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Introduction: Yam is an important medicinal and edible crop, but its quality and

yield are greatly affected by leaf diseases. Currently, research on yam leaf disease

segmentation remains unexplored. Challenges like leaf overlapping, uneven

lighting and irregular disease spots in complex environments limit

segmentation accuracy.

Methods: To address these challenges, this paper introduces the first yam leaf

disease segmentation dataset and proposes BiSeNeXt, an enhanced method

based on BiSeNetV2. Firstly, dynamic feature extraction block (DFEB) enhances

the precision of leaf and disease edge pixels and reduces lesion omission through

dynamic receptive-field convolution (DRFConv) and pixel shuffle (PixelShuffle)

downsampling. Secondly, efficient asymmetric multi-scale attention (EAMA)

effectively alleviates the problem of lesion adhesion by combining asymmetric

convolution with a multi-scale parallel structure. Finally, PointRefine decoder

adaptively selects uncertain points in the image predictions and refines them

point-by-point, producing accurate segmentation of leaves and spots.

Results: Experimental results indicated that the approach achieved a 97.04%

intersection over union (IoU) for leaf segmentation and an 84.75% IoU for disease

segmentation. Compared to DeepLabV3+, the proposed method improves the

IoU of leaf and disease segmentation by 2.22% and 5.58%, respectively.

Additionally, the FLOPs and total number of parameters of the proposed

method require only 11.81% and 7.81% of DeepLabV3+, respectively.

Discussion: Therefore, the proposed method can efficiently and accurately

extract yam leaf spots in complex scenes, providing a solid foundation for

analyzing yam leaves and diseases.
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1 Introduction

Yam (Dioscorea spp.) is a tuberous plant of the genus Dioscorea

within the family Dioscoreaceae (Diouf et al., 2022; Baffour-Ata

et al., 2023). Yam is rich in starch, proteins, minerals,

polysaccharides, saponins, flavonoids and other biologically active

substances (Gao et al., 2023a; Li et al., 2024). It is of great value in

the field of food and medicine (Li et al., 2023). China is one of the

major producers of yam (Chen et al., 2022). It is primarily cultivated

in Henan, Hebei, Shandong, Jiangxi and Yunnan provinces (Gao

et al., 2023b). However, various diseases frequently occur in the

cultivation of yams, with leaf diseases being particularly common.

These diseases are mainly caused by viral, bacterial and fungal

infections (Gogile et al., 2024). Such infections can significantly

impair leaf photosynthesis, ultimately affecting yam growth and

yield (Zhao et al., 2022; He et al., 2025). Currently, deep learning-

based research on crop leaf disease analysis primarily focuses on

crops such as tomatoes, apples and grapes, while studies on yam leaf

disease analysis remain absent. This study proposes a solution for

the segmentation of yam leaf diseases for the first time, providing

technical support for yam disease identification and precision

planting. Taking anthracnose as an example, the infection rate

reaches 92.05% (Wang et al., 2024), posing a significant threat to

yam growth and yield, with losses ranging from 50% to 90% (Tariq

et al., 2024). Therefore, accurate analysis and targeted treatment of

yam leaf diseases are essential for ensuring healthy yam growth.

Computer vision methods provide an effective solution by helping

growers identify affected areas and apply medication precisely

(Tariq et al., 2024; Lu et al., 2023).

Image segmentation algorithms are widely used to analyze leaves

and diseases, with segmentation results enabling the calculation of

leaf and disease spot areas to assess disease severity. Conventional

segmentation approaches are usually divided into three types: (1)

Region-based methods. For example, Kumar and Sachar (2023)

employed integrated color features combined with region-growing

techniques and multi-resolution channels to segment diseased areas

of crops. (2) Clustering-based methods. For example, Ronneberger

et al. (2015) applied the K-means clustering method to segment

cotton and tomato leaf images, and Long et al. (2015) utilized fuzzy

C-means (FCM) combined with the chameleon clustering algorithm

to segment diseased portions of plant leaves. (3) Thresholding-based

methods. For example, Badrinarayanan et al. (2017) employed a

color vegetation index combined with the Otsu thresholding

segmentation method to achieve accurate segmentation of diseased

leaves in cruciferous crops. Traditional approaches mainly focus on

local pixel relationships, which may result in local optimal solutions.

The effectiveness of these methods is significantly diminished when

the diseased region of the crop exhibits a similar hue to the

background or has blurred boundaries (Kumar and Sachar, 2023).

Moreover, these methods often require manual parameter

adjustments, offering limited automation, which makes them

unsuitable for large-scale applications. Furthermore, traditional

methods are generally designed for specific diseases and lack

universality across different types of disease, limiting their broad

practical applicability.
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Recently, artificial intelligence has seen rapid advancements.

The fully convolutional network (FCN) (Long et al., 2015) initially

employed convolutional neural networks for semantic

segmentation at the pixel-level. Subsequently, CNN-based

architectures including U-Net (Ronneberger et al., 2015), various

versions of DeepLab (Chen, 2014; Chen et al., 2017; Chen, 2017),

PSPNet (Zhao et al., 2017) and SegNet (Badrinarayanan et al., 2017)

have emerged. Their high accuracy and transferability have drawn

considerable interest from the research community. These models

have been widely used for crop disease recognition (Picon et al.,

2022; Zhang et al., 2023c), achieving better results compared to

traditional image segmentation algorithms (Liu et al., 2024). These

methods perform well in addressing segmentation tasks for various

diseases, particularly in simpler environments. However, in outdoor

environments, the accuracy of segmentation results decreases due to

factors such as leaf overlap, leaf curling, lighting variations and

water droplet interference. To address these issues, researchers have

proposed a variety of structurally complex models to improve the

segmentation performance of leaf disease images. Zhang and Zhang

(2023) proposed an improved U-Net model, MU-Net, which

incorporates residual blocks (ResBlock) and residual paths

(ResPath) to enhance feature learning. This design effectively

improves the segmentation performance of plant disease leaf

images. Zhou et al. (2024) proposed a two-stage 3D point cloud-

based method for orchid phenotypic analysis, significantly

improving the efficiency and accuracy of phenotypic parameter

measurement in orchid seedlings. However, the method may face

challenges when dealing with diverse disease morphologies and

complex environmental conditions. Yang et al. (2025) proposed a

segmentation model named FATDNet, which incorporates

adversarial networks to enhance performance. By introducing a

dual-path fusion adversarial algorithm (DFAA), a multi-

dimensional attention mechanism (MDAM), and a gaussian

weighted edge segmentation module (GWESM), the model

significantly improves the segmentation accuracy of tomato leaf

diseases. To improve the segmentation accuracy and feature

extraction capabilities of small spots on apple leaves, Zhang et al.

(2023a) proposed an improved DFL-UNet+CBAM model that

combines a hybrid loss function of Dice Loss and Focal Loss with

the convolutional block attention module (CBAM). However, these

methods generally suffer from high computational complexity and

large numbers of parameters, limiting their potential for

practical deployment.

