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Coastal saline soil is considered an important land source due to their abundant

thermal and light conditions, irrigation resources, and relatively low reclamation

difficulty. However, it is crucial to establish effective strategies for ameliorating

saline soil to render it suitable for crop growth and development. As an economic

crop with strong salt tolerance, rapeseed (Brassica napus L.) may be a pioneer

crop for the development and utilization of saline-alkali lands. To explore the

adaptability of rapeseed in coastal saline soils and its potential for soil

improvement, this study conducted rapeseed cultivation experiments in soils

with different salinity levels over three consecutive years. Prior to sowing in the

first season, the initial soil salinity levels were measured at 2.49 g kg−1 (low-

salinity soil, LS) and 4.27 g kg−1 (high-salinity soil, HS). The seed yield and biomass

of rapeseed, soil physiochemical properties, and soil enzyme activity were

investigated. The results revealed that the seed yield and biomass of rapeseed

in high-salinity soil were significantly reduced by 40.30% and 30.58% across

three growing seasons, compared to low-salinity soil. As the cultivation year

progressed, the seed yield and biomass gradually increased. After three years of

rapeseed cultivation, total salt content reduced from 2.50–4.20 g kg−1 to 1.59–

2.79 g kg−1, and EC decreased from 0.95–1.38 ms cm−1 to 0.32–0.40 ms cm−1.

Compared to bare land, rapeseed cultivation exhibited a reduction in soil bulk

density, along with an increase in porosity and proportions of macro- andmicro-

aggregates. In terms of chemical properties, after rapeseed cultivation, the

contents of organic matter, dissolved organic C, total N, available N, total

phosphorus, available phosphorus increased by 56.99%, 10.49%, 47.13%,

64.43%, 19.30%, and 74.31% in the low-salinity soil; correspondingly, the

increases in the high-salinity soil were 22.83%, 3.57%, 8.81%, 22.96%, 11.81%,

and 53.82%. In addition, rapeseed cultivation augmented the activity of b-
glucosidase, urease, protease, and alkaline phosphatase in both low-salinity
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and high-salinity soils. Overall, rapeseed proved to be an appropriate crop for the

remediation of coastal saline soil, effectively ameliorating soil quality by reducing

salinity, fortifying soil structure, accumulating nutrients, and fostering soil

enzyme activity.
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1 Introduction

Ensuring the sustainable development of agriculture is critical for

meeting the food demands of a growing global population. However,

the availability of arable land for agricultural production has been

declining due to the over-expansion of urbanization and

industrialization (Anwar et al., 2023). Consequently, developing

reserve land resources has become an urgent priority to safeguard

agricultural production. Natural coastal saline soils are widely

regarded as a critical arable land source, given their abundant

thermal and light conditions, irrigation resources, and relatively

low reclamation difficulty. In China, there are long coastlines and

rich tidal flats. Specifically, the North-Jiangsu Plain stands out with

954 km of coastline and 6.67×105 ha of coastal saline soil, accounting

for one-quarter of the total such saline soil in China. This region

exemplifies the potential for utilizing coastal saline soils to address

land scarcity and support sustainable agricultural development.

Natural coastal saline soils are characterized by high salt content,

strong alkalinity, high electric conductivity (EC), nutrition

deficiencies, and low microbial activity, rendering them unsuitable

for most conventional crops (Cui et al., 2021; Li et al., 2023).

Therefore, it is essential to explore effective strategies for

ameliorating saline soil to allow it for agricultural cultivation. In

recent decades, a range of management practices have been

developed and employed to address saline soil issues and improve

soil productivity. These practices can be broadly categorized into four

main approaches: leaching, chemical amendments, organic

amendments, and phytoremediation. Leaching involves the

application of abundant fresh water to flush salts from the topsoil

into deeper soil layers (Guo and Liu, 2020; Liu et al., 2023). However,

this technique has been restricted because of its excessive consumption

of fresh water, detrimental effects on soil structure stability, and

negative impact on soil fertility. Amelioration of saline soil through

chemical amendments is a technology that supplies calcium (Ca2+) to

replace sodium (Na+) from the cation exchange sites (Li et al., 2012;

Zhao et al., 2018). Organic amendments can also increase the

dissolution of native calcite and promote the leaching of Na+ and

soil stability (Mahmoud et al., 2019; Liang et al., 2021). Despite their

effectiveness, the high cost associated with these approaches limits

their utilization and compels farmers to find alternative strategies.

Phytoremediation of saline soil, a cost-effective and

environmentally friendly approach, involves cultivating specific
02
plant species to transform low-quality saline soils into high-

quality arable land. This method has been approved to alleviate

the soil salinity degree, improve soil structure stability, and enhance

both soil fertility and microbial activity by the establishment of

vegetation in the saline soil. Several halophyte species (grasses or

forests) have shown promise as effective phytoremediation tools.

