
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Milan Kumar Lal,
National Rice Research Institute (ICAR), India

REVIEWED BY

Quanhong Ou,
Yunnan Normal University, China
Purushothaman Ramamoorthy,
Mississippi State University, United States
Mariana Yamada,
University of São Paulo, Brazil

*CORRESPONDENCE

Changping Huang

huangcp@aircas.ac.cn

RECEIVED 25 March 2025

ACCEPTED 30 May 2025
PUBLISHED 23 June 2025

CITATION

Gao Y, Huang C, Zhang X, Zhang Z and
Chen B (2025) Vertical stratification-enabled
early monitoring of cotton Verticillium wilt
using in-situ leaf spectroscopy via
machine learning models.
Front. Plant Sci. 16:1599877.
doi: 10.3389/fpls.2025.1599877

COPYRIGHT

© 2025 Gao, Huang, Zhang, Zhang and Chen.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 23 June 2025

DOI 10.3389/fpls.2025.1599877
Vertical stratification-enabled
early monitoring of cotton
Verticillium wilt using in-situ
leaf spectroscopy via machine
learning models
Yi Gao1,2, Changping Huang1,2*, Xia Zhang1, Ze Zhang3

and Bing Chen4

1National Engineering Research Center of Satellite Remote Sensing Applications, Aerospace
Information Research Institute, Chinese Academy of Sciences, Beijing, China, 2University of Chinese
Academy of Sciences, Beijing, China, 3Xinjiang Production and Construction Corps Oasis Eco-
Agriculture Key Laboratory, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China,
4Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi, China
Early monitoring of cotton Verticillium wilt (VW) is crucial for preventing

significant yield losses and quality deterioration. Current hyperspectral

approaches often overlook the bottom-up disease progression and the impact

of leaf stratification on VW detection. To address this, vertical spectral traits were

examined to improve early diagnosis. A total of 551 in-situ leaf spectra were

averaged from thousands of measurements, alongside corresponding RGB

images from top, middle, and bottom leaf layers. Five severity levels (SL=0-4)

were classified based on lesion coverage. Various vegetation indices and signal

features were extracted for VW identification. Three feature selection methods,

Relief-F, Lasso, and Random Forest (RF), were integrated with five machine

learning models, including LightGBM, ANN, XGBoost, RF, and SVM. Results

showed that spectral reflectance varied significantly by severity and layer, with

the most pronounced variations in the bottom layer’s visible spectrum. LightGBM

with RF-selected features achieved the best performance and fastest training,

with accuracies of 0.82, 0.81, and 0.91 for the top, middle, and bottom leaf layers,

respectively. Early-stage detection (SL=0-2) was most effective in the lowest

layer, showing 38% and 34% higher precision (SL=1) than the upper two. Critical

spectral features varied with vertical leaf layers and disease severity, with blue and

red-edge bands identified as most important. For assessing five disease severity

levels, the most informative features for the top, middle, and bottom layers were

AntGitelson, Blue Index (B), and PRI570. For detecting early symptoms (SL=1), the

blue band was particularly effective, followed by water-related bands. At the

initial infection stage, the most significant indicators for top, middle, and bottom

layers were Blue/red index (BRI), B, and WSCT, respectively. This study deepens
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understanding of vertical leaf spectral dynamics and enables rapid, non-

destructive in vivo detection of cotton Verticillium wilt, enhancing the

applicability of portable hyperspectral devices and informing leaf-layer-aware

precision disease management strategies.
KEYWORDS

cotton Verticillium wilt, vertical leaf layer, hyperspectral reflectance, machine learning,
disease severity
Highlights
• A dataset of 551 cotton leaf samples combining

hyperspectral reflectance and high-resolution RGB images

enables early Verticillium wilt (VW) detection using in-situ

spectral analysis with vertical leaf stratification.

• LightGBM with RF-selected features achieves 91% accuracy

for bottom-layer monitoring, outperforming top and

middle layers by 38% and 34% in ear ly-stage

detection (SL=1).

• Key features for VW severity classification (SL=0-4) include

AntGitelson, Blue Index (B), and PRI570. Early-stage infection

(SL=1) is best detected by BRI, B, and WSCT, with the blue

band (400-500 nm) important across all layers.

• 4. Three feature selection methods and five machine

learning models were evaluated. LightGBM with RF-

selected features showed optimal performance for early

VW monitoring.
1 Introduction

Cotton is a significant economic crop that plays an important

role in the global fiber and oilseed supply. Verticillium wilt (VW), a

soil-borne fungal disease primarily caused by the pathogens

Verticillium dahlia and Verticillium albo-atrum, is threatening

global cotton production and quality seriously. It leads to a large

economic loss. The fungal pathogens of VW naturally exist in soil

and can invade the root system of cotton plants, penetrating

through the cortex and xylem, ultimately causing the plants to

wither and die. Traditional methods for monitoring cotton VW,

such as field surveys and laboratory-based chemical analyses (e.g.,

PCR), are often time-consuming, spatially limited, and costly,

with chemical assays typically requiring destructive sampling. In

recent years, VW, an aggressive vascular disease, has shown earlier

onset, faster progression, and increased severity, making timely

monitoring even more challenging with conventional methods. In

contrast, remote sensing enables rapid, non-destructive disease

monitoring, making it a promising tool for early and accurate

VW monitoring (Skendžić et al., 2023).
02
Owing to its high spectral resolution, hyperspectral remote

sensing can detect subtle physiological changes caused by

infections, offering the potential for early disease monitoring,

even during the asymptomatic phase (Zhao et al., 2022b). Cotton

VW infects the vascular system, turning it gray or dark brown,

obstructing conductive tissues and causing leaf yellowing, wilting,

bud and boll shedding, and plant death. Pathogen-infected leaves

often develop spots, necrosis, or wilting, reducing pigment content

and activity. This causes an increase in visible spectral reflectance

(400-700nm) and a blue shift in the red-edge region (670–730 nm)

(Zhang et al., 2012). Additionally, variations in plant water status

due to leaf chlorosis can alter spectral reflectance patterns in

the near-infrared and short-wave infrared bands. Therefore,

comprehensive extraction and in-depth analysis of disease-related

spectral features from leaves enable effective early monitoring of

cotton VW.

Leaf-scale hyperspectral monitoring captures subtle spectral

changes and provides more pure disease-related information

compared to canopy-scale monitoring (Zhang et al., 2019).

However, current early monitoring studies, which focus on

severity levels below 50% and use 10% as a threshold (Yang et al.,

2022b), still lack the capability to identify VW during the initial

days of symptom onset, when only about 5% of the leaf area may be

affected. Most research relies on leaf clips or controlled laboratory

conditions (Bienkowski et al., 2019), which fail to represent whole-

leaf conditions, introduce subjectivity in measurement point

selection (Yang et al., 2024), and produce data that often differ

significantly from natural field conditions (Appeltans et al., 2021).

These limitations hinder the application of hyperspectral sensors

for in-situ, rapid, and non-destructive monitoring in complex

outdoor environments. Furthermore, although many studies have

focused on leaf-scale disease monitoring using hyperspectral remote

sensing, most rely on mixed leaf samples or top-layer leaves,

neglecting the actual progression of VW in cotton, which

typically starts in the bottom plant layers and moves upward

(Jing et al., 2022).

In the early stages of cotton VW infected, symptoms are visible

only on the bottom leaves, while the upper healthy leaves can

obscure the canopy spectrum, making it challenging to capture the

spectral characteristics associated with infection. This non-
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synchronization between the infection in lower leaves and the

healthy status of upper leaves significantly affects the accuracy of

VW severity estimation using canopy hyperspectral data (Li et al.,

2022). This problem has become a key limiting factor to further

improve the accuracy and applicability of spectral models for

precise cotton VW monitoring. Numerous studies on canopy-

scale hyperspectral monitoring for cotton VW have highlighted

the challenge of identifying early symptoms, which primarily

appear on the bottom-layer leaves (Kang et al., 2022; Ma et al.,

2024; Nie et al., 2024). Therefore, considering the differences in

spectral characteristics across vertical leaf layers, monitoring cotton

VW with respect to leaf position offers a new perspective for early

disease detection. The exploration of how VW alters hyperspectral

signatures across distinct leaf layers, clarifying their variations and

identifying vertical leaf layer spectral bands for disease detection,

necessitates further investigation.