To reduce computational resource demands and enhance the

feasibility of model deployment in real-world scenarios, researchers

have increasingly focused on developing lightweight methods for

leaf disease segmentation. Wang et al. (2025) proposes a lightweight

decoupled saliency detection method with excellent boundary

refinement. However, the method was primarily designed for

binary classification tasks, and its applicability to multi-label leaf

disease segmentation remains limited. Zhu et al. (2023) proposed a

lightweight two-stage LD-DeepLabv3+ model that uses receptive

field blocks (RFB), reverse attention (RA), and channel attention

block (CAB) to improve feature extraction. With adaptive loss to

handle lesion pixel imbalance, it enhances segmentation accuracy in
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complex environments. However, the use of dilated convolutions in

the decoder may be insufficient for recovering spatial details, which

can easily lead to the omission or adhesion of small lesions. Shwetha

et al. (2024) proposed a lightweight U-Net model based on

MobileNetV4, combined with data augmentation using a deep

convolutional generative adversarial network (DCGAN), to

improve the segmentation accuracy of small targets in complex

backgrounds caused by jasmine leaf spot disease. However, the use

of transposed convolution in the decoder may introduce grid-like

artifacts due to non-uniform pixel interpolation, leading to a decline

in the recovery of details such as lesion boundaries. Dai et al. (2024)

proposed the AISOA-SSFormer model, which integrates a sparse

global update perceptron (SGUP) and an annealing integrated

sparrow optimization algorithm (AISOA) to improve the

accuracy of rice leaf disease identification in complex scenarios.

However, the random perturbations in the sparrow search

algorithm may cause fluctuations in the loss function, requiring

more iterations and potentially losing part of the boundary

information. Table 1 presents an overview of methods used for

identifying plant leaf diseases. These lightweight leaf disease

segmentation methods hold strong potential for deployment on

mobile devices, but may lack precision in leaf disease segmentation.

However, the reliance on complex models and high computational

demands makes it difficult to achieve both high accuracy and

computational efficiency.

Existing methods have demonstrated strong performance in

segmenting leaf disease images with single backgrounds and high

resolution, and some have also shown progress in more complex

environments. However, these methods often rely on complex
Frontiers in Plant Science 03
architectures and high computational resources, making it

challenging to balance segmentation accuracy with computational

efficiency. To address these challenges, this paper presents the

BiSeNeXt network, designed to achieve accurate segmentation

with reduced model complexity. The proposed method has been

tested on yam leaf disease images, demonstrating its efficiency and

reliability for health analysis. The main contributions of this paper

are as follows:
1. In this paper, we construct the first high-quality leaf disease

dataset of yam, covering three major diseases: anthracnose,

brown spot and gray spot. The dataset consists of images

captured in various weather conditions, including sunny,

rainy and cloudy days.

2. To improve the segmentation accuracy of leaf and spot

boundaries and reduce spot omission, we propose dynamic

feature extraction block (DFEB). This block integrates

dynamic receptive-field convolution (DRFConv) to

enhance boundary and complex structure modeling

capabilities. Meanwhile, it uses pixel shuffle (PixelShuffle)

downsampling to effectively alleviate information loss and

improve detail retention.

3. To address the issue of adhesion of adjacent lesions and

reduce misclassification, we propose the EAMA attention.

It combines asymmetric convolutions with a multi-scale

parallel structure to effectively capture complex spatial

features and multi-scale contextual information.

4. To effectively recover details and edge information during

downsampling, we propose the PointRefine decoder. By
TABLE 1 Overview of methods for identifying plant leaf diseases.

Research Method Datasets Advantages Limitations

Zhang and Zhang (2023) MU-Net Maize and
cucumber
leaf diseases

ResBlock and ResPath enhance network precision in
segmenting leaves and diseased areas under
complex backgrounds.

ResBlock introduces additional convolutional
layers, and ResPath residual connections
increase network complexity, lacking sufficient
lightweight optimization.

Yang et al. (2025) FATDNet Tomato
leaf disease

DFAA, MDAM, and
GWESM are designed to extract as many features of
tomato leaf spots as possible, even in
complex scenarios.

It has high computational complexity, and
MDAM’s attention mechanism may fail due
to insufficient pixel information from small
lesions, leading to missed segmentation.

Zhang et al. (2023a) DFL-
UNet+CBAM

Apple
leaf disease

This method combines the
DFL loss function and the CBAM attention
mechanism, improving small spot segmentation and
feature extraction accuracy.

The model’s segmentation performance for
small lesions still needs improvement, and its
real-time performance is insufficient.

Zhu et al. (2023) LD-
DeepLabv3+

Apple
leaf disease

The lightweight two-stage model enhances feature
extraction with RFB, RA, and CAB, and uses
adaptive loss to address lesion imbalance, improving
apple leaf disease segmentation in
complex environments.

The use of dilated convolutions in the decoder
may fail to recover spatial details, causing
omission or adhesion of small lesions.

Shwetha et al. (2024) Custom
Backbone
UNet

Jasmine
leaf disease

This paper proposes combining DCGAN data
augmentation with a custom UNet framework based
on MobileNetV4 to achieve lightweight and accurate
segmentation of jasmine leaf disease.

Transposed convolution in the decoder may
introduce grid artifacts due to non-uniform
pixel interpolation, reducing the recovery of
details like lesion boundaries.

Dai et al. (2024) AISOA-
SSformer

Rice leaf
disease

The model integrates sparse global update perceiver
and annealing-integrated swallow optimization,
boosting disease recognition in complex scenarios.

The random perturbations in the sparrow
search algorithm may cause fluctuations in the
loss function, requiring more iterations and
potentially losing some boundary information.
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Fron
adaptively selecting uncertain key points in the image for

point-by-point refinement, this decoder significantly

enhances the restoration of fine details and edges.
The rest of the paper is structured as follows: Section 2

introduces the dataset, preprocessing steps and details of the

proposed BiSeNeXt model architecture. Section 3 explains the

experimental setup, evaluation metrics and result analysis. Finally,

Section 4 concludes the study.
2 Materials and methods

2.1 Data acquisition

Due to the absence of publicly available yam leaf disease

datasets, this study independently constructed a high-quality

dataset including three major yam leaf diseases. The dataset was

collected from April to September 2024 at Jiaozuo Academy of

Agricultural and Forestry Sciences and in Xiaoyou Village, Jiaozuo,

Henan, China. The dataset consists of 1,097 high-resolution images,

including 396 images of anthracnose, 363 images of brown spot and

338 images of gray spot, as is shown in Table 2. The name “gray

spot” was determined through discussions with multiple

agricultural experts to ensure its scientific validity and accuracy.

Specifically, indoor images were taken using a Canon EOS 70D on a

tripod at a distance of about 35 cm, saved in JPEG format with a

resolution of 5472 × 3648 pixels, while outdoor images were

captured handheld with an iPhone XR at a distance of 25–45 cm,

saved as JPG files with a resolution of 3072 × 3072 pixels. Images

were collected under sunny, cloudy and rainy conditions. The

majority were captured on well-lit sunny days, while a smaller

portion was taken on rainy days to enhance the dataset’s diversity

and comprehensiveness. The dataset includes natural variations

such as leaf overlap, occlusions and varied shooting angles,

deliberately incorporated to reflect real-world field conditions.

Figure 1 illustrates a typical scene from a yam field, depicting the

actual environment used for capturing disease images.

Figure 2 presents representative images of three yam leaf

diseases, illustrating their distinct characteristics and impact on

the plant. Anthracnose primarily infects the leaves, petioles, stems
tiers in Plant Science 04
and vines of yam. In the early stages, the lesions appear as small,

round, dark brown, water-soaked spots. As the disease progresses,

the lesions enlarge into large brown or dark brown patches, some

forming concentric rings. In severe infections, the lesions cause leaf

margin desiccation and shedding, ultimately affecting yam yield and

quality. Brown spot is a common yam leaf disease, primarily

characterized by irregular yellow to brown spots that gradually

darken to deep brown, ultimately resulting in leaf necrosis. This

disease impairs plant photosynthesis and growth, consequently

reducing yield and impacting the quality and economic value of

yams. Gray spot primarily infects the leaves. Initially, it forms small

yellowish spots that gradually expand into oval brown lesions.