For example, Xia et al. (2019) found that a forest-grass pattern could

improve soil structure, increase nutrient levels, and boost microbial

populations, recommending mixed tree-shrub-grass systems as a

preferred strategy. Similarly, Yang et al. (2021) demonstrated that

Tamarix chinensis-grass patterns significantly decreased soil salt

content and enhanced the availability of nutrients in the coastal

saline soil. Jing et al. (2019) reported that cultivating Atriplex

triangularis and Suaeda glauca facilitated soil desalinization by

altering enzyme activities and improving the diversity and

richness of bacterial communities. Recent studies have also

explored the potential of crop cultivation, often combined with

complementary technologies, to improve saline soil quality. For

instance, Xu et al. (2020) demonstrated that three years of rice

cultivation reduced soil salinity and pH, increased soil organic

matter content and alkaline phosphatase activity, and promoted

microbial diversity. Additionally, Jaiswal et al. (2022) reported that

rice-wheat and rice-mustard cropping systems with organic

amendments have been shown to improve saline soil quality by

enhancing carbon (C) and nitrogen (N) cycles as well as activity of

urease and invertase. Furthermore, Zhang et al. (2022)

demonstrated that long-term cotton cultivation combined with

stubble return and subsoiling has been effective in decreasing soil

salinity, improving soil porosity and aggregate stability, and

promoting the soil C cycle. These findings highlight the potential

of crop cultivation as effective solutions for saline soil remediation.

Rapeseed is the second-largest oil crop followed by soybean

globally (Khan et al., 2021). Rapeseed oil is a vital source of edible

oil, biodiesel, and various industrial chemicals (Koutsouki et al.,

2016). According to the data from the National Bureau of Statistics,

the total rapeseed cultivation area in China was about 6.99 million

hectares in 2021, yielding 14.7 million tons of oilseed (National

Bureau of Statistic, 2021). According to previous studies, salt stress

typically inhibits the phenotype and physiological processes of

rapeseed, such as reduced leaf area and plant height, hindered

root extension, as well as impaired leaf photosynthesis and nitrogen

uptake capacity (Shahzad et al., 2022; Wang et al., 2024). However,
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rapeseed can counteract salt stress by enhancing antioxidant levels,

regulating the synthesis of osmolytes, and modulating endogenous

hormone levels (Tian et al., 2022). Therefore, rapeseed is recognized

for its moderate tolerance to salt stress conditions and its ability to

contribute to soil quality restoration. Its metal enrichment

capabilities have been extensively documented, highlighting its

potential for remediating contaminated soils (Dhiman et al.,

2016). Wang et al. (2022) demonstrated that rapeseed cultivation

during a single season could accumulate 39.45-102.24 kg ha–1 of

Na+ in various salinity soils, outperforming other crops such as

maize, sorghum, wheat, millet, and soybean. This underscores the

significant potential of rapeseed in saline soil remediation. Despite

existing studies on the use of rapeseed for coastal saline soil

remediation, the underlying mechanisms remain poorly

understood. Therefore, based on the previous studies, we

conducted a three-year field experiment to expand the

understanding of how rapeseed cultivation regulates soil

properties. The present study aims to elucidate the effects of

rapeseed cultivation on coastal saline soil remediation by

examining changes in soil salinity, soil structure, nutrient

availability, and enzyme activity at a field scale.
2 Materials and methods

2.1 Experimental site

This experiment was conducted in Dafeng County, Jiangsu

Province, China, during the rapeseed growing season (2021–2022,

2022–2023, and 2023–2024). This region is characterized by a

typical subtropical monsoon climate (transition from north

subtropical zone to warm temperature zone) with an average

precipitation of 1014 mm and a mean average temperature of

14.4 °C. Situated on the Eastern of the Yellow Sea, this area is

classified as coastal saline soil. The soil salinity levels were

influenced by altitude, distance to the sea, water table, and other

environmental factors. The experimental areas were not previously

reclaimed, where no crops were cultivated, and only sparse natural

suaeda plants grew.
2.2 Experimental design

We selected two fields with different soil salinity characterized

by total salt contents of 2.49 g kg–1 (low-salinity soil, LS) and 4.27 g
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kg–1 (high-salinity soil, HS), respectively. The soil initial basal

properties were listed in Table 1. There are four treatments in

this experiment: low-salinity soil without rapeseed cultivation

(CK1), high-salinity soil without rapeseed cultivation (CK2), low-

salinity soil with rapeseed cultivation (T1), and high-salinity soil

with rapeseed cultivation (T2). The rapeseed seeds were sown in

October each year, and the density was adjusted to 45×104 plants

ha–1 at the fourth leaf stage. The basal fertilizer was applied with

166.0 kg ha–1 of urea, 326.1 kg ha–1 of diammonium hydrogen

phosphate compound fertilizer, 144.2 kg ha–1 of potassium sulfate

fertilizer, and 4.5 kg ha–1 of boron fertilizer, respectively. In

addition, 293.5 kg ha–1 of urea was applied as bolting fertilizer.

