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Inefficient irrigation and fertilizer practices in spring maize production in a

Chinese semi-arid region have led to suboptimal fertilizer utilization and yield

limitations. Few studies in this region have adequately incorporated long-term

meteorological data to optimize irrigation and fertilizer strategies. In this study,

we employed the Root Zone Water Quality Model 2 (RZWQM2) to evaluate and

optimize irrigation and fertilizer management practices. The model was

calibrated and validated using field experimental data during 2022–2023,

including two irrigation levels [75%–95% (I1) and 55%–75% field capacity (I2)]

and three fertilizer treatments [234.27 (F1), 157.5 (F2), and 157.5 kg hm−2 nitrogen

fertilizer (F3), and F3 plus 63 kg hm−2 organic fertilizer). The validated model

demonstrated excellent performance in simulating key parameters, including soil

water content (SWC) [mean relative error (MRE) and normalized root mean

squared error (NRMSE) < 15%, consistency index (d) > 0.80], biomass (d > 0.85),

grain yield (MRE < 15%), and NH4
+-N and NO3

−-N contents (RMSE < 10 mg kg−1,

MRE and NRMSE < 15%, d > 0.60), of spring maize in 2022 and 2023. Under

simulated climate scenarios, optimal yields of 21.54, 20.78, and 17.57 t hm−2 were

achieved using a combined application of 60% nitrogen and 40% organic

fertilizer across three irrigation quotas. The irrigation quota of 250 m3 hm−2

demonstrated superior water use efficiency (WUE), irrigation water use efficiency

(IWUE), and partial factor productivity (PFP) compared to quotas of 300 and 200

m3 hm−2. These findings provide valuable insights for developing sustainable

irrigation and fertilizer strategies for spring maize production in a semi-arid

region of China.
KEYWORDS

RZWQM2 model, spring maize, irrigation quota, fertilizer application rate,
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1 Introduction

Maize is one of the most important grain crops in the world,

accounting for 36.8% of China’s total grain crop planting area and

ranking first in production volume (Li et al., 2017; Zhang et al., 2024).

Adequate light and heat resources are important factors for spring

maize growth in a semi-arid region of China (Kang et al., 2014).

However, water resources are scarce in this region, accounting for

only approximately 10% of the country’s total water resources, which

severely constrains local maize production (Wang et al., 2018).

Irrigation and fertilizer are crucial measures to ensure high maize

yields in a semi-arid region (Qiang et al., 2019). In the widespread

cultivation of maize in a semi-arid region, farmers often rely on over-

irrigation and excessive fertilization to achieve high crop yields (Liu

and Zhang, 2007), which significantly reduces irrigation and fertilizer

use efficiency (Yang et al., 2022). Therefore, optimal irrigation and

fertilizer management that achieves both high yields and resource use

efficiency is critical to address these challenges and ensure sustainable

spring maize production in a semi-arid region of China.

The integrated optimization of irrigation and fertilizer

management strategies is considered an effective way to improve

irrigation and fertilizer use efficiency and cope with water scarcity in

agriculture (Yan et al., 2021). Recent years have witnessed growing

scientific efforts to optimize integrated irrigation and fertilizer

management protocols in maize cultivation systems, particularly

focusing on precision irrigation scheduling and nutrient delivery

mechanisms (Zhou et al., 2019), and the combined application of

inorganic and organic fertilizers in irrigation and fertilizer research

has been increasingly proposed (Baharuddin and Tejowulan, 2021;

Ilahi et al., 2020). Meanwhile, soil water content control technology

can effectively reduce deep soil water content leakage and nitrogen

fertilizer leaching while achieving high yield and water use efficiency

(Fang et al., 2008; Panda et al., 2004). Studies have shown that

replacing some chemical fertilizers with organic fertilizers can

significantly increase maize yield, water use efficiency, and

economic benefits while reducing nitrogen fertilizer application

(Zhai et al., 2022; Zhou et al., 2022; Wang et al., 2017). Wang

et al. (2017) determined that organic fertilizer application improved

water use in 50–150-cm soil depth and increased grain yield by 5%–

10%. He et al. (2022) found that the application of organic fertilizers

increased the yield of wheat and maize by 26.4%–44.6% and 12.5%–

40.8%, respectively. However, these studies were conducted over

only 2–3 years of field experiments and were unable to determine

the optimal irrigation and fertilizer application rates under different

climate scenarios.

In recent years, research on the effects of increased temperature

and precipitation on crops under global warming scenarios has

received increasing attention (Zhang et al., 2021; Ureta et al., 2020).

Over the past few decades, climate change, primarily characterized by

increases in temperature and precipitation, has severely impacted

crop growth and water use in the Northwest (Chen et al., 2015). Liu

et al. (2018) studied yield changes in spring wheat and summer maize
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and climate change. Crop modeling systems have emerged as pivotal

methodological frameworks for evaluating climate change effects on

agricultural systems, particularly in analyzing yield formation

dynamics, irrigation scheduling optimization, and precision

nutrient management (Matthews et al., 2013; Bassu et al., 2014).