Current research on vertical spectral monitoring primarily

focuses on the vertical distribution of plant pigments, water

content, and nutrient levels (Yang et al., 2022a). Stratification

strategies for such analyses are typically based on either one-third

of the plant height or the average number of leaves per layer (Zhang

et al., 2024). However, only a few studies have explored how vertical

distribution affects disease monitoring accuracy. Approaches to

disease monitoring considering vertical distribution mainly

include multi-angular spectral observations and stratified leaf-

layer spectral measurements. For instance, to address the

challenge of lower-layer leaf occlusion in traditional vertical

observations, studies have utilized multi-angular spectral

parameters to determine optimal viewing angles for monitoring

wheat powdery mildew, significantly improving early detection

accuracy (He et al., 2021; Song et al., 2022). Additionally, Huang

et al. (2015) investigated in-situ spectral differences among infected

leaves across different layers and developed a universal spectral

index for monitoring wheat stripe rust by integrating spectral

features from top, middle, and bottom leaf layers, achieving high

monitoring accuracy with R² of 0.88. However, current studies on

spectral differences in leaves across positions are largely limited to

crops such as wheat and corn, with limited research on cotton VW

(Li et al., 2015; Ye et al., 2018). Only a few studies have qualitatively

compared laboratory-measured spectral reflectance of VW-infected

leaves, noting significant spectral variations due to leaf position

(Kuligowski et al., 2006; Chen et al., 2014). Nevertheless, how these

position-related spectral differences impact the monitoring of

cotton VW, especially at early stages, remains unclear.

Differ from crops like wheat, cotton plants typically exhibit

dense foliage, a structure that maximizes photosynthesis but also

leads to significant differences in photosynthetically active radiation

(PAR) received by different leaf layers (Sassenrath-Cole et al., 1996;

Wang et al., 2023b). Due to shading from upper leaves, lower-layer

leaves receive less light, resulting in variations in their light

environment and growth conditions, which in turn affect

their optical properties (Li, 2007). Ignoring the vertical

heterogeneity within the canopy may compromise the accuracy

of spectral reflectance characteristics, potentially leading to

misinterpretations of plant physiological traits (Yang et al., 2017).
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Moreover, most existing studies rely on a limited number of

spectral bands to construct disease monitoring indices, which

provide restricted information and fail to fully utilize the entire

spectral range. Extracting comprehensive features from

hyperspectral data to capture subtle spectral changes during early

disease stages or under complex conditions is crucial for effective

disease monitoring (Zhang et al., 2019). Features commonly used in

power quality monitoring, such as peak values and kurtosis, can

identify weak disturbance signals based on curve morphology,

potentially aiding in the detection of early spectral changes in

VW-infected cotton leaves (Bastami and Vahid, 2021). However,

the fusion of multiple features often leads to redundancy, making

the integration of feature selection and machine learning methods a

mainstream approach in remote sensing for disease monitoring,

widely applied in precision agriculture (Zhao et al., 2022a).

Commonly used feature selection methods for vegetation spectral

disease monitoring include Relief-F, Random Forest, and PCA

(Hennessy et al., 2020), while frequently employed machine

learning algorithms are ANN, SVM, and RF (Deng et al., 2019;

Sanaeifar et al., 2023). As each method focuses on different aspects,

their optimal combination can enhance the extraction and

sensitivity to weak signal changes, having been proven effective in

monitoring crop diseases (Feng et al., 2022; Zhang et al., 2023). In

recent years, numerous studies have compared combinations of

different disease monitoring methods (Poblete et al., 2020; Song

et al., 2022). However, the choice of methods varies across different

crops and disease types (Chan et al., 2020), and the optimal

combination for cotton VW monitoring remains uncertain.

Additionally, precision agriculture requires continuous updates to

disease monitoring methods to provide higher accuracy in disease

diagnosis. LightGBM, as an emerging efficient machine learning

algorithm, offers advantages in time, memory usage, accuracy,

and interpretability, making it particularly suitable for timely,

precise, and efficient disease monitoring (Harumy et al., 2024). It

has been widely applied in medical disease prediction with

outstanding performance (Wang et al., 2023a), but its application

in plant disease monitoring remains limited. The potential of

LightGBM for cotton VW monitoring, its advantages over

traditional models, and its applicability in field environments

require further exploration.

This study aims to investigate how vertical leaf stratification

affects the hyperspectral response of cotton Verticillium wilt, with a

particular focus on in-situ early monitoring. Based on the above

analysis, this study focuses on the monitoring effectiveness of VW

across vertically stratified cotton canopies. With non-destructive

hyperspectral data from whole leaves, an optimal combination of

feature selection approaches and machine learning models is

employed to achieve early VW detection and evaluate the impact

of leaf position on detection performance. This research addresses

the gap in understanding how different leaf positions influence

cotton VW monitoring. To the best of our knowledge, this study

pioneers the characterization of early spectral signatures in VW-

infected cotton stem leaves under field settings, aiming to meet the

demand for rapid in-situ monitoring in natural environments. The

main contributions of this study are as follows: (1) constructing a
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comprehensive dataset of 551 samples, including high-resolution

RGB images and averaged spectra from 2,900 individual spectral

measurements of cotton main-stem leaves, to enable the stratified

early monitoring of cotton VW; (2) comparing the performance of

various feature selection methods (Relief-F, Lasso, and RF) and

machine learning models (LightGBM, ANN, XGBoost, RF, and

SVM) in monitoring cotton VW; (3) assessing the influence of leaf

position within cotton plants on early VW detection performance.
2 Materials and methods

2.1 Overall framework of the study

This study establishes a framework for monitoring VW across

vertically stratified cotton leaf layers based on hyperspectral data.

Figure 1 illustrates the workflow encompassing in-situ

hyperspectral data acquisition, vertical leaf layer feature

optimization, and machine learning model construction,

delivering layer-specific diagnostic precision across top, middle,

and bottom leaf layers.
2.2 Field experiments

The trial was conducted in the field of VW disease at the Shihezi

Institute of Agricultural Sciences (44.33°N, 86.05°E), Xinjiang

(Figure 2). As Xinjiang is the most important cotton planting

region in China, accounting for 23.1% of global cotton output

and 90.2% of China’s cotton production (Feng et al., 2024). The

region has a typical temperate continental climate with abundant

sunlight. The national-level Verticillium wilt experimental field is

cultivated with multiple candidate cotton germplasm lines and is

artificially inoculated with the VW pathogen each year to maintain

consistent disease pressure. Sowing was conducted from April 15-

20, 2023, using ridge film mulching with on-film hole sowing and

subsurface drip irrigation. The planting configuration followed a

row spacing pattern of 10 + 66 + 10 + 66 cm. Irrigation was applied

at intervals of 8–10 days, totaling 10–12 applications throughout the

crop growth period. Fertilization included mono-ammonium

phosphate (MAP) and urea, with potassium primarily supplied as

available potassium (KCl), and potassium dihydrogen phosphate

(KH₂PO₄) applied as a topdressing during the late growth stages. All

fertilizers were dissolved in water and delivered via drip irrigation.

The field is protected from external interference, and is irrigated

and fertilized regularly to prevent drought stress or other stress that

could affect VW monitoring.

The experiments were conducted from August 4th to

September 10th, 2023. This period is the peak of cotton VW and

covers the key growth period of flowering stage, experiencing the

significant process from reproductive stages to vegetative stages. In

this study, we randomly selected 11 distinct cotton plants from the

experimental field and collected main stem leaves for analysis.

Between August 4th and 10th, eleven cotton plants that had not

shown symptom of VW were selected in the field. The typical main
Frontiers in Plant Science 04
stem leaves at different leaf positions of these plants were used as

experimental subjects to observe the full progression of the disease,

from healthy to symptomatic, followed by leaf yellowing

and senescence.
2.3 Data collection

2.3.1 Leaf spectral reflectance and image
acquisition

This study primarily collects hyperspectral reflectance and

corresponding high-resolution RGB images of cotton main-stem

leaves. In-situ spectral measurements of the main stem leaves were

conducted using a Spectral Evolution RPSR+ 3500 hand-held

spectroradiometer (Spectral Evolution Inc., Lawrence, MA, USA).