The maturity canola plants were harvested in May of the following

year. This study adopted a rapeseed monoculture system, where all

rapeseed straw was incorporated into the soil after harvest, with no

other crops cultivated during the experimental period.
2.3 Sampling and measurement

2.3.1 Soil sampling and measurement
Before the harvest of rapeseed at the third growing season (May

2024), the sampling work was conducted on the consecutive sunny

days to avoid the short-term effects of rainfall on soil properties.

The soil samples of CK1 and CK2 were derived from the bare land

of low-salinity and high-salinity soil, respectively. The soil samples

of T1 and T2 were from the plant root zone of low-salinity and

high-salinity soil, respectively. Soil samples of each treatment were

randomly collected from five points (0–20 cm soil depth) to mix

fully into a composite sample. All the soil samples were transported

immediately to laboratory in the sterile plastic bags on the dry ice.

Bulk density and soil porosity were determined using the

cutting ring method. Soil porosity was calculated by the equation

of (1–bulk density/soil specific gravity)×100%), where the soil

specific gravity is 2.65 g cm–3 (Aziz et al., 2013). Soil aggregates

were separated into three size fractions, namely macro-aggregates

(250-2000 mm), micro-aggregates (53-250 mm), and silt+clay (< 53

mm) using the wet sieving method with a Laser Diffraction Particle

Size Analyzer (Mastersizer 3000, Malvern Panalytical, England).

Soil pH was measured employing the pH meter with a water-to-soil

ratio of 2.5:1. The EC was measured using the conductivity meter

with a water-to-soil ratio of 5:1. Soil total salt was determined by the

gravimetric method. The soil total carbon (TC) and total nitrogen

(TN) content were quantified using elemental analyzer (Vario EL,

Elementar, Langenselbold, Germany). The total organic carbon and
TABLE 1 The initial soil properties in the topsoil (0-20cm) in 2021.

Plot
Organic matter

(g kg-1)
AN (mg kg–1) AP (mg kg–1) AK (mg kg–1) Total salt (g kg–1)

LS 10.1 60.3 29.4 310 2.49

HS 9.8 57.2 23.5 392 4.27
AN, available nitrogen; AP, available phosphorus; AK, available potassium. LS, low-salinity soil; HS, high-salinity soil.
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dissolved organic carbon (DOC) were extracted with deionized

water and subsequently analyzed by the TOC analyzer. The soil

organic matter content was 1.724 times of the TOC content. The

available nitrogen (AN) was determined using the alkaline

hydrolysis diffusion method. The total phosphorus (TP) and

available phosphorus (AP) were extracted by NaOH fusion and

NaHCO3, respectively, and then measured by the molybdenum blue

colorimetry method. The total potassium (TK) and available

potassium (AK) were extracted by hydrofluoric acid and nitric

acid, respectively, and then measured using the flame photometry.

According to the methods of (Zhou and Zhang, 1980),

b-Glucosidase activity was determined using the colorimetric

method with b-glucoside as the substrate, with one unit of enzyme

activity defined as the amount that produced 1 mmol of p-nitrophenol

(p-NP) per gram of soil per 24 hours (mmol p-NP g−1 24h−1).

Invertase activity was determined using the titration method with

sucrose as the substrate, with one unit of enzyme activity defined as

the amount that produced 1 mg of reducing sugars per gram of soil

per 24 hours (mg reducing sugar g−1 24h−1) (Mishra et al., 1979).

According to the methods of (Tabatabai and Bremner, 1972), urease

activity was determined using the sodium phenolate colorimetric

method with urea as the substrate, with one unit of enzyme activity

defined as the amount that produced 1 mg of NH3-N per gram of soil

per 24 hours (mg NH3-N g−1 24h−1). Following the methods of

(Saviozzi et al., 2011), protease activity was determined using the

ninhydrin colorimetric method with casein as the substrate, with one

unit of enzyme activity defined as the amount that produced 1 mg of
NH3-N per gram of soil per 24 hours (mg NH3-N g−1 24h−1). Alkaline

phosphatase activity was determined using the colorimetric method

with disodium phenyl phosphate as the substrate, with one unit of

enzyme activity defined as the amount that released 1 mg of P2O5 per

gram of soil per 24 hours (mg P2O5 g
−1–24 h−1), using the methods of

(Tabatabai, 1982).

