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Jiaojiao Liu1, Jing Fan1* and Yangzhou Xiang1*

1School of Geography and Resources, Guizhou Education University, Guiyang, China, 2School of
Pharmacy, Lanzhou University, Lanzhou, China
This study aimed to assess the impact of climate change on the potential

distribution of the endangered medicinal plant M. officinalis in China. We

sought to identify key bioclimatic variables influencing its distribution, predict

current and future suitable habitats, and evaluate shifts in these habitats under

different climate scenarios. We constructed a dataset comprising 405 distribution

records of M. officinalis and 9 major environmental factors. The MaxEnt model,

integrated with GIS software, was employed to predict the potential distribution

under current (1970-2000) and future periods (2050s, 2070s, and 2090s). Model

optimization was conducted using the ENMeval package to adjust regularization

multiplier and feature combination parameters, ensuring enhanced predictive

accuracy. The optimized MaxEnt model demonstrated high predictive precision

with an AUC value of 0.917. The minimum temperature of the coldest month,

mean diurnal range, and annual precipitation were identified as the key

environmental variables influencing M. officinalis distribution, with contribution

rates of 72.7%, 11.6%, and 4.2%, respectively. The suitable habitat was predicted to

expand by 2050s under the SSP1-2.6 scenario but showed a reduction in highly

suitable areas under more severe scenarios like SSP5-8.5. Centroid shift analyses

indicated a northwestward migration of suitable habitats. These results from this

study suggest that climate change poses significant risks to the distribution of M.

officinalis, with potential shifts in both the extent and quality of suitable habitats.

Our findings highlight the importance of considering climate change projections

in conservation planning and underscore the need for adaptive strategies to

ensure the sustainability of this medicinally valuable species. The study provides a

scientific basis for the conservation and sustainable use of M. officinalis in the

context of climate change.
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1 Introduction

Plants sustain human life in numerous ways, forming the

foundation of the food chain and providing a multitude of essential

resources and services (Pironon et al., 2024). Understanding species

distribution patterns is crucial for the sustainable conservation and

management of plant resources. This not only helps to protect

biodiversity and ensure the health and stability of ecosystems (Randin

et al., 2020), but also has a direct impact on agricultural production, the

preservation of traditional knowledge, and the human well-being (Pecl

et al., 2017; Mi et al., 2021). The geographical distribution of plant

species is shaped by a variety of factors, encompassing the inherent

physiological and genetic traits of the plants (Laughlin et al., 2021),

anthropogenic influences (Xu et al., 2019), as well as other

environmental conditions, including temperature and humidity as

climatic factors (Coelho et al., 2023). An escalating number of

investigations reveal that the frequency of extreme climate events has

risen in numerous regions as a consequence of global warming

(Diffenbaugh et al., 2017; Zhang and Zhou, 2020). Furthermore,

future extreme climate events are likely to become more intense and

frequent in high-emission scenarios (Fischer et al., 2021; Fowler et al.,

2021). Therefore, there is no doubt that plant species faces significant

risks from extreme climate events (Manes et al., 2021; Trew and

Maclean, 2021; Singh et al., 2023). Accordingly, evaluating the effects

of climate change on the distribution of plant species is essential for

deciphering the relationship between climatic conditions and their

geographical distribution, which in turn offers a scientific foundation

for the preservation of biodiversity and the deliberate introduction of

plants for agricultural purposes.

Climate is one of the main determinants delimiting geographical

distribution of plant species on large scales (Ferrarini et al., 2019). There

is considerable research demonstrating that climate change leads to

range expansion or retraction in plant species distributions (Thuiller

et al., 2005). To assess the vulnerability of plant species under a rapidly

changing climate, species distribution modeling (SDM) can be

employed to predict species climate niches and project their potential

future range shifts (Huntley et al., 1995; Pearson and Dawson, 2003).

They use the locations where species have been found and information

about the environmental data, including factors like climate,

topography, and soil. These models help us understand how species

are linked to their environment. They also calculate the chances of

species living in certain areas based on the environment’s suitability

(Elith and Leathwick, 2009; A. Lee-Yaw et al., 2022; Hui, 2023). With

the ongoing development of theories in mathematical statistics and

ecology, an increasing variety of models for predicting species

distribution is being developed, encompassing Biological Climatic

Model (BIOCLIM) (Beaumont et al., 2005), General Additive Model

(GAM) (Hijmans and Graham, 2006), Generalized Linear Model

(GLM) (Guisan et al., 2002), Mechanistic Niche Model (CLIMEX)

(Kriticos et al., 2012), Maximum Entropy Model (MaxEnt) (Phillips

et al., 2006). Among them, the MaxEnt model, which is founded on the

principle of maximum entropy (Xu et al., 2018), offers numerous

benefits in species distribution modeling, such as flexibility in sample

size requirements, sensitivity to environmental variables, strong model
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interpretability, user-friendliness, as well as efficiency in computational

time (Phillips et al., 2006; Kaky et al., 2020; Khan et al., 2022).

In the field of global change and biogeography research, the

response of vegetation to climate change has always been a core

focus (Bellard et al., 2012). Climate, as a key environmental factor

influencing species and vegetation distribution at both regional and

global scales, has profound and far-reaching effects on biodiversity

and species range (Hamann and Wang, 2006). Future climate

change can lead to shifts in the distribution and abundance of

species (Thomas et al., 2004; Ehrlén and Morris, 2015), range shifts

(Chen et al., 2011; Bellard et al., 2012), phenological changes

(Merilä and Hendry, 2014; Cuena-Lombraña et al., 2018), and

physiological trait changes (Fois et al., 2018). Over the past

decades, there has been a growing focus on examining how

climate change affects the potential distribution areas of plant

species through MaxEnt models. For example, utilizing the

MaxEnt method, Khanum et al. (2013) projected the potential

climatic habitats of three medicinally important Asclepiad species

indigenous to Pakistan, and found that projected climate change

scenarios could moderately to significantly affect their geographic

distributions of three species. The MaxEnt model was employed to

forecast the potential distribution of the endangered medicinal

plant (Homonoia riparia Lour.) in Yunnan, China, by

incorporating topographic and bioclimatic variables (Yi et al.,

2016b). The potential suitable areas of an important economic

and medicinal tree (Litsea cubeba (Lour.) Pers.) in China for current

and future climates are predicted using an optimized MaxEnt

model, identifying key environmental factors as precipitation of

the driest quarter, annual precipitation, temperature annual range

and minimum temperature of the coldest month (Shi et al., 2023).

With the help of MaxEnt model, Wang et al. (2024a) predicts 21st-

century habitat suitability for a high economic and medicinal

species (Chionanthus retusus Lindl. & Paxton), evaluates climate

change effects, and pinpoints critical areas for conservation.

Recently, Zhang et al. (2024b) adopted MaxEnt model to evaluate

the ecological quality of the medicinal tree species (Eucommia

ulmoides Oliv.) in China, and emphasizes the pivotal role of

climatic factors in shaping its geographic distribution and projects

potential habitat shifts in the context of future climate change

scenarios. In summary, the MaxEnt model has been widely used

to study the effects of climate change on the potential distribution of

plant species, forecasting shifts in the geography of numerous

medicinal plants, and highlighting the pivotal role of climatic

factors in shaping distribution patterns and predicting future

habitat changes. While comparative studies between SDMs are

valuable, recent meta-analyses have demonstrated that optimized

MaxEnt models consistently outperform other presence-only

methods across diverse taxa and regions (Elith et al., 2011;

Merow et al., 2013). For M. officinalis specifically, the complex

topography and heterogeneous climate of its distribution range

favour MaxEnt’s machine-learning approach over simpler envelope

models like BIOCLIM.

Magnolia officinalis Rehd. et Wils (M. officinalis), belonging to

the Magnoliaceae family and the Houpoea genus, is a deciduous tree
frontiersin.org
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that is unique to China and is classified as a nationally protected

endangered medicinal plant of the second level (Tan et al., 2019). In

recent years, significant advancements have been made in the study

ofM. officinaliswith the development of modern pharmacology and

chemical analysis techniques (Luo et al., 2019; Niu et al., 2021). A

variety of active components, including alkaloids (Guo et al., 2019),

flavonoids, terpenoid compounds (Sun et al., 2024), and volatile oils

(Liu et al., 2024b), have been identified from the bark or leaves ofM.

officinalis using techniques such as high-performance liquid

chromatography (Yi et al., 2016a), gas chromatography-mass

spectrometry (Qi et al., 2024), and ultra-performance liquid

chromatography-mass spectrometry (Huang et al., 2023). These

constituents have demonstrated multiple biological activities, such

as anti-inflammatory, antioxidant, antitumor, and neuroprotective

effects (Youn et al., 2013; Hao et al., 2024). Furthermore, the

mechanisms of action of these active components at the

molecular level are being explored using molecular biological

techniques, including the regulation of inflammatory mediator

release, inhibition of tumor cell proliferation, and induction of

apoptosis (Zhong et al., 2022; Li et al., 2023). Concurrently,

attention has been given to the conservation of the genetic

diversity and germplasm resources of M. officinalis to ensure the

sustainable use of this valuable medicinal material (He et al., 2009;

Yang et al., 2020). However, to our best knowledge, studies

examining the impact of climate change on the potential

distribution of M. officinalis have not been documented.