The spectroradiometer measures spectral wavelengths ranging from

350 to 2500 nm, with spectral resolutions of 3.5 nm at 350–1000

nm, 10 nm at 1500 nm, and 7 nm at 2100 nm, at 1nm intervals. To

ensure the entire leaf remained within the probe’s field of view, the

leaf, while still attached to the cotton plant, was gently flattened

against a horizontally placed diffuse matte blackboard, which served

as the measurement background, and measured at an orthophoto

angle. The distance between the probe and the leaf was

approximately 9–15 cm, adjusted flexibly based on pre-calculated

distances corresponding to the leaf size, giving the conical field of

view of 25°. A white reference panel, placed in the same scene as the

leaf, was used for spectroradiometer calibration every 10–15

minutes to account for variation in incident light intensity.

Measurements were taken on every sunny day with minimal or

no cloud cover, at times when sunlight was strong and stable.

An RGB image was captured immediately after each spectral

measurement at an orthophoto angle using an iPhone 14 Pro

(Apple Inc., Cupertino, CA, USA), equipped with a 48 MP main

camera featuring a quad-pixel sensor and producing images with a

resolution of 8064×6048 pixels. The proportion of VW-infected

areas and the color changes of the leaf in the images were used to

determinate the disease severity.

A total of 2,900 in-situ hyperspectral measurements were

collected from 33 cotton main-stem leaves under field conditions,

alongside 551 nearly synchronous RGB images. Following spectral

preprocessing and averaging, 551 whole-leaf spectra were derived

from different leaf positions, which covers the different severities of

cotton VW.

2.3.2 Division of cotton VW severity levels
The diseased-to-total pixel ratio within Regions of Interest

(ROI) was calculated to quantify infection severity, using the

delineation of diseased leaf areas as ROIs. Based on long-term

field observations of symptom progression, it was observed that

healthy and early-stage diseased states persist longer than the mid-

to-late stages, where the disease progresses slowly in the early stages

and rapidly in the later stages. Furthermore, when lesions exceed

50% coverage, extensive pathogen invasion have led to irreversible

damage (Yang et al., 2022b). Considering these factors and in

accordance with previous studies, where cotton VW severity was
frontiersin.org
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assessed by increasing the disease level with each 1/4 increase in leaf

incidence (Chen et al., 2011), disease severity was classified into five

progressive levels (SL=0-4). These levels were defined using lesion

coverage thresholds of 0%, 5%, 25%, 50%, and 100%, corresponding

to the healthy, slightly infected, mildly infected, moderately

infected, and severely infected stages. In the slightly infected

stages of disease, cotton leaves exhibit mild symptoms with

localized yellowing between the veins. As the disease progresses,

significant damage occurs to the localized palisade and spongy

mesophyll cells, leading to tissue deformation. The infection spots

then gradually expand, accompanied by leaf margin scorching and

curling. In severe cases, the infected spots spread to nearly half of

the leaf, followed by distortion of the leaf shape. In extreme cases,

the entire leaf turns yellow, curls, and ultimately dies. The changes

in disease severity of a leaf sample in a cotton plant, from healthy to

wilted and dead, are shown in Figure 3.

Based on the division of cotton VW severity mentioned above,

173 health samples (SL0) were identified, along with 378

symptomatic samples classified as SL=1-4. To the best of our

knowledge, this is the first time that the in-situ leaf changes at the

initial symptom appearance stage (SL1) of VW have been captured.

2.3.3 Vertical stratification of cotton leaf layers
Due to individual differences among cotton plants, the number

of leaves on the main stem is not consistent, meaning leaf position
Frontiers in Plant Science 05
numbers are not identical. Therefore, each of the eleven cotton

plants was divided into three layers based on the bottom, middle,

and top thirds of the total number of typical main stem leaves from

bottom to top (Zhang et al., 2024). The whole dataset was

accordingly divided into three subsets: top layer, middle layer,

and bottom layer, to analyze the differences in spectral features

across leaf positions for monitoring cotton VW. The sample

distribution across the three subsets includes 215 samples in the

top layer, 214 in the middle layer, and 122 in the bottom layer, as

shown in Table 1.
2.4 Hyperspectral data analysis and feature
extraction

2.4.1 Spectrum preprocessing
To minimize noise at the ends of the spectral reflectance curve

and avoid signal loss due to light absorption by atmospheric water

vapor, the spectral range was restricted from 340–2500 nm to 340–

1820 nm and 1950–2420 nm. Individual outlier spectra, identified

from the primary dataset of 3,617 raw spectral measurements with

repetitions, were removed due to strong interference from external

factors. A total of 2,900 high-quality spectra were retained for

subsequent analysis in this study. Then, the remaining spectra were

processed using a Savitzky-Golay smoothing filter to mitigate noise
FIGURE 1

Hyperspectral-based vertical leaf layer monitoring framework for cotton Verticillium wilt.
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interference. Mean leaf spectral reflectance for each disease

severity level (SL=0-4) was calculated to evaluate their spectral

response (Figure 4).

2.4.2 Vegetation indices construction
The nutritional, physiological, structural, and water content

traits of crops change after pathogen infection, leading to alterations

in reflectance. A total of 34 vegetation indices (VIs), commonly

used in studies on vegetation disease monitoring, were constructed

based on leaf reflectance. These indices encompass 11 categories,

including those related to pigment content (e.g., chlorophyll a+b,

carotenoids and xanthophylls), photosynthetic activity (e.g.,

fluorescence indices), leaf structure, disease, water content and

blue-green-red ratios (Table A1).
Frontiers in Plant Science 06
2.4.3 Signal features calculation
Signal features evaluate electromagnetic spectrum variations

from statistical and morphological perspectives. The differences in

distance and morphological information between spectral curves

are useful for measuring the heterogeneity between healthy and

diseased plants. Some studies have successfully applied information

entropy for band selection to differentiate between healthy and

diseased plants based on spectral data (Deng et al., 2019). Drawing

from the literature on power quality monitoring and abnormal

signal detection in bearing faults, this study extracted 13 signal

features from the spectral curves of cotton leaves based on

mathematical methods and optimization techniques. These

features include Kurtosis, Entropy, Fractal Dimension, Peak

Factor, Pulse Factor, Crest Factor, Energy Ratio, Spectral Flatness,
FIGURE 2

Experimental area at the Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi City, Xinjiang. (a) Xinjiang Uygur Autonomous
Region (red star: Shihezi City); (b) Administrative boundary of Shihezi City (blue shaded area); (c) Field sampling layout within VW-infected plots;
(d) Symptomatic cotton plants with VW infection.
FIGURE 3

Cotton leaves with different VW severity level.
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Mean, Variance, Skewness, Peak Vibration, and RMS Vibration

(Shannon, 1948; Cooley and Tukey, 1965). These features

characterize the statistical distribution, energy dynamics, and

structural complexity of the spectral curves, providing

comprehensive insights into the signal patterns associated with

cotton leaf reflectance infected by VW.
2.5 Feature selection and classification
models

2.5.1 Feature selection methods
VW infection in cotton impairs photosynthesis, induces

chlorosis, and disrupts water transport, leading to the changes in

spectral reflectance. VIs derived from hyperspectral data can

effectively capture these physiological alterations. On the other

hand, signal features (SFs), which reflect morphological changes

in the spectral curve, offer valuable insights into the disease’s

progression. By using VIs and SFs as input features, the disease

can be detected from both local and global perspectives, providing a

more comprehensive method for monitoring the onset and

development of cotton VW.

To prevent the high redundancy in the original data and

improve feature selection efficiency, three feature selection

methods (Relief-F, Lasso and RF) commonly used in remote

sensing disease monitoring literature were employed to obtain

feature importance for VW monitoring (Sanaeifar et al., 2023).
Frontiers in Plant Science 07
Relief-F ranks features based on their ability to distinguish between

similar instances, making it useful for high-dimensional data,

though it may struggle with highly correlated features (Zhang

et al., 2019; Wu et al., 2023). Lasso, a linear regression method,

performs both variable selection and regularization by shrinking

less important feature coefficients to zero, thus preventing

overfitting (Yang et al., 2024). Random Forest, an ensemble

learning method, assesses feature importance by evaluating how

each feature contributes to model performance, effectively handling

non-linear relationships and interactions. Its inherent robustness

enables it to manage complex, noisy, high-dimensional datasets

effectively (Huang et al., 2022). To ensure that all input features

were given equal consideration, the data were normalized before

being used in the models.

2.5.2 Machine learning-based classification
models

To evaluate model performance in monitoring VW disease, five

machine-learning algorithms were employed, including LightGBM,

XGBoost, Random Forest, Support Vector Machine (SVM) and

Artificial Neural Network (ANN) (Zheng et al., 2023). LightGBM

uses the gradient-based one side sampling (GOSS) and exclusive

feature bundling (EFB) algorithm to optimize the handling of

category features. By combing sparse features and bundling

mutually exclusive features, it further optimizes the training speed

compared to other gradient boosting decision tree (GBDT) models.