2.3.2 Plant sampling and measurement
The plant sample was collected at the maturity stage (May)

during each growing season. Ten plants were collected randomly in

each plot, manually threshed, and then dried at 80 °C to constant

weight to determine the dry weight. The biomass was calculated by

multiplying the dry weight per plant by density. Moreover, 2×6 m2

area was chosen for the measurement of seed yield.
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2.4 Statistical analysis

The data was first compiled with Microsoft Excel. For the

rapeseed plant section (i.e., yield and biomass), encompassing six

groups (three years × two soil salinity levels), multiple comparisons

were performed using the least significant difference (LSD) test at

p=0.05 level. For the soil section, encompassing four groups (bare

land of low-salinity soil (CK1), low-salinity land treated with

rapeseed cultivation (T1), bare land of high-salinity soil (CK2),

and high-salinity land treated with rapeseed cultivation (T2)),

multiple comparisons were likewise conducted using the LSD test

at p=0.05 level. The data was shown as means of values from

three replicates.
3 Results

3.1 Seed yield and biomass

The results of seed yield and yield components were shown in

Table 2. The seed yield ranged from 1399.5 to 3460.8 kg ha−1 across

different treatments. The increase in soil salinity caused a significant

reduction in seed yield. Compared to LS soil, the seed yield in HS

soil averagely decreased by 40.30% across three growing seasons.

The number of pods in population varied from 27.89×106 to

62.68×106 ha−1 under different treatments. The number of pods

in population in HS soil was 36.80% lower than in LS soil. The

number of seeds per pod significantly decreased as soil salinity

increased. The average values in LS and HS soils were 15.6 and 14.8

respectively. There was no significant difference in 1000-seed weight

between LS soil and HS soil. As the cultivation year progressed, the

seed yield, number of pods in population, and number of seeds per

pod gradually increased. Similarly, the increase in soil salt content

reduced biomass accumulation at maturity stage, whereas the

biomass improved as the cultivation year increased (Figure 1).
3.2 Soil physical properties

Compared to bare land, land with rapeseed cultivation exhibited

a significant reduction in soil bulk density (Figure 2A). In the low-
TABLE 2 The seed yield and yield components under different soil salt conditions.

Year
Soil

salinity
Seed yield
(kg ha–1)

Number of pods in population
(×106 ha–1)

Number of seeds
per pod

1000-seed
weight (g)

2021–2022 LS 2834.6 c 52.89 c 15.4 c 3.764 a

HS 1399.5 f 27.89 f 14.5 f 3.753 a

2022–2023 LS 3152.8 b 58.21 b 15.7 b 3.770 a

HS 1869.3 e 36.31 e 14.8 e 3.763 a

2023–2024 LS 3460.8 a 62.68 a 15.9 a 3.774 a

HS 2372.1 d 45.64 d 15.1 d 3.767 a
Different letters within the same column indicate significant differences at p = 0.05. LS and HS represent low-salinity soil and high-salinity soil, respectively. Data was presented as means (n=3).
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salinity soil group, Bulk density under T1 treatment was 11.47%

lower than it under CK1 treatment; correspondingly, in the high-

salinity soil group, it under T2 treatment was 12.33% lower than

under CK2 treatment. Rapeseed cultivation enhanced soil porosity,

exhibiting increases of 13.80% and 15.76% in low-salinity soil and

high-salinity soil, respectively (Figure 2B).

The results of soil aggregate composition under different

treatments were demonstrated in Table 3. The proportions of silt

and clay were the highest among different aggregates, followed by

macro-aggregate, the proportion of micro-aggregate was lowest.

Rapeseed cultivation altered soil aggregate composition. Rapeseed

cultivation increased the proportions of macro-aggregate and

micro-aggregate, while reduced the proportions of silt and clay, in

both low salt-salinity and high-salinity soils.
Frontiers in Plant Science 05
3.3 Soil chemical properties

3.3.1 Soil pH, EC, and total salt
Soil pH ranged from 8.37 to 8.75 across treatments, with the

order CK2>T2>CK1>T1. Rapeseed cultivation resulted in a small

but non-significant decrease in pH in both soil types compared to

controls (Figure 3A). The EC and total salt varied from 0.32 to 1.38

ms cm–1 and 1.59 to 4.20 g kg–1 across different treatments,

respectively (Figures 3B, C). In both bare land and rapeseed

cultivation land, the EC and total salt in high-salinity soil were

significantly higher than those in low-salinity soil. Rapeseed

cultivation significantly reduced soil EC and total salt. In the low-

salinity soil group, the EC and total salt under T1 treatment were

66.38% and 36.15% lower than under CK1 treatment;
FIGURE 1

The biomass of rapeseed under different soil salt conditions. Different letters indicate significant differences at p = 0.05. LS and HS represent low-
salinity soil and high-salinity soil, respectively. Data was presented as means ± standard deviation (n=3).
FIGURE 2

The soil bulk density and porosity under different treatments. (A) bulk density; (B) porosity. Different letters indicate significant differences at p =
0.05. CK1 and CK2 represent bare land of low-salinity soil and high-salinity soil, respectively. T1 and T2 represent low-salinity land and high-salinity
land treated with rapeseed cultivation, respectively. Data was presented as means ± standard deviation (n=3).
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correspondingly, in the high-salinity soil group, the EC and total

salt under T2 treatment were 70.91% and 33.59% lower than under

CK2 treatment.