Ultimately, it causes premature leaf senescence and shedding,

thereby further impacting yam growth and yield.

As illustrated in Figure 2, yam leaf disease segmentation

requires accurately identifying both leaf structures and diseased

regions, which presents several challenges. Leaf segmentation faces

several challenges: (1) Leaf overlap significantly complicates edge

extraction in real-world outdoor environments. (2) Shadows from

uneven illumination pose challenges in capturing the global features

of the leaf. (3) Leaf curling causes changes in contour shape,

interfering with accurate boundary segmentation. Disease

segmentation also presents several challenges: (1) Raindrops on

the leaf surface and uneven lighting conditions complicate the

segmentation of disease spots. (2) Disease spots are typically

small, densely clustered and randomly distributed. This

characteristic not only increases the risk of missed detections but

also causes spot adhesion, thereby reducing segmentation accuracy.

(3) Irregular lesion shapes and blurred boundaries pose significant

challenges for lesion segmentation.
2.2 Data processing

During data preprocessing, the original images were initially

annotated. To ensure annotation accuracy and precision, the
TABLE 2 Specific number of images of 3 yam disease leaf datasets.

Condition Anthracnose Brown
spot

Gray
spot

Total

Indoor 181 180 171 532

Outdoor 215 183 167 565

Indoor
Enhancements

1267 1260 1197 3724

Outdoor
Enhancements

1505 1281 1169 3955

Total 2772 2541 2366 7679
FIGURE 1

Scene of yam field collection.
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professional semantic segmentation tool Labelme was used for

pixel-level fine annotation under expert guidance. During

annotation, the edges and diseased areas of each leaf were

accurately delineated, and the corresponding semantic

segmentation label maps were generated, as shown in Figure 2.

Subsequently, all images and their corresponding annotations were

resized to a fixed resolution of 512×512 to meet the model’s input

requirements. The high-quality pixel-level annotations provide a

robust dataset for training and evaluating the subsequent

segmentation model.
Frontiers in Plant Science 05
2.3 Data augmentation

Neural networks require ample training data, as insufficient

samples can lead to overfitting and hinder generalization (Lee et al.,

2019). Therefore, it is necessary to expand the original yam leaf

disease dataset appropriately. Figure 3 shows a yam anthracnose as

an example. Six data augmentation methods are applied to enhance

the image, including adjusting saturation, brightness and contrast,

as well as cropping, rotation and flipping. These data augmentation

methods effectively enhance the model’s generalization and
FIGURE 2

Images and labels of three yam leaf diseases. In the annotations, red, green and black represent lesions, leaves, and background, respectively.
FIGURE 3

Image enhancement. (A) Original image. (B) Saturation change. (C) Brightness change. (D) Contrast enhancement. (E) Image crop. (F) Image rotation.
(G) Image flip.
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adaptability to different environments by simulating scenes with

varying camera angles and lighting conditions. Table 2 provides

details on the specific number of images generated from indoor and

outdoor photography, as well as the augmentation applied to the

three types of yam leaf diseases.
2.4 The proposed method

This section introduces BiSeNeXt, an improved deep learning

model. It aims to improve the segmentation accuracy of yam leaf

diseases in complex environments. Traditional deep learning

segmentation methods often perform poorly when encountering

challenges such as leaf overlap, light variation, raindrop interference

and small lesion areas. To address these issues, the BiSeNeXt

network was optimized based on BiSeNetV2 (Yu et al., 2021) and

primarily consists of DFEB, EAMA and PointRefine modules. The

design of these modules enhances the network’s ability to segment

details and lesion regions in complex backgrounds.

2.4.1 Overall structure of BiSeNeXt
The architecture of the BiSeNeXt network is illustrated in

Figure 4. The green dashed box highlights the two backbone

networks. The detail branch at the top extracts fine-grained

spatial features, while the semantic branch at the bottom captures

high-level contextual information. The numbers inside the cubes

represent feature map resolution relative to the input. The yellow

dashed box represents the Aggregation Layer, where “Down” and

“Up” indicate downsampling and upsampling operations,

respectively. Meanwhile, the Sigmoid activation function performs

element-wise multiplication. The symbol ⊗ denotes the element-

wise multiplication operation and j represents the Sigmoid

function. In addition, the booster component, highlighted by the

blue dashed box, enhances segmentation performance during
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training using multiple auxiliary segmentation heads (Seg Head).

This process does not increase the inference cost.

To visualize the structural configuration of detail branch and

semantic branch, Table 3 presents the specific operations and their

corresponding parameters for each stage. Each stage S comprises

one or more operations (opr), including DFEB, EAMA, Stem,

gather-and-expansion layer (GE) and context embedding block

(CE), where c represents the number of output channels, s

denotes the stride, r indicates the number of repetitions, and e

signifies the channel expansion factor.

2.4.2 Dynamic feature extraction block
The complex and diverse shapes of lesions in yam leaf disease

images pose significant challenges for feature extraction, often

resulting in missed spot regions and reduced segmentation

performance. In convolutional neural networks, standard

convolutions extract local features by sharing parameters across

sliding windows. However, traditional convolutions struggle to

capture spatial differences effectively because they use shared

weights across all positions within the sliding window.

Additionally, traditional downsampling methods often lead to

information loss, especially in fine details and boundary regions,

which negatively impacts segmentation accuracy. Inspired by

receptive-field attention convolutional (RFAConv) (Zhang et al.,

2023b), this paper proposes the dynamic feature extraction block

(DFEB), which integrates dynamic receptive-field convolution

(DRFConv) with a downsampling method based on pixel shuffle

(PixelShuffle). The DFEB module mitigates lesion omission by

employing efficient downsampling and detail preservation

techniques, It enhances both feature extraction and segmentation

performance for complex lesion morphologies.

DRFConv uses dynamically generated attention weights to

assign unique parameters to the convolution kernel. This resolves

the limitations of parameter sharing in standard convolution. It also
FIGURE 4

The overall architecture of the BiSeNeXt network.
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improves the network’s capacity to capture complex spatial

patterns. As shown in Equation 1, attention weights are

computed using the Softmax activation function. They are applied

element-wise to the convolution kernel parameters, emphasizing

the significance of different features.

F = Softmax(g1�1(Avgpool(X))� ReLU(Norm(gk�k(X)))) (1)

In Equation 1, X denotes the input feature map, and F

represents the augmented features generated by DRFConv. Here,

gn�n stands for grouped convolution with a kernel size of n × n, k

indicates the size of the convolution kernel, and Norm refers

to normalization.

Figure 5 illustrates the detailed structure and computational

flow of DRFConv. The input feature map is of size C × H ×W, with

C indicating the channel count, H representing the height and W

denoting the width. Initially, group convolution extracts spatial

features from the receptive-field, forming non-overlapping sliders.