Considering computational efficiency, memory usage, and
TABLE 1 Division of cotton leaf VW severity level.

SL level Severity Disease spot
Sample size

Top layer Middle layer Bottom layer All layers

SL0 Healthy 0% 63 60 50 173

SL1 Slightly infected 0-5% 29 41 23 93

SL2 Mildly infected 5-25% 51 52 26 129

SL3 Moderately infected 25-50% 53 48 16 117

SL4 Severely infected 50-100% 19 13 7 39
 

(a) in-situ spectra (b) De-enveloping spectra 

FIGURE 4

Leaf raw spectral curve (a) and de-enveloping spectral curve (b) of Verticillium wilt (VW) at different severity levels across all leaf layers.
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TABLE A1 Hyperspectral vegetation indices utilized in this study.

Vegetation indices Equation Reference

Structural indices

Red-edge NDVI RNDVI = (R750 − R705)=(R750 + R705) Barnes et al. (2000)

Green NDVI GNDVI = (R750 − R540 + R570)=(R750 + R540 − R570) Gitelson and Merzlyak (1997)

Xanthophyll indices

Photochemical Reflectance Index (570) PRI570 = (R570 − R531)=(R570 + R531) Gamon et al. (1992)

Photochemical Reflectance Index (600) PRI600 = (R600 − R531)=(R600 + R531) Gamon et al. (1992)

Photochemical Reflectance Index (515) PRI515 = (R515 − R531)=(R515 + R531) Hernández-Clemente et al. (2011)

Anthocyanin & Carotenoid

Anthocyanin (Gitelson) AntGitelson = (1=R550 − 1=R700)� R780 Gitelson et al. (2003)

Carotenoid Reflectance Index (550_515) CRI550 _ 515 = (1=R515) − (1=R550) Gitelson et al. (2006)

Carotenoid Reflectance Index (700_515) CRI700 _ 515 = (1=R515) − (1=R700) Gitelson et al. (2006)

Chlorophyll a+b

Chlorophyll Index Red Edge CI = R750=R710 Haboudane et al. (2002)

Vogelmann Index VOG1 = R740=R720 Vogelmann et al. (1993)

VOG2 = (R734 − R747)=(R715 + R720) Vogelmann et al. (1993)

Gitelson and Merzlyak Index GM = R750=R700 Gitelson and Merzlyak (1996)

Chlorophyll b PSDNb = (R800 − R635)=(R800 + R635) Blackburn (1998)

Transformed Chlorophyll Absorption in Reflectance Index TCARI = 3� ½(R700 − R670) − 0:2� (R700 − R550)� (R700=R670)� Haboudane et al. (2002)

Modified Chlorophyll Absorption Reflectance Index MCARI = ½(R701 − R671) − 0:2� (R701 − R549)�=(R701=R670) Daughtry (2000)

Reflectance Band Ratio Index DCabCxc = R672=(R550 � (3� R708)) Datt (1998)

R/G/B indices

Blue Index B = R450=R490 Calderón et al. (2013)

Blue/red Index BRI = R450=R690 Zarco-Tejada et al. (2012)

Lichtenthaler Index LIC = R440=R690 Lichtenthaler (1996)

Blue Fraction BF = R400=R410 Zarco-Tejada et al. (2018)

Fluorescence

Fluorescence Ratio Index FRI = R690=R630 Zarco-Tejada et al. (2000)

Fluorescence Curvature Index FCI = R2
683=(R675 � R691) Zarco-Tejada et al. (2000)

Reflectance Curvature Index CUR = (R675 � R690)=R
2
683 Zarco-Tejada et al. (2000)

Norm. Diff. N. Index NDNI = log (1=R1510) − log (1=R1680)=( log (1=R1510) +
log (1=R1680))

Serrano et al. (2002)

Photochemical Reflectance Index PRI1 = R685=R655 Meroni et al. (2009)

PRI2 = R680=R630 Meroni et al. (2009)

Water content

Water Band Index WBI1 = R970=R900 Penuelas et al. (1997)

WBI2 = R1150=R1450 Sapes et al. (2022)

Water Stress and Canopy Temperature WSCT = (R970 − R850)=(R970 + R850) Babar et al. (2006)

Normalized Difference Water Index NDWI1 = (R835 − R1610)=(R835 + R1610) Gao (1996)

NDWI2 = (R860 − R1195)=(R860 + R1195) Gao (1996)

(Continued)
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predictive performance, LightGBM is a highly suitable algorithm for

hyperspectral analysis due to its fast training speed and strong

interpretability, making it well-suited for capturing early spectral

signals and supporting timely monitoring of VW disease. XGBoost,

though more computationally intensive, offers fine-grained control

through adjustable hyperparameters, enabling the modeling of

complex feature interactions. Random Forest is known for its

robustness to noise and capacity to manage high-dimensional

feature sets, which is advantageous for disease monitoring across

heterogeneous spectral datasets. Support Vector Machine (SVM) is

particularly effective in handling high-dimensional data spaces and

is often recommended when dealing with limited sample sizes.

Artificial Neural Networks (ANNs) are capable of capturing

nonlinear relationships in spectral data, and are theoretically

suited to model subtle patterns associated with early-stage

disease development.

For each model, the dataset was randomly split into 70% for

training and 30% for testing, and the hyperparameters were

optimized using Bayesian optimization. A total of 15

combinations of feature selection methods and classifiers were

evaluated based on test set precision and runtime efficiency.

Based on a comprehensive performance comparison, the optimal

combination of feature selection method and classifier was

determined using the full dataset and subsequently applied to the

three stratified subsets to evaluate its effectiveness across different

vertical leaf layers.
2.5.3 Performance evaluation of different models
To assess the effectiveness and efficiency of the models,

evaluation metrics including precision, recall, and F1-score were

calculated for each classification model. Moreover, confusion

matrices were used to evaluate the classification performance of

different models, with particular focus on misclassification and

omission errors across disease severity levels. By analyzing the

distribution of true positives, false positives, false negatives, and

true negatives, the confusion matrix allows for a detailed assessment

of how each model performs for individual classes.

Additionally, the Shapley Additive Explanations (SHAP)

method was utilized to assess each feature significance and

quantify their contributions in monitoring cotton WV across

different leaf layers. All comparative experiments in this study

were conducted using the Python programming language, with

the Scikit-learn machine learning library employed for model

development and training.
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3 Results

3.1 Spectral characteristics of infected
cotton leaves

The occurrence of VW leads to a reduction in leaf pigment

content, destruction of leaf cell structures, and a decrease in leaf

water concentrations. These physiological changes are reflected in

the spectral reflectance through light absorption and scattering

interactions (Huang et al., 2018). In view of all layers, as shown

in Figure 4, the reflectance of cotton leaves consistently increased

with disease severity from SL0 to SL4. As the disease progressed, the

spectral differences between adjacent disease stages gradually

expanded. Additionally, the envelope-removed spectra revealed

that the absorption valleys across all spectral regions became

more gradual with increasing disease severity, underscoring the

progressive spectral alterations across all leaf layers. Compared to

raw spectra, the envelope-removed spectra more effectively

accentuated absorption-reflection features by eliminating

background absorption effects, resulting in more distinct spectral

patterns. The visible (400–700 nm) and red-edge region (≃ 705 nm)

primarily reflected the degradation of the chlorophyll as VW

infection progresses. In the blue (450–485 nm) and green regions

(495–570 nm), the degradation of carotenoids and the

accumulation of anthocyanins, respectively, become more evident

with the severity of VW increased (Camino et al., 2021). VW-

induced leaf structural degradation alters leaf thickness and dry

matter content, impacting spectral reflectance in the red-edge and

near-infrared plateau regions. Additionally, the absorption valleys

in the near-infrared and short-wave infrared regions became

progressively shallower, influenced by the decreasing leaf water

concentration as the disease increased, leading to increased

spectral reflectance.

