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Utilizing target capture
sequencing to resolve the
speciation history of
Echinacea (Asteraceae)

Chazz Jordan and James H. Leebens-Mack*

Department of Plant Biology and the Plant Center, University of Georgia, Athens, GA, United States

It has been difficult to resolve relationships among many important lineages
within the Asteraceae family due to interspecific hybridization and rapid species
diversification throughout the history of the family. Previous efforts to resolve
evolutionary relationships among Echinacea species have relied heavily on
variation in the plastid genome with limited analysis of nuclear loci. In this
study, we combine whole plastome sequences and nuclear gene capture data
to reconstruct species relationships and characterize the pace of speciation
across the genus Echinacea. With more sampling of intraspecific variation in both
the plastome and nuclear sequence data, we find evidence for interspecific gene
flow and reject the previously hypothesized early split between Echinacea
lineages, including species with ranges centered in the eastern and
midwestern U.S. At the same time, we find evidence for rapid radiation early in
the history of Echinacea in agreement with previous studies. Our findings have
implications for Echinacea conservation and trait evolution in the genus.
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Introduction

Rare plant species constitute up to a third of global plant diversity (Enquist, 2019), and
they are important indicators for conservation initiatives as they can perform critical
ecological functions, such as contributing to community stability (Siterberg et al., 2019).
Considering the three axes of rarity defined by Rabinowitz (1981), the rarest species display
highly restricted geographic distributions, low local abundance, and extreme specialization
to uncommon habitats (e.g., Rabinowitz et al.,, 1986; Broennimann et al., 2005; Anacker
et al, 2013). Comparative studies, especially those employing rigorous phylogenetics
approaches, can elucidate diversification history and the processes contributing to both
diversification and rarity (e.g., Molina-Venegas et al., 2020; Romeiro-Brito et al., 2023;
Kress et al., 2025). For example, macroevolutionary analyses can test whether extant species
diversity has been influenced by past adaptive radiations (Lunau, 2004), and reveal how the
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diversification of trait combinations following interspecific
hybridization can spur rapid speciation (Flagel et al., 2008;
Jackson et al., 2000).

The sunflower family (Asteraceae) comprises more than 25,000
species representing 10% of all flowering plant species (Mandel
et al., 2017). The evolution of the capitulum, or flower head, is
hypothesized to have contributed to the hyperdiversity of
Asteraceae (Mandel et al., 2019). Given its size, it is safe to say
that while many common species exist within the family, a
significant fraction of species likely exhibit some form of rarity. In
the NatureServe database, species are described globally, nationally,
and subnationally with a rank between 1 (most imperiled) to 5
(most secure). The genus Echinacea Moench includes nine accepted
species (Plants of the World Online 2025, Flora of North America
1993+), in which, most species have bright pink and purple ray
florets within capitulum heads (Kindscher, 2016; McGregor, 1968).
Species range sizes vary from the highly restricted range of E.
tennesseensis (Beadle) Small, endemic to the cedar glades of six
counties in central Tennessee, to the broad range of E. purpurea (L.)
Moench, encompassing the eastern half of the United States

FIGURE 1

10.3389/fpls.2025.1602041

(McGregor, 1968). All Echinacea species exhibit some degree of
rarity [critically imperiled (S1), imperiled (S2), or vulnerable (S3)]
in at least one state within the U.S. (NatureServe), and six of the
nine species in the genus are ranked as globally imperiled (G2) or
vulnerable (G3) (Figure 1). Morphologically, Echinacea exhibits
among-species variation in flower color, stem and leaf trichome
density, capitulum size, and number per individual (Kindscher,
2016; McGregor, 1968).

It has been arduous to resolve relationships among many
important lineages within the Asteraceae due to hybridization and
bursts of rapid speciation throughout the history of the family
(Mandel et al., 2019). Phylogenetic analyses can inform
conservation efforts for rarer species exhibiting narrow species
ranges, habitat specialization, and lower local abundances (e.g.,
Molina-Venegas et al., 2020; Romeiro-Brito et al., 2023; Kress et al.,
2025). Phylogenetic analyses also contribute to taxonomic
clarification and the identification of unique and recently
diverged lineages, determining species value for conservation
priority, as well as informing comparisons between rare and
widespread species (Byrne, 2003).