To provide a scientific basis for the survey of germplasm

resources, the protection of wild resources, the domestication of

artificial introduction, the construction of artificial forests, and the

sustainable development of the industry for M. officinalis in China,

it is particularly crucial to accurately identify its potential climatic

suitability zones and ecological environmental impact factors in

China. To achieve these goals, we used ecological niche modelling

with MaxEnt and bioclimatic variables fromWorldClim to estimate

current and future distributions of M. officinalis under different

climate scenarios. The objectives of this study are: (1) to identify the

key bioclimatic variables that contribute to predicting the potential

distribution ranges of M. officinalis; (2) to predict the distribution

pattern of the potential suitable areas for M. officinalis under

current and future climatic conditions, and to classify them into

different suitability levels; (3) to quantify the changes in the

geographical ranges and spatial patterns of suitable habitats for

M. officinalis under projected future climate conditions.
2 Materials and methods

2.1 Collection and processing of M.
officinalis occurrence records

The distribution data of M. officinalis in China were sourced

from the National Specimen Information Infrastructure (NSII,

http://www.nsii.org.cn/, accessed on July 12, 2024), the Chinese

Virtual Herbarium (CVH, http://www.cvh.org.cn/, accessed on July

15, 2024), the Global Biodiversity Information Facility (GBIF,
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https://www.gbif.org, accessed on July 16, 2024), and scientific

literature published on China National Knowledge Infrastructure

(CNKI, https://www.cnki.net/, accessed on July 18, 2024) and Web

of Science (WOS, https://clarivate.com.cn/, accessed on July 22,

2024), totaling 429 distribution points for the species. We now

specify that for distribution points with clear location reports but

lacking latitude and longitude data, we used the website to convert

place names into coordinates, following Chapman and Wieczorek

(2006) for spatial uncertainty quantification. To eliminate the

impact of spatial autocorrelation of distribution points on model

prediction accuracy (Halvorsen et al., 2016), a grid file with a

resolution of 2.5′×2.5′ was added in ArcGIS 10.8, and M.

officinalis distribution points were manually selected to ensure

that only one point closest to the center of each grid was

retained. To minimize temporal bias, we restricted our analysis to

occurrence records from 1970-2020, aligning with the temporal

scope of our climate data. Historical herbarium specimens

predating 1970 (n=24) were excluded to ensure consistency with

contemporary climate conditions. For spatial bias correction, we

applied spatial thinning using a 5 km buffer to reduce sampling bias

in over-represented areas. Ultimately, 405 valid data ofM. officinalis

were obtained (Figure 1). The species name and the latitude and

longitude information of the distribution points were entered into

Excel 2016 software in.xls format. To facilitate subsequent data

analysis, the file format recording the distribution information of

M. officinalis was converted from.xls to.csv format.
2.2 Data collection and processing of
environmental variables

The Bioclimatic variables used in this study to predict the

potential distribution of M. officinalis under current (1970-2000)

climate conditions were derived from the WorldClim database

(https://www.worldclim.org/data/worldclim21.html, accessed on

January 12, 2024), with a spatial resolution of 2.5′×2.5′ (Fick and

Hijmans, 2017). To meet the data format requirements of the

MaxEnt software, the climate data in Tiff format were converted

to ASCII format using ArcGIS 10.8 software. Environmental data at

a spatial resolution of 2.5′×2.5′ from the BCC-CSM2-MR model,

known for accurately simulating climate across China, were used to

predict the changes in the suitable habitat ofM. officinalis (Wu et al.,

2019). Additionally, we selected future environmental data under

three greenhouse gas emission scenarios represented by Shared

Socioeconomic Pathways (SSP). These scenarios include: a low

concentration of greenhouse gas emissions (SSP1-2.6), a medium-

high concentration of greenhouse gas emissions (SSP3-7.0), and the

highest concentration of greenhouse gas emissions (SSP5-8.5),

representing the achievement of forcing levels of 2.6, 7.0, and 8.5

W m−2 by 2100, respectively (He et al., 2023). These scenarios

correspond to three periods: the 2050s (2041-2060), the 2070s

(2061-2080), and the 2090s (2081-2100).

Multicollinearity among environmental variables, which refers

to intercorrelations among two or more predictors in a regression

model, can lead to biased model evaluations or impede accurate
frontiersin.org
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estimations (Zhang et al., 2024b). The geographical coordinates of

405 M. officinalis distribution points in.csv format and 19

Bioclimatic variables under current climate conditions in ASCII

format were first imported into MaxEnt 3.4.4 (http://

biodiversityinformatics.amnh.org/open_source/maxent/, accessed

on 5 September 2024). 75% of the data were randomly selected

for model training, while the remaining 25% were used as a test set,

which was run 10-repeat cross-validation to determine the

contribution rates of the 19 variables to the initial model

(Figure 2). Subsequently, the attribute values of the 19 bioclimatic

variables corresponding to the 405 distribution points were

extracted using the “Extract Multi Values to Points” tool in

ArcGIS 10.8 software. To address the limitations of analyzing

only presence points, we extracted values from both the presence

points and a random sample of 1000 background points that

represent the environmental gradient across the entire study area.
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This approach ensures that we consider the full environmental

background, following the recommendations of Dormann et al.

(2013) and Fourcade et al. (2014). Pearson correlation analysis was

conducted on these combined data using IBM SPSS Statistics 26.0

software. Based on the results of the correlation analysis (Figure 3),

environmental variables with an absolute value of |r| greater than

0.75 and with lower contribution rates in the initial model were

eliminated. In addition to Pearson correlation analysis, we applied

Variance Inflation Factor (VIF) to assess multicollinearity among

predictor variables, ensuring a more robust evaluation. Variables

with VIF values exceeding 10 were excluded to guarantee the

reliability of our model. Beyond statistical screening (Pearson

correlation and VIF), our variable selection incorporated

ecological relevance based on established physiological constraints

of Magnoliaceae species. We retained variables representing: (1)

cold stress limitations (Bio6), critical for this subtropical species; (2)
FIGURE 1

Location of 405 distribution points of M. officinalis in China.
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seasonal temperature variability (Bio2, Bio4), affecting phenological

synchrony; and (3) moisture availability (Bio12, Bio15, Bio18),

essential for seedling establishment. This hybrid approach

combines statistical rigor with biological realism, addressing

known limitations of purely statistical variable selection

(Austin, 2002).
2.3 Optimization of MaxEnt model

The theoretical basis for our optimization approach follows the

principle of balancing model complexity with predictive accuracy

(Warren and Seifert, 2011). The regularization multiplier (RM) acts

as a smoothing parameter that prevents overfitting by penalizing

model complexity. Lower RM values (0.5 in our case) allow for

more localized predictions, appropriate for species with narrow

ecological niches. The Linear-Quadratic (LQ) feature combination

was selected as it captures both linear responses to environmental

gradients and potential optimum ranges, consistent with M.
Frontiers in Plant Science 05
officinalis’s known ecological requirements (Yang et al., 2020).

The ‘ENMeval’ package (R4.2.1) was employed to optimize the

MaxEnt model for precisely forecasting the potential distribution

range of M. officinalis by adjusting two key constraint parameters:

the Regularization Multiplier (RM) and the Feature Combination

(FC) (Warren and Seifert, 2011). Eight RM parameters, ranging

from 0.5 to 4.0 at intervals of 0.5, were established to investigate the

model’s performance under different regularization strengths. The

MaxEnt model, capable of automatically configuring, was set to

encompass five distinct characteristics for the FC settings: Hinge

features (H), Linear features (L), Product features (P), Quadratic

features (Q), and Threshold features (T). In this study, nine FC

parameters were defined: H, HPT, L, LQ, LQH, LQHP, LQHPT,

QHP, and QHPT. The Akaike Information Criterion Correction

(AICc) was used to assess the model’s fit and complexity, and both

the auc.diff.avg and the or.10p.avg were employed to reduce the risk

of overfitting. Ultimately, the regularization multiplier and feature

combination with a delta.AICc value of zero were chosen to

construct the MaxEnt model (Liu et al., 2024a).
FIGURE 2

The contribution rate (%) of nineteen bioclimatic variables to M. officinalis. Bio1, Annual mean temperature (°C); Bio2, Mean diurnal range (Mean of
monthly) (°C); Bio3, Isothermality (Bio2/Bio7) (×100); Bio4, Standard deviation of temperature seasonality; Bio5, Max temperature of warmest month
(°C); Bio6, Min temperature of coldest month (°C); Bio7, Temperature annual range (Bio5-Bio6) (°C); Bio8, Mean temperature of wettest quarter (°C);
Bio9, Mean temperature of driest quarter (°C); Bio10, Mean temperature of warmest quarter (°C); Bio11, Mean temperature of coldest quarter (mm);
Bio12, Annual precipitation (mm); Bio13, Precipitation of wettest month (mm); Bio14, Precipitation of driest month (mm); Bio15, Variation of
precipitation seasonality; Bio16, Precipitation of wettest quarter (mm); Bio17, Precipitation of driest quarter (mm); Bio18, Precipitation of warmest
quarter (mm); Bio19, Precipitation of coldest quarter (mm).
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2.4 Model establishment and evaluation

