equation 20:

Qi(l) ∝ exp ( − Ui(l) −o
j≠i
Vij(l, l

0)Qj(l
0)) : (20)

The Conditional Random Field (CRF) is adopted for its capacity to

model pixel-level dependencies, effectively mitigating misclassifications

induced by local noise (e.g., shadows) while maintaining precise plant

region boundaries—a capability absent in conventional smoothing filters.
3.5 Dynamic weight adjustment

Multi-task training risks domination by a single task due to

differing loss scales. To address this, we propose a dynamic weight

adjustment mechanism based on the loss ratio between Lplant and

Ldisease. As shown in Equations 21, 22:

Lplant = −
1
Co

C

c=1
½yi,clog (pi,c) + (1 − yi,c)log (1 − pi,c)�, (21)

Ldisease =
1
Mi
o
Mi

j=1
½−(1 − sij)

g log (sij) + a bij − b*ij

���
���
1
+b(1 − GIoU (bij, b*ij))� :

(22)

The loss ratio as shown in Equation 23:

d =
Lplant − Ldisease

Lplant + Ldisease + e
, (23)

with e = 10−6. Task weights are updated using the hyperbolic

tangent function for smooth transitions. As shown in Equation 24:

w1 =
1 − tanh   (d )

2
, w2 =

1 + tanh   (d )
2

: (24)

The total loss as shown in Equation 25:

L = w1 · Lplant + w2 · Ldisease : (25)

The tanh function ensures gradual weight adjustments,

preventing abrupt shifts that could destabilize training. This

mechanism balances gradient contributions, enabling stable

convergence across tasks.
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3.6 Final output and model update

In inference, each candidate region Ri outputs a CRF-corrected plant

category probability P̂ i and disease detection resultsDi. Soft NMS adjusts

detection confidences based on overlap. As shown in Equation 26:

sjointij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ i,k · S(bij)

q
, (26)

where S(bij) is the soft suppression factor. The joint output as

shown in Equation 27:
Frontiers in Plant Science 07
Oi = (p̂ i,k, cij, bij, s
joint
ij )

n oMi

j=1
: (27)

Model parameters are updated via backpropagation. As shown

in Equation 28:

qt+1 = qt − h ·∇qL, (28)

with learning rate h = 0.002. This end-to-end framework,

enhanced by dynamic weight adjustment, ensures robust joint

detection and classification in complex agricultural scenarios.
FIGURE 4

Dataset example. The first five rows are disease labels, and the last row is the plant label.
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4 Results

4.1 Dataset and experimental setup

4.1.1 Dataset
This study utilizes a dataset of 26,073 annotated images from

multiple sources: 4,511 images from agricultural field collections,

8,339 from commercial datasets, and 13,223 from open-source

repositories (links provided in the declaration). We standardize

all images to 640×640 pixel resolution for deep learning

compatibility. The annotation system includes two files per image:

a plant species classification file (5 categories) and a disease

detection file with bounding boxes (28 categories). We divide the

dataset into training (70%, 18,251 images), validation (20%, 5,215

images), and testing (10%, 2,607 images) sets. Figure 4

demonstrates representative samples across disease and plant

categories, highlighting the dataset’s diversity.

4.1.2 Implementation details
We develop and train the PMJDM model using PyTorch 2.2.2

with CUDA 12.1 on an NVIDIA GeForce RTX 4090 GPU. Our

experimental platform consists of a Windows system with 64GB

RAM to ensure efficient memory management during training. The

150-epoch training protocol employs a cosine learning rate

scheduler that anneals the rate from 0.002 to 0.00002 for optimal

convergence. The anchor configuration utilizes 9 anchors per

location across three scales ([8, 16, 32]) and three aspect ratios

([0.5, 1, 2]), with a base size of 8 pixels. Table 1 documents the core

implementation parameters for reproducibility, while Table 2

specifies the complete hyperparameter set.

In the experiment, precision, recall, mAP50, and mAP50–95

were used as evaluation metrics to assess the model’s performance.
4.2 Comparative experiment

As shown in Table 3, PMJDM exhibits clear superiority across

key performance metrics: Precision, Recall, mAP50, and mAP50-

95. Its precision reaches 71.84%, significantly outperforming Faster-

RCNN’s 59.54% (a 12.3% gap), YOLOv8x’s 67.23% (4.61% lower),

and YOLOv10x’s 67.53% (4.31% lower). This indicates PMJDM’s

exceptional ability to reduce false positives, making it ideal for high-

precision scenarios. Recall is at 61.96%, surpassing Mask R-CNN’s
Frontiers in Plant Science 08
52.27% by nearly 10%, YOLOv9e’s 55.97% by approximately 6%,

and YOLOv10x’s 57.37% by 4.59%, demonstrating PMJDM’s

reliability in detecting true positives and minimizing misses.