A

E. atrorubens, E. pallida, E. simulata

u e

Echinacea species and NatureServe status rankings. All species of Echinacea, except for E. purpurea, E. angustifolia, and E. pallida, rank as G2 and
G3. This indicates that most Echinacea species are imperiled or vulnerable. All species are ranked imperiled or critically imperiled in one or

more states.
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Previous phylogenetic analyses of Echinacea have relied heavily
on variation in the plastid genome. This has resulted in many
relationships remaining poorly resolved (Flagel et al., 2008), even in
the analyses of whole plastomes (Zhang et al., 2017). Plastid
genomes have been widely utilized to resolve species
relationships, but the plastid genome evolves slowly relative to
genes in the nuclear genome, and the plastome is typically
inherited as a single unit without recombination (Doyle, 2022).
Moreover, evolving as a single locus, the evolutionary history of the
plastid genome may not match the history of speciation due to
incomplete lineage sorting (ILS) (Degnan and Rosenberg, 2009) and
interspecific gene flow (e.g., Baldwin et al., 2023). Genome-scale
multispecies coalescence analyses using many nuclear gene loci can
improve the resolution of species relationships while providing
insights into the pace and nature of diversification (Winter et al,
2013). Such phylogenomic investigations can also help set
conservation priorities for rare endemic species (Rokas and
Carroll, 2005), including E. laevigata (C.L.Boynton & Beadle)
S.F.Blake and E. tennesseensis among other Echinacea species
listed as imperiled at the state of global level (Figure 1).

Few studies have utilized nuclear data to resolve relationships
among all Echinacea species, and species relationships have not
been well supported in studies that have used nuclear loci AFLP
markers (Still et al., 2005), Adh + CesA + GPAT (Flagel et al., 2008),
ITS + trnH - psbA (Zhang et al, 2017), and SCoT markers
(Jedrzejczyk, 2020). A robust understanding of species
relationships is critical given the conservation concerns for
Echinacea species (Figure 1). The primary objective of this study
is to reconstruct Echinacea species relationships under the
multispecies coalescence model and assess whether internal
branch lengths in the estimated species tree imply periods of
rapid speciation in the genus (Flagel et al, 2008; Zhang et al,
2017). In addition, we assess the degree of concordance between the
species tree estimated using nuclear loci and the plastid genome
tree. We hypothesize that our phylogenomic analyses will elucidate
the evolutionary history of Echinacea and contribute to
conservation management plans for species across the genus.

Study system

Echinacea is a genus of outcrossing plants endemic to the
United States, with species known for their bright floral colors,
generalist pollinators, and medicinal properties (Figure I;
McKeown, 1999). While there is much research surrounding the
medicinal and ecological attributes of Echinacea (Hensel et al., 2020;
Manayi et al., 2015), there are fewer phylogenetic investigations of
species relationships across the genus (Flagel et al., 2008;
Jedrzejezyk, 2020; Zhang et al., 2017). At the same time, the
relatively small size of the genus enables genus-wide
investigations of Echinacea speciation (Flagel et al., 2008; Zhang
et al., 2017). There are nine Echinacea species (Flagel et al., 2008,
Plants of the World Online 2025, Flora of North America 1993) that
vary in flower size and flower color (Wagenius and Lyon, 2010)
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(Figure 1). All Echinacea species, have the ability to hybridize where
species ranges overlap (McGregor, 1968; Sassana et al., 2014), and
rely on flying insect pollinators for reproduction (McGregor, 1968;
Kindscher, 2016). Moreover, Echinacea populations are important
components of threatened prairie ecosystems throughout the
eastern half of the United States, including tallgrass, mixed grass,
and short-grass prairie communities, as well as open habitats like
limestone glades and hill sides (Wagenius and Lyon, 2010;
Kindscher, 2016; McGregor, 1968).