3.3.2 C and N nutrient availability
The results of soil C and N nutrients under different treatments

were shown in Table 4. The TC content varied from 17.35 to 20.26 g

kg–1 under different treatments. In the low-salinity soil group, T1

treatment increased soil TC content by 16.81% compared to CK1

treatment. However, rapeseed cultivation had no significant effect

on TC content in the high-salinity soil group. The order of organic

matter and DOC content followed: T1>T2>CK1>CK2. In the low-

salinity soil group, T1 treatment increased organic matter and DOC

content by 56.99% and 10.49% respectively, compared to CK1

treatment; correspondingly, in the high-salinity soil group, T2

treatment increased organic matter and DOC content by 22.83%

and 3.57% respectively. Concurrently, the TN and AN content

varied from 0.75 to 1.12 g kg–1 and 53.12 to 92.17 mg kg–1,

respectively. Rapeseed cultivation led to a notable increase in TN

and AN. In the low-salinity soil group, T1 treatment resulted in an

increase of 47.13% in TN and 64.43% in AN, respectively, compared

to CK1; in the high-salinity soil group, the corresponding increases

were 8.81% and 22.96%, respectively.

3.3.3 P and K nutrient availability
The contents of TP and AP in the low-salinity soil were higher

than in the high-salinity soil and significantly elevated after
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rapeseed cultivation, followed the order: T1>T2>CK1>CK2

(Figures 4A, B). In the low-salinity soil group, T1 treatment

augmented TP and AP by 19.30% and 74.31%, respectively,

compared to CK1; in the high-salinity soil group, T2 treatment

increased TP and AP by 11.81% and 53.82% respectively, compared

to CK2. Additionally, the contents of TK and AK in the low-salinity

soil were lower than those in the high-salinity soil, and rapeseed

cultivation resulted in a drop in soil TK and AK contents

(Figures 4C, D). Compared to CK1, T1 treatment induced a

decrease of 13.51% and 22.64% in TK and AK; compared to CK2,

T2 treatment reduced 8.96% and 17.30% in TK and AK respectively.
3.4 Enzyme

The results of activity of b-glucosidase, invertase, urease,

protease, and alkaline phosphatase were documented in Table 5.

b-glucosidase activity under different treatments followed the order:

T1>CK1>T2>CK2. Rapeseed cultivation significantly improved b-
glucosidase activity. In the low-salinity soil group, b-glucosidase
activity under T1 treatment was 31.24% higher than under CK1

treatment; in the high-salinity soil group, b-glucosidase activity

under T2 treatment was 55.25% higher than under CK2. Invertase

activity in low-salinity soil group was significantly higher than in

high-salinity soil group. However, no significant effect of rapeseed

cultivation on invertase activity was observed. The effect of rapeseed

cultivation on urease activity varied between low-salinity soil and
TABLE 3 The soil aggregate composition in different treatments.

Treatment Macro-aggregate (%) Micro-aggregate (%) Silt+clay (%)

CK1 6.09 b 32.56 c 61.35 b

T1 8.62 a 42.19 a 49.19 d

CK2 3.68 d 30.98 d 65.34 a

T2 4.93 c 40.60 b 54.46 c
Different letters within the same column indicate significant differences at p = 0.05. CK1 and CK2 represent bare land of low-salinity soil and high-salinity soil, respectively. T1 and T2 represent
low-salinity land and high-salinity land treated with rapeseed cultivation, respectively. Data was presented as means (n=3).
FIGURE 3

The soil pH, EC and total salt under different treatments. (A) pH; (B) EC; (C) total salt. Different letters indicate significant differences at p = 0.05. CK1
and CK2 represent bare land of low-salinity soil and high-salinity soil, respectively. T1 and T2 represent low-salinity land and high-salinity land
treated with rapeseed cultivation, respectively. Data was presented as means ± standard deviation (n=3).
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high-salinity soil. In the low-salinity soil group, T1 treatment

increased urease activity by 47.41% compared to CK1 treatment;

however, in the high-salinity soil group, urease activity under T2

treatment was significantly lower than under CK2 treatment.

Protease activity under different treatments followed the order:

T1>T2>CK1>CK2. Rapeseed cultivation increased protease

activity by 121.45% in the low-salinity soil group and 82.18% in

the high-salinity soil group respectively. The soil alkaline

phosphatase activity under different treatments varied from 74.17

to 83.05 mg P2O5 g
–1 24h–1, following the order: T1>CK1>T2>CK2

(Figure 5). Rapeseed cultivation significantly elevated soil alkaline

phosphatase activity in both low-salinity soil and high-salinity soil.