The Root Zone Water Quality Model 2 (RZWQM2) model has been

widely evaluated and applied in studying climate impacts on crops.

Chen et al. (2019) used the RZWQM2model to investigate the effects

of climate change on cotton yield and crop water demand in extreme

drought regions. Liu et al. (2019) qualitatively analyzed the response

of grain yields to major climatic variables through the RZWQM2

model and predicted grain yields of maize in the Siping region, Jilin

Province, Northeast China, during the period from 1951 to 2015.

Ding et al. (2024) developed an optimized nitrogen fertilizer strategy

for winter wheat based on precipitation changes using the RZWQM2

model in the Loess Plateau region. Meanwhile, the RZWQM2 model

has been widely used by a large number of studies on crop growth,

water and salt transport, optimal management of irrigation and

fertilizer under climate change, and greenhouse gas emissions from

farmland (Zhang et al., 2025; Singh et al., 2025). While substantial

modeling efforts have elucidated irrigation–inorganic fertilizer

interactions under climate change scenarios, research addressing

model-specific irrigation systems coupled with integrated organic–

inorganic fertilization remains critically underexplored.

However, most simulations have been conducted using either

irrigation or nitrogen fertilizer alone, while studies on the combined

effects of irrigation and coupled organic and inorganic fertilizers

under climate change scenarios are limited. Consequently, further

study is required to assess the performance of the RZWQM2 model

and develop optimal management strategies for irrigation and

fertilizer application rates for spring maize. The objectives of this

study were 1) to evaluate the applicability of the RZWQM2model for

simulating soil water content, biomass, grain yield, and NH4
+-N and

NO3
−-N contents of spring maize in a semi-arid region; and 2) to

determine an optimal irrigation quota and fertilizer application rate

for spring maize in the study area under climate change scenarios.
2 Materials and methods

2.1 Study site

The field experiment was conducted from 2022 to 2024 at the

Minqin Experiment Station of the Gansu Research Institute of Water

Conservancy (38°65′N, 103°15′ E), China. The study site is located in
the Hexi Corridor of Northeastern China (Figure 1), which has a

temperate continental arid climate with an altitude of 1,580 m. The

annual mean temperature, potential evaporation, and sunshine hours

are approximately 7.8°C, 140 mm, 2,000 mm, and 3,000 h,

respectively. In this study, the soil type was loamy, and the

percentage of soil textures sandy, loamy, and clayey under the 0–
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60-cm soil layer was 38.1%, 41.3%, and 20.6%, respectively. Soil

available phosphorus, potassium, potassium nitrate, ammonia

nitrogen, and organic matter contents in the 0–20-cm soil layer

were 29.56, 152.62, 40.23, 54.63, and 3.39 g kg−1, respectively. The

precipitation during the spring maize growing seasons of 2022–2023

and 2023–2024 were 114.9 and 144.7 mm, respectively (Figure 2).
2.2 Field experiments

Six irrigation and fertilizer treatments were considered during the

2022 and 2023 field experiment periods. Each treatment had three

replications, the plot had a size of 13.5 m × 2.0 m, and a 0.008-mm-

thick white film was laid in one film with a four-row pattern

(Figure 1). The irrigation fertilizer treatments included two

different irrigation volumes (in this study, irrigation was performed

when soil moisture values decreased to the lower limit of field

capacity) [i.e., 75%–95% field capacity (I1) and 55%–75% field

capacity (I2)] and three different fertilizer application rates [i.e., (N

+P2O5 ≥ 64.0%) 234.37 kg hm−2 nitrogen fertilizer (F1), (N+P2O5 ≥

64.0%) 157.50 kg hm−2 nitrogen fertilizer (F2), and (N+P2O5 ≥

64.0%) 157.50 kg hm−2 nitrogen fertilizer plus 63.00 kg hm−2

organic fertilizer (F3)]. In this study, the organic fertilizer dosage

was maintained at 63 kg hm−2, with conventional nitrogen

fertilization remaining the predominant nutrient supply strategy

according to standard agricultural protocols. The main reason for

choosing three different types of fertilizers in this experiment was to

investigate the changes in the growth of crops based on our normal

application of nitrogen fertilizers and the addition of organic

fertilizers to nitrogen reduction. Therefore, the four different water

fertilizer treatments were I1F1, I2F1, I2F2, and I2F3 (Table 1). Drip

irrigation was used during the spring maize growing seasons, and the

irrigation amount was controlled using water metering devices.

“Tong Kang DK818”, a local spring maize cultivar grown in the

Northwest Arid Regions, was the spring maize variety used in this

experiment. Seeds were over-sown manually with 40-cm row spacing

on 1 May and 25 April in 2022 and 2023, respectively. At the seedling

period, the planting density was approximately 80,000 plants ha−1.

The spring maize was harvested on 30 September 2022 and 28

September 2023. Other field management practices were consistent

with local management practices.