Figure 5 illustrates the envelope-removed spectra of cotton

leaves from different vertical layers (top, middle, and bottom)

under different disease severities. Within the same disease severity

level, spectral reflectance exhibits a decreasing trend as leaf layer

moves higher. This trend is less pronounced in the near-infrared

(NIR) region but becomes more apparent in the visible spectral

region. Spectral reflectance increased with disease severity across all

layers, with differences between adjacent severity stages becoming

more distinct. Absorption positions were minimally influenced by

leaf position, and the results align with those observed in the non-

stratified dataset. However, notable differences in spectral patterns
TABLE A1 Continued

Vegetation indices Equation Reference

Plant disease index

Healthy-index HI = (R534 − R698)=(R534 + R698) − R704=2 Mahlein et al. (2013)

Nitrogen & Other pigment indices

Carter Index CTRI1 = R695=R420 Carter (1994)

Modified Chlorophyll Absorption Reflectance Index (1510) MCARI1510 = ½(R700 − R1510) − 0:2� (R700 − R550)�=(R700=R1510) Herrmann et al. (2010)
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among layers were observed. From the top to the bottom layers,

differences between disease severities became more pronounced

under the same disease classification criteria. In the top layer,

spectral differences between healthy, slightly and mildly infected

disease stages were less evident, while differences between these

stages and later stages (moderate and severe) were more distinct. As

leaf position moved downward, spectral differences between healthy

and mild disease stages gradually increased, along with those

between moderate and severe stages. Among the three layers, the

bottom layer exhibited the most prominent spectral differences

across disease severities, followed by the middle layer, with the top

layer showing the smallest differences, particularly under lower

severity levels (SL=0-2).
3.2 Classification of disease severity using
multi-layered dataset

As shown in Figure 6, combinations of feature selection

methods and classifiers exhibit significant variations in accuracy

and computational efficiency for cotton VW monitoring. The RF-

LightGBM combination achieves optimal performance, with a test

accuracy of 0.69, surpassing other models. Specifically, RF-based

feature selection outperforms Lasso and Relief-F, although Lasso
Frontiers in Plant Science 10
and Relief-F demonstrated strong performance in specific models.

When integrated with RF, LightGBM attains the highest training

accuracy (0.82) and test accuracy (0.69), demonstrating its balance

of precision and generalization. LightGBM also maintains stable

test accuracies (0.66 and 0.67) when paired with Relief-F and Lasso,

respectively, confirming its adaptability. While ANN under RF

selection achieves comparable test accuracy (0.67), its runtime

(103 seconds) triples that of LightGBM (36 seconds) and exists

potential overfitting risks in small-sample scenarios. By contrast,

XGBoost, SVM, and RF models exhibit lower test accuracies (<0.65)

and prolonged training times. These results underscore the critical

role of method compatibility in optimizing VW monitoring. The

RF-LightGBM framework, with its high accuracy and efficiency,

proves to be the most effective solution for precise, real-time

monitoring of cotton leaf VW in field conditions.
3.3 Stratified disease identification of
cotton VW

Models for cotton VW monitoring were constructed across the

top, middle, and bottom leaf layers using the RF feature selection

method combined with the LightGBM classifier, as listed in Table 2.

The results revealed notable differences in model performance between
(a) Top layer (b) Middle layer (c) Bottom layer 

FIGURE 5

Leaf de-enveloping spectral curve of Verticillium wilt (VW) at different severity levels across different leaf layers: (a) top layer, (b) middle layer, and (c)
bottom layer.
(a) Lasso (b) Relief-F (c) RF 

FIGURE 6

Model performance for different machine learning models based on different feature selection methods: (a) Lasso, (b) Relief-F, and (c) RF.
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the different leaf layers, with the bottom layer achieving the highest

monitoring accuracy. This indicates that disease monitoring accuracy is

influenced by the vertical stratification of cotton leaves.

The accuracy (precision) of the top layer model reached 0.83, while

the middle layer performed similarly with an accuracy of 0.81. In

contrast, the bottom layer achieved the highest accuracy of 0.91,

making it the most effective for monitoring VW. The confusion

matrices for different disease stages across the top, middle, and

bottom leaf layers are shown in Figure 7. For the monitoring of

healthy, moderately infected, and severely infected leaves (SL=0, 3-4),

the models across all three layers demonstrated high accuracy,

indicating their effectiveness in identifying both healthy and

advanced disease symptoms. For SL0 (healthy), the accuracy in the

top, middle, and bottom layers were 1.00, 0.94, and 0.94, respectively.

For SL4 (severely infected), all three layers achieved an accuracy of 1.00.

However, when it comes to disease early-stage monitoring (SL1,

slightly infected; and SL2, mildly infected), the performance varied

significantly across layers. The bottom layer showed better accuracy for

early-stage monitoring compared to the top and middle layers. The

precision for SL1 (slightly infected) and SL2 (mildly infected) in the

bottom layer reached 0.83 and 0.78, respectively.

The bottom leaf layer had the highest accuracy for monitoring

cotton leaf VW across all disease severities. It’s performance in early

disease stages also significantly outperformed the top and middle

layers, highlighting the critical role of bottom leaves in early-stage

disease monitoring. Additionally, the data used for modeling were
Frontiers in Plant Science 11
derived from diverse cotton genotypes, further demonstrating the

model’s robustness.
3.4 Layer-specific feature significance in
cotton VW monitoring

The importance of key features for monitoring cotton VW

severity across different leaf layers and stages of disease

development as shown in Figure 8. For different disease severities,

the top layer is primarily dominated by anthocyanin (AntGitelson).

This is followed by PRI570, PSDNb and BF, which are closely linked

to xanthophyll cycle, chlorophyll content and the blue band. In the

middle layer, the blue band index (B), xanthophyll index (PRI600),

and anthocyanin index (AntGitelson) are the most critical features.

For the bottom layer, also xanthophyll index (PRI570) plays a

leading role, followed by the Skewness and the blue/red index

(LIC). These findings indicate that anthocyanin, xanthophyll, and

the blue band are effective features for VW monitoring across the

top, middle, and bottom leaf layers. However, there are also distinct

differences in features across leaf layers, due to variations in nutrient

and light distribution across leaf layers, as well as differences in the

physiological activities of leaves at distinct positions.

In the context of slightly infected monitoring, the importance of

specific features across the three layers is also shown in Figure 8. For

the upper leaves, features representing the blue band, fluorescence,
TABLE 2 Analysis result for cotton VW monitoring from different leaf positions.

SL level
Top layer Middle layer Bottom layer

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

SL0 1.00 0.95 0.97 0.94 0.94 0.94 0.94 1.00 0.97

SL1 0.60 0.67 0.63 0.62 0.83 0.71 0.83 0.71 0.77

SL2 0.63 0.80 0.71 0.71 0.62 0.67 0.78 0.88 0.82

SL3 0.86 0.75 0.80 0.77 0.71 0.74 1.00 0.75 0.86

SL4 1.00 0.67 0.80 1.00 0.75 0.86 1.00 1.00 1.00

Model
accuracy

0.82 0.77 0.78 0.81 0.77 0.78 0.91 0.87 0.88
(a) Top layer (b) Middle layer (c) Bottom layer 

FIGURE 7

Confusion matrix of top (a), middle (b), and bottom (c) leaf positions at different disease severities (SL=0-4).
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and chlorophyll content are key, with indices such as BRI, PRI1,

VOG1, and PSDNb being the most critical. In the middle layer, blue

band index (B) dominate, supported by entropy, and fluorescence

index (CUR). For the bottom leaves, features related to water

content (e.g., WSCT), Gitelson & Merzlyak (GM) and blue/red

index (LIC) are critical. These findings highlight that the blue band

is important in all three layers, and that key features for early

monitoring across all layers are primarily related to pigments.

Additionally, features linked to water content play an important

role in VW early monitoring in the bottom layer.