In the low-salinity soil group, T1 treatment increased alkaline

phosphatase activity by 3.01% compared to CK1 treatment; in the
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high-salinity soil group, the soil alkaline phosphatase activity under

T2 treatment was 5.60% higher than under CK2 treatment.
3.5 Relationship analysis

The relationship analysis (Figure 5) showed that soil EC and total

salt were negatively related to the contents of TC, organic matter,

DOC, TN, AN, TP, and AP, and the activity of b-glucosidase, protease,
and alkaline phosphatase. Moreover, the soil b-glucosidase activity

was positively related to content of soil organic matter and DOC. The

activity of soil protease and urease was positively related to content of

soil TN and AN. The activity of alkaline phosphatase was positively

related to content of soil TP and AP.
FIGURE 4

The soil P and K nutrients under different treatments. (A) TP; (B) AP; (C) TK; (D) AK. Different letters indicate significant differences at p = 0.05. CK1
and CK2 represent bare land of low-salinity soil and high-salinity soil, respectively. T1 and T2 represent low-salinity land and high-salinity land
treated with rapeseed cultivation, respectively. Data was presented as means ± standard deviation (n=3).
TABLE 4 The soil C and N nutrients in different treatments.

Treat TC (g kg–1) Organic matter (g kg–1) DOC (mg kg–1) TN (g kg–1) AN (mg kg–1)

CK1 17.35 c 9.92 c 191.26 bc 0.76 c 56.05 c

T1 20.26 a 15.57 a 211.33 a 1.12 a 92.17 a

CK2 18.42 b 8.56 d 188.71 c 0.75 c 53.12 d

T2 18.81 b 10.52 b 195.44 b 0.82 b 65.31 b
Different letters within the same column indicate significant differences at p = 0.05. CK1 and CK2 represent bare land of low-salinity soil and high-salinity soil, respectively. T1 and T2 represent
low-salinity land and high-salinity land treated with rapeseed cultivation, respectively. Data was presented as means (n=3).
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4 Discussion

4.1 Effects of soil salinity on rapeseed
production and soil utilization

Rapeseed is the major source of vegetable oil in China, and seed

yield serves as a critical indicator of crop adaptability to salt stress.

While low soil salinity has minimal impact on rapeseed seed yield, a

significant decline occurs when soil salinity exceeds a certain

threshold. For example, Steppuhn et al. (2010) reported that the

seed yield of rapeseed was mostly unaffected within an EC range of

1.36–6.05 dS m−1, producing a seed yield of 240–254 g m−2; however,

the seed yield was markedly decreased to 23.78 g m−2 when EC

increased to 23.78 dS m−1. In this study, the average seed yield in low-

salinity soil across three growing seasons was 3149.4 kg ha−1, whereas

the yield in high-salinity soil significantly decreased to 1880.3 kg ha−1.

Seed yield components, including the number of pods in population,

seeds per pod, and 1000-seed weight, exhibit varying responses to salt

stress. Our findings indicate that salt stress primarily reduces the

number of pods in population, followed by seeds per pod, while

having no significant effect on 1000-seed weight. Bybordi (2010)

similarly observed that salt stress dramatically reduced the number of

pods in population, whereas seeds per pod and 1000-seed weight

remained relatively stable, suggesting that yield loss is predominantly

due to a decrease in pod number. Overall, the number of pods in

population is highly sensitive to salt stress. Therefore, breeding salt-

tolerant rapeseed varieties should prioritize selecting strains with a

higher and more stable pod number.

From an agricultural production perspective, when crop yields

reach 70%-90% of the regional average yield, they can be considered

stable enough to meet production requirements (Grassini et al.,

2009). In this study, the average seed yield of rapeseed during the

first growing season reached 2834.6 kg ha−1 in the low-salinity soil,

accounting for 92.16% of the local conventional cropland average

[the regional average seed yield in Dafeng was 3,075 kg ha−1 (Wang,

2014)]. This indicates that coastal saline soils with an initial salt

content ≤ 2.49 g kg−1 can be effectively utilized for rapeseed

cultivation. Contrastingly, the seed yield in high-salinity soil was

significantly lower than that in conventional farmland. Given the

observed improvement in saline soil properties after three years of

rapeseed cultivation, coastal saline soils with salt content exceeding

4.27 g kg−1 should prioritize remediation, with rapeseed cultivation

serving as an effective strategy for soil reclamation.
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4.2 Response of saline soil physical
structure and salt content to rapeseed
cultivation

Saline soils are typically characterized by the degradation of

physical structure, deficiencies in chemical nutrients, and

suppressed microbial activity. Previous studies have demonstrated

that plant cover plays a significant role in the restoration of soil

ecosystems (Jesus et al., 2015; Zheng et al., 2023). Bulk density and

porosity are critical indicators of soil physical properties, with lower

bulk density indicating looser soil texture and well-developed soil

pores. In this study, after rapeseed cultivation, significant

improvements were observed in soil physical properties, including

an 11.47%–12.33% reduction in bulk density, a 13.80%–15.76%

increase in porosity, and a notable enhancement in soil aggregate

proportion. These improvements are primarily attributed to the

synergistic effects of tillage practices and crop cultivation. Initial

plowing operations effectively break up the dense compacted layer

of saline-alkali soil, improving soil aeration and water permeability,

thereby establishing a foundational improvement for subsequent

phytoremediation (Liang et al., 2011). Moreover, organic substances

such as sugars, proteins, and humus secreted by rapeseed roots

promote the adhesion of soil particles, thereby facilitating the

formation and stabilization of aggregates (Tan and Kang, 2009).