This process produces a feature map of size 9C × H × W and

mitigates the high computational burden of the traditional unfold

operation. Next, the global information of each slider is aggregated

through global average pooling, and feature interactions are

facilitated via 1 × 1 group convolution. Attention weights are

generated by applying the Softmax function, further emphasizing

the importance of different features. The resulting feature map of

size 9C ×H ×W is multiplied by the feature map generated by group

convolution. Finally, the “Adjust Shape” operation modifies the

feature map’s dimensions, multiplying both its height and width by
Frontiers in Plant Science 07
a factor of k. Feature information is then extracted using a k × k

convolution operation with stride k. This design effectively

addresses the parameter-sharing issue in standard convolution,

enhancing the network’s ability to model complex spatial features

while maintaining computational efficiency.

In addition, PixelShuffle mitigates the issue of information loss

in traditional downsampling by employing tensor rearrangement.

This not only addresses feature loss in conventional methods, but

also enhances computational efficiency and improves boundary

processing accuracy. PixelShuffle addresses information loss in

traditional downsampling by splitting the input feature maps into

multiple subregions and rearranging them into higher-dimensional

channels. This results in efficient reorganization of features.

Compared to pooling downsampling and convolutional

downsampling, PixelShuffle does not need to discard input

features. Instead, it completes the resolution reduction through

information rearrangement, which reduces information loss.

Moreover, the method is computationally efficient, avoids

additional weight learning, and excels in detail preservation and

boundary processing. This enhances its applicability to fine

segmentation in image processing. Figure 6B presents the core

structure of the module.

By integrating DRFConv and PixelShuffle, DFEB enhances the

network’s capability to model spatial features while improving

detail and boundary processing. Figure 6 illustrates the structure

of DFEB. Figure 6A represents the DFEB structure with a stride of 1.

The procedure is as follows: First, a 3 × 3 DRFConv is applied to
TABLE 3 Architecture of the detail branch and semantic branch of the BiSeNeXt network.

Stage
Detail branch Semantic branch

Output size
opr c s opr c e s r

S1 DFEB 32 1 Stem 16 – 4 1 512×512

EAMA 32 1 512×512

DFEB 32 2 256×256

S2 DFEB 64 1 256×256

EAMA 64 1 256×256

DFEB 64 2 128×128

S3 DFEB 128 1 128×128

EAMA 128 1 128×128

DFEB 128 2 64×64

S4 DFEB 128 1 GE 32 6 2 1 64×64

EAMA 128 1 GE 32 6 1 1 64×64

DFEB 128 1 64×64

S5 GE 64 6 2 1 32×32

GE 64 6 1 1 32×32

S6 GE 128 6 2 1 16×16

GE 128 6 1 3 16×16

CE 128 – 1 1 16×16
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modify the number of channels and capture both global and local

features. Next, a 3 × 3 convolution is applied to emphasize the

details of the edges and the texture characteristics in the leaf and

disease regions. Finally, a 1 × 1 convolution serves as a shortcut

connection to adjust the number of channels in the feature map and

enhance model training stability. Figure 6B illustrates the DFEB

structure with a stride of 2. Assuming the input feature map has

dimensions C × H × W, the main branch is initially downsampled

using a 3 × 3 DRFConv, followed by local feature extraction through

a 3 × 3 convolution. The side branch is downsampled using

PixelShuffle. PixelShuffle first applies necessary padding to the

right and bottom of the input features to ensure that their height

and width are even. Next, PixelShuffle is applied, increasing the

number of channels to l2C. The data is then rearranged to
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distribute channel information across the spatial dimensions with

height H
l and width W

l , yielding feature maps of size l2C � H
l � W

l .

A 1 × 1 convolution is then applied to adjust the number of

channels, and the result is finally summed and fused with the

main branch features. Notation: BN denotes batch normalization.

ReLU refers to the ReLU activation function. Conv represents the

convolution operation. l represents the downsampling factor,

which is set to 2 in this study.

2.4.3 Efficient asymmetric multi-scale attention
When segmenting dense and small lesions in yam leaf images,

adhesion between lesions and overlapping leaves often leads to mis-

segmentation, making accurate identification challenging. Existing

attention mechanisms, such as the Convolutional Block Attention
FIGURE 6

The structure of the DFEB module. (A) DFEB structure with a stride of 1. (B) DFEB structure with a stride of 2.
FIGURE 5

The structure of DRFConv.
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Module (CBAM) (Woo et al., 2018) and Squeeze-and-Excitation

(SE) (Hu et al., 2018), typically reduce computational complexity

through channel dimension compression. However, this approach

often results in the loss of fine-grained spatial and channel

information, thereby limiting deep feature representation

capabilities. In addition, existing methods struggle to model

feature scales effectively, making it challenging to refine local

details while preserving global context. To address these issues,

this paper proposes an improved efficient asymmetric multi-scale

attention (EAMA). It is based on the spatial coding strategy of the

efficient multi-scale attention (EMA) (Ouyang et al., 2023) and the

concept of parallel multi-scale convolutions. The module combines

asymmetric convolution with a parallel modeling structure. This

design aims to enhance multi-scale feature extraction while

balancing computational efficiency and accuracy. By constructing

parallel substructures at multiple scales, EAMA alleviates the need

for deep network hierarchies and sequential processing, thereby

improving the model’s capacity for multi-scale representation.

Asymmetric convolution enhances the model’s ability to perceive
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structural variations in different directions while maintaining low

computational cost. Part of the channel dimension is restructured

into the batch dimension, enabling cross-channel interaction

without channel compression. This approach reduces

computational complexity while preserving fine-grained features.

EAMA further introduces a local cross-spatial and cross-channel

collaborative modeling strategy to enhance feature fusion and the

integration of contextual information. By combining adaptive

weighting with multi-scale feature fusion, EAMA significantly

enhances the representation of complex structural features while

improving computational efficiency. This makes it particularly

effective in challenging segmentation scenarios such as lesion

adhesion and leaf overlap.

As illustrated in Figure 7, the EAMAmodule initially groups the

input feature map X ∈ RC�H�W by channel dimensions, dividing

the channels into G subgroups, each containing C
G channels. The

grouped features are then reshaped to dimensions (B� G)� ( C
G )�

H �W , which enables independent modeling of spatial and

channel relationships within each feature group. To minimize
FIGURE 7

The structure of EAMA.
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sequential processing and excessive network depth, EAMA uses a

parallel substructure with a 1×1 branch and an asymmetric branch.

The 1 × 1 branch consists of two paths, each applying one-

dimensional global average pooling along the horizontal and

vertical dimensions, respectively, as defined in Equation 2.

Zh
c (i) =

1
Wo

W

j=1
xc(i, j), Zw

c (j) =
1
Ho

H

i=1
xc(i, j) (2)

Here, xc is the input feature map, with c indicating the number

of input channels, while H and W correspond to the spatial

dimensions of the input features. Zh
c (i) and Zw

c (j) represent the

global information of the channel c along the height and width

directions, respectively. Next, two-channel vectors are generated by

decomposing the fused features through a channel splicing

operation using a shared 1 × 1 convolution. Subsequently, two-

channel attention maps are computed using a nonlinear Sigmoid

function. To capture distinct cross-channel interaction features

between the two parallel routes of the 1 × 1 branch, the two-

channel attention maps are aggregated via element-wise

multiplication within each group. Meanwhile, the asymmetric

convolutional branch processes feature maps in parallel using 1 ×

3, 3 × 1 and 3 × 3 convolutions, then sums them to capture multi-

scale features and enhance spatial feature representation. After

obtaining the outputs from the 1 × 1 branch and asymmetric

branch, the EAMA module further fuses the features using a

cross-space learning strategy. EAMA applies 2D global average

pooling to the outputs of the 1 × 1 branch to encode global spatial

information, as defined in Equation 3:

Zc =
1

H �Wo
H

i=1
o
W

j=1
xc(i, j) (3)
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This design encodes global spatial information. The first spatial

attention map is subsequently generated through normalization

using the Softmax function, followed by a dot product computation

with the asymmetric branch’s output. Another branch uses 2D

global average pooling to capture global spatial information. This is

normalized via the Softmax function. A dot product is then

computed with the 1 × 1 branch’s output, producing the second

spatial attention map. This map captures multi-scale spatial

information. The Sigmoid function processes the sum of the two

spatial attention maps, producing the final attention map that

adjusts pixel weights in the input feature map.