For mAP50, PMJDM achieves 61.83%, exceeding Faster-

RCNN’s 51.49% (10.34% lower), YOLO11x’s 59.06% (2.77%

lower), and YOLOv10x’s 59.52% (2.31% lower). This reflects

superior average precision at an IoU threshold of 0.5, highlighting

excellent localization and classification capabilities. Under the

stricter mAP50–95 metric, PMJDM scores 42.69%, compared to

YOLOv10x’s 41.37% (1.32% lower), YOLOv8x’s 40.57% (2.12%

lower), and Faster-RCNN’s 31.62% (11.07% lower). This proves

PMJDM’s consistent performance across varying IoU thresholds

and its robustness under stringent localization requirements.

Overall, PMJDM’s lead across all metrics underscores its

efficiency and accuracy in complex detection scenarios, as

visualized in Table 3, making it highly suitable for high-

performance object detection applications.

The loss curves in Figure 5 illustrate the training and validation

losses for several models, including Faster-RCNN, Mask R-CNN,

YOLOv8x, YOLOv9e, YOLOv10x, YOLOv11x and PMJDM,. The

PMJDM model stands out for its exceptional balance between

disease detection and plant classification tasks. During training,
TABLE 1 Implementation parameters for PMJDM training.

Parameter Value

Framework PyTorch 2.2.2

CUDA Version 12.1

GPU NVIDIA GeForce RTX 4090

Operating System Windows

RAM 64GB

Learning Rate Scheduler Cosine
TABLE 3 Comparison of object detection model performance metrics.

Model Precision Recall mAP50 mAP50-95

Faster-RCNN 59.54% 52.65% 51.49% 35.98%

Mask R-CNN 59.17% 52.27% 51.53% 36.02%

YOLOv8x 67.23% 55.49% 58.16% 40.57%

YOLOv9e 66.72% 55.97% 58.83% 40.82%

YOLOv10x 67.53% 57.37% 59.52% 41.37%

YOLO11x 66.81% 56.28% 59.06% 41.01%

PMJDM (our) 71.84% 61.96% 61.83% 42.69%
TABLE 2 Hyperparameters used in PMJDM training.

Hyperparameter Value

Initial Learning Rate 0.002

Final Learning Rate 0.00002

Batch Size 16

Training Epochs 150

Optimizer Adam

Anchor Number (K) 9

Anchor Base Size 8

Anchor Scales [8, 16, 32]

Anchor Aspect Ratios [0.5, 1, 2]

CRF sa 5

CRF sb 3

Dynamic Weight Adjustment e 1e-6
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PMJDM’s regression loss decreases from 1.1632 to 1.0087, disease

classification loss from 1.2685 to 0.8310, and plant classification loss

from 0.9648 to 0.8483, while validation losses show a regression loss

drop from 1.2462 to 1.0861, disease classification loss from 1.2571

to 0.8949, and plant classification loss from 1.0151 to 0.8895. The

disease and plant classification losses exhibit similar declining

trends and converge to close final values, demonstrating
Frontiers in Plant Science 09
PMJDM’s effective balance between these tasks, achieved through

a dynamic weight adjustment mechanism that ensures equitable

loss contributions. In contrast, Faster-RCNN and Mask R-CNN

focus solely on bounding box and classification losses without

multi-task balancing, and YOLO series models, while strong in

box and classification losses, lack explicit task balance mechanisms.

Furthermore, PMJDM’s training and validation losses remain
FIGURE 5

Training and validation loss curves for each model.
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closely aligned, indicating minimal overfitting and robust

generalization capabilities.

The training progression of the evaluated object detection

models, as depicted in Figure 6, further demonstrates PMJDM’s

superiority. Over 140 epochs, all models initially exhibit a rapid

increase in mAP50–95 within the first 40 epochs, followed by a

performance divergence between epochs 40 and 100. During this

phase, PMJDM and YOLO series models (YOLOv9e, YOLOv10x,

YOLO11x) exceed 50%, while Faster-RCNN and Mask-RCNN

stabilize around 40%-45%. By epoch 140, the mAP values plateau,

with PMJDM achieving 61.83%, followed by YOLOv10x at 59.52%
Frontiers in Plant Science 10
and YOLO11x at 59.05%. In contrast, Faster-RCNN and Mask-

RCNN lag behind at 51.49% and 51.53%, respectively. This trend

highlights PMJDM’s consistent lead throughout the training

process, aligning with its top performance in Table 3, and

establishes it as a robust choice for high-performance object

detection tasks.