Methods
Taxon sampling

Samples for all Echinacea species—E. angustifolia DC., E.
atrorubens (Nutt.) Nutt., E. laevigata, E. pallida (Nutt.) Nutt., E.
pamdoxa Britton, E. purpurea, E. sanguinea Nutt., E. simulata
McGregor, and E. tennesseensis—were included in our
phylogenomic analyses (Figures 2, 3) along with available
sequences for three closely related species in the Heliantheae
Cassini tribe—Helianthus annuus L., H. argophyllus Torr. &
A.Gray, and Parthenium argentatum A.Gray (Mandel et al,
2019), serving as outgroup taxa for phylogenomic analyses.
Sequence data for the three outgroup samples were extracted
from NCBI’s Sequence Read Archive (SRA) database (Appendix 1).

DNA isolation and library creation

DNA was extracted from silica-dried, snap-frozen, and herbarium
leaf tissue samples (Appendix 1) using QIAGEN Plant Pro Kits, and a
Qubit 2.0 fluorometer broad-range assay was used to assess DNA
concentrations. Shotgun sequencing libraries were constructed using
Roche KAPA HyperPlus Library Kits with universal Y-yoke stub
adapters (30 Mm) and dual-indexed iTru primers (Glenn et al,
2019). Double-stranded DNA was fragmented, aiming for an average
fragment size between 500 and 600 bp for sequencing preparation. The
DNA was then end-repaired using an A-tailing reaction for 30 min at
35°C before ligation. Universal stub adapters were then ligated to the
A-tailed overhangs in an overnight incubation at 20°C, followed by a
post-ligation 0.8X KAPA HyperPure bead cleanup. The cleaned
ligation product was then amplified for six PCR cycles with the
Roche Company KAPA HiFi HotStart Ready Mix and dual-ended
primers (i5, i7), followed by a post-amplification 1x bead cleanup using
KAPA HyperPure Beads (Roche, USA, Indianapolis IN) to remove free
oligonucleotides and smaller fragments. Library fragment size
distributions were measured using Bioanalyzer High Sensitivity DNA
Kits (Agilent Technologies), and DNA concentrations (mean nM) were
quantified through real-time PCR (qPCR), using KAPA Library
Quantification kits and KAPA SYBR Fast qPCR Master Mix (Roche,
USA, Indianapolis IN). Concentration estimates of each library were
size-corrected using the following formula for the 452bp qPCR
Standards:

frontiersin.org


https://doi.org/10.3389/fpls.2025.1602041
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Jordan and Leebens-Mack

10.3389/fpls.2025.1602041

E. tennesseensis
4
12%

E. simulata

6%

E. sanguinea
2
6%

E. purpurea
11
34%

FIGURE 2

E. angustifolia
5
15%

E. atrorubens
1
3%

E. laevigata
2
6%

E. pallida
4
12%

E. paradoxa

6%

Echinacea study samples. Each species used in the study is displayed, as well as the number of samples per species and the species percentage used

within the study.

452
_ mean fragment size

~ mean nM
They were then converted from nM to ng/uL using the
following formula (660 g/mol being the approximate weight of a
base pair):

_ 660+mean fragment sizexsize corrected nM
- 1,000,000

Hybridization and sequencing

Libraries were pooled (10-13 libraries per pool), with a target
input of 150-200 ng from each library, and pools were bead-cleaned
using 0.8x using KAPA HyperPure Beads (Roche). Pools were
eluted from the beads in 100 uL of H,O and SpeedVacTM
(Savant) concentrated to 7 UL as described in the Arbor
Biosciences Hybridization Capture protocol. Each pool was
incubated at 60°C for 24 h with 5.5 uL of the Compositae-
ParaLoss-1272 target capture baits (Moore-Pollard et al., 2023).
Following bait capture, hybridization reactions were amplified for
14 PCR cycles to enrich for targets, followed by a 0.8x bead cleanup
for purification. Fragment size distributions for target-enriched
libraries were assessed using Bioanalyzer High Sensitivity DNA
chips (Agilent Technologies) and qPCR. Hybridization pools were
combined for a final concentration of 10 mM for sequencing.