The 405 data points of M. officinalis in.csv format and the

selected nine bioclimatic variable data in ASCII format were

imported into MaxEnt 3.4.4 software. To validate the model’s

accuracy, 75% of the M. officinalis sample distribution data were

randomly selected for model training, while the remaining 25%

were used as a test set. During the optimization process, parameters

of RM=0.5 and FC=LQ were set, and the model was run with a

maximum of 1000 iterations in the parameters, the calculation was

repeated 10 times, and both response curves and jackknife

functionality were selected for use. In the MaxEnt modeling

process, we used background data points, randomly selected from

the study area at a ratio of 3:1 with presence data, ensuring they

were distinct from presence points to enhance model accuracy. The

output format of the model was set to Logistic mode. The predictive

ability of the model was assessed using the Area Under the Curve

(AUC) of the Receiver Operating Characteristic (ROC) curve. The

AUC value, representing the area under the ROC curve, is an

indicator of model accuracy unaffected by the proportion of positive

to negative samples. A higher AUC value indicates better model

performance in simulating the relationship between the

geographical distribution of the target species and environmental

factors. The predictive accuracy of the model is graded into five

levels: excellent (AUC > 0.9), good (0.8 < AUC ≤ 0.9), fair (0.7 <

AUC ≤ 0.8), poor (0.6 < AUC ≤ 0.7), and failed (0.5 < AUC ≤ 0.6)

(Araújo et al., 2005).
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2.5 Classification of the suitable habitat for
M. officinalis

The presence probabilities of M. officinalis, as predicted by the

MaxEnt model (averaged over 10 simulations), were imported into

ArcGIS 10.8 software. The model’s output in ASCII format was

converted to TIF format using the ‘ArcToolbox → Conversion

Tools → To Raster → ASCII to Raster’ function to facilitate spatial

analysis and visualization. To accurately delineate the potential

suitable habitats for M. officinalis, the Jenks natural breaks

classification method was employed. Considering the actual

distribution characteristics of the species, the study area was

divided into four suitability classes based on the presence

probability values: non-suitable areas (0-0.1), low suitability areas

(0.1-0.3), medium suitability areas (0.3-0.5), and high suitability

areas (0.5-1) (Sun et al., 2021).
2.6 Spatial distribution pattern changes in
suitable habitat of M. officinalis

The average outcomes of the 10 repetitions for M. officinalis

from MaxEnt 3.4.4 software were employed to delineate suitable

habitats where the logistic value was ≥0.1, whereas areas with a

logistic value of <0.1 were classified as unsuitable. Subsequently,

matrices indicating presence/absence (1, 0) under modern and

future climate scenarios were constructed. Within these matrices,
FIGURE 3

Correlation analysis of nineteen environmental factors with M. officinalis.
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a value change from 0 to 1 represents an area of gain, where regions

that were previously unsuitable become suitable for M. officinalis; a

change from 1 to 0 indicates a loss area, where once suitable regions

are no longer conducive to the growth ofM. officinalis; and a change

from 1 to 1 signifies a stable area, where suitability is maintained

across different time periods. To visually display the changes in the

spatial pattern of M. officinalis suitable habitats, the matrix values

were converted into attribute values and visualized using ArcGIS

10.8 software. The spatial analysis capabilities of this software were

employed to map the changes in the spatial pattern of suitable

habitats for M. officinalis, clearly illustrating the distribution of

stable, loss, and gain areas.
2.7 Core migration of M. officinalis

The average presence probability results (M. officinalis_avg.asc)

predicted from the MaxEnt model for the current and future three

periods under different climate scenarios were imported into

ArcGIS 10.8 software. The “ASCII to Raster” tool was utilized to

convert the ASCII files into Tiff format. The Tiff files were then

reclassified using the “Classify Raster” tool with a threshold of 0.1,

where areas with a species presence probability of ≥0.1 were

classified as suitable habitats and those with a probability of <0.1

as unsuitable. The suitable habitat layer was selected, and the “raster

to point” tool was applied to convert the raster dataset into point

features. Subsequently, the “mean center” tool was used to calculate

the centroids of the suitable habitats. To reveal the spatiotemporal

evolution of suitable habitats forM. officinalis under various Shared

Socioeconomic Pathways (SSP) scenarios, the “point merge” tool

was employed to aggregate distribution centroid data from different

time periods within the same SSP scenario. Finally, the “points to

line” tool was used to connect all centroids, visually depicting the

migration process of the central areas of suitable habitats for

M. officinalis.
3 Results

3.1 Model optimization and accuracy
evaluation

Parameter optimization of the MaxEnt model using the

ENMeval package indicated that the optimal feature combination

was FC = LQ and RM = 0.5, yielding a delta.AICc of zero, whereas

the default parameters (FC = LQHPT, RM = 1) resulted in a

delta.AICc of 88.6613. Additionally, the refined model exhibited
Frontiers in Plant Science 07
substantially decreased AUC.DIFF and OR10 values compared to

the default parameters, with reductions of approximately 31.49%

and 59.20%, respectively (Table 1).

With the optimized parameter settings (RM= 0.5 and FC=LQ),

the AUC value achieved was 0.917 (Figure 4). Based on AUC

evaluation criteria, this score signifies that the model possesses

exceptionally high predictive precision. Utilizing these parameters,

the potential distribution of M. officinalis was forecasted for three

future periods under three Shared Socioeconomic Pathways (SSP)

scenarios, yielding AUC values consistently at 0.90. Therefore, it is

ascertained that the model reliably predicts potential distribution

areas for M. officinalis across China.
3.2 Primary environmental variables

The contribution rates of environmental factors (Figure 5a)

indicate that the most significant factor affecting the suitable

distribution of M. officinalis is the Minimum temperature of the

coldest month (Bio6), with a contribution rate of 72.7%. The factors

with the second and third highest contribution rates are the Mean

diurnal range (Mean of monthly) (Bio2) and Annual precipitation

(Bio12), with contribution rates of 11.6% and 4.2%, respectively. In

contrast, the factor with the smallest contribution rate is the Mean

temperature of the warmest quarter (Bio10), at only 0.6%. The

cumulative contribution rate of the top three environmental factors

is 88.5%, which suggests that they dominate the suitable

distribution of M. officinalis. Through the analysis of the

regularized training gain of the jackknife test for the impact of

nine key environmental factors on the distribution of M. officinalis,

it is known that the Minimum temperature of the coldest month

(Bio6), Mean diurnal range (Mean of monthly) (Bio2), and Annual

precipitation (Bio12) have a significant impact on the distribution

of M. officinalis (Figure 5b). By integrating the results of model

contribution rates and jackknife tests, we have unveiled the key

environmental factors affecting the suitable distribution of M.

officinalis: Minimum temperature of the coldest month (Bio6),

Mean diurnal range (Mean of monthly) (Bio2), and Annual

precipitation (Bio12).

It is generally understood that environmental factor values are

considered suitable for a species’ growth when its presence

probability is greater than 0.5. From the response curves of the

three dominant environmental factors (Figure 6), it can be observed

that the presence probability ofM. officinalis first increases and then

decreases with the increase in the minimum temperature of the

coldest month and annual precipitation. Conversely, as the mean

diurnal range gradually increases, the presence probability of M.
TABLE 1 Evaluation metrics of MaxEnt model generated by ENMeval.

Parameter Settings FC RM Delta.AICc AUC.DIFF OR10

Default LQHPT 1 88.6613 0.0482 0.3125

Optimized LQ 0.5 0 0.0330 0.1275
FC, feature combination; RM, regularization multiplier.
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officinalis tends to rise gradually and maintain a peak value.