2.4.4 PointRefine
Traditional convolutional neural networks often suffer from

oversampling in smooth regions and undersampling near object

boundaries during leaf disease image segmentation. To address

these challenges, this paper proposes a novel decoder named

PointRefine, inspired by PointRend (Kirillov et al., 2020).

PointRefine introduces a non-uniform sampling mechanism to

perform point-by-point prediction on key areas with high-

frequency features in the output image. This method enables

more accurate feature reconstruction in boundary regions while

reducing redundant computation in smooth areas, effectively

balancing segmentation accuracy and efficiency. Furthermore,

PointRefine effectively restores features extracted by the encoder,

improving the model’s ability to distinguish difficult-to-classify

pixels. The structure of PointRefine is shown in Figure 8.

PointRefine generates high-quality segmentation results

through a point-by-point refinement process. PointRefine uses the

Seg Head to generate a low-resolution coarse prediction, which is

then upsampled via bilinear interpolation. To further refine the
FIGURE 8

The structure of PointRefine.
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segmentation boundary, j × N points are sampled from the coarse

prediction. The bN (b ∈ [0,1]) most uncertain points among them

are selected as key points. Uncertainty is determined by the absolute

difference between the logits of the top two categories in the coarse

prediction, where smaller differences indicate higher uncertainty.

These key points are typically located at object boundaries or

complex regions. To ensure comprehensive region coverage, the

remaining (1 − b) × N points are obtained via random sampling

with a uniform distribution. Point features are processed by a fully

connected layer, after which they are concatenated with coarse

predictions and input into the multilayer perceptron (MLP). Each

point’s label is independently predicted by the MLP, with new

predictions iteratively updated in the feature map. During inference,

the refinement process is repeated m times, producing high-

resolution segmentation with clear boundaries, as shown in

Figure 8. In this research, the parameters are set as follows: j = 3,

N = 2048, b = 0.75 and m = 2.
3 Experiments

This section provides a detailed description of the experimental

setup, evaluation metrics and experimental results. Through

ablation experiments, we systematically analyze the impact of key

model components on performance. In addition, through

comparative experiments, we comprehensively evaluate the

advantages and limitations of the proposed method.
3.1 Experimental setup

The experimental environment is configured with an Intel®

Xeon® Gold 6330 CPU (2.00 GHz), a GeForce RTX 3090 GPU (24

GB graphics memory) and a 64-bit Linux operating system. The

model is implemented using the PyTorch deep learning framework.

The software environment consists of PyTorch 1.12.1 and Python

3.9. The training hyperparameters are set as follows: an initial

learning rate of 1e-2, a minimum learning rate of 1e-4, a batch size

of 8, 200 epochs, a momentum of 0.9, a weight decay of 5e-4 and

optimization using the SGD optimizer. A learning rate decay

strategy is applied to facilitate stable model convergence. The

training time per epoch is approximately 209 seconds.

The custom yam dataset used in this study contains images with

a resolution of 512 × 512 × 3, and is divided into training,

validation, and testing sets in a 7:2:1 ratio. Each subset comprises

various yam leaf disease types. This enables the model to learn

features across different classes and enhances its generalization

and robustness.
3.2 Evaluation indicators

To evaluate the performance of the yam leaf disease

segmentation network in complex environments, various metrics

are used, including intersection over union (IoU), mean IoU
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(mIoU), Precision, Recall and Dice coefficient (Dice) and mean

F1-Score (mF1-Score). In addition, inference time (Inf. time), total

parameters and floating point operations (FLOPs) are used to assess

the model’s efficiency and computational complexity.

In semantic segmentation tasks, IoU measures accuracy by

calculating the ratio of the intersection region to the union region

between predicted and true labels. mIoU represents the average IoU

across all categories and is used to assess overall segmentation

performance in multi-category tasks. The mF1-Score is used to

measure the average segmentation performance of the model across

all categories to avoid bias due to category imbalance. Precision

measures the proportion of correctly predicted positive pixels

among all pixels predicted as positive, reflecting the model’s

ability to avoid false positives. Recall measures the proportion of

correctly predicted positive pixels among all actual positive pixels,

indicating the model’s ability to detect relevant regions in

segmentation tasks. Dice measures segmentation accuracy by

calculating twice the intersection over the sum of predicted and

true positive regions. IoU, mIoU, Precision, Recall, Dice and mF1-

Score are defined in Equations 4–9:

IoU =
pii

ok
j=0pij +ok

j=0pji − pii
(4)

mIoU =
1

k + 1o
k

i=0

pii

ok
j=0pij +ok

j=0pji − pii
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Dice =
2 · TP

2 · TP + FP + FN
(8)

mF1 − Score =
1

k + 1o
k

i=0

2 · TPi
2 · TPi + FPi + FNi

(9)

Here, k represents the number of target classes considered in the

computation after excluding background classes, with k = 2 in this

experiment. pij denotes the number of pixels belonging to class i but

misclassified as class j. TP is the number of samples correctly

identified as positive. FP is the number of negative samples

incorrectly predicted as positive. FN is the number of positive

samples incorrectly predicted as negative.
3.3 Effect of data augmentation on model
performance

To assess the impact of data augmentation on the performance

of the baseline model, we conducted comparative experiments with

and without data augmentation. Table 4 presents the IoU scores for

each category and the overall mF1-Score. The results show that the
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model with data augmentation outperforms the baseline model

without augmentation across all metrics. Specifically, the IoU scores

for the background, leaf and disease categories improved by 2.09%,

4.06% and 4.75%, respectively. The overall mF1-Score increased by

2.06%. These enhancements indicate that data augmentation

significantly improves the model’s generalization ability. It also

substantially improves the model’s segmentation accuracy and

robustness in segmenting the target region.
3.4 Comparison of different attention
mechanisms

The detail branch of BiSeNetV2 is designed to capture high-

resolution spatial details. However, it has limitations in handling the

adhesion of adjacent disease spots on yam leaves. To improve the

detail branch’s ability to model the texture and boundaries of leaf

disease regions, this study incorporated multiple attention

mechanisms into BiSeNetV2. Table 5 presents the performance

changes following the integration of five different attention

mechanisms into BiSeNetV2. The experimental results indicate that

efficient channel attention (ECA) (Wang et al., 2020), CBAM (Woo

et al., 2018), SE (Hu et al., 2018), enhanced parallel attention (EPA)

(Lu et al., 2024) and EAMA exhibited changes of 0.04%, -0.15%,

0.02%, -0.15% and 0.23% in the IoU for yam leaf segmentation;

0.15%, -0.43%, -0.13%, 0.11% and 0.63% in the IoU for yam disease

segmentation; and 0.05%, -0.05%, 0.02%, -0.11% and 0.19% in the

mF1-Score. EAMA achieved the best performance across all metrics.