After spring maize was planted, each treatment by a (N+P2O5 ≥

64.0%) 234.37 kg hm−2 fertilizer was applied at the ratio of 3:4:3 at the

late seedling, nodulation, and filling stages, respectively. Before spring

maize was planted, drip irrigation mains and branches were installed,

with individual meters and valves for each treatment to control the

amount of irrigation applied. The field capacity (qf) of the experimental

site was determined to be 20.75% by using the “frame flooding

irrigation method” and volumetric water content determination

method, with the upper limit of full irrigation at 95% qf and the

lower limit at 75% qf, and the upper limit of partially flooded water at
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75% qf and the lower limit at 55% qf. The irrigation was carried out

when the relative water content of the soil decreased to the lower limit

of water control. When the relative water content of the soil dropped to

the lower limit of water control, irrigation was carried out. The

cumulative amounts of adequate and stress irrigation were 330.0,

277.5, 330.0, and 217.5 mm during the complete growth period of

spring maize in 2022 and 2023 (Figure 3). In this study, soil depth for

irrigation management was 40 mm at the seedling stage and 60 mm at

the nodulation to maturity stage in 2022 and 2023.
2.3 Data collection

2.3.1 Meteorological data
The meteorological data during the spring maize growth period

were measured from the China Meteorological Data Service Center

(http://data.cma.cn, accessed on 29 January 2024) in this

experiment site and included daily maximum and minimum

temperature (°C), daily average temperature (°C), precipitation

(mm), relative humidity (%), wind speed (km day−1), and

sunshine hours (h). The daily radiation was determined by an

integrated module based on the Penman–Monteith formula

(Harmsen and Justiniano, 2016).
2.3.2 Soil water content
Soil water content (SWC) was determined at a depth of 60 cm

below the surface by the soil drying method. Soil samples were taken

near the center of each plot every 5–7 days (after precipitation or

irrigation) using a 3.5-cm-diameter soil auger, and samples were

taken at 20-cm intervals below the surface. Wet soil samples were

weighed and placed in an oven at 105°C for 8 h before being weighed.
2.3.3 Yield
In each plot, the ears of springmaize were threshed after harvest, air-

dried, and weighed, and the actual yield was determined by repeating the

process three times. Five representative ears were randomly selected and

brought back to the laboratory for seed testing to examine the number of

rows, the number of grains, and the quality of 100 grains in each ear.
2.3.4 Soil profile nitrate-N and ammonium-N
contents

Soil nitrate nitrogen and ammonium nitrogen contents in the 0–

20-cm, 20–40-, and 40–60-cm soil layers were determined at the

seedling stage, elongation stage, silking stage, grain filling stage, and

maturity stage of spring maize in 2022 and 2023. The nitrate-N (NO3
−-

N) and ammonium-N (NH4
+-N) contents were determined by

leaching with KCl solution (2 mol L−1 KCl solution, 5 g of dry soil,

soil to solution ratio = 1:10) and using a UV-Vis spectrophotometer

(Pulsar T6 New Century).
frontiersin.org

http://data.cma.cn
https://doi.org/10.3389/fpls.2025.1600561
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1600561
2.4 RZWQM2 description

The RZWQM2 is a one-dimensional model of agricultural

systems and resource management introduced by the American

Research Institute of Agricultural Systems (ARS) in 1992 (Ma et al.,

2012a, b). The model consists of six sub-modules, including the

nutrient cycling module, physical transport module, chemical

reaction module, pesticide module, crop growth module, and

management module, and each module interacts with each other

(Ahuja et al., 2000).

The latest version of the RZWQM2 has evolved steadily since its

debut in 1992 (Ahuja et al., 2000; Ma et al., 2007; Qi et al., 2012). The

infiltration process of soil water was described in the model by the

Green–Ampt infiltration equation, while Poiseuille’s and Richard’s

equations were used to simulate macroporous flow and the

redistribution of soil water, respectively (Ma et al., 2006; Jiang

et al., 2020). The RZWQM2 offers a wide range of options for

simulating crop growth, including the universal crop growth

model, the CROPGRO model, the CERES model, the rapid

planting crop model, the quick turf model, and the rapid tree

model (Sadhukhan et al., 2019b, 2019a). In this study, the CERES-

maize model in the crop module was selected to simulate maize

growth and development, and the model crop parameters are shown
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in Table 2. Meanwhile, the data to be input into the model include

meteorological data, initial soil conditions, soil characterization

parameters, and field management data; the required soil

physicochemical parameters are shown in Table 3. The nutrient

process submodel (OMNI) was used to simulate changes in the

nitrate (NO3
−-N) and ammonium (NH4

+-N) nitrogen contents of the

soil profile using the carbon-to-nitrogen ratio (Shaffer et al., 1992).