Frontiers in Plant Science

Sequencing on the Illumina NovaSeq X Plus platform was
performed through the SeqCenter (Pittsburgh, PA) sequencing
service provider.

Target sequence recovery and assembly

All Hyb-Seq reads were quality-trimmed using Fastp v.0.23.2
(Chen et al, 2018). Reads that were shorter than 21 bp after
trimming were removed. The HybPiper v.2.1.6 pipeline (Johnson
etal,, 2016) was used to map the filtered reads to target sequences in
the Compositae target file (Mandel et al, 2019) and create
“supercontig” assemblies for each target locus for each sample.

Phylogenomic analysis

Multiple sequence alignments for each locus were constructed
for each target locus using MAFFT v.7.505 (Katoh and Standley,
2013) with the “—auto” flag, instructing MAFFT to choose the best
alignment strategy to best fit the data. Misaligned sequences were
identified and trimmed using trimAl v.1.4.1 (Capella-Gutierrez
et al, 2009). Maximum likelihood gene trees with support values
were estimated using IQTree v.1.6.12 (Nguyen et al., 2015) with the
“— mfp and -bb “ flags to implement ModelFinder optimization
(Kalyaanamoorthy et al., 2017) and the ultrafast bootstrap (Minh
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FIGURE 3
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Range map of all Echinacea species. Southeastern Echinacea species (blue shades) have geographic ranges that generally lie side by side with
minimal overlapping. In comparison, midwestern Echinacea species (pink shades) have increased overlap in their geographic ranges.

et al,, 2013), respectively. Species tree estimation was performed
using the summary method ASTRAL v.5.7.8 (Mirarab et al., 2014)
with the unrooted gene trees as input. The “-t” flag was used to
report quartet scores for each node. Quartet frequencies were
visualized as pie diagrams using the R packages GGTree, Ape,
and TidyVerse.

Utilizing plastome sequences from off-
target reads for phylogenetic analysis

Using a plastome gene target file, plastome-encoded genes were
extracted from the trimmed target-enriched sequence data as
bycatch. HybPiper v.2.1.6, MAFFT v.7.505, and Trimal v.1.4.1
were used as described above to capture, assemble, and align
plastome sequences. Multiple sequence alignments for 76
plastome-encoded genes were concatenated in Geneious
v.2023.2.1 (Kearse et al, 2012) to construct a super matrix. A
maximum likelihood tree and ultrafast bootstrap support values
were estimated on the concatenated alignment using IQTree
v.1.6.12 (Nguyen et al., 2015).

Results
Phylogenomic analysis
Target capture efficiency ranged between 9% and 24% for the

Compositae-Paraloss-1272 bait set, resulting in 1,234-1,272 recovered
genes per sample (Figure 4), and gene trees for all targeted loci were

Frontiers in Plant Science

estimated for the ASTRAL species tree analysis. The species tree
inferred from the analysis of 1,272 nuclear gene trees placed a clade
of E. purpurea samples as sister to all other Echinacea species (Figure 5).
Most species were found to be monophyletic in the species tree analysis
with local posterior probabilities ranging from 0.8 to 1 (Figure 5). At the
same time, high quartet frequencies for alternative resolutions of each
node (Q2 and Q3) implicated a high degree of gene tree—species tree
discordance, suggesting rapid speciation and incomplete lineage sorting,
particularly along the spine of the species tree (Figure 5). Alternative
quartet frequencies (Q2 and Q3) are generally balanced, as would be
expected with ILS (Figure 5). Two species, E. pallida and E. angustifolia,
were not recovered as monophyletic. An E. angustifolia individual
appeared in a clade with E. paradoxa, while E. pallida samples were
scattered among clades containing E. sanguinea, E. atrorubens, E.
angustifolia, and E. simulata (Figure 5).