It shows outstanding capability in modeling complex spatial

relationships and disease segmentation.
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3.5 Discussion of various loss functions

In this section, the effects of different loss functions on the

segmentation performance of BiSeNetV2 are explored through

comparative experiments. As shown in Table 6, CE Loss

improves IoU in leaf segmentation by 2.37%, 0.59% and 0.08%

compared to Focal Loss, Dice Loss and Ohem+CE Loss,

respectively. For disease segmentation, it achieves improvements

of 7.43%, 2.62% and 0.30%, respectively. In addition, CE Loss also

significantly outperforms other loss functions on mF1-Score by

2.26%, 0.68% and 0.10%, respectively. The experimental results

show that CE Loss performs superiorly in all indicators, especially

in disease segmentation accuracy, which is significantly improved.

Based on these results, CE Loss was ultimately selected as the loss

function for the model in this study.
3.6 Ablation experiments

This subsection presents eight sets of ablation experiments to

evaluate the effectiveness of the DFEB, EAMA and PointRefine

modules in BiSeNetV2. These experiments focus on improving leaf

and disease segmentation performance using the controlled variable

method. The optimal results for each metric are highlighted in bold

and a ✓ symbol indicates the inclusion of the corresponding

module. The experimental results are presented in Table 7.

As shown in Table 7, in single-module ablation experiments,

Test 1 corresponds to the baseline BiSeNetV2 model. By adding the

PointRefine, EAMA and DFEB modules to the baseline, the

experimental results show that the introduction of each module

improves the model performance. The results of Test 2 demonstrate

that the introduction of the PointRefine module improves leaf IoU,

disease IoU, mF1-Score and mIoU by 0.63%, 1.62%, 0.48% and

0.83%, respectively. In addition, the number of parameters is

reduced by 1.02M, and FLOPs decrease by 4.04G. This indicates

that PointRefine enhances the model’s ability to distinguish hard-

to-classify pixels, thereby producing more accurate image

segmentation results. The results of Test 3 show that the

introduction of the EAMA module improves leaf IoU, disease

IoU, mF1-Score and mIoU by 0.23%, 0.63%, 0.19% and 0.32%,

respectively. This validates the effectiveness of the EAMAmodule in

extracting multi-scale features, which significantly improves the
TABLE 4 Performance comparison with and without data augmentation.

Data
augmentation

IoU/% mF1-
Score/%

Background Leaf Disease

✗ 96.64 92.00 76.04 93.51

✓ 98.73 96.06 80.79 95.57
Bold values indicate the best performance on a particular evaluation metric.
TABLE 5 Comparative experiments using different
attention mechanisms.

Method
IoU/%

mF1-Score/%
Background Leaf Disease

Baseline 98.73 96.06 80.79 95.57

+ECA 98.74 96.1 80.94 95.62

+CBAM 98.67 95.94 80.36 95.52

+SE 98.74 96.08 80.66 95.55

+EPA 98.42 95.91 80.9 95.46

+EAMA 98.82 96.29 81.42 95.76
Bold values indicate the best performance on a particular evaluation metric.
TABLE 6 Comparative experiments using different loss functions.

Loss
IoU/%

mF1-Score/%
Background Leaf Disease

Focal 97.51 93.32 73.36 93.31

Dice 98.49 95.47 78.17 94.89

Ohem
+CE

98.65 95.88 80.49 95.47

CE 98.73 96.06 80.79 95.57
Bold values indicate the best performance on a particular evaluation metric.
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segmentation performance of leaves and disease spots, while

keeping the number of parameters and FLOPs nearly unchanged.

In Test 4, the DFEB module improves leaf IoU, disease IoU, mF1-

Score and mIoU by 0.28%, 0.49%, 0.38% and 0.30%, respectively.

The DFEB module improves leaf disease boundary segmentation,

but increases parameters and FLOPs by 0.91 M and 12.19

G, respectively.

In multi-module ablation experiments, we evaluate the effects of

the DFEB, EAMA and PointRefine modules on model performance

through various combinations. As shown in Table 7, the module

combination performs better than adding modules individually on

multiple indicators. It fully demonstrates the combined effect

between modules. In Test 8, the simultaneous combination of the

three modules improves the leaf IoU, disease IoU, mF1-Score and

mIoU by 0.98%, 3.96%, 1.02% and 1.76%, respectively. Meanwhile,
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the number of model parameters decreases by 0.12 M, while FLOPs

increase by 8.53 G. The improved BiSeNeXt network achieves

optimal performance in the IoU, mF1-Score and mIoU metrics.

Considering the balance between segmentation performance and

computational efficiency, the improved model effectively meets the

requirements of the yam leaf disease segmentation task.

Figure 9 presents the visualization results of different models for

segmenting diseased regions of yam leaves in the ablation

experiments. The baseline model Figure 9C exhibits noticeable

omissions and misdetections when segmenting diseased regions

with complex boundaries or fine shapes. In addition, severe

adhesion occurs in some adjacent disease regions, where multiple

separate disease lesions are erroneously merged into one region.

Comparison among Figures 9B, C, E–G reveals that after

integrating individual modules, each module demonstrates its
FIGURE 9

Results of ablation experiments. (A) Original images. (B) Ground truth. (C) BiSeNetV2. (D) BiSeNeXt(Ours). (E) BiSeNetV2+DFEB. (F) BiSeNetV2+EAMA.
(G) BiSeNetV2+PointRefine. (H) BiSeNetV2+DFEB+EAMA. (I) BiSeNetV2+DFEB+PointRefine. (J) BiSeNetV2+EAMA+PointRefine.
TABLE 7 Ablation experiments performed on the yam test sets.

Test
No.

PointRefine EAMA DFEB
IoU/% mFI-

Score/%
MIoU/% Parameters/M FLOPs/G

Background Leaf Disease

1 98.73 96.06 80.79 95.57 91.86 3.34 12.29

2 ✓ 98.99 96.69 82.41 96.05 92.69 2.31 8.05

3 ✓ 98.82 96.29 81.42 95.76 92.18 3.34 12.54

4 ✓ 98.86 96.34 81.28 95.75 92.16 4.25 24.48

5 ✓ ✓ 98.97 96.70 82.84 96.14 92.84 2.31 8.30

6 ✓ ✓ 99.07 96.91 83.34 96.29 93.11 3.22 20.24

7 ✓ ✓ 98.89 96.50 82.62 96.05 92.67 4.25 25.06

8 ✓ ✓ ✓ 99.09 97.04 84.75 96.59 93.62 3.22 20.82
f

Bold values indicate the best performance on a particular evaluation metric.
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respective advantages in addressing segmentation challenges.