The initial values of different C/N pools and the C/N conversion

factor were determined to improve the accuracy of the model in

simulating soil NO3
−-N and NH4

+-N contents (Fang et al., 2008).
2.5 Model performance criteria and
calculations

The evaluation indicators of the model simulation were utilized in

the study region (Nash and Sutcliffe, 1970), including root mean

squared error (RMSE) (Equation 1), normalized root mean squared

error (NRMSE) (Equation 2), mean relative error (MRE) (Equation 3),

and consistency index (d) (Equation 4):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1
(Si − Oi)

2

N

r
(1)
FIGURE 1

Schematic illustration of the study area.
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NRMSE =
1
oavg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1
(Si − Oi)

2

N

r
� 100% (2)

MRE =
1
No

N
i¼1

Si − Oi

Oi

����
����� 100% (3)

d = 1 − on
i=1(Si − Oi)

2

on
i=1 Si − Oavg

�� �� + Oi − Oavg

�� ��� �2
" #

(4)

where S is the simulated value, O is the observed value, N is the

number of data points, Savg is the average of the simulated value,

Oavg is the average of the observed value, and i is the specific number

of simulated and measured values.

RMSE reflects the magnitude of the average difference between the

measured and simulated results (Gupta Hoshin et al., 1999), andMRE

reflects the average value of the relative error. The closer the values of

the RMSE and MRE are to 0, the more accurate is the model (Hong

et al., 2021).NRMSE reflects the performance of the model (excellent is

NRMSE ≤ 10%, good is 10% < NRMSE ≤ 20%, fair is 20% < NRMSE ≤

30%, and poor is NRMSE > 30%) (Jamieson et al., 1991). A perfect

match between the measurement results and simulation results would

yield an NRMSE of 0 (Zhang et al., 2023). d determines the degree of

correlation between the measured and simulated results. The closer the

value of d is to 1, the more accurate is the model (Moriasi et al., 2015).
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2.6 Irrigation quota and fertilizer scenario
design

In this study, to determine the appropriate irrigation and fertilizer

scheduling for spring maize, three irrigation quotas (300, 250, and 200

m3 hm−2) and five fertilizer applications (225 kg hm−2 organic fertilizer,

45 kg hm−2 nitrogen fertilizer and 180 kg hm−2 organic fertilizer, 90 kg

hm−2 nitrogen fertilizer and 135 kg hm−2 organic fertilizer, 135 kg hm−2

nitrogen fertilizer and 90 kg hm−2 organic fertilizer, and 180 kg hm−2

nitrogen fertilizer and 45 kg hm−2 organic fertilizer) with 15 years

(2009–2023) of 15-mm increase in rainfall, changes in water use

efficiency (WUE) (Equation 5), irrigation water use efficiency (IWUE)

(Equation 6), and partial factor productivity (PFP) (Equation 7) were

investigated (Table 4). Meanwhile, the number of irrigations was set to

12, and the irrigation dates were set based on local precipitation

variations. The calibrated and validated RZWQM2 model was used to

simulate and calculate the yield, WUE, IWUE, and PFP for each

scenario. Then, the appropriate irrigation quota and fertilizer amount

were determined as those with a high yield, WUE, IWUE, and PFP by

analyzing these indicators.

WUE =
Ymaize

ET
(5)
FIGURE 2

Precipitation, maximum temperature (Tmax), and minimum temperature (Tmin) during the spring maize growth season in 2022 and 2023.
TABLE 1 Irrigation levels (I) and fertilizer rates (F) for spring maize during the growing season in 2022 and 2023.

Treatment Irrigation treatment Irrigation level Fertilizer treatment Fertilizer rate (kg hm−2)

I1F1 (CK) I1 (adequate irrigation) 75%–95% qf F1 (nitrogen fertilizer) 234.37

I2F1 I2 (irrigation stress) 55%–75% qf F1 (nitrogen fertilizer) 234.37

I2F2 I2 (irrigation stress) 55%–75% qf F2 (nitrogen fertilizer) 157.50

I2F3 I2 (irrigation stress) 55%–75% qf F3 (nitrogen fertilizer +organic fertilizer) 157.50 + 63
qf is the soil field capacity.
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IWUE =
Ymaize

Iirrigation
(6)

PFP =
Ymaize

Ffertilizer
(7)

where Ymaize is the simulated spring maize grain yield (t hm−2),

ET is the simulated evapotranspiration in spring maize growth

period (mm), Iirrigation is the irrigation quota (m3 hm−2), and

Ffertilizer is the fertilizer application (kg hm−2).
2.7 Statistical analysis

Excel 2016 and Minitab 15 were used for data processing, and

Origin 2024 was utilized to create figures in this study. Soil water

content and crop biomass data are expressed as means of three

replications. Data were analyzed for significant differences using the

IBM SPSS Statistics 27 statistical software. Multiple comparisons were

performed using the least significant difference (LSD) test at p < 0.05.
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3 Results

3.1 Model calibration and validation of soil
water content and crop growth

Figure 4 shows the variation in the observed and simulated

SWC values in the 0–60-cm soil layer for different treatments

during 2022 and 2023. In this study, measured SWC data from

2022 were used to calibrate the model parameters, and the model

from 2023 was validated. In the whole growth seasons, the observed

and simulated values of SWC under the four treatments were

relatively similar and corresponded to the trend of the SWC

dynamics of spring maize in 2022 and 2023.