From Table 4, PMJDM, with 49.1M parameters, 145.76

GFLOPs, 113 FPS, and 61.83% mAP50, showcases remarkable

advantages. It balances high accuracy with a lightweight design

and efficient inference, ideal for embedded devices or real-time

applications. In contrast, YOLOv8x has 68.2M parameters, 258.3

GFLOPs, 64 FPS, and 58.16% mAP50. PMJDM reduces parameters

by 19.1M (28%), cuts computation by 112.54 GFLOPs (43.6%),

increases speed by 49 FPS (76.6%), and improves mAP50 by 3.67%,

demonstrating enhanced accuracy with lower resource demands,

likely due to an optimized network structure.

Compared to YOLOv10x, with 31.7M parameters (17.4M fewer

than PMJDM), 171.4 GFLOPs, 96 FPS, and 59.52%mAP50, PMJDM

achieves a 2.31% higher mAP50 and 17 FPS faster speed, with 25.64

fewer GFLOPs. This suggests PMJDM trades a moderate increase in

parameters for superior precision and efficiency, leveraging advanced

computational techniques. Against heavier models like Faster-RCNN

(137.1M parameters, 370.2 GFLOPs, 25 FPS, 51.49% mAP50),

PMJDM’s advantages are even more pronounced. As illustrated in

Table 4, its exceptional balance of efficiency and accuracy highlights

its practicality for real-time, high-precision detection tasks.
FIGURE 6

Training progression of object detection models: mean average precision (mAP50) Over 150 Epochs. The graph compares the performance of
Faster-RCNN, Mask-RCNN, YOLOv8x, YOLOv9e, YOLOv10x, YOLO11x, and PMJDM, highlighting PMJDM’s consistent superiority throughout the
training process.
TABLE 4 Efficiency and performance comparison of object
detection models.

Model Parameters
(M)

GFLOPs FPS mAP50

Faster-RCNN 41.7 134.38 123 51.49%

Mask R-CNN 44.4 134.38 122 51.53%

YOLOv8x 68.2 258.3 64 58.16%

YOLOv9e 58.1 192.5 85 58.83%

YOLOv10x 31.7 171.4 96 59.52%

YOLO11x 56.9 195.7 84 59.06%

PMJDM (Our) 49.1 145.76 113 61.83%
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In Figure 7, the comparison of detection results among Faster-

RCNN, YOLO11x, and PMJDM fully confirms the superiority of

the proposed method. The first two sets of visualization results

show that PMJDM generates more detection boxes than the

comparison models, especially in complex scenes with blurred

leaf edges and dense distribution of disease spots, where PMJDM

can still completely identify multiple disease targets, while Faster-

RCNN and YOLO11x miss some detections. This advantage is

attributed to the candidate region generation module (N-RPN) in

PMJDM that integrates HOG/LBP texture features, which

effectively overcomes the mis-suppression of overlapping targets

by traditional IoU thresholds through a sliding window strategy

guided by local gradient information and an adaptive suppression

mechanism based on texture similarity. Meanwhile, the multi-

scale adaptive attention mechanism embedded in the shared

feature extraction module significantly enhances the model’s

sensitivity to small areas by dynamically fusing edge features at

different scales.

The latter two sets of detection results further demonstrate

PMJDM’s reliability advantage: in the third image set, PMJDM

achieves the highest confidence score of 0.9 for the main disease
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spot area, outperforming Faster-RCNN (0.64) and YOLO11x (0.83)

by 0.26 and 0.07, respectively. Moreover, the average confidence

across the entire image improves significantly from 0.55/0.65

(comparison models) to 0.79. In the fourth set of images, the

stable high confidence of PMJDM is equally prominent. This

improvement can be attributed to three technical innovations:

first, the post-processing module based on conditional random

fields (CRF) effectively suppresses local misjudgments caused by

uneven illumination through spatial continuity constraints and

texture feature fusion; second, the dynamic weight adjustment

mechanism ensures that the model maintains high-confidence

decisions in complex scenes by balancing the gradient

contributions of plant classification and disease detection tasks in

real time; finally, the lightweight Transformer and CNN dual-

branch structure significantly enhances the model’s representation

ability for disease spot semantic information through cross-modal

feature interaction. These technologies work synergistically,

enabling PMJDM to achieve a dual breakthrough in detection

accuracy and confidence while maintaining high inference speed,

providing a reliable solution for precise disease diagnosis in

complex agricultural environments.
(a)Faster-RCNN

(b)YOLO11x

(c)PMJDM
FIGURE 7

Comparison of the detection results of Faster-RCNN, YOLO11x, and PMJDM. (a) Faster-RCNN, (b) YOLOX11x, (c) PMJDM.
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4.3 Ablation experiment

Table 5 illustrates the impact of removing individual PMJDM

modules from its baseline mAP50 of 61.83%, revealing their collective

importance. Without multi-scale attention, mAP50 drops to 59.41%

(a 2.42% decrease), emphasizing its critical role in capturing features
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across object sizes, likely enhancing detection of small or large targets.