In the coastal saline soil, the domain saline ions are Na+, Ca2+,

and Cl−. The high content of Na+ in soil tends to combine with

HCO3
− to form NaHCO3, leading to increased soil alkalinity.

Typically, the pH of saline soil exceeds 8.5, and can surpass 10 in

severe cases. In this experiment, the pH of coastal saline soils ranged

from 8.44 to 8.75, which is lower than that typically observed in

inland saline soils. The elevated concentration of saline ions also

resulted in high EC value. After three years of rapeseed cultivation,

both EC and total salt content in saline soil were significantly

decreased, consistent with the ameliorative effects reported for other

crops (Abiala et al., 2018; Wang et al., 2019; Zheng et al., 2023).

Notably, no significant difference in soil pH was recorded between

bare land and rapeseed-cultivated land, likely due to the relatively

short cultivation period and the initially low pH values. In a long-

term comparative experiment, a significant reduction in soil pH was

observed after more than 9 years of crop cultivation (Singh et al.,

2016). Therefore, EC and total salinity measurements are

recommended as the reliable indicators for assessing the

improvement of coastal saline soils over shorter periods.
TABLE 5 The activity of enzyme in saline soil under different treatments.

Treatment
b-glucosidase
(mmol p-NP
g–1 24h–1)

Invertase
(mg reducing

sugar g–1 24h–1)

Urease
(mg NH3-N
g–1 24h–1)

Protease
(mg NH3-N
g–1 24h–1)

alkaline phosphatase
(mg P2O5 g–1 24h–1)

CK1 4.11 b 6.05 a 407.78 c 7.98 c 80.62 b

T1 5.40 a 6.02 a 601.11 a 17.67 a 83.05 a

CK2 2.60 c 5.55 b 431.51 b 6.27 d 74.17 d

T2 4.04 b 5.64 b 322.21 d 11.42 b 78.32 c
Different letters within the same column indicate significant differences at p = 0.05. CK1 and CK2 represent bare land of low-salinity soil and high-salinity soil, respectively. T1 and T2 represent
low-salinity land and high-salinity land treated with rapeseed cultivation, respectively. Data was presented as means (n=3).
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4.3 Response of saline soil nutrients to
rapeseed cultivation

It is acknowledged that plants play an important role in soil C

and N stock (Hinsinger et al., 2006). Soil C and N compositions

contain inorganic C, organic matter, and available N et al., among

which organic matter and available N are key factors determining soil

fertility and quality. This study demonstrated that three years of

rapeseed cultivation markedly enhanced soil organic matter and

available N content, likely attributed to the considerable residues

from rapeseed, which include organic C and N compounds such as

amino acids, sugars, and proteins, that were returned to and

decomposed in the soil. Soil dissolved organic C is a kind of soil

active organic C, representing the most dynamic composition of soil

organic C, characterized by rapid breakdown and a swift turnover

rate. Leifeld and Kögel-Knabner (2005) pointed out that the total soil

C pool is relatively stable in the short term, however, its active

components are highly responsive to environmental change and

agricultural practice. Our study found that after rapeseed

cultivation, the total C content remained largely unchanged in the

high-salinity soil; however, the dissolved organic C content exhibited

a substantial rise. Notably, dissolved organic C is the most readily lost

organic C component in soil due to its significant migratory capacity

(McTiernan et al., 2001). This study revealed that the increase in

dissolved organic C content after rapeseed cultivation was

significantly less than the increase in organic matter content,
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reflecting the inherent susceptibility of dissolved organic C to loss

through processes such as leaching and microbial decomposition.

Consequently, minimizing the loss of dissolved organic C is crucial

for sustaining the effect of saline soil amelioration.

Our preliminary investigation found that coastal saline soil

exhibited N and P shortage and K enrichment. Despite the

numerical sufficiency of total P in saline soil, the available P

content is markedly low in saline soil due to the absorption of P

on the surface of Na and Ca (Sharif et al., 2000; Vance et al., 2003).

In the present study, rapeseed cultivation significantly elevated the

contents of total P and available P, and the correlation analysis

further revealed the negative relationship between total salt content

and total P and available P contents. During the rapeseed growth

period, root exudates and microbial activity may reduce the fixation

of Na and Ca with P and promote P release, consequently increasing

the P availability in soil. K within a specific range is a vital nutrient

for plant growth and development; however, in coastal saline soils,

K concentration surpasses the normal level and manifests as salt

ions. Bao et al. (2024) reported that the soil K level is associated with

soil physical quality, as K can absorb and bind to the surfaces of silt

and clay particles, resulting in complex formations. Rapeseed

cultivation decreased the proportion of silt and clay particles,

hence enhancing downward movement of K ion and reducing the

K content in the topsoil.