The RMSE values of SWC in the 0–60-cm soil layer under the

four treatments were in the range of 0.84%–1.10% and 1.47%–

1.88% in 2022 and 2023, respectively. The NRMSE andMRE values

for the 0–60-cm layer were below 15.00% in 2022 and 2023. The

calibrated d values of the simulated SWC were 0.84, 0.87, 0.88, and

0.87 under the four treatments for the 0–60-cm layers in 2022.

Meanwhile, the validated d values of simulated SWC were greater

than 0.80 under the four treatments in 2023 of the spring maize

growth period. Overall, the RZWQM2 showed good applicability in

simulating spring maize SWC in this region.
3.2 Model calibration and validation
of soil water content and crop growth
of biomass

Across both calibration (2022) and validation (2023) phases,

spring maize biomass values obtained through field measurements

and model simulations exhibited congruent incremental patterns

during the entire growth cycle under four experimental treatments,

demonstrating strong consistency between simulated and observed

crop parameters (Figure 5). Maize biomass showed a trend of

cumulative increase as fertility advances, with biomass values

peaking at the end of the growth period.

The simulated results of spring maize biomass under the four

treatments’ RMSE, NRMSE,MRE, and d values were in the range of
TABLE 2 Initial and calibrated values of crop genetic coefficients used
for spring maize by RZWQM2.

Maize
parameters

Definition Calibrated
values

P1 (°C days) Thermal time from seeding emergence to
the end of the juvenile phase

154.0
(100–400)

P2 (days) Delay in development for each hour that
daylength is above 12.5 h

0.48 (0–1)

P5 (°C days) Thermal time from silking to
physiological maturity

891.0
(600–1,000)

G2 (#) Maximum possible number of kernels
per plant

700.0
(500–1,000)

G3 (mg
kernel day)

Kernel filling rate during the linear grain
filling stage and under
optimum conditions

7.0 (5–12)

PHINT
(°C days)

The interval in thermal time between
successive leaf tip appearances

45.0 (30–75)
FIGURE 3

Cumulative irrigation and irrigation quota during the complete growth period of spring maize in 2022 (a) and 2023 (b).
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1,831.25–2,830.52 kg hm−2, 12.47%–18.99%, 14.92%–20.50%, and

0.82–0.85, respectively, in the calibration period (2022). The

simulated results of spring maize biomass under the four

treatments’ NRMSE and MRE values were maize biomass

simulations that resulted in NRMSE and MRE values less than

20% and d values greater than 0.80 in the validation period (2022).

For spring maize biomass, the simulated biomass dynamics for four

treatments by the RZWQM2 were consistent with their observed

values during the whole growth seasons. Overall, for the spring

maize biomass data, the simulated results acceptably matched the

observed values, suggesting that the RZWQM2 could be used to

accurately describe the crop growth processes under the irrigation

and fertilizer conditions.
3.3 Model calibration and validation of
spring maize grain yield

Figure 6 illustrates the spring maize grain yield trends and the

results of observed and simulated values under the four treatments

in 2022 and 2023. Under the I2F3 treatment, observed spring maize

grain yields were higher than those under the I1F1 treatment, and

the simulated values showed consistent results in both 2022 and

2023. However, there was no significant difference in yield between

the I1F1 and I2F3 treatments (p > 0.05). Both observed and

simulated spring maize drain yield values under the I2F1, I2F2,

and I2F3 treatments generally showed an upward trend in both

2022 and 2023. Compared with the I1F1 treatment, observed spring

maize grain yield under the I2F3 treatment significantly increased

by 16.25% and 16.05% in 2022 and 2023 (p < 0.05), respectively. The

RMSE and MRE values for four treatments of spring maize grain

yield simulated were better in the RZWQM2 in 2022 and 2023

(Figure 6). In 2022 and 2023, the simulated results of spring maize

grain yield under the four treatments’ RMSE and MRE values were

in the range of 1.12–2.47 t hm−2 and 6.27%–12.31%, and 1.05–1.42 t

hm−2 and 5.28%–6.98%, respectively. These results indicate that the

RZWQM2 could better simulate the variation in spring maize

grain yield.
3.4 Model calibration and validation of soil
NH4

+-N and NO3
−-N dynamics

Simulated soil NH4
+-N and NO3

−-N contents over time

generally followed the observed values at the four treatments’ soil

depths (0–20, 20–40, and 40–60 cm) for the calibration (2022) and
TABLE 3 Main physical parameters of different soil depths in the experimental site.

Soil depth (cm)
Soil texture (%)

Bulk density (g cm−3)
Saturated hydraulic
conductivity (cm h−1)

Field capacity
(cm3 cm−3)Sand Silt Clay

0–20 39.0 41.7 19.3 1.531 4.89 0.1854

20–40 38.3 41.3 20.4 1.523 3.55 0.1895

40–60 37.0 40.7 22.3 1.537 2.07 0.1879
TABLE 4 Design of simulated scenarios with different irrigation quotas
and fertilizer applications by spring maize.