PointRefine has clear advantages in the restoration of fine details

and edges. EAMA enhances multi-scale features to improve the

model’s segmentation of large diseased regions and effectively

reduces spot adhesion. DFEB enhances boundary processing in

complex regions through dynamic receptive-fields and boundary

optimization. Further comparison of the plots in Figures 9B–D, H–J

shows that combining multiple modules improves model

performance in complex boundary processing, fine-grained

disease segmentation, and mitigation of the spot adhesion

phenomenon. When all three modules are optimized jointly

Figure 9J, the model achieves its best segmentation performance,

significantly surpassing the baseline model Figure 9C. This fully

validates the effectiveness and rationality of multi-module

joint optimization.
3.7 Comparison of different segmentation
networks

To evaluate the effectiveness of the proposed network in

segmenting yam leaves and diseases in complex surroundings, we

compare it with other popular semantic segmentation models. This

paper selected DeepLabV3+ (Chen et al., 2018), DFL-UNet+CBAM

(Zhang et al., 2023a), UNet++ (Zhou et al., 2018), UNet

(Ronneberger et al., 2015) and PSPNet (Zhao et al., 2017) as

representative CNN-based comparison methods, and Segmenter

(Strudel et al., 2021), Swin Transformer (Liu et al., 2021), Vision

Transformer (Dosovitskiy et al., 2020) and SegNeXt (Guo et al.,

2022) as representative Transformer-based comparison methods.

To maintain fair conditions, all models were trained and tested on

the same custom yam dataset. Table 8 shows the segmentation

performance of different models.

As presented in Table 8, the proposed method achieved an IoU

of 84.75% and a recall of 91.74% for disease segmentation. The

BiSeNeXt method proposed in this study demonstrates superior

performance compared to mainstream segmentation models on the

yam leaf test set, including DeepLabV3+, DFL-UNet+CBAM, UNet

++, U-Net, PSPNet, Segmenter, SegNeXt, Swin Transformer and

Vision Transformer. Specifically, it increased the IoU for leaf

segmentation by 2.22%, 3.22%, 1.09%, 1.22%, 1.56%, 19.60%,

4.84%, 5.39% and 3.83%, respectively. Additionally, the IoU for

disease segmentation improved by 5.58%, 3.98%, 0.75%, 0.76%,

5.01%, 26.21%, 9.71%, 6.86% and 6.20%, respectively. The precision

of leaf and disease segmentation improved by 1.46%, 2.34%, 1.12%,

1.12%, 1.01%, 15.90%, 4.25%, 4.86%, 3.16%, and 3.79%, 0.75%,

0.24%, 0.22%, 2.03%, 9.00%, 2.45%, 1.81%, 3.02%. The recall for leaf

and disease segmentation improved by 0.84%, 1.01%, 0, 0.13%,

0.60%, 5.92%, 0.79%, 0.74%, 0.83%, and 2.95%, 3.95%, 0.64%,

0.67%, 3.99%, 25.07%, 9.28%, 6.41%, 4.49%. The Dice for leaf and

disease segmentation increased by 1.16%, 1.69%, 0.57%, 0.63%,

0.81%, 11.21%, 2.56%, 2.85% 2.02% and 3.37%, 2.37%, 0.44%,

0.44%, 3.01%, 17.89%, 6.00%, 4.17%, 3.76%. The mIoU increased
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by 2.90%, 2.88%, 0.78%, 0.85%, 2.39%, 18.88%, 5.61%, 4.94% and

3.92%, respectively. In summary, BiSeNeXt achieves the highest

performance across all evaluation metrics, except for leaf recall,

where it ties with UNet++. Notably, it demonstrates a significant

advantage in disease segmentation.

Table 9 summarizes the inference time, number of parameters

and FLOPs of each segmentation model on the yam dataset.

SegNeXt achieved the fastest inference time at 14.61 ms, followed

by Segmenter at 16.16 ms and BiSeNeXt at 18.62 ms, while UNet++

was the slowest at 54.92 ms. BiSeNeXt has only 3.22M parameters,

which is significantly fewer than the second-lightest model, DFL-

UNet+CBAM, with 12.72M. In terms of FLOPs, BiSeNeXt requires

just 20.82 G, whereas UNet++ reaches 552.70 G. Therefore,

BiSeNeXt achieves the lowest parameter count and computational

cost while maintaining a relatively fast inference speed,

demonstrating the advantage in computational efficiency.

Figure 10 shows the mIoU performance of different methods

during training. BiSeNeXt excels in training speed, accuracy and

stability. It converges faster than other methods in the early stages

and stabilizes above 93% mIoU in the later stages, outperforming

other models. In addition, its curve shows minimal fluctuation,

demonstrating the method’s efficiency and robustness.

Leaf occlusion poses a significant challenge to the accurate

extraction of target leaf edge pixels. It hampers the model’s ability to

clearly distinguish the boundaries between adjacent leaves, often

leading to the misclassification of lesions on non-target leaves as

target disease areas. Moreover, leaf curling further increases the

difficulty of segmentation. Figure 11A shows the segmentation

results of leaves and diseases under leaf occlusion conditions, and

Figure 11B shows the corresponding manually annotated results. A

comparison between Figure 11A and Figures 11C, D, F, H–J shows

that all the evaluated models, including DeepLabV3+, DFL-UNet

+CBAM, U-Net, PSPNet, SegNeXt and Swin Transformer, are

affected by the presence of non-target leaves. This interference

leads to the misidentification of lesion areas, where regions on non-

target leaves are incorrectly extracted as diseased areas. In addition,

as shown in Figures 11C, F, G, I–K, DeepLabV3+, U-Net,

Segmenter, SegNeXt, Swin Transformer and Vision Transformer

all show missing lesion areas in the segmentation results. Figure 11

demonstrates that, apart from the proposed method and UNet++,

the remaining models generally suffer from varying levels of

misclassification when dealing with occluded regions. Compared

with other methods, as shown in Figures 11C–L, only the proposed

method exhibits reliable robustness in accurately segmenting

disease boundaries under leaf curling conditions.. Overall, the

proposed method achieves superior accuracy in segmenting target

leaves and extracting lesion areas.

Figure 12 illustrates the impact of multiple segmentation

models on leaf and dense disease segmentation under uneven

lighting conditions. Figure 12A provides a typical schematic of

leaf and disease segmentation in an uneven lighting environment,

while Figure 12B demonstrates the ground truth for leaf and disease

segmentation. As observed in Figures 12B–D, F, G, I–K,
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DeepLabV3+, DFL-UNet+CBAM, U-Net, Segmenter, SegNeXt,

Swin Transformer and Vision Transformer struggle to accurately

segment leaf edges under uneven illumination, leading to blurred

contours and missing regions. As illustrated in Figures 12B, C, E,

G), DeepLabV3+, UNet++ and Segmenter tend to misclassify leaves

and disease regions in the presence of soil background interference.

Figure 12 reveals that most models struggle to accurately segment

densely distributed small lesions under uneven lighting conditions.

In contrast, the method proposed in this study successfully

identifies a larger portion of lesion areas, although some
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omissions remain. Additionally, it achieves high precision in

segmenting leaf contours.

Figure 13 compares the performance of different methods on

leaf and disease segmentation under the influence of raindrops and

overlapping leaves. Figure 13A shows a typical example of dense leaf

and disease segmentation under raindrop interference. It

significantly challenges the model’s ability to distinguish pixels.

Figure 13B presents the ground truth for leaf and disease

segmentation. As shown in Figure 13G, Segmenter exhibits the

poorest segmentation performance, failing to accurately delineate
TABLE 8 Ten sets of comparative experiments on the yam dataset.