Removing channel attention reduces mAP50 to 60.59% (1.24% drop),

indicating its contribution to emphasizing key information by

adjusting channel importance. Omitting texture filtering in N-RPN

lowers mAP50 to 59.52% (2.31% drop), showing its importance in

improving region proposal quality and detection accuracy.
TABLE 5 Ablation experiment results for PMJDM model.

Experiment Setting Precision Recall mAP50 mAP50-95

Full PMJDM 71.84% 61.96% 61.83% 42.69%

Exp-1 (w/o Multi-Scale Attention) 70.13% 60.27% 59.41% 38.92%

Exp-2 (w/o Channel Attention) 70.68% 57.83% 60.59% 41.62%

Exp-3 (w/o Texture Filtering in N-RPN) 70.91% 60.42% 59.52% 41.38%

Exp-4 (w/o CRF Post-Processing) 70.29% 61.03% 60.97% 41.57%

Exp-5 (w/o Dynamic Weight Adjustment) 70.47% 60.61% 60.38% 41.46%

Exp-6 (w/o Deformable Convolution) 70.19% 60.08% 58.97% 41.06%

Exp-7 (w/o Soft NMS) 71.02% 60.39% 60.74% 41.83%
TABLE 6 Ablation experiment results for hyperparameters in PMJDM model.

Experiment Setting Precision Recall mAP50 mAP50-95

Anchor Number (K)

Baseline (K=9) 71.84% 61.96% 61.83% 42.69%

Exp-1 (K=3) 70.51% 60.28% 59.92% 41.13%

Exp-2 (K=6) 71.03% 61.17% 60.89% 41.94%

Exp-3 (K=12) 71.29% 61.42% 61.37% 42.25%

Anchor Base Size

Baseline (Base=8) 71.84% 61.96% 61.83% 42.69%

Exp-4 (Base=4) 70.59% 60.47% 60.33% 41.52%

Exp-5 (Base=16) 70.88% 60.71% 60.62% 41.67%

Scales & Aspect Ratios

Baseline (Scales={8, 16, 32}, Ratios={0.5, 1, 2}) 71.84% 61.96% 61.83% 42.69%

Exp-6 (Scales={16},
Ratios={1})

70.42% 60.03% 59.71% 40.98%

Exp-7 (Scales={4, 8, 16, 32}, Ratios={0.33, 0.5, 1,
2, 3})

71.27% 61.38% 61.29% 42.14%

Learning Rate

Baseline (LR=0.002→0.00002) 71.84% 61.96% 61.83% 42.69%

Exp-8 (LR=0.001→0.00001) 70.63% 60.49% 60.38% 41.42%

Exp-9 (LR=0.005→0.00005) 70.87% 61.12% 60.95% 41.89%

Batch Size

Baseline (BS=16) 71.84% 61.96% 61.83% 42.69%

Exp-10 (BS=8) 71.06% 61.24% 61.05% 42.11%

Exp-11 (BS=32) 71.32% 61.49% 61.38% 42.34%
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Excluding CRF post-processing results in an mAP50 of 60.97%

(0.86% drop), a smaller decline suggesting it refines bounding boxes

and reduces false positives, though it’s not the primary contributor.

Removing dynamic weight adjustment decreases mAP50 to

60.38% (1.45% drop), underlining its role in adaptively balancing

module contributions for stability. Eliminating deformable

convolution cuts mAP50 to 58.97% (2.86% drop)—the largest

decline—proving its essential role in handling deformations and

complex backgrounds. Dropping Soft NMS reduces mAP50 to

60.74% (1.09% drop), indicating its advantage over traditional

NMS in managing overlapping boxes. As shown in Table 5, these

modules—particularly deformable convolution and multi-scale

attention—collectively drive PMJDM’s efficient detection

capability, validating its design effectiveness.

Table 6 demonstrates how varying hyperparameter settings

affects PMJDM’s performance, with optimized values yielding the

best outcomes. With anchor number K=9, mAP50 reaches 61.83%;

reducing to K=3 drops it to 59.92% (1.91% lower) due to insufficient

anchor coverage increasing misses, while K=12 yields 61.37%

(0.46% lower) as redundancy reduces efficiency, making K=9

optimal. Anchor base size Base=8 achieves 61.83% mAP50;

Base=4 falls to 60.33% (1.5% drop) due to poor large-object

localization, and Base=16 drops to 60.62% (1.21% lower) from

weaker small-object matching, confirming Base=8 as the best fit.