Scenario
treatment

Irrigation
quota
(m3 hm−2)

Fertilizer
type

Fertilizer
application
(kg hm−2)

T1 300 Organic
fertilizer 100%

225

T2 Nitrogen fertilizer
20% and organic
fertilizer 80%

45 + 180

T3 Nitrogen fertilizer
40% and organic
fertilizer 60%

90 + 135

T4 Nitrogen fertilizer
60% and organic
fertilizer 40%

135 + 90

T5 Nitrogen fertilizer
80% and organic
fertilizer 20%

180 + 45

T6 250 Organic
fertilizer 100%

225

T7 Nitrogen fertilizer
20% and organic
fertilizer 80%

45 + 180

T8 Nitrogen fertilizer
40% and organic
fertilizer 60%

90 + 135

T9 Nitrogen fertilizer
60% and organic
fertilizer 40%

135 + 90

T10 Nitrogen fertilizer
80% and organic
fertilizer 20%

180 + 45

T11 200 Organic
fertilizer 100%

225

T12 Nitrogen fertilizer
20% and organic
fertilizer 80%

45 + 180

T13 Nitrogen fertilizer
40% and organic
fertilizer 60%

90 + 135

T14 Nitrogen fertilizer
60% and organic
fertilizer 40%

135 + 90

T15 Nitrogen fertilizer
80% and organic
fertilizer 20%

180 + 45
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validation data (2023) (Figure 7). Dynamics in simulated soil NH4
+-

N and NO3
−-N contents in different soil depths during the growth

period of spring maize under the four treatments were consistent

with the simulated trend in 2022 and 2023. The soil NH4
+-N and

NO3
−-N contents at different soil depths under all four treatments

were 0–20 cm > 20–40 cm > 40–60 cm of spring maize growth

period in 2022 and 2023. The observed values of soil NH4
+-N and

NO3
−-N contents of I1F1, I2F1, I2F2, and I2F3 were not
Frontiers in Plant Science 08
significantly different between treatments (p > 0.05) in 2023.

Compared with the I2F2 treatment, the I1F1, I2F1, and I2F3

treatments significantly increased average soil NH4
+-N content

(0–20, 20–40, and 40–60 cm) by 21.59%, 20.51%, and 24.23% in

2022 (p < 0.05), respectively. Compared with the I2F2 treatment,

the I1F1, I2F1, and I2F3 treatments significantly increased average

soil NO3
−-N content (0–20, 20–40, and 40–60 cm) by 29.61%,

23.53%, and 27.26% in 2022 (p < 0.05), respectively.
FIGURE 4

Contour maps of observed and simulated soil water content (SWC) at 0–60-cm depth under four treatments during the growth period of spring
maize in 2022 (a) and 2023 (b). Note: I1F1, I2F1, I2F2, and I2F3 stand for adequate irrigation and traditional fertilizer, irrigation stress and traditional
fertilizer, irrigation stress and traditional fertilizer reduction, and irrigation stress and traditional fertilizer reduction plus organic fertilizer, respectively.
RMSE is root mean squared error, NRMSE is normalized root mean squared error, MRE is mean relative error, and d is consistency index.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1600561
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1600561
For simulated soil NH4
+-N andNO3

−-N contents in each soil layer,

the RMSE values were between 1.10 and 3.75 mg kg−1, theMRE values

were between 1.92% and 4.89%, the NRMSE values were between

2.01% and 5.93%, and the d values were between 0.60 and 0.92 under

the four treatments in 2022. The mean RMSE, MRE, NRMSE, and d

values of the NH4
+-N and NO3

−-N content simulations across the four

treatments were 2.00 mg kg−1, 2.46%, 2.50%, and 0.86 in the 0–20-cm
Frontiers in Plant Science
 09
soil layer, respectively, in spring maize growth period. The values in the

0–20-cm soil layer were 2.45 mg kg−1, 3.76%, 4.21%, and 0.83,

respectively. The values in the 20–40-cm soil layer were 1.89 mg

kg−1, 4.23%, 4.59%, and 0.82, respectively. Overall, these results indicate

that the simulation of NH4
+-N and NO3

−-N contents by the

RZWQM2 model has better applicability during the growth period

of spring maize in this study region.
FIGURE 5

Comparison between observed and simulated biomass under different treatments during the growth period of spring maize in 2022 (a) and 2023 (b).
I1F1, I2F1, I2F2, and I2F3 stand for adequate irrigation and nitrogen fertilizer, irrigation stress and nitrogen fertilizer, irrigation stress and nitrogen
fertilizer reduction, and irrigation stress and nitrogen fertilizer reduction plus organic fertilizer, respectively. RMSE is root mean squared error, NRMSE
is normalized root mean squared error, MRE is mean relative error, and d is consistency index.
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3.5 Crop yield, water use efficiency,
irrigation water use efficiency, and partial
factor productivity under climate change
scenarios (2009–2023)

Spring maize yield, WUE, IWUE, and PFP for different irrigation

and fertilizer scenarios are shown in Figure 8. The yield, WUE, IWUE,

and PFP showed an increasing trend and then a decreasing trend at the

three different irrigation quotas. Spring maize yields showed maximum

performance under the 60% nitrogen fertilizer and 40% organic fertilizer

scenarios in three irrigation quotas (300, 250, and 200 m3 hm−2) of

21.45, 20.78, and 17.57 t hm−2, respectively. WUE values were greater

under the T9 and T14 treatments at 4.56 and 4.67 kg m−3, respectively.