Method Categories IoU/% Precision% Recall/% Dice/% mIoU/%

DeepLabV3+

Background 98.18 99.29 98.87 99.08

Leaf 94.82 96.93 97.76 97.34 90.72

Disease 79.17 87.96 88.79 88.37

DFL-UNet+CBAM

Background 97.62 99.10 98.50 98.79

Leaf 93.82 96.05 97.59 96.81 90.74

Disease 80.77 91.00 87.79 89.37

UNet++

Background 98.57 99.58 98.98 99.28

Leaf 95.95 97.27 98.60 97.93 92.84

Disease 84.00 91.51 91.10 91.30

U-Net

Background 98.50 99.51 98.98 99.24

Leaf 95.82 97.27 98.47 97.87 92.77

Disease 83.99 91.53 91.07 91.30

PSPNet

Background 98.47 99.34 99.12 99.23

Leaf 95.48 97.38 98.00 97.69 91.23

Disease 79.74 89.72 87.75 88.73

Segmenter

Background 88.23 96.19 91.43 93.75

Leaf 77.44 82.49 92.68 87.29 74.74

Disease 58.54 82.75 66.67 73.85

SegNeXt

Background 96.79 99.12 97.62 98.37

Leaf 92.2 94.14 97.81 95.94 88.01

Disease 75.04 89.30 82.46 85.74

Swin Transformer

Background 96.5 99.19 97.27 98.22

Leaf 91.65 93.53 97.86 95.65 88.68

Disease 77.89 89.94 85.33 87.57

Vision Transformer

Background 97.33 99.22 98.08 98.65

Leaf 93.21 95.23 97.77 96.48 89.70

Disease 78.55 88.73 87.25 87.98

BiSeNeXt (Ours)

Background 99.09 99.59 99.49 99.54

Leaf 97.04 98.39 98.60 98.50 93.62

Disease 84.75 91.75 91.74 91.74
Bold values indicate the best performance on a particular evaluation metric.
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leaf and disease contours. Comparing Figures 13H–J shows that

PSPNet, SegNeXt and Swin Transformer exhibit adhesion of

neighboring lesions under raindrop interference. As shown in

Figure 13, except for the proposed method, other models all fail

to detect small lesions within the small yellow boxes under the

influence of raindrops. As illustrated in Figure 13, except for the

proposed method and UNet++, the other models miss small lesions

within the yellow boxes under rain interference. Moreover, in
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scenarios where leaf overlap and raindrops coexist, these models

are also prone to misclassifying background regions as leaves.

Notably, as shown in Figure 13L, the proposed method

demonstrates superior performance in segmenting leaf edges and

small lesions, highlighting its enhanced robustness under

challenging conditions.
3.8 Generalization evaluation on apple leaf
disease dataset

To verify the generalization ability of the proposed method on

different crops, we evaluated it using an apple leaf disease image

dataset. The dataset originates from Northwest A&F University and

contains four common types of apple leaf disease spots: rust, gray

spot, brown spot and alternaria. It contains 1222 images, including

334 of rust, 395 of gray spot, 215 of brown spot and 278 of

alternaria. To ensure consistency in the experimental setup, all

images were resized to 512×512 pixels, and the same data

augmentation strategy was applied as in yam dataset. The dataset

was randomly split into training, validation and test sets at a 7:2:1

ratio. As shown in Table 10, the BiSeNeXt model performs well on

this dataset. Without fine-tuning, it achieved IoU scores of 98.90%,

96.98% and 80.66% in the background, leaf and spot regions,

respectively. The mF1-Score reached 95.89%. Compared to the

baseline model, BiSeNeXt improved the IoU in the spot region by

3.66%. This dataset differs significantly from the yam dataset in
FIGURE 10

Comparison of mIoU curves for different segmentation models.
TABLE 9 Computational efficiency of segmentation models on the
yam datasets.

Model Inf. time/ms Parameters/M FLOPs/G

DeepLabV3+ 24.43 41.22 176.49

DFL-UNet+CBAM 45.96 12.72 199.93

UNet++ 54.92 36.63 552.70

U-Net 25.59 28.99 202.97

PSPNet 33.38 46.60 178.63

Segmenter 16.16 25.98 37.37

SegNeXt 14.61 27.56 32.48

Swin Transformer 45.66 119.99 298.17

Vision Transformer 44.67 142.29 442.5

BiSeNeXt (Ours) 18.62 3.22 20.82
Bold values indicate the best performance on a particular evaluation metric.
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terms of crop type, leaf morphology, lesion distribution and

shooting conditions. Therefore, our method demonstrates strong

transferability. It has the potential to be generalized to multiple crop

disease segmentation tasks.
4 Conclusions

In this paper, a yam disease segmentation dataset is constructed

for the first time. It covers a wide range of environmental

conditions, including indoor and outdoor settings, various

lighting conditions and different weather. The dataset contains

three common diseases: anthracnose, brown spot and gray spot. It

provides a valuable data foundation and evaluation benchmark for
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yam disease research. In addition, this research proposes a yam leaf

disease segmentation method based on the improved BiSeNetV2

network. The method addresses the challenges of low segmentation

accuracy and high computational complexity in complex

environments. To achieve this, three modules, DFEB, EAMA and

PointRefine, are specifically designed to enhance segmentation

performance. DFEB mitigates the information loss problem by

employing dynamic sensory field convolution and pixel shuffling

downsampling. This module enhances the recognition accuracy of

leaf boundary pixels in complex scenes and reduces spot omissions.

PointRefine adopts a point-to-point refinement strategy to restore

fine details and edges. EAMA strengthens feature extraction in

disease regions and alleviates spot adhesion via a multi-scale

attention mechanism. The experimental results show that the
FIGURE 12

Comparison of different methods for leaf and dense lesion segmentation under uneven light conditions. (A) Original image. (B) Ground truth. (C)
DeepLabV3+. (D) DFL-UNet+CBAM. (E) UNet++. (F) U-Net. (G) Segmenter. (H) PSPNet. (I) SegNeXt. (J) Swin Transformer. (K) Vision Transformer. (L)
BiSeNeXt (Ours).
FIGURE 11

Comparison of leaf and lesion segmentation methods under occlusion and leaf curling. (A) Original image. (B) Ground truth. (C) DeepLabV3+. (D)
DFL-UNet+CBAM. (E) UNet++. (F) U-Net. (G) Segmenter. (H) PSPNet. (I) SegNeXt. (J) Swin Transformer. (K) Vision Transformer. (L) BiSeNeXt (Ours).
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proposed method reaches 97.04% IoU in leaf segmentation and

84.75% IoU in lesion segmentation. In contrast to existing methods,

the proposed method enhances segmentation precision and

effectively minimizes computational overhead. Additionally,

cross-crop validation on an apple leaf disease dataset further

demonstrates the model’s promising generalization ability without

fine-tuning.

Despite the good results of this study, certain limitations

remain. The current dataset does not yet include yam species and

disease types from other regions. The model’s generalization ability

on unseen samples remains to be validated. Segmentation accuracy

requires improvement in complex scenarios such as extreme

lighting conditions, dense foliage overlap and densely clustered

small disease spots. In the future, we plan to expand the dataset to

include environments such as fog and frost, and incorporate

samples from other regions to improve the model’s generalization

capabilities. Meanwhile, methods such as image enhancement and

multi-scale feature extraction will also be integrated to further

enhance the model’s segmentation accuracy in complex scenes. In

addition, we plan to deploy the model on mobile platforms such as

smartphones for real-time field monitoring of yam diseases. To

address potential dynamic interferences such as device shaking,

speed fluctuations, and changes in shooting distance, we will

conduct field tests to evaluate their impact on segmentation
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performance and improve the model’s robustness. Moreover,

mechanisms for speed monitoring, shake detection and distance

alerts will be integrated to provide user feedback and reduce

accuracy loss caused by improper operation.
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