In addition, signal features play a significant role in VW

monitoring in middle and bottom layer, with entropy, and

skewness ranking second, and fourth in importance for the middle,

and bottom layers, respectively, as indicated by SHAP values.
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These signal features provide new perspectives for monitoring

cotton VW, particularly during the slightly infected stage, by

offering additional insights beyond traditional spectral indices.
4 Discussion

4.1 Effectiveness of stratified monitoring
for cotton VW

The common approach for disease monitoring in cotton using

remote sensing involves conducting spectral measurements on top

layer leaves or mixed leaf samples. However, by the time disease is

detected in top-layer leaves, it has often already reached an
(a) Top layer across all SLs (d) Top layer for SL1 

(b) Middle layer across all SLs (e) Middle layer for SL1 

(c) Bottom layer across all SLs (f) Bottom layer for SL1 

FIGURE 8

SHAP plots for the top, middle, and bottom layers at different disease severity levels (SL=0-4) (a-c) and at the Slightly Infected Stage (SL1) (d-f).
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advanced stage, and the impact of leaf position on monitoring

accuracy is overlooked. Considering the bottom-up spatial

progression of VW, capturing spectral information from bottom

leaves provides a more accurate representation of the practical early

stage of infection in the cotton plant. This critical aspect is often

ignored in existing studies (Lu et al., 2023). Affected by precipitation

and temperature, the peak incidence period of VW in cotton in

Xinjiang occurs between July and September each year. During this

period, there are significant differences in pigment content among

leaves at different positions, especially when nutrient transport is

obstructed due to VW infection (Luo, 2010), which further

exacerbates the differences between leaf positions. Additionally,

the photosynthetic rate and nutrient allocation differ among

leaves at different positions. These factors lead to spectral

differences between leaves at different positions, which in turn

affect the performance of cotton VW monitoring based on leaf

spectra. Therefore, this study conducts experiments during the

period when VW is prone to outbreaks, based on in situ leaf

spectra from field experiments, focusing on analyzing the impact

of different leaf layers on the monitoring of cotton VW.

As the disease progresses, lower leaves exhibit a more

pronounced increase in spectral reflectance particularly in the

visible region, and achieve higher VW monitoring accuracy

compared to upper layers. These differences may be attributed to

variations in light conditions and leaf age. On one hand, the distinct

spectral responses among leaf layers originate from differences in

light environments. The dense foliage architecture of cotton

canopies, coupled with phototropism-driven leaf orientation,

facilitates preferential PAR (photosynthetically active radiation)

interception by middle and upper leaves, while creating persistent

shading effects on lower canopy layers (Bertheloot et al., 2008).

Longer wavelength light, with its stronger diffraction ability, is more

likely to penetrate deeper into the canopy, while shorter visible

wavelengths are predominantly intercepted by upper leaves

(Li et al., 2022). Consequently, lower leaves adapted to low-light

conditions develop thinner palisade tissues and lower chlorophyll a

to b ratios (Yang et al., 2022a). This renders their spectral

reflectance in the visible region potentially more sensitive to

disease-induced chlorophyll degradation. On the other hand, age-

related physiological decline exacerbates the vulnerability of lower

leaves. Older lower leaves exhibit reduced photosynthetic efficiency

(Pmax), accelerated Rubisco degradation, and weakened stress

resilience compared with younger upper leaves (Sassenrath-Cole

et al., 1996). When VW infection occurs, pathogen effectors such as

PevD1 further disrupt lower-leaf physiology by targeting

senescence-associated genes (e.g., GhORE1), accelerating

chlorophyll breakdown and cellular disorganization (Zhang et al.,

2021), which amplify spectral variations under VW infection. In

contrast, upper leaves with thicker cuticles, higher chlorophyll

reserves, and active metabolic repair mechanisms tend to exhibit

a “threshold effect” when facing damage from the VW pathogen,

requiring larger lesion areas to trigger significant spectral changes.

This physiological buffering may reduce spectral discriminability in

upper layers during early infection stages. Thus, the synergistic
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effects of light limitation, age-related physiological decline, and

pathogen-driven senescence in lower leaves may enhance spectral

reflectance changes, enabling more precise VW severity monitoring

in lower-canopy layers compared to upper ones.

Comparing the early (SL=0-2, including healthy, initial

symptomatic, and early stages) and late (SL=3-4, including mid-

and late stages) monitoring performance across top, middle, and

bottom layers, late-stage monitoring showed consistently high

accuracy across all layers. In contrast, monitoring during the

slightly infected stage showed that the monitoring performance

for VW in the bottom layer was significantly better than in the top

and middle layers. Comparing spectral differences across leaves

with varying disease severity shows that the spectral variations in

the bottom leaves are greater than those in the middle and top

leaves, which is particularly evident in the visible spectral region.

The spectral reflectance in the visible bands is mainly influenced by

pigments, especially chlorophyll content. The chlorophyll content

varies significantly across leaf layers (Yang et al., 2022a). This

vertical heterogeneity in pigment distribution leads to differences

in key features for VW monitoring and affects the performance of

monitoring models. Under VW infection, nutrient supply is

remobilized from older bottom leaves to younger top leaves

(Parkash et al., 2023). Consequently, even when leaves are

classified into the same disease severity level based on lesion

coverage in this study, the overall health condition of the bottom

leaves is noticeably poorer than that of the top and middle leaves.

Cotton bottom leaves tend to appear more yellow, with lower

chlorophyll content, and have reduced photosynthetic activity

(Parkash et al., 2023). Therefore, the spectral differences across

bottom leaves with varying disease severity, particularly in the

visible region, are more evident compared to those observed in

middle and top leaves. At the mid-to-late stages of infection,

extensive fungal invasion results in substantial physiological and

optical changes in leaves across all layers. These changes become

more uniform at severe disease stages, facilitating consistent VW

monitoring regardless of leaf position. These findings demonstrate

that bottom layer leaves have a distinct advantage in the monitoring

of VW, especially during the slightly infected stages of the disease,

compared to upper and middle leaves.
4.2 Critical spectral features for assessing
disease severity

The key features for monitoring VW in cotton, especially

vegetation indices derived from the spectral bands with short

wavelengths, differ across leaf layers and disease stages. The

results of this study indicate that the main indicators for

monitoring VW in cotton are those related to chlorophyll

degradation, carotenoid cycling, moisture content, fluorescence,

and anthocyanins. The relevant spectral bands primarily include

the blue, green, red-edge, and parts of the near-infrared region,

particularly the absorption valleys affected by moisture content.

These findings align with previous studies on crop diseases, which
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have established that visible and near-infrared bands are sensitive

bands for identifying different crop diseases (Xie et al., 2018; Zhang

et al., 2019; Lassalle, 2021; Feng et al., 2022; Shafik et al., 2023).

At five-levels cotton VW severity monitoring, important

signatures for the top leaf layer include AntGitelson, PRI570,

PSDNb, and BF, while the middle leaf layer is characterized by B,

PRI600, and AntGitelson, all of which are closely associated with

vegetation pigments. Plant physiology research indicates that

chlorophyll degradation and anthocyanin increase occur in leaves

infected by VW, mainly as a protective response to damage caused

by the pathogen (Camino et al., 2021). In the top and middle leaf

layers, exposure to higher light intensity and increased

photosynthetic activity leads to more pronounced changes in

these physiological parameters, making chlorophyll degradation

and anthocyanin-related indices more effective for VW

monitoring. Blue band-related indices (e.g., BF, B, LIC) and PRI

derivatives (e.g., PRI570, PRI600) play a significant role in monitoring

cotton VW, consistent with findings from previous researches

(Calderón et al., 2015). These features are important across the

top, middle, and bottom leaf layers. The infection of VW typically

leads to chlorophyll degradation, with significant carotenoid

changes, and a reduction in photosynthetic efficiency, which are

driven by pathogen-host interactions but not influenced by leaf

position. As a result, indices related to chlorophyll and carotenoid

absorption in the blue band, along with photosynthetic efficiency-

related indices, remain important across different leaf layers.

In early disease monitoring, key features identified differ

somewhat from those at five disease severity levels. Chlorophyll

fluorescence emission related indices, such as PRI1 and CUR, play a

significant role during the sightly infected stage, particularly in the

top and middle layers. Fluorescence, as a by-product of

photosynthesis, is closely tied to photosynthetic efficiency and

photoprotection mechanisms, with potential to rapidly reflect

plant stress states. In cotton plants , the average net

photosynthetic rate decreases progressively from the upper to the

lower leaves within the same growth stage (Li, 2007). In the slightly

infected stage, upper leaves experience reversible inactivation of

PSII reaction centers. Their exposure to higher light intensity

further stimulates photoprotection mechanisms, including

carotenoid cycling and non-photochemical quenching (NPQ)

(Ruban, 2016), which leads to significant changes in fluorescence

emissions. Similarly, middle leaves, benefiting from the cotton

plant’s spiral leaf arrangement and canopy structure designed to

optimize light utilization, also receive substantial light. This

sufficient light exposure, during the slightly infected stages of

disease, activates photoprotection mechanisms and results in

significant changes in fluorescence emissions. In contrast, bottom

leaves exposed to less light, exhibit weaker photoprotection changes,

the fluorescence signals in these leaves are weaker and less

responsive to early disease stress, making fluorescence-related

indices less effective for monitoring early-stage disease in the

lower canopy. However, the lower canopy exhibits a distinct

advantage in early VW monitoring through water content-related

indices (e.g., WSCT). Upper leaves, with stronger physiological

activity, dynamically regulate water loss by closing stomata and
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reducing transpiration under early VW stress, thereby retaining

water reserves (Pascual et al., 2010). In contrast, bottom leaves lack

such regulatory capacity, leading to more pronounced water

content variations during early infection.