The different irrigation and fertilizer treatments with simulated larger

values of IWUEwere T9, T14, and T15 with 5.96, 5.77, and 4.88 kgm−3,

respectively. The PFP value was greater under the T4 and T9 treatments

with 95.33 and 92.36 kg kg−1, respectively. In summary, the optimal

irrigation and fertilizer coupling strategy for spring maize under climate

change scenarios was an irrigation quota of 300 m3 hm−2 and 60%

nitrogen fertilizer and 40% organic fertilizer (T9).
4 Discussion

4.1 Model evaluation of soil water content,
biomass, nitrate-N, ammonium-N, and
grain yield in spring maize

In this study, the soil water content values of different soil layers

(0–60 cm) were simulated to be consistent with observations, with

MRE and NRMSE values less than 15% for all treatments and d

values greater than 0.8 for both growth seasons (Figure 4). However,

the model simulated lower values for full irrigation results than for

the irrigation stress treatment. This is probably because the model
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has a warm-up process in the early stages of the simulation (Fang

et al., 2013). Meanwhile, the results of the simulated values of soil

water content were lower in the validation period (2023) than in the

calibration period (2022), which may be attributed to the low

simulation results due to the meteorological conditions in 2023

when the precipitation was lower than in 2022 (Ma et al., 2012).

In conclusion, the RZWQM2 model simulated spring maize

grain yield (MRE values ranged from 5.28% to 12.31%) and

aboveground biomass (MRE values ranged from 11.51% to

20.82%, with d-values greater than 0.85) better (Figure 6). Zhang

et al. (2021) found that the calibrated RZWQM2 model was able to

accurately simulate the yield and above-ground biomass of maize,

and the simulation results with R2 ranged from 0.74 to 0.85, NRMSE

< 15%. Sima et al. (2019) evaluated that the RZWQM2 model could

provide a better simulation of the yield and biomass of irrigated

maize in Eastern Colorado. This was similar to the results in this

study where all d values of maize biomass were greater than 0.80

and maize yield MRE values were less than 10.00% as simulated by

the RZWQM2 model. Therefore, it was further confirmed that the

model has a better applicability for the simulation of maize yield

and biomass.

The RZWQM2 model performed well for the fitting of NH4
+-N

and NO3
−-N under different soil layers (0–20, 20–40, and 40–60

cm), with RMSE values less than 5.00 mg kg−1, MRE and NRMSE

values less than 10%, and d values greater than 0.60 (Figure 7). Ding

et al. (2020) used the RZWQM2 model for soil NH4
+-N and NO3

−-

N contents for different tillage systems with consistency index d

values ranging from 0.71 to 0.93. In this study, the fluctuation of

nitrogen dynamics during the growth stage of maize was smaller in

2023 than in 2022 (Figure 7). This was probably because the

precipitation was greater in 2022 (185.09 mm) than in 2023

(81.31 mm) during the spring maize growth period. The

dynamics of NH4
+-N and NO3

−-N in different soil layers were

strongly influenced by irrigation and rainfall (Sato et al., 2009;
RE 6FIGU

Comparison between observed and simulated grain yield under different treatments of spring maize in 2022 (a) and 2023 (b). Error bars indicate
standard deviation (p < 0.05). Note: I1F1, I2F1, I2F2, and I2F3 stand for adequate irrigation and nitrogen fertilizer, irrigation stress and nitrogen
fertilizer, irrigation stress and nitrogen fertilizer reduction, and irrigation stress and nitrogen fertilizer reduction plus organic fertilizer, respectively.
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Allaire-Leung et al., 2001). Ding et al. (2024) also confirmed in their

study that fluctuations in nitrogen content changes were greater in

wet years than in dry years.

In summary, the calibrated RZWQM2 model performed well

under different irrigation and fertilizer conditions, providing a

promising tool for determining the optimal irrigation and

fertilizer coupling for spring maize.
4.2 Optimization of spring maize irrigation
quota and fertilizer application rate using
the RZWQM2 model

In recent years, the continued warming of the climate has led to

the expansion of the westerly wind belt, a progressively wetter climate,

and a gradual trend toward increased precipitation (Li et al., 2024;