Utilizing plastome sequences from off-
target reads for phylogenetic analysis

Plastome genes were assembled using off-target reads from the
bait capture sequence data. The plastome tree revealed extensive
polyphyly for each species (Figure 6), and the branch lengths for
internodes along the spine were very short (Figure 6). Most
bootstrap support values along the spine of the plastome tree
were low despite the massive length of the concatenated plastome
gene alignment, including 67,743 bases (Figure 6). Interestingly,
samples E_purpurea_CJ18, E_angustifolia_CJ23, and the outgroup
species exhibited much longer branch lengths compared to all other
ingroup samples.
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Compasitae-ParaLoss-1272 bait set on Echinacea. Boxplots show (A) the number of recovered genes, i.e., the number of targeted genes that were
successfully enriched, sequenced, and assembled; and (B) the percentage of reads on target, i.e., the percentage of sequenced read that were
successfully bound to the targeted regions of interest, which mapped to the reference target sequences from Mandel et al. (2019) using the

Compositae-Paraloss-1272 baits on the Echinacea data set.

Discussion

High gene recovery with a lower
percentage of on-target sequence
assembly

Here, we analyzed Echinacea species relationships based on an
analysis of single-copy target capture genes (Mandel et al., 2019;
Moore-Pollard et al., 2023). The large number of recovered genes
for this genus indicates that the Compositae-Paraloss-1272 bait set
is effective for sunflower family taxa beyond those originally tested
(Moore-Pollard et al., 2023).

Phylogenomic analysis shows extensive
gene tree—species tree discordance

Previous plastome phylogenomic analysis with single samples per
species (Zhang et al., 2017) provided a misleading view of Echinacea
relationships and diversification. The branching patterns evident in
our plastome (Figure 6) and ASTRAL (Figure 5) trees suggest that the
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evolutionary history of Echinacea includes an early burst of rapid
speciation and some degree of interspecific hybridization. In contrast
to the plastome tree presented by Zhang et al. (2017), our species tree
(Figure 5) places the cosmopolitan E. purpurea as sister to a clade
with the remainder of the genus, and most southeastern species form
a grade with a clade dominated by midwestern species arising later in
the evolutionary history of Echinacea. A rapid rate of early branching
(i.e., speciation) is indicated by the short internodes along the spine of
the Echinacea species tree (Figure 5A) and extensive signal for
incomplete lineage sorting as seen in the high frequency of
alternative quartets in the species tree analysis (Figure 5B). The
lack of monophyly among samples of each species in the plastome
tree (Figure 6) may also be a consequence of ILS. At the same time,
polyphyly of E. pallida and E. angustifolia in both the ASTRAL
(Figure 5) and plastome (Figure 6) trees implicates hybridization and
interspecific gene flow.

Nearly even quartet frequencies for many nodes in the species
tree estimation, shown in Figure 5B as pie charts, indicate high
levels of gene tree—species tree discordance. Given the low posterior
probabilities for many nodes on the spine of the clade dominated by
midwestern species (Figure 5A), we cannot discount the possibility
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Echinacea species tree based on nuclear loci. (A) Echinacea species tree. Species in blue indicate southeastern species and cosmopolitan E.

purpurea, while species in pink indicate midwestern species. Aside from E.

simulata, eastern species are placed in a grade leading to a clade with all

midwestern species. (B) Echinacea nuclear tree with quartet frequencies. Quartet frequencies on each node of the ASTRAL tree reveal extensive

gene tree discordance due to rapid speciation leading to incomplete linea
and Q3) are balanced as expected with incomplete lineage sorting.

of polytomies in the Echinacea species tree (i.e., ancestral species
spawning more than two daughter species). In support of this
hypothesis, a number of nodes exhibit quartets with equal
frequencies for all three resolutions of nodes on the spine of the
Midwest-dominated clade (Figure 5B). This pattern would be
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ge sorting. For most nodes, quartets supporting alternative resolutions (Q2

expected in the face of rapid radiation and rampant ILS. At the
same time, the polyphyly of some species implicates post-speciation
interspecific gene flow.