Additionally, M. officinalis is more suitable for growth when the

minimum temperature of the coldest month is between -3.08 to

13.33°C, with the presence probability peaking at 4.11°C. The

presence probability of M. officinalis is higher when the annual

precipitation is between 1067.82 to 4067.96 mm, peaking at 2000 to

2694.92 mm. The suitable range for the mean diurnal range for the

growth of M. officinalis is 7.40 to 19.62°C, and its presence

probability remains at a peak when the mean diurnal range is

between 10.17 to 19.62°C.
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3.3 Suitable habitats for M. officinalis under
current climate scenarios

Based on the current environmental factors and distribution

point data of M. officinalis, the prediction results of the MaxEnt

model show that the suitable habitat of M. officinalis under current

climate conditions is mainly concentrated in the southern regions of

China (Figure 7). Under the current climate conditions, the total

suitable habitat area of M. officinalis in China reaches 254.70×104

km2, accounting for about 26.53% of the country’s land area.
FIGURE 4

The receiver operating characteristic (ROC) curve derived from the results of ten simulations for M. officinalis.
FIGURE 5

The contribution rate (a) and Jackknife test (b) result of environmental factors for M. officinalis.
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FIGURE 7

Potential distribution of M. officinalis under different current climate scenarios in China.
FIGURE 6

Response curves of M. officinalis to three key environmental factors. (a) Min temperature of coldest month (°C); (b) Mean diurnal range (Mean of
monthly) (°C); (c) Annual precipitation (mm).
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Among this, the high suitability area, which accounts for

approximately 103.65×104 km2 or 10.80% of the national land

area, is primarily located in most parts of Guizhou Province,

Chongqing Municipality, Fujian Province, Zhejiang Province,

Jiangxi Province, as well as in the western Hubei and Hunan

provinces, the central and eastern Sichuan Province, the northern

Guangdong Province, the northern Guangxi Zhuang Autonomous

Region, the southern Anhui Province, and the junction of Beijing

Municipality, Tianjin Municipality, and Hebei Province. The

medium suitability area covers about 52.76×104 km2, representing

5.50% of China’s land area, and mainly includes the central and

northern Hunan Province, the southwestern Guizhou Province, the

eastern Sichuan Province, the western Chongqing Municipality,

the southern Shaanxi Province, the southern Gansu Province, the

eastern Hubei Province, the southern Anhui Province, the central

Jiangxi Province, and the central Zhejiang Province. The low

suitability area, with an area of 98.29×104 km2, accounts for

10.24% of the national land area, and is widely distributed across

most regions of Jiangsu Province, Anhui Province, Shandong

Province, Henan Province, Hubei Province, Yunnan Province, as

well as in the southern Sichuan Province, the southern Tibet

Autonomous Region, the southern Gansu Province, the southern

Shaanxi Province, the central Guangdong Province, the central

Guangxi Zhuang Autonomous Region, the central Taiwan

Province, the northern Zhejiang Province, the central and eastern

Hebei Province, and the northern Beijing Municipality.
3.4 Potential suitable distribution areas of
M. officinalis under future climate
conditions

Under the SSP1-2.6, SSP3-7.0, and SSP5-8.5 climate change

scenarios, the potential suitable distributions ofM. officinalis for the

2050s, 2070s, and 2090s are forecasted using the optimized MaxEnt

model (Figure 8). The results indicate that from the present to the

2050s under the SSP1-2.6 scenario, the total suitable habitat for M.

officinalis increased by 30.26×104 km2 (Figure 9a). This increase is

primarily due to a significant expansion of the moderately suitable

habitat by 57.00×104 km2, while the low and high suitability areas

decreased by 12.28×104 km2 and 14.46×104 km2, respectively. By

the 2070s, compared to the 2050s, the total suitable habitat only

increased by 2.86×104 km2, with a notable increase in the high

suitability area by 18.81×104 km2, and reductions in the low and

moderate suitability areas by 10.57×104 km2 and 5.38×104 km2,

respectively. By the 2090s, the total suitable habitat increased by

8.04×104 km2 compared to the 2070s, with the low and moderate

suitability areas showing increases of 14.49×104 km2 and 5.68×104

km2, respectively, and a decrease in the high suitability area by

12.12×104 km2.

From the present to the 2050s under the SSP3-7.0 climate

scenario (Figure 9b), the total suitable habitat for M. officinalis

increased by 23.88×104 km2. This increase was characterized by

expansions in the low and high suitability areas by 22.61×104 km2
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and 3.95×104 km2, respectively, while the moderately suitable area

decreased by 2.68×104 km2. By the 2070s, compared to the 2050s,

the total suitable habitat for M. officinalis increased by 61.61×104

km2, with significant expansions in the low and moderately suitable

areas by 62.03×104 km2 and 39.90×104 km2, respectively, and a

reduction in the high suitability area by 40.32×104 km2. By the

2090s, the total suitable habitat increased by an additional

28.86×104 km2 compared to the 2070s, with a notable expansion

in the low suitability area by 39.34×104 km2, and reductions in the

moderately and high suitability areas by 5.82×104 km2 and 4.67×104

km2, respectively.

From the present to the 2050s under the SSP5-8.5 climate

scenario, the total suitable habitat for M. officinalis expanded by

52.36×104 km2 (Figure 9c). This expansion mainly resulted from

the increases in the low and high suitability areas by 36.08×104 km2

and 67.44×104 km2, respectively, while the moderately suitable area

decreased by 51.17×104 km2. By the 2070s, compared to the 2050s,

the total suitable habitat for M. officinalis further increased by

40.32×104 km2, with significant growth in the low and high

suitability areas by 66.77×104 km2 and 5.68×104 km2, respectively,

and a reduction in the moderately suitable area by 32.14×104 km2.

By the 2090s, the total suitable habitat increased by an additional

12.10×104 km2 compared to the 2070s, with the low and moderately

suitable areas showing increases by 14.56×104 km2 and 3.65×104

km2, respectively, and a decrease in the high suitability area by

6.11×104 km2.

The optimized MaxEnt model was employed to forecast

potential suitable distributions of M. officinalis under SSP1-2.6,

SSP3-7.0, and SSP5-8.5 climate scenarios for the 2050s, 2070s, and

2090s (Figure 8). Analysis of habitat suitability projections revealed

distinct temporal patterns across the three scenarios (Table 1).

Under all scenarios, the total suitable habitat area for M.

officinalis is projected to increase from the present to the 2090s,

though with differing magnitudes and distributional patterns. The

SSP5-8.5 scenario shows the most substantial expansion in total

suitable habitat (104.78×104 km2), followed by SSP3-7.0

(114.35×104 km2) and SSP1-2.6 (41.16×104 km2). However, a

notable finding is that despite overall habitat expansion, highly

suitable areas exhibit vulnerability under more severe climate

change scenarios.

Temporal analysis reveals three key patterns. First, a habitat

suitability shift gradient is evident, with moderately suitable habitats

expanding most significantly under SSP1-2.6 (57.00×104 km2),

while low suitability areas predominate expansion under SSP3-7.0

and SSP5-8.5. Second, the rate of change accelerates in the 2070s

under SSP3-7.0 and SSP5-8.5 scenarios but stabilizes under SSP1-

2.6. Third, highly suitable habitats show greatest sensitivity to severe

climate scenarios, with substantial reductions under SSP3-7.0

(40.32×104 km2) and SSP5-8.5 during the 2070s.

Geographically, habitat expansion primarily occurs in

northwestern regions under all scenarios, with variation in the

extent and quality of new suitable areas. The most significant

contractions of high-quality habitat occur in southeastern regions,

particularly in parts of Fujian, Zhejiang, and Jiangxi provinces.
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3.5 Spatial changes of potential suitable
areas of M. officinalis under different
climate scenarios in the future

Based on the spatial analysis capabilities of ArcGIS software, a

comparative analysis can be conducted between the potential

suitable habitats of M. officinalis in the future under the same
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climate scenario and the current suitable habitats. This analysis

reveals the distribution of retained, lost, and gained areas of suitable

habitats forM. officinalis in the future (Figure 10; Table 2), which is

crucial for conservation and adaptation planning.

Specifically, under the SSP1-2.6 climate scenario, in the 2050s,

the retained area of the suitable habitat for M. officinalis is

295.19×104 km2, accounting for 79.52% of the total area; the lost
FIGURE 8

(a-i) Potential distribution of M. officinalis in China under future climate change scenarios.
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area is 19.29×104 km2, with a loss rate of 5.2%; and the gained area

is 56.72×104 km2, with an increase rate of 15.28% (Figure 10a;

Table 2). By the 2070s, the retained area of the suitable habitat

slightly decreases to 291.93×104 km2, with a retention rate of 77.2%;

the lost area increases to 22.57×104 km2, with a loss rate of 5.97%;

and the gained area is 63.65×104 km2, with an increase rate of

16.83% (Figure 10d; Table 2). By the 2090s, the retained area of the

suitable habitat further decreases to 293.74×104 km2, with a

retention rate of 76.05%; the lost area is 20.76×104 km2, with a

slightly decreased loss rate of 5.37%; and the gained area expands to

71 . 7 6×10 4 km2 , w i t h an in c r e a s e r a t e o f 1 8 . 5 8%

(Figure 10g; Table 2).