In the experiment, compared to the high-salinity soil, the low-

salinity soil showed a great improvement in the nutrients after
FIGURE 5

Pearson’s correlation analysis of soil physicochemical properties. Probability levels are indicated by * and ** for 0.05 and 0.01, respectively.
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rapeseed cultivation. This may be because low-salinity soil has a

lower initial salinization level, making it easier to improve.

Additionally, rapeseed grown in such soil exhibits greater

biomass, which enables it to absorb and retain more nutrients,

thereby resulting in a more effective enhancement of soil fertility.

Consequently, we suppose that the beneficial impact of rapeseed

cultivation on coastal saline soils will diminish as soil salinization

intensifies. For the heavily saline soil, it is advisable to integrate

additional measures, such as the use of nutrients, irrigation, and salt

pressing, or to prolong the cultivation time, which may yield

enhanced improvement effect.
4.4 The relationship between soil
physicochemical properties and enzyme
activity

Soil enzyme activities are intimately linked to soil physical

structure and chemical composition. Tillage practices and plant

growth can effectively improve soil physicochemical properties,

thereby modulating enzymatic activities. It was reported that soil

environmental factors affect the soil activity of microorganisms and

plant root growth, thereby affecting the soil enzyme activity

(Cevheri et al., 2022; Erdel, 2022; Che et al., 2023). Soil aggregates

serve as the primary dwelling place for microorganisms, where most

biochemical reactions occur within these aggregates. In our study,

the activities of b-glucosidase, invertase, urease, protease, and
alkaline phosphatase were positively related to the ratio of macro-

aggregate. Wang et al. (2022) agreed with our results, who reported

that the activities of soil invertase and urease increased with the

increase in soil particle size, and the highest value was recorded in

the 250-2000 mm of aggregates. The pH, EC and total salt content

were negatively and significantly related to the activity of

b-glucosidase and alkaline phosphatase in the present study,

indicating high sensitivity of these enzymes to soil salinity. Rietz

and Haynes (2003) reported that irrigation-induced soil salinization

significantly inhibits b-glucosidase activity. Pan et al. (2013) further

demonstrated a strong negative correlation between b-glucosidase
activity and soil EC, proposing this enzyme as a biomarker for saline

soil degradation. It was reported that pH directly influences soil

phosphatase activity (Dick et al., 2000). Long-term rapeseed

cultivation could remove soil salt and alleviate the adverse effects

on microorganisms, thus improving these soil enzyme activities.

The soil C and N status affect microorganisms, thereby

changing soil enzyme activity by regulating the diversity and

richness of soil microorganisms (Liu et al., 2017). This study

found that b-glucosidase activity was positively related to the

content of organic matter and dissolved organic C. Sinsabaugh

et al. (2008) conducted a meta-analysis, also finding that the

b-glucosidase activity increased with an increase in organic

matter. However, rapeseed cultivation showed no significant effect

on soil invertase activity in this experiment. This may be since the

degree of soil maturation may still be insufficient. Moreover, this

experiment demonstrated a considerable increase in soil urease and
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protease activities after rapeseed cultivation, with correlation

analysis revealing a strong positive association between these

enzyme activities and total N and available N content. This

aligned with the findings of (Xie et al., 2017), who discovered that

as rapeseed cultivation years progressed, urease activity in saline soil

markedly increased. The alkaline phosphatase activity is dependent

upon the P availability in the soil (Burke et al., 2011). Rapeseed

cultivation enhanced the activation and release of P in the soil,

resulting in elevated total and available P levels, which subsequently

boosted alkaline phosphatase activity.

In conclusion, b-glucosidase, protease, and alkaline

phosphatase exhibited the strongest associations with soil

physicochemical properties, establishing these enzymes as reliable

biomarkers for monitoring saline-alkali soil remediation.
5 Conclusion

The coastal saline soil with a salt content below 2.5 g kg−1

produced seed yields comparable to those of local conventional

farmland, thereby could be directly utilized for large-scale rapeseed

cultivation. In contrast, high-salinity soil with a salt content of 4.2 g

kg−1 exhibited significantly lower yield levels and required remediation

practices. Three-years of rapeseed cultivation significantly reduced soil

salinity from 2.50–4.20 g kg−1 to 1.59–2.79 g kg−1 and decreased EC

value from 0.95–1.38 ms cm−1 to 0.32–0.40 ms cm−1. In terms of soil

physical structure, rapeseed cultivation resulted in a significant

reduction in soil bulk density, an increase in soil porosity, and an

enhancement in soil aggregate proportion. Moreover, rapeseed

cultivation promoted soil C, N, and P nutrients, including organic

matter, dissolved organic C, total N, available N, total phosphorus,

available phosphorus. In addition, rapeseed cultivation augmented soil

enzyme activity, such as b-glucosidase, urease, urease, protease, and
alkaline phosphatase. Therefore, rapeseed cultivation could be an

effective approach for the remediation of coastal saline soil.
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