Zheng et al., 2021). Sridevi et al. (2024) based on the DSSAT model

enabled a 10% increase in maize yield to future temperature increases
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in climatic conditions and obtained an optimal fertilization program

combining inorganic and organic fertilizers. In this study, similar

results were obtained by increasing the temperature by 0.5°C to obtain

an 18.08% higher maize yield. Ding et al. (2024) evaluated the optimal

nitrogen fertilizer measurement for maize under different

precipitation conditions through the RZWQM2 model and obtained

higher maize growth, yield, and nitrogen fertilizer use efficiency, with

future precipitation increased to 300 mm. In this study, the agronomic

optimal irrigation–fertilization regime was determined through a

multi-criterion assessment integrating grain yield maximization with

improvements in WUE, irrigation water use efficiency (IWUE), and

partial factor productivity (PFP) (Figure 8a–c). However, the partial

factor productivity value was higher at 95.33 kg kg−1 when the

irrigation gradient was 300 m3 hm−2 fertilized with 60% nitrogen

and 40% organic fertilizers, but reduced the WUE (4.18 kg m−3) and

IWUE (71.50 kg m−3) (Figure 8a). In addition, when the irrigation

gradient was 200 m3 hm−2 and the fertilizer was 60% nitrogen and

40% organic fertilizers, WUE (4.67 kg m−3) and IWUE (4.88 kg m−3)
FIGURE 7

Comparison between observed and simulated soil NH4
+-N(a) and NO3

−-N(b) contents under different treatments of spring maize in 2022 and 2023.
Error bars indicate standard deviation (p < 0.05). I1F1, I2F1, I2F2, and I2F3 stand for adequate irrigation and nitrogen fertilizer, irrigation stress and
nitrogen fertilizer, irrigation stress and nitrogen fertilizer reduction, and irrigation stress and nitrogen fertilizer reduction plus organic fertilizer,
respectively. RMSE is root mean squared error, MRE is mean relative error, and d is consistency index.
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improved but PFE (78.09 kg kg−1) severely reduced (Figures 8b,c), and

the probable reason was excessive water stress while reducing nitrogen

leaching, inhibiting plant uptake (Laskari et al., 2022; Liao et al., 2022).

Meanwhile, previous studies have shown that the optimal

inorganic-to-organic fertilizer ratio for maximizing maize yield is

3:2 (Zhou et al., 2021), which is consistent with the results of this

study. The main reason is that a moderate reduction of nitrogen

fertilizer can reduce nitrogen leaching, while a moderate increase in

organic fertilizer can effectively enhance soil fertility (Han, 2022)

and promote crop root growth to increase the root–shoot ratio (Wei
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et al., 2023), thereby enhancing crop yield. In conclusion, the

optimum fertilizer rates for spring maize in this study area were

135 kg hm−2 nitrogen fertilizer and 90 kg hm−2 organic fertilizer.

The results of combining nitrogen fertilizers were similar to those of

Han (2022). In Han’s study, the 40% organic fertilizer replacement

treatment had higher yields than the 50% organic fertilizer

replacement and 60% organic fertilizer replacement treatments.

This study mainly focused on the semi-arid region with the

objective of obtaining high-yielding and efficient spring maize,

which resulted in certain shortcomings such as the neglect of the
FIGURE 8

Spring maize yield, water use efficiency (WUE a), irrigation water use efficiency (IWUE b), and partial factor productivity (PFP c) under different
combined water and fertilizer treatments in climate change scenarios. Treatments T1–T15 represent three irrigation quotas (300, 250, and 200 m3

hm−2) and five fertilizer applications (225 kg hm−2 organic fertilizer, 45 kg hm−2 nitrogen fertilizer and 180 kg hm−2 organic fertilizer, 90 kg hm−2

nitrogen fertilizer and 135 kg hm−2 organic fertilizer, 135 kg hm−2 nitrogen fertilizer and 90 kg hm−2 organic fertilizer, and 180 kg hm−2 nitrogen
fertilizer and 45 kg hm−2 organic fertilizer).
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soil texture, changes in soil physicochemical properties, and the

impact of economic efficiency on irrigation and fertilizer. Therefore,

to determine the optimal irrigation quota and fertilizer application

rate for maize, further studies should comprehensively consider the

impacts of the soil environment, economic benefits, and

ecological benefits.
5 Conclusion

In this study, the RZWQM2 model was calibrated and validated

using observed data of soil water content, soil NH4
+-N and NO3

−-N

contents, biomass, and grain yield from 2022 and 2023. Then, it was

applied for scenario analysis considering climate change during

2009–2023, irrigation, and fertilizer rates. Results determined four

soil parameters and six crop parameters for “Tong Kang DK818”

spring maize in the RZWQM2 model. The model’s accuracy in

simulating soil water content, maize biomass, N content, and grain

yield was validated through calibration (2022) and validation

(2023). The simulation accuracy of soil water content, soil NH4
+-

N and NO3
−-N contents, spring maize biomass, and grain yield

were satisfactory, as indicated by the RMSE, NRMSE, MRE, and d

values for both 2022 and 2023. The calibrated RZWQM2model was

then used to determine optimal irrigation and fertilizer application

rates for spring maize using 15 years of historical weather data.

Simulation results showed that an irrigation quota of 300 m3 hm−2

combined with 60% nitrogen fertilizer and 40% organic fertilizer

(135 + 90 kg hm−2 of T9 treatment) could achieve high grain yield,

WUE, IWUE, and PFP. These results contribute to the development

of a scientific irrigation and fertilizer management system for

achieving high yield and high resource use efficiency in the spring

maize production of the semi-arid region.
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