Under the SSP3-7.0 climate scenario for the 2050s, the area of

suitable habitat for M. officinalis that is expected to be retained is

283.64×104 km2, which is 75.65% of the total suitable area; meanwhile,

an area of 30.87×104 km2 is projected to be lost, accounting for 8.23%

of the total suitable area; and the area of suitable habitat that is

anticipated to be gained is 60.41×104 km2, making up 16.11% of the

total suitable area (Figure 10b; Table 2). By the 2070s, the retained area

of the suitable habitat forM. officinalis is forecasted to slightly decrease

to 282.15×104 km2, with a retention rate of approximately 62.32%; the

lost area is expected to increase to 32.33×104 km2, with a loss rate of

7.14%; and the gained area is projected to significantly increase to

138.25×104 km2, with an increase rate of 30.54% (Figure 10e; Table 2).

Entering the 2090s, the retained area of the suitable habitat for M.

officinalis is anticipated to further reduce to 274.69×104 km2, with a

retention rate of 55.41%; the lost area is expected to rise to 39.78×104

km2, with a loss rate of 8.02%; and the gained area is forecasted to

expand to 181.31×104 km2, with an increase rate of 36.57%

(Figure 10h; Table 2).
Frontiers in Plant Science 12
Under the SSP5-8.5 climate scenario, the suitable growing area

for M. officinalis in the 2050s is anticipated to be maintained at

288.95×104 km2, which is 71.39% of the total suitable area. In the

meantime, an area of 25.52×104 km2 is expected to no longer be

suitable for the growth of M. officinalis, making up 6.31% of the

total; and the newly added suitable area is projected to be 90.27×104

km2, constituting 22.3% of the total suitable area (Figure 10c;

Table 2). By the 2070s, the retained area of the suitable growing

region is expected to contract to 274.72×104 km2, with a retention

rate of 58.56%; the area lost is anticipated to increase to 39.76×104

km2, with a loss rate of 8.47%; and the increased suitable area is

expected to expand to 154.68×104 km2, with an increase rate of

32.97% (Figure 10f; Table 2). Moving further into the 2090s, the

retained area of the suitable growing region is forecasted to decrease

to 266.17×104 km2, with a retention rate of 54.07%; the lost area is

projected to reach 48.3×104 km2, with a loss rate of 9.81%; and the

increased suitable area is anticipated to further rise to 177.82×104

km2, with an increase rate of 36.12% (Figure 10i; Table 2). These

data outline the changing trends of the suitable growing areas forM.

officinalis over time under the SSP5-8.5 climate scenario.

The spatial persistence, contraction, and expansion of suitable

habitats for M. officinalis were analyzed across future climate

scenarios (Figure 10, Table 2). This analysis identified three

distinct spatial patterns with important conservation implications.

First, habitat stability shows a consistent declining trend across all

scenarios from the 2050s to the 2090s. The most stable pattern

occurs under SSP1-2.6, with 79.52% habitat retention in the 2050s

declining gradually to 76.05% by the 2090s. In contrast, SSP5-8.5

and SSP3-7.0 show more dramatic reductions in habitat stability,

declining to 54.07% and 55.41% respectively by the 2090s. Second,
FIGURE 9

(a-c) Predicted suitable area for the M. officinalis for the current, 2050s, 2070s, and 2090s under different climate scenarios (unit: 104 km2).
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the spatial pattern of habitat loss reveals important ecological

vulnerabilities. Under all scenarios, habitat loss particularly affects

southeastern regions, with core areas in Fujian, Zhejiang, and

southern Anhui provinces. Loss rates increase with scenario

severity, reaching 9.81% under SSP5-8.5 by the 2090s compared

to 5.37% under SSP1-2.6. Third, habitat expansion exhibits a

northwestern directional shift across all scenarios, with expansion
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rates increasing with scenario severity. By the 2090s, expansion

rates reach 18.58%, 36.57%, and 36.12% under SSP1-2.6, SSP3-7.0,

and SSP5-8.5 respectively. This expansion predominantly occurs in

previously marginal areas of Shaanxi, Sichuan, and western

Hubei provinces.

These spatial dynamics suggest a climate-driven northwestward

migration of suitable habitats for M. officinalis, with more severe
FIGURE 10

(a-i) Dynamic change of the predicted potentially suitable areas for M. officinalis (compared to the current range).
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scenarios accelerating this directional shift. While total suitable area

increases under all scenarios, the spatial reconfiguration indicates

potential ecological disruption, with significant implications for

conservation planning and assisted migration strategies.
3.6 Centroid migration dynamics within the
suitable habitats of M. officinalis

Under current climatic conditions, the centroid of the suitable

habitat for M. officinalis is in Xijia Ping Town, Songzi County,

Hubei Province, China (111°23′E, 30°30′N). According to

predictions under different Shared Socioeconomic Pathway (SSP)

climate scenarios, significant changes are expected in the habitat

center for M. officinalis over the coming decades (Figure 11).

Under the SSP1-2.6 climate scenario for the 2050s, the habitat

centroid is projected to shift northwest by 132.67 km to Gao Lan

Town, Xingshan County, Hubei Province (110°55′E, 31°10′N). By
the 2070s, it is expected to move a further 27.87 km to the

southwest, settling in Shuitianba Town, Zigui County (110°39′E,
31°05′N), and by the 2090s, it is anticipated to move 25.13 km to the

northeast, finally positioning in Zhaojun Town, Xingshan County

(110°46′E, 31°17′N).
Under the SSP3-7.0 scenario for the 2050s, the centroid is

expected to shift northwest by 166.01 km to Hua Ping Town, Jianshi

County, Hubei Province (109°47′E, 30°36′N). By the 2070s, it is

projected to move an additional 159.90 km northwest to Baijia

Town, Zhenping County, Shaanxi Province (109°31′E, 32°01′N),
and by the 2090s, it is expected to migrate 74.15 km to the

northeast, ultimately locating in Jinzhai Town, Xunyang County,

Shaanxi Province (109°35′E, 32°41′N).
Under the SSP5-8.5 scenario for the 2050s, the habitat centroid

is anticipated to shift northwest by 196.86 km to Songluo Town,

Shennongjia Forestry District, Hubei Province (110°41′E, 31°43′N).
By the 2070s, it is expected to move a further 143.57 km northwest

to Chang’an Town, Pingli County, Shaanxi Province (109°21′E, 32°
20′N), and by the 2090s, it is projected to migrate 61.84 km to the
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northwest, finally settling in Liushui Town, Hanbin District,

Shaanxi Province (108°46′E, 32°36′N).
4 Discussion

4.1 Optimization and assessment of
maxent model for M. officinalis

The MaxEnt model is widely used in ecology and biogeography

due to its low data requirements, high predictive accuracy, and ease

of operation (Yackulic et al., 2013). However, the default parameter

settings of the model may not be suitable for all species and regions,

especially when simulating the potential distribution of species,

where model complexity significantly affects predictive accuracy

and the model’s transferability. Optimizing parameters, such as

adjusting the regularization multiplier and selecting appropriate

feature types, is crucial for improving the model’s predictive

performance and generalization ability (Lissovsky and Dudov,

2021). Through optimization, the model can more reasonably

reflect the species’ response to environmental factors, reduce the

risk of overfitting, and enhance the accuracy of predictions in new

areas (Zhao et al., 2022). Therefore, optimizing the MaxEnt model

not only improves predictive precision but also enhances the

model’s applicability and flexibility in different environmental and

climatic contexts (Zhao et al., 2024), which has significant academic

and practical significance for understanding and predicting the

impact of climate change on species distribution.

The MaxEnt model’s predictive accuracy and generalization ability

were significantly enhanced through parameter optimization using the

ENMeval package in this study. The optimized model (FC = LQ and

RM = 0.5) achieved a delta.AICc of zero, indicating that the model is

optimal in terms of information criteria, as it represents the best

balance between model complexity and data fitting. Similar to existing

species distribution models like Actinidia chinensis (Wang et al.,

2024b), Liriodendron chinense (Bai et al., 2024), and Cunninghamia

lanceolata (Zhao et al., 2021), our study confirms MaxEnt’s
TABLE 2 Spatial dynamics of suitable habitats for M. officinalis in response to diverse future climate scenarios (compared to the current range).