The scale and ratio configuration Scales={8,16,32}, Ratios=

{0.5,1,2} delivers 61.83% mAP50; simplifying to Scales={16},

Ratios={1} reduces it to 59.71% (2.12% drop) due to limited

diversity, while expanding to Scales={4,8,16,32}, Ratios=

{0.33,0.5,1,2,3} yields 61.29% (0.54% lower) as added complexity

lowers efficiency, affirming the original setup as ideal. A learning

rate decaying from 0.01 to 0.0001 secures 61.83% mAP50; 0.05 to

0.005 drops to 60.38% (1.45% lower) due to initial instability, and

0.005 to 0.00005 falls to 60.95% (0.88% drop) from insufficient

convergence, proving the original schedule optimal. Batch size

BS=16 achieves 61.83% mAP50; BS=8 drops to 61.05% (0.78%

lower) due to reduced stability, and BS=32 yields 61.38% (0.45%

lower) from memory strain, making BS=16 the best compromise.

As depicted in Table 6, these tuned hyperparameters ensure

PMJDM’s training efficiency and exceptional performance.
5 Discussion

The experimental results underscore the superior performance

of the PMJDM model across multiple evaluation metrics, including

precision, recall, mAP50, and mAP50-95, when compared to

established models like Faster-RCNN, Mask R-CNN, and various

YOLO iterations. With a precision of 71.84% and recall of 61.96%,

PMJDM demonstrates a marked improvement over Faster-RCNN

(59.54% precision, 52.65% recall) and YOLOv10x (67.53%

precision, 57.37% recall), reflecting its enhanced ability to

accurately detect and localize plant diseases while minimizing

false positives and negatives. Ablation studies further reveal the

pivotal contributions of key components such as the multi-scale

attention mechanism, deformable convolution, and dynamic weight
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adjustment, with their removal causing significant drops in mAP50

(e.g., 2.86% without deformable convolution). Visualization of

detection results highlights PMJDM’s robustness in challenging

scenarios, such as dense disease distributions and blurred leaf

edges, attributing this success to the integration of texture-based

candidate region generation and conditional random field post-

processing, which ensure high-confidence predictions and spatial

consistency. These findings suggest that PMJDM’s synergistic

design not only elevates detection accuracy but also maintains

computational efficiency (145.76 GFLOPs, 113 FPS), making it a

highly effective solution for precision agriculture.

PMJDM’s robustness under varying lighting conditions is

enhanced by the CRF post-processing module, which uses spatial

constraints and texture feature fusion to reduce misclassifications

from uneven illumination, achieving a confidence score of 0.79 in

complex scenes, surpassing YOLO11x ’s 0.65. However,

performance in extreme lighting, such as strong backlighting, may

be limited due to insufficient dataset coverage. Other limitations

include PMJDM’s restriction to 5 plant species and 28 disease

categories, requiring retraining for new classes, and its 49.1M

parameters, which challenge ultralow-power device deployment.

Future work could address these through expanded datasets and

model compression. Additionally, PMJDM does not directly predict

disease severity, though confidence scores indirectly reflect disease

prominence. Incorporating severity annotations and regression

models could enhance its utility. These improvements would

make PMJDM more adaptable to diverse agricultural scenarios,

strengthening its value in precision agriculture.
6 Conclusion

With global food demand rising rapidly, manual plant disease

detection is slow and error-prone, while automated methods falter

in complex scenes. The PlantDisease Multi-task Joint Detection

Model (PMJDM), integrating enhanced ConvNeXt feature

extraction, HOG/LBP-augmented N-RPN, multi-task branches,

and CRF post-processing, offers an efficient solution. On a

26,073-image dataset, PMJDM achieves 71.84% precision, 61.96%

recall, and 61.83% mAP50, outperforming Faster-RCNN (51.49%)

and YOLOv10x (59.52%). PMJDM reduces redundancy via joint

inference, balances tasks with dynamic weights, and enhances

lighting robustness with CRF post-processing. Experiments show

a 0.79 confidence in blurred leaf scenarios, surpassing YOLO11x’s

0.65. With 49.1M parameters and 113 FPS, PMJDM enables

realtime use, aiding pesticide reduction and yield improvement.

Future work may incorporate light-adaptive preprocessing, model

compression, and severity prediction, expanding to more plant

types and extreme conditions, advancing smart farming.
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