It is noteworthy that certain bands play a critical role in

monitoring cotton VW across different leaf positions and stages

of disease development, particularly the blue and red-edge bands. In

this study, a substantial number of features containing information

from the blue and red-edge bands were identified as important for

monitoring cotton VW. The red-edge band reflects both

biochemical and biophysical factors, with its position shifting as

chlorophyll declines and near-infrared reflectance rises due to

structural changes (Barnes et al., 1992; PenUelas et al., 1995). It is

consistently recognized as an effective wavelength for cotton VW

monitoring (Yang et al., 2022b). However, this study explicitly

indicates that, compared to the red-edge band, indicators related to

the blue band, such as BF, B, BRI, and LIC, consistently prove to be

highly significant for monitoring wilt severity across all stages of

disease development, regardless of leaf layers. Also, these indicators

demonstrate particularly strong performance in early monitoring.

The blue band is highly sensitive to early disease stress due to

changes in chlorophyll and carotenoid absorption. In the 450–499

nm region, chlorophyll strongly absorbs light, but its degradation

during infection reveals carotenoid absorption features (Hennessy

et al., 2020). This dual sensitivity to chlorophyll reduction and

carotenoid prominence makes the blue band highly effective for

monitoring subtle physiological changes during the slightly infected

stage of disease. The blue band has consistently been considered as

highly affected by disease stress at both the leaf and canopy scales

(Poblete et al., 2020). Research on early monitoring of VW in olive

trees has identified the blue/green index (BGI1) and the blue/red

indices (LIC3 and BRI1) as robust indicators for wilt monitoring

(Calderón et al., 2015). The results of this study also confirm

previous findings, specifically that the blue/red spectral index (i.e.,

BRI) exhibits differences between asymptomatic and early-stage

infected vegetation (Zarco-Tejada et al., 2018; Poblete et al., 2020;

Camino et al., 2021; Watt et al., 2023). This conclusion aligns with

multiple studies on olive tree wilt caused by Verticillium, which

share similar pathogenic bacteria, but has been overlooked in

existing research on cotton VW monitoring. This study achieved

this discovery by detecting subtle changes in cotton leaf

characteristics during the early stages of symptom onset.

In addition to constructing vegetation indices, this study

extends beyond vegetation index construction by systematically

analyzing morphological characteristics across the full spectral

domain. Thirteen signal features were extracted for monitoring

cotton VW from a novel perspective. The results indicate that the

signal features play a significant role in cotton VW monitoring,

especially in middle and bottom layer. Specifically, entropy and

skewness are crucial for disease monitoring, ranking fourth and

second in importance for the middle and bottom layers,

respectively, during the slightly infected stage. Entropy is crucial

for the middle layer, as it reflects the more complex reflectance

changes resulting from the combined effects of phototropism and

disease-induced structural and biochemical alterations. For the
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bottom leaves, spectral differences in the visible and near-infrared

regions are greater than in the shortwave infrared for leaves at

different disease severity levels, which results in differences in the

asymmetry of spectral distributions across disease stages, making

skewness an important feature. These signal features demonstrate

potential for early-stage monitoring of cotton VW.
4.3 Limitations and future prospects

Many studies have explored the combination of thermal

infrared, RGB, leaf imaging spectra, and PSR point spectra for

multi-source remote sensing data to collaboratively diagnose

diseases, which is a popular approach in the field of disease

monitoring (Zarco-Tejada et al., 2018; Camino et al., 2021). Some

research on cotton VW has attempted to monitor the disease from

the image and spectrum perspectives, respectively (Kang et al.,

2022). However, the effectiveness of integrating spectral data and

imagery for collaborative monitoring of cotton VW remains

unclear. Existing studies have demonstrated the advantages of

spatial-spectral combination models for plant trait estimation,

suggesting that fusing images and spectral data can enhance

robustness and accuracy (Li et al., 2020; Räsänen et al., 2020; Xu

et al., 2020). Spatial information of images was not considered in

this study, and further research should investigate whether

combining image and spectral features could improve the early-

stage monitoring accuracy of cotton VW.

This study demonstrates the capability of timely and accurate

diagnosis of leaf symptoms using in situ ground-based

hyperspectral data under natural solar illumination. The method,

which captures whole-leaf reflectance spectra, is fast, simple, and

representative in practice. Moreover, it offers potential for

adaptation across various sensing platforms, providing technical

support for field applications. However, environmental and plant

growth conditions in the field, which can interfere with remote

sensing monitoring of diseases, have not yet been considered.

Further research should focus on time-series spectral data to

assess the plant’s growing status in relation to environmental

effects and disease infection. This will provide a theoretical basis

and methods for crop disease monitoring in precision agriculture.
5 Conclusion

This study focuses on investigating the impact of the vertical

stratification of cotton leaves on the early monitoring of VW. In-situ

hyperspectral data of cotton leaves were utilized to evaluate the

performance of various feature selection algorithms and machine

learning models for monitoring VW. It further analyzed the impact

of leaf position and disease severity onmonitoring accuracy, identifying

key features for VW monitoring, particularly at early stages, and

determining sensitive spectral bands. By comparing various feature

selection methods and machine learning model combinations, RF

feature selection combined with LightGBM demonstrated the best

monitoring performance. Applying this optimal algorithm to different
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leaf layers for VW severity monitoring, the bottom layer leaves

achieved the highest accuracy, with an accuracy of 0.91. Early-stage

monitoring (SL=0-2, including healthy, slightly infected, and mildly

infected stages) demonstrated higher accuracy in the bottom layer

leaves compared to the middle and top layers, emphasizing the bottom

leaves’ superior capability for early monitoring. In contrast, late-stage

monitoring (SL=3-4, including moderately- and severely-infected

stages) achieved high accuracy across all layers. In this study, blue

and red-edge spectral bands were identified as critical for VW

monitoring, with blue bands playing a particularly important role in

early-stage monitoring-an aspect often overlooked in previous studies.

This study provides technical support for timely, non-destructive,

rapid, and accurate field-based monitoring of cotton VW. Early

monitoring of infection in bottom layer leaves facilitates prompt

intervention during the initial stages of pathogen invasion. Using

spectral reflectance, this study discusses the early detection capability

of cotton Verticillium wilt from the perspective of leaf stratification,

considering the bottom-up disease progression mechanism. It focuses

on analyzing the monitoring characteristics of the bottom leaves during

the early stages of disease onset in cotton plants, thereby promoting the

application of portable hyperspectral devices for precise early

monitoring of cotton Verticillium wilt. Future work will focus on

analyzing the temporal dynamics of leaf spectral changes, particularly

in the blue and red-edge bands, as the disease progresses. Additionally,

investigating the influence of different leaf positions on canopy-level

spectral monitoring will be essential to determine the timeliness of

monitoring VW infections using canopy-based remote sensing.
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Tejada, P. J. (2011). Assessing structural effects on PRI for stress detection in conifer
forests. Remote Sens. Environ. 115, 2360–2375. doi: 10.1016/j.rse.2011.04.036

Herrmann, I., Karnieli, A., Bonfil, D. J., Cohen, Y., and Alchanatis, V. (2010). SWIR-
based spectral indices for assessing nitrogen content in potato fields. Int. J. Remote Sens.
31, 5127–5143. doi: 10.1080/01431160903283892

Huang, L., Ju, S., Zhao, J., Zhang, D., Hong, Q., Teng, L., et al. (2015). Hyperspectral
measurements for estimating vertical infection of yellow rust on winter wheat plant.
Int. J. Agric. Biol. 17, 1237–1242. doi: 10.17957/ijab/15.0034

Huang, L., Liu, Y., Huang, W., Dong, Y., Ma, H., Wu, K., et al. (2022). Combining
random forest and XGBoost methods in detecting early and mid-term winter wheat
stripe rust using canopy level hyperspectral measurements. Agriculture 12, 74.
doi: 10.3390/agriculture12010074