Period
Area (104 km2) Rate of change (%)

Stability Contraction Expansion Stability Contraction Expansion

2050s-SSP1-2.6 295.19 19.29 56.72 79.52 5.20 15.28

2070s-SSP1-2.6 291.93 22.57 63.65 77.20 5.97 16.83

2090s-SSP1-2.6 293.74 20.76 71.76 76.05 5.37 18.58

2050s-SSP3-7.0 283.64 30.87 60.41 75.65 8.23 16.11

2070s-SSP3-7.0 282.15 32.33 138.25 62.32 7.14 30.54

2090s-SSP3-7.0 274.69 39.78 181.31 55.41 8.02 36.57

2050s-SSP5-8.5 288.95 25.52 90.27 71.39 6.31 22.30

2070s-SSP5-8.5 274.72 39.76 154.68 58.56 8.47 32.97

2090s-SSP5-8.5 266.17 48.30 177.82 54.07 9.81 36.12
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effectiveness. Despite differing ecological contexts, these models share

comparable predictive accuracy, underscoring MaxEnt’s reliability for

projecting species’ distributions. In contrast, the model using default

parameters (FC = LQHPT, RM= 1) resulted in a delta.AICc of 88.6613,

suggesting that the model complexity under default parameters is too

high, potentially leading to overfitting. Additionally, the optimized

model showed significant improvements in performance metrics

AUC.DIFF and OR10, with reductions of approximately 31.49% and

59.20%, respectively. The decrease in AUC.DIFF implies an enhanced

ability of the model to distinguish between areas of species distribution

and non-distribution, while the reduction in OR10 indicates a decrease

in uncertainty when predicting species distribution. These

improvements are crucial for increasing the model’s predictive

accuracy in new areas, especially in studies on the impact of climate

change on species distribution, providing more reliable predictive

results for ecological conservation and species management.

An AUC value of 0.917 was obtained for the prediction of M.

officinalis using the optimized MaxEnt model in this study,

indicating that the model possesses extremely high predictive

accuracy, which is consistent with previous studies that have
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recognized the high accuracy of MaxEnt models in predicting

species distributions (Zhan et al., 2022; Shi et al., 2023). Under

the AUC evaluation criterion, a score of 0.917 signifies that the

model has a very strong ability to distinguish between areas of

species distribution and non-distribution. With these optimized

parameters, the potential distribution of M. officinalis under three

different time periods and three Shared Socioeconomic Pathways

(SSP) scenarios was predicted, with AUC values consistently

around 0.90. This result not only confirms the high predictive

accuracy of the model but also demonstrates its stability and

reliability under different environmental and socioeconomic

scenarios, aligning with the findings of other studies that have

shown the robustness of MaxEnt models across various conditions

(Gao et al., 2024; Meena et al., 2024). Such findings are of significant

academic value for understanding and predicting the impact of

climate change on species distribution and provide a scientific basis

for the development of conservation strategies and adaptation

measures. However, it is important to note that MaxEnt models

can sometimes be sensitive to sampling bias and may overfit the

data, which can affect their transferability and predictive accuracy in
FIGURE 11

The shift trend of centroid distribution of M. officinalis..
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new areas or under different conditions. Therefore, while the results

are promising, they should be interpreted with caution and further

validated with independent data.

Our study advances SDM applications for endangered

medicinal plants by demonstrating that systematic parameter

optimization can improve predictive accuracy by 31.49%

(AUC.DIFF reduction) compared to default settings. This

methodological refinement is particularly crucial for conservation

planning, where model uncertainty directly impacts resource

allocation decisions.
4.2 Key environmental factors regulating
suitable habit of M. Officinalis

The parameters of the MaxEnt model were optimized, and the

Jackknife test was conducted, through which the most significant

environmental factor affecting the distribution of M. officinalis was

identified as the minimum temperature of the coldest month (Bio6),

with a contribution rate as high as 72.7%. This finding emphasizes

the key role of temperature in determining plant distribution,

especially under the backdrop of climate change. Following this,

the average diurnal temperature range (Bio2) and annual

precipitation (Bio12) were also identified as important factors,

contributing 11.6% and 4.2%, respectively.

The dominance of minimum temperature of the coldest month

(Bio6) as a predictor (72.7% contribution) aligns with M. officinalis’s

physiological constraints. This species requires a vernalization period

for flower bud differentiation, with optimal chilling requirements

between 0-7°C for 30-45 days (Yang et al., 2015). Temperatures below

-15°C can cause xylem embolism and tissue damage, while

insufficient chilling (<0°C for less than 20 days) results in poor

flowering and reduced seed set. The identified threshold range (-3.08

to 13.33°C) corresponds closely to these physiological limits. Annual

precipitation’s contribution (4.2%) reflects the species’ drought

tolerance mechanisms, including deep taproot systems and thick,

waxy leaves that reduce water loss. However, the optimal range

(1067-4067 mm) suggests that while drought-tolerant, M. officinalis

benefits from consistent moisture availability during the growing

season, particularly for seedling establishment.

Similar studies have also found that the minimum temperature

of the coldest month (Bio6) is a key environmental factor regulating

the potential suitable distribution for Angelica dahurica, Prunus

avium, Cinnamomum mairei, and Cunninghamia lanceolata in

China (Zhou et al., 2021; Qi et al., 2022; Li et al., 2024; Zhang

et al., 2024a). This study revealed that among the nine climate and

environmental variables, the impact of temperature on the

distribution of M. officinalis far exceeds that of precipitation. This

phenomenon may be caused by multiple factors: firstly, temperature

is a core environmental factor for plant growth and development,

directly related to the physiological needs and metabolic activities of

plants, such as photosynthesis, respiration, and transpiration

(Dusenge et al., 2019; Wang and Wang, 2023). Secondly, seasonal

temperature fluctuations and extreme events significantly affect

plant distribution and diversity (Lloret et al., 2012); a rise in
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temperature may expand the ecological niche of some species

while compressing the living space of others (Foster, 2001). On a

broader scale, climatic factors, especially temperature changes, play

a decisive role in influencing plant distribution. These findings

indicate that temperature not only directly affects plant

physiological activities but also indirectly influences plant

distribution by regulating ecological niches, competitive

relationships, and genetic diversity (Huang et al., 2021).

Therefore, in the context of climate change’s impact on plant

distribution, temperature typically plays a more critical role

than precipitation.
4.3 Suitable distribution of M. officinalis
induced by climate change

Our study found that under current climatic conditions,

M. officinalis is primarily distributed in regions such as Guizhou

Province, Chongqing Municipality, Hunan Province, Jiangxi Province,

Fujian Province, Zhejiang Province, eastern Sichuan Province, northern

Guangxi Zhuang Autonomous Region, and northern Guangdong

Province in China. This distribution is mainly attributed to the

adaptability of M. officinalis to the subtropical monsoon climate,

including its demand for moderate humidity, ample precipitation, and

a preference for loose, fertile, well-drained slightly acidic or neutral soils,

and benefits from the rich cultivation experience and traditions in these

areas (Yang et al., 2015).

Under the SSP1-2.6 scenario, an increase in the suitable habitat

for M. officinalis is anticipated in the 2050s, particularly with a

significant expansion of moderately suitable habitats. This result is

consistent with the research findings on Magnolia wufengensis (Shi

et al., 2021), indicating that the suitable habitat for species may

expand under moderate climate scenarios. However, as climate

scenarios become more severe, such as SSP5-8.5, the increase in

suitable habitat is expected to diminish, and the reduction in highly

suitable habitats will be more pronounced. This may reflect the

potential adverse impacts of climate change on the quality of species

habitats. These findings emphasize the threat of climate change to

biodiversity and the importance of considering future climate change

scenarios when developing conservation strategies. Particularly under

harsher climate scenarios, such as SSP5-8.5, the increase in suitable

habitat forM. officinalis is reduced, and the decrease in highly suitable

habitats is more significant, which is similar to the research results of

Shi et al. (2024) and Zhan et al. (2022). These improvements are

crucial for enhancing the model’s predictive accuracy in new areas,

especially in research on the impact of climate change on species

distribution, providing more reliable predictive outcomes for

ecological conservation and species management.

Further analysis reveals that the suitable habitat ofM. officinalis

not only changes in area but also shows a significant trend of

migration in spatial distribution. It is predicted that under the SSP3-

7.0 and SSP5-8.5 scenarios, the centroid of the suitable habitat for

M. officinalis will shift towards the northwest, which may be related

to changes in temperature and precipitation patterns caused by

climate change. This result aligns with other studies showing that
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rising temperatures prompt species to move towards the northwest

of China (Xu et al., 2018; Liu et al., 2021). These findings uncover

the adaptive migration strategies that species may adopt in the face

of climate change (Li et al., 2021).
4.4 Limitations and future research

The study acknowledges certain limitations that could influence

the accuracy of the predictions made for the distribution of M.

officinalis under future climate scenarios. One primary limitation is

the reliance on current climate data and models, which may not fully

capture the complexities and uncertainties of future climate

conditions. Additionally, the MaxEnt model, although optimized,

makes certain assumptions about species-environment relationships

that may not account for potential changes in species’ adaptability or

shifts in ecological interactions. The study also recognizes that it does

not consider other biotic factors such as species interactions, disease,

or the potential for assisted migration, which could significantly affect

the distribution and survival of M. officinalis. Furthermore, the

absence of occurrence records from Tibet and limited data from

Taiwan represent spatial gaps that may affect the generalizability of

our predictions for these regions. Future studies should prioritize field

surveys in these under-sampled areas to validate model predictions.