Echinacea angustifolia and E. pallida are polyphyletic in the
species tree based on analysis of 1272 nuclear genes. While most E.
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(Zhang et al., 2017).

angustifolia samples were grouped together in the species tree
(Figure 5), one individual was placed in a clade with E. paradoxa.
Echinacea pallida samples exhibited a higher degree of polyphyly,
with samples being placed in several clades with E. sanguinea, E.
atrorubens, E. angustifolia, and E. simulata, all with ranges in the
Midwest. Previous work has documented that all species that have
overlapping ranges can hybridize (Kindscher, 2016; McGregor,
1968; McKeown, 1999). We hypothesize that more extensive
range overlap among midwestern species has resulted in higher
rates of introgressive hybridization. Additional sampling across the
ranges of E. simulata and the midwestern species (Figures 3, 5) is
required to gain a deeper understanding of the influence of
interspecific gene flow among these species.

Plastome sequences also suggest rapid
speciation and the possibility of
interspecific gene flow

Most nodes on the plastome tree have bootstrap robust support
values, but as seen in the species tree analysis, some nodes on the
spine of the tree are poorly supported, suggesting rapid early
divergence among sampled plastome lineages. Whereas Zhang
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et al. (2017) inferred distinct clades for eastern and western
species in their whole-plastome analysis, this interpretation of the
plastome history does not hold up when we sampled more than a
single individual per species. Whereas Zhang et al. (2017) identified
distinct eastern and midwestern species clades, our plastome tree
(Figure 6) suggests rapid speciation early in the history of the genus,
and multigene species tree estimation (Figure 5) suggests that E.
purpurea, with the broadest range of all Echinacea species, is sister
to a clade with the remainder of the genus. The lack of species
monophyly in the plastome tree and the poor correspondence
between the species and the plastome trees (Figure 5 vs. Figure 6)
are consistent with the hypothesis that species lineages retained
ancestral variation in plastome haplotypes as they were diversifying.
Hybridization resulting in interspecific exchange of plastomes may
have also contributed to the polyphyly of the species tree (Figure 5)
in the plastome phylogeny (Figure 6).

Conclusions

The purple coneflower is known for its vibrant fluorescence and
ethnobotanical significance. Being a part of the Asteraceae family,
this genus has had a complex evolutionary history, including but
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not limited to a history of rapid radiation, variation in ploidy, and
high potential for hybridization. With heavier sampling, we must
reject the previously hypothesized early split between eastern and
western species clades (Zhang et al., 2017). It is interesting that the
most widespread species, E. purpurea, is sister to all other Echinacea
species (Figure 5). In agreement with previous works (Flagel et al,
2008; Zhang et al.,, 2017), we found very short internode branch
lengths along the spine of the tree, implying rapid speciation
(Figure 5). Evidence for some interspecific gene flow is not
surprising given the ability of Echinacea species to hybridize
(McGregor, 1968) and their overlapping ranges (Figure 1).

Given the results of our phylogenomic analyses, we hypothesize
that Echinacea originated in the Southeast and expanded its range
into the midwest. Geographic isolation and adaptation to local
environmental conditions (Baskauf et al., 1994) likely contributed
to the speciation process. For example, extant Echinacea species
exhibit variation in soil characteristics (Baskauf and Eickmeier,
1994) and climate niches (Boyd et al., 2022). The persistence of
clearly distinguishable species despite the ability of all Echinacea
species to hybridize is also suggestive of ecological divergence in the
speciation process. Nonetheless, actively hybridizing populations
may be of conservation concern (Sassana et al., 2014).

Phylogenetics can be used as an asset to aid conservation efforts.
In the case of this study, we aimed to utilize phylogenetic inferences
to improve our understanding of Echinacea diversity and
speciation. Our findings should inform Echinacea conservation
efforts and priorities. For example, the narrow endemic E.
tennesseensis is phylogenetically distinct, and the polyphyly of E.
angustifolia and E. pallida (Figures 5, 6) implicates hybridization as
a potential threat.
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