Huang, W., Lu, J., Ye, H., Kong, W., Hugh Mortimer, A., and Shi, Y. (2018).
Quantitative identification of crop disease and nitrogen-water stress in winter wheat
using continuous wavelet analysis. Int. J. OF Agric. AND Biol. Eng. 11, 145–152.
doi: 10.25165/j.ijabe.20181102.3467

Jing, X., Zou, Q., Bai, Z. F., and Huang, W. J. (2022). Research progress of crop
diseases monitoring based on reflectance and chlorophyll fluorescence data. Acta
Agron. Sin. 47, 2067–2079. doi: 10.3724/sp.J.1006.2021.03057

Kang, X., Huang, C., Zhang, L., Yang, M., Zhang, Z., and Lyu, X. (2022).
Assessing the severity of cotton Verticillium wilt disease from in situ canopy images
and spectra using convolutional neural networks. Crop J 11, 933–940. doi: 10.1016/
j.cj.2022.12.002

Kuligowski, R. J., Wu, X., Parihar, J. S., Cheng, Q., Mao, Z., and Saito, G. (2006).
Study on the hyperspectral characteristics of cotton. Agric. Hydrology Appl. Remote
Sens 6411, 64111E. doi: 10.1117/12.693313

Lassalle, G. (2021). Monitoring natural and anthropogenic plant stressors by
hyperspectral remote sensing: Recommendations and guidelines based on a meta-
review. Sci. Total Environ. 788, 147758. doi: 10.1016/j.scitotenv.2021.147758

Li, J. (2007). Study on model and methods of quantitative remote sensing for drought
and growth monitoring of xinjiang cotton (Doctoral dissertation) (University of
Chinese Academy of Sciences, Beijing, China).

Li, L., Geng, S., Lin, D., Su, G., Zhang, Y., Chang, L., et al. (2022). Accurate modeling
of vertical leaf nitrogen distribution in summer maize using in situ leaf spectroscopy via
CWT and PLS-based approaches. Eur. J. Agron. 140, 126607. doi: 10.1016/
j.eja.2022.126607

Li, B., Xu, X., Zhang, L., Han, J., Bian, C., Li, G., et al. (2020). Above-ground biomass
estimation and yield prediction in potato by using UAV-based RGB and hyperspectral
imaging. ISPRS J. Photogrammetry Remote Sens. 162, 161–172. doi: 10.1016/
j.isprsjprs.2020.02.013

Li, H., Zhao, C., Yang, G., and Feng, H. (2015). Variations in crop variables within
wheat canopies and responses of canopy spectral characteristics and derived vegetation
indices to different vertical leaf layers and spikes. Remote Sens. Environ. 169, 358–374.
doi: 10.1016/j.rse.2015.08.021

Lichtenthaler, H. K. (1996). Vegetation stress: an introduction to the stress concept in
plants. J. Plant Physiol. 148, 4–14. doi: 10.1016/S0176-1617(96)80287-2

Lu, Z. H., Huang, S. H., Zhang, X. J., Shi, Y. X., Yang, W. N., Zhu, L. F., et al. (2023).
Intelligent identification on cotton verticillium wilt based on spectral and image feature
fusion. Plant Methods 19, 75. doi: 10.1186/s13007-023-01056-4

Luo, X. (2010). Study on nitrogen diagnostic method based on SPAD and
characteristics of nitrogen nutrition of cotton (Doctoral dissertation). Xinjiang
Agricultural University, Urumqi, China.

Ma, R., Zhang, N., Zhang, X., Bai, T., Yuan, X., Bao, H., et al. (2024). Cotton
Verticillium wilt monitoring based on UAV multispectral-visible multi-source feature
fusion. Comput. Electron. Agric. 217, 108628. doi: 10.1016/j.compag.2024.108628

Mahlein, A.-K., Rumpf, T., Welke, P., Dehne, H.-W., Plümer, L., Steiner, U., et al.
(2013). Development of spectral indices for detecting and identifying plant diseases.
Remote Sens. Environ. 128, 21–30. doi: 10.1016/j.rse.2012.09.019

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R.,
et al. (2009). Remote sensing of solar-induced chlorophyll fluorescence: Review of
methods and applications. Remote Sens. Environ. 113, 2037–2051. doi: 10.1016/
j.rse.2009.05.003

Nie, J., Jiang, J., Li, Y., Li, J., Chao, X., and Ercisli, S. (2024). Efficient detection of
cotton verticillium wilt by combining satellite time-series data and multiview UAV
images. IEEE J. Selected Topics Appl. Earth Observations Remote Sens. 17, 13547–13557.
doi: 10.1109/jstars.2024.3437362

Parkash, V., Snider, J. L., Sintim, H. Y., Hand, L. C., Virk, G., and Pokhrel, A. (2023).
Differential sensitivities of photosynthetic processes and carbon loss mechanisms
govern N-induced variation in net carbon assimilation rate for field-grown cotton.
J. Exp. Bot. 74, 2638–2652. doi: 10.1093/jxb/erad038

Pascual, I., Azcona, I., Morales, F., Aguirreolea, J., and Sanchez-Diaz, M.
(2010). Photosynthetic response of pepper plants to wilt induced by Verticillium
dahliae and soil water deficit. J. Plant Physiol. 167, 701–708. doi: 10.1016/
j.jplph.2009.12.012

PenUelas, J., Filella, I., Lloret, P., MunOz, F., and Vilajeliu, M. (1995). Reflectance
assessment of mite effects on apple trees. Int. J. Remote Sens. 16, 2727–2733.
doi: 10.1080/01431169508954588
Frontiers in Plant Science 17
Penuelas, J., Pinol, J., Ogaya, R., and Filella, I. (1997). Estimation of plant water
concentration by the reflectance Water Index WI (R900/R970). Int. J. Remote Sens. 18,
2869–2875. doi: 10.1080/014311697217396

Poblete, T., Camino, C., Beck, P. S. A., Hornero, A., Kattenborn, T., Saponari, M.,
et al. (2020). Detection of Xylella fastidiosa infection symptoms with airborne
multispectral and thermal imagery: Assessing bandset reduction performance from
hyperspectral analysis. ISPRS J. Photogrammetry Remote Sens. 162, 27–40. doi: 10.1016/
j.isprsjprs.2020.02.010

Räsänen, A., Juutinen, S., Kalacska, M., Aurela, M., Heikkinen, P., Mäenpää, K.,
et al. (2020). Peatland leaf-area index and biomass estimation with ultra-high
resolution remote sensing. GIScience Remote Sens. 57, 943–964. doi: 10.1080/
15481603.2020.1829377

Ruban, A. V. (2016). Nonphotochemical chlorophyll fluorescence quenching:
mechanism and effectiveness in protecting plants from photodamage. Plant Physiol.
170, 1903–1916. doi: 10.1104/pp.15.01935

Sanaeifar, A., Yang, C., Guardia, M. D., Zhang, W. K., Li, X. L., and He, Y. (2023).
Proximal hyperspectral sensing of abiotic stresses in plants. Sci. Total Environ. 861,
160652. doi: 10.1016/j.scitotenv.2022.160652

Sapes, G., Lapadat, C., Schweiger, A. K., Juzwik, J., Montgomery, R., Gholizadeh, H.,
et al. (2022). Canopy spectral reflectance detects oak wilt at the landscape scale using
phylogenetic discrimination. Remote Sens. Environ. 273, 112961. doi: 10.1016/
j.rse.2022.112961

Sassenrath-Cole, G. F., Lu, G., Hodges, H. F., and McKinion, J. M. (1996). Photon
flux density versus leaf senescence in determining photosynthetic efficiency and
capacity of Gossypium Hirsutum L. Leaves. Environ. Exp. Bot. 36, 439–446.
doi: 10.1016/s0098-8472(96)01019-2

Serrano, L., Peñuelas, J., and Ustin, S. L. (2002). Remote sensing of nitrogen and
lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from
structural signals. Remote Sens. Environ. 81, 355–364. doi: 10.1016/S0034-4257(02)
00011-1

Shafik, W., Tufail, A., Namoun, A., De Silva, L. C., and Apong, R.A.A.H.M. (2023). A
systematic literature review on plant disease detection: motivations, classification
techniques, datasets, challenges, and future trends. IEEE Access 11, 59174–59203.
doi: 10.1109/access.2023.3284760

Shannon, C. E. (1948). Amathematical theory of communication. Bell System Tech. J.
27, 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x
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