The projected habitat shifts may be conservative estimates, as our

model does not explicitly account for increased frequency and

intensity of extreme climate events under warming scenarios.

Episodes of extreme cold or drought could create population

bottlenecks that accelerate local extinctions beyond our predictions.

While our climate scenarios capture mean temperature and

precipitation changes, they may underestimate the impact of

extreme weather events. Future research should incorporate indices

of climate extremes, such as consecutive dry days and heat wave

frequency, which may disproportionately affect M. officinalis survival

at range margins. For subsequent research, it is advisable to adopt

more dynamic models that can better simulate the complex

interactions between M. officinalis and their biotic environments.

Long-term monitoring of M. officinalis populations across various

habitats would provide empirical data to validate and refine model

predictions. It would also be beneficial to explore the genetic diversity

of M. officinalis to understand its potential to adapt to new climatic

conditions. Incorporating local climate models with higher resolution

and more nuanced data could enhance the precision of future

distribution forecasts. Lastly, considering the role of human-

mediated dispersal and conservation efforts in shaping species

distribution is essential for developing effective conservation strategies.
5 Conclusion

In this study, we employed an optimized MaxEnt model to

project the potential distribution of Magnolia officinalis under

various climate scenarios. The model demonstrated high

predictive accuracy with an AUC value of 0.917. Our results

indicate that suitable habitats for M. officinalis are likely to
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expand by the 2050s under moderate scenarios like SSP1-2.6 but

may contract under more severe conditions such as SSP5-8.5. This

underscores the significant impact of climate change on habitat

quality and extent. We propose conservation actions such as

establishing protected areas in predicted suitable regions,

implementing monitoring programs, and considering assisted

migration for vulnerable populations. Our findings also highlight

the importance of integrating climate projections into conservation

planning for similar species and ecosystems affected by climate

change, emphasizing the need for adaptive management strategies

to ensure biodiversity conservation and sustainable resource use.

Based on our findings, we propose the following conservation

actions: 1) Corridor establishment: create ecological corridors

connecting fragmented populations in Hubei-Shaanxi border

regions to facilitate north-westward migration, prioritizing riparian

zones along the Han River system. 2) Priority conservation sites:

establish in situ conservation reserves in southeastern refugia

(northern Fujian, southern Zhejiang) where high-quality habitats

face imminent loss, focusing on populations with unique genetic

lineages. 3) Ex situ conservation network: develop seed banks at three

strategic locations (Wuhan Botanical Garden, Kunming Institute of

Botany, and South China Botanical Garden) to preserve genetic

diversity from across the species’ range. 4) Assisted migration trials:

initiate experimental translocations from southeastern populations to

climatically suitable sites in Shaanxi Province, monitoring

establishment success over 5-year intervals. 5) Community-based

conservation: engage local communities in sustainable harvesting

programs, establishing cultivation guidelines that maintain 60% of

mature trees for seed production.
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Araújo, M. B., Pearson, R. G., Thuiller, W., and Erhard, M. (2005). Validation of
species–climate impact models under climate change. Global Change Biol. 11, 1504–
1513. doi: 10.1111/j.1365-2486.2005.01000.x

Austin, M. P. (2002). Spatial prediction of species distribution: an interface between
ecological theory, and statistical modelling. Ecol. Model. 157, 101–118. doi: 10.1016/
S0304-3800(02)00205-3

Bai, J., Wang, H., and Hu, Y. (2024). Prediction of potential suitable distribution of
liriodendron chinense (Hemsl.) sarg. in China based on future climate change using the
optimized maxEnt model. Forests 15. doi: 10.3390/f15060988

Beaumont, L. J., Hughes, L., and Poulsen, M. (2005). Predicting species distributions:
use of climatic parameters in BIOCLIM, and its impact on predictions of species’
current, and future distributions. Ecol. Model. 186, 251–270. doi: 10.1016/
j.ecolmodel.2005.01.030

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F. (2012).
Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377.
doi: 10.1111/j.1461-0248.2011.01736.x

Chapman, A. D., and Wieczorek, J. (2006). Guide to best practices for georeferencing
(Copenhagen: Global Biodiversity Information Facility).

Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., and Thomas, C. D. (2011). Rapid
range shifts of species associated with high levels of climate warming. Science 333,
1024–1026. doi: 10.1126/science.1206432

Coelho, M. T. P., Barreto, E., Rangel, T. F., Diniz-Filho, J. A. F., Wüest, R. O., Bach,
W., et al. (2023). The geography of climate, and the global patterns of species diversity.
Nature 622, 537–544. doi: 10.1038/s41586-023-06577-5

Cuena-Lombraña, A., Fois, M., Fenu, G., Cogoni, D., and Bacchetta, G. (2018). The
impact of climatic variations on the reproductive success of Gentiana lutea L. in a
Mediterranean mountain area. Int. J. Biometeorology 62, 1283–1295. doi: 10.1007/
s00484-018-1533-3

Diffenbaugh, N. S., Singh, D., Mankin, J. S., Horton, D. E., Swain, D. L., Touma, D.,
et al. (2017). Quantifying the influence of global warming on unprecedented extreme
climate events. Proc. Natl. Acad. Sci. 114, 4881–4886. doi: 10.1073/pnas.1618082114

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013).
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Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., and Prentice, I. C. (2005).
Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–
8250. doi: 10.1073/pnas.0409902102

Trew, B. T., and Maclean, I. M. D. (2021). Vulnerability of global biodiversity
hotspots to climate change. Global Ecology Biogeography 30, 768–783. doi: 10.1111/
geb.13272

Wang, Z., Li, Z., Meng, S., Jiang, Q., Hu, G., Zhang, L., et al. (2024b).
Potential distribution under climate change, and ecological niche differences between
Actinidia chinensis complex. Scientia Hortic. 337, 113533. doi: 10.1016/
j.scienta.2024.113533

Wang, Z., and Wang, C. (2023). Interactive effects of elevated temperature, and
drought on plant carbon metabolism: A meta-analysis. Global Change Biol. 29, 2824–
2835. doi: 10.1111/gcb.16639

Wang, Y., Wu, K., Zhao, R., Xie, L., Li, Y., Zhao, G., et al. (2024a). Prediction of
potential suitable habitats in the 21st century, and GAP analysis of priority
conservation areas of Chionanthus retusus based on the MaxEnt, and Marxan
models. Front. Plant Sci. 15. doi: 10.3389/fpls.2024.1304121
frontiersin.org

https://doi.org/10.1016/j.ecolind.2023.110790
https://doi.org/10.1111/j.1365-2486.2006.01256.x
https://doi.org/10.1111/geb.13251
https://doi.org/10.1002/sscp.202200074
https://doi.org/10.1007/s10530-022-02976-3
https://doi.org/10.2307/2845830
https://doi.org/10.1016/j.ecoinf.2020.101150
https://doi.org/10.1016/j.ecoinf.2020.101150
https://doi.org/10.3390/f13050715
https://doi.org/10.1016/j.actao.2013.02.007
https://doi.org/10.1111/j.2041-210X.2011.00134.x
https://doi.org/10.1111/j.2041-210X.2011.00134.x
https://doi.org/10.1038/s41559-021-01471-7
https://doi.org/10.1155/2023/3503888
https://doi.org/10.1371/journal.pone.0294098
https://doi.org/10.31497/zrzyxb.20210318
https://doi.org/10.1134/S2079086421030087
https://doi.org/10.1134/S2079086421030087
https://doi.org/10.3390/plants13162336
https://doi.org/10.3390/plants13162336
https://doi.org/10.1016/j.ecolind.2021.108396
https://doi.org/10.2147/DDDT.S461152
https://doi.org/10.1111/j.1365-2486.2011.02624.x
https://doi.org/10.1016/j.jep.2019.02.041
https://doi.org/10.1016/j.biocon.2021.109070
https://doi.org/10.3390/land13070931
https://doi.org/10.1111/eva.12137
https://doi.org/10.1111/eva.12137
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1093/nsr/nwab032
https://doi.org/10.1016/j.jep.2021.114524
https://doi.org/10.1046/j.1466-822X.2003.00042.x
https://doi.org/10.1126/science.aai9214
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1126/science.adg8028
https://doi.org/10.3390/su14137682
https://doi.org/10.1002/pca.3424
https://doi.org/10.1016/j.rse.2019.111626
https://doi.org/10.1016/j.ecolind.2023.110093
https://doi.org/10.1016/j.ecolind.2023.110093
https://doi.org/10.1016/j.jenvman.2024.120841
https://doi.org/10.1016/j.ecolind.2021.107762
https://doi.org/10.1038/s41579-023-00900-7
https://doi.org/10.1016/j.foreco.2021.119474
https://doi.org/10.1016/j.foreco.2021.119474
https://doi.org/10.1021/acs.joc.4c00739
https://doi.org/10.1021/acs.joc.4c00739
https://doi.org/10.13275/j.cnki.lykxyj.2019.01.017
https://doi.org/10.1038/nature02121
https://doi.org/10.1073/pnas.0409902102
https://doi.org/10.1111/geb.13272
https://doi.org/10.1111/geb.13272
https://doi.org/10.1016/j.scienta.2024.113533
https://doi.org/10.1016/j.scienta.2024.113533
https://doi.org/10.1111/gcb.16639
https://doi.org/10.3389/fpls.2024.1304121
https://doi.org/10.3389/fpls.2025.1601585
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ren et al. 10.3389/fpls.2025.1601585
Warren, D. L., and Seifert, S. N. (2011). Ecological niche modeling in Maxent: the
importance of model complexity, and the performance of model selection criteria. Ecol.
Appl. 21, 335–342. doi: 10.1890/10-1171.1

Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., et al. (2019). The Beijing Climate
Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6.
Geosci Model. Dev. 12, 1573–1600. doi: 10.5194/gmd-12-1573-2019

Xu, W., Svenning, J., Chen, G., Zhang, M., Huang, J., Chen, B., et al. (2019). Human
activities have opposing effects on distributions of narrow-ranged, and widespread
plant species in China. Proc. Natl. Acad. Sci. 116, 26674–26681. doi: 10.1073/
pnas.1911851116

Xu, X., Zhang, H., Yue, J., Xie, T., Xu, Y., and Tian, Y. (2018). Predicting shifts in the
suitable climatic distribution of walnut (Juglans regia L.) in China: maximum entropy
model paves the way to forest management. Forests 9. doi: 10.3390/f9030103

Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell
Grant, E. H., et al. (2013). Presence-only modelling using MAXENT: when can we trust
the inferences? Methods Ecology Evol. 4, 236–243. doi: 10.1111/2041-210x.12004

Yang, H., Ming, M., Zhang, C., Guo, L., Huang, L., Zhu, S., et al. (2015). Growth
suitability of Magnolia o fficinalis based on habitat suitability. J. Nanjing Univ.
Traditional Chin. Med. 31, 457–460. doi: 10.14148/j.issn.1672-0482.2015.0457

Yang, X., Yang, Z., Tan, M., Cheng, X., Zeng, P., Tan, Z., et al. (2020). Quality, and
early selection of 9 year-old Houpoea officinalis from different geographical
provenances. J. Fujian Agriculture Forestry Univ. ( Natural Sci. Edition) 49, 74–79.
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2020.01.013

Yi, Y., Cheng, X., Yang, Z., and Zhang, S. (2016b). Maxent modeling for predicting
the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan,
China. Ecol. Eng. 92, 260–269. doi: 10.1016/j.ecoleng.2016.04.010

Yi, J., Wu, J., Wu, J., andWu, Y. (2016a). Quality evaluation of the leaves ofMagnolia
officinalis var. biloba using high-performance liquid chromatography fingerprint
analysis of phenolic compounds. J. Separation Sci. 39, 784–792. doi: 10.1002/
jssc.201500972

Youn, U., Fatima, N., Chen, Q., Chae, S., Hung, T., and Min, B. (2013). Apoptosis-
inducing, and antitumor activity of neolignans isolated from magnolia officinalis in
heLa cancer cells. Phytotherapy Res. 27, 1419–1422. doi: 10.1002/ptr.4893
Frontiers in Plant Science 20
Zhan, P., Wang, F., Xia, P., Zhao, G., Wei, M., Wei, F., et al. (2022). Assessment of
suitable cultivation region for Panax notoginseng under different climatic conditions
using MaxEnt model, and high-performance liquid chromatography in China. Ind.
Crops Products 176, 114416. doi: 10.1016/j.indcrop.2021.114416

Zhang, F., Liang, F., Wu, K., Xie, L., Zhao, G., and Wang, Y. (2024a). The potential
habitat of Angelica dahurica in China under climate change scenario predicted by
Maxent model. Front. Plant Sci. 15. doi: 10.3389/fpls.2024.1388099

Zhang, H., Zhang, X., Zhang, G., Sun, X., Chen, S., and Huang, L. (2024b). Assessing
the quality ecology of endemic tree species in China based on machine learning models,
and UPLC methods: The example of Eucommia ulmoides Oliv. J. Cleaner Production
452, 142021. doi: 10.1016/j.jclepro.2024.142021

Zhang, W., and Zhou, T. (2020). Increasing impacts from extreme precipitation on
population over China with global warming. Sci. Bull. 65, 243–252. doi: 10.1016/
j.scib.2019.12.002

Zhao, Y., Deng, X., Xiang, W., Chen, L., and Ouyang, S. (2021). Predicting potential
suitable habitats of Chinese fir under current, and future climatic scenarios based on
Maxent model. Ecol. Inf. 64, 101393. doi: 10.1016/j.ecoinf.2021.101393

Zhao, R., Wang, S., and Chen, S. (2024). Predicting the potential habitat suitability of
Saussurea species in China under future climate scenarios using the optimized
Maximum Entropy (MaxEnt) model. J. Cleaner Production 474, 143552.
doi: 10.1016/j.jclepro.2024.143552

Zhao, Z., Xiao, N., Shen, M., and Li, J. (2022). Comparison between optimized
MaxEnt, and random forest modeling in predicting potential distribution: A case study
with Quasipaa boulengeri in China. Sci. Total Environ. 842, 156867. doi: 10.1016/
j.scitotenv.2022.156867

Zhong, J., Muhammad, N., Yang, X., and Li, J. (2022). Antimicrobial,
antioxidant, anti-inflammatory activities of eight essential oils obtained from
traditional chinese medicines using supercritical fluid extraction coupled molecular
distillation. J. Essential Oil Bearing Plants 25, 1145–1158. doi: 10.1080/
0972060X.2022.2142484

Zhou, Y., Zhang, Z., Zhu, B., Cheng, X., Yang, L., Gao, M., et al. (2021). MaxEnt
modeling based on CMIP6 models to project potential suitable zones for cunninghamia
lanceolata in China. Forests 12. doi: 10.3390/f12060752
frontiersin.org

https://doi.org/10.1890/10-1171.1
https://doi.org/10.5194/gmd-12-1573-2019
https://doi.org/10.1073/pnas.1911851116
https://doi.org/10.1073/pnas.1911851116
https://doi.org/10.3390/f9030103
https://doi.org/10.1111/2041-210x.12004
https://doi.org/10.14148/j.issn.1672-0482.2015.0457
https://doi.org/10.13323/j.cnki.j.fafu(nat.sci.).2020.01.013
https://doi.org/10.1016/j.ecoleng.2016.04.010
https://doi.org/10.1002/jssc.201500972
https://doi.org/10.1002/jssc.201500972
https://doi.org/10.1002/ptr.4893
https://doi.org/10.1016/j.indcrop.2021.114416
https://doi.org/10.3389/fpls.2024.1388099
https://doi.org/10.1016/j.jclepro.2024.142021
https://doi.org/10.1016/j.scib.2019.12.002
https://doi.org/10.1016/j.scib.2019.12.002
https://doi.org/10.1016/j.ecoinf.2021.101393
https://doi.org/10.1016/j.jclepro.2024.143552
https://doi.org/10.1016/j.scitotenv.2022.156867
https://doi.org/10.1016/j.scitotenv.2022.156867
https://doi.org/10.1080/0972060X.2022.2142484
https://doi.org/10.1080/0972060X.2022.2142484
https://doi.org/10.3390/f12060752
https://doi.org/10.3389/fpls.2025.1601585
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	MaxEnt-based evaluation of climate change effects on the habitat suitability of Magnolia officinalis in China
	1 Introduction
	2 Materials and methods
	2.1 Collection and processing of M. officinalis occurrence records
	2.2 Data collection and processing of environmental variables
	2.3 Optimization of MaxEnt model
	2.4 Model establishment and evaluation
	2.5 Classification of the suitable habitat for M. officinalis
	2.6 Spatial distribution pattern changes in suitable habitat of M. officinalis
	2.7 Core migration of M. officinalis

	3 Results
	3.1 Model optimization and accuracy evaluation
	3.2 Primary environmental variables
	3.3 Suitable habitats for M. officinalis under current climate scenarios
	3.4 Potential suitable distribution areas of M. officinalis under future climate conditions
	3.5 Spatial changes of potential suitable areas of M. officinalis under different climate scenarios in the future
	3.6 Centroid migration dynamics within the suitable habitats of M. officinalis

	4 Discussion
	4.1 Optimization and assessment of maxent model for M. officinalis
	4.2 Key environmental factors regulating suitable habit of M. Officinalis
	4.3 Suitable distribution of M. officinalis induced by climate change
	4.4 Limitations and future research

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References




