
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Zhaohua Peng,
Mississippi State University, United States

REVIEWED BY

Erli Pang,
Beijing Normal University, China
Syed Riaz Ahmed,
Pakistan Agricultural Research Council,
Pakistan
Pei-Hsiu Kao,
The University of Melbourne, Australia

*CORRESPONDENCE

Shengli Du

dshengli@aliyun.com

Aimin Wei

waimin163@163.com

RECEIVED 29 March 2025
ACCEPTED 16 May 2025

PUBLISHED 06 June 2025

CITATION

Wu H, Yan H, Li B, Han Y, Liu N, Fan M,
Liu Y, Lyu M, Du S and Wei A (2025) GWAS
and RNA-seq reveal novel loci and
genes of low-nitrogen tolerance
in cucumber (Cucumis sativus L.).
Front. Plant Sci. 16:1602360.
doi: 10.3389/fpls.2025.1602360

COPYRIGHT

© 2025 Wu, Yan, Li, Han, Liu, Fan, Liu, Lyu, Du
and Wei. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 June 2025

DOI 10.3389/fpls.2025.1602360
GWAS and RNA-seq reveal
novel loci and genes of
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and Aimin Wei2,3*
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Academy of Agricultural Sciences, Tianjin, China, 3State Key Laboratory of Vegetable Biobreeding,
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Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
Cucumber (Cucumis sativus L.), a globally significant horticultural crop, requires

substantial nitrogen inputs due to its high nutrient demand. However, the

prevalent issues of low nitrogen use efficiency (NUE) in cultivars and excessive

fertilizer application have led to increased production costs and environmental

burdens. To identify quantitative trait nucleotides (QTNs) and genes associated

with low-nitrogen tolerance, we conducted a genome-wide association study

(GWAS) on a basis of three low-nitrogen tolerance traits and 594,066 single

nucleotide polymorphisms (SNPs) of a natural population of 107 cucumber

accessions. The transcriptome of low-nitrogen tolerant genotype (F005) and

low-nitrogen sensitive genotype (F027) were sequenced between low and

normal nitrogen treatments. Through GWAS, we identified 29 QTNs harboring

196 candidate genes, while RNA sequencing (RNA-seq) revealed 3,765

differentially expressed genes (DEGs). 24 were identified by both methods.

Among these 24 genes, 20 genes showed significant phenotype differences

among different haplotypes. These 20 genes were defined as more valuable

candidate genes for low-nitrogen tolerance. Furthermore, functional validation

of the candidate geneCsaV3_7G035390 (encoding a GATA9 transcription factor)

was performed using virus-induced gene silencing (VIGS), which demonstrated

that silencingn this gene significantly enhanced soil plant analysis development

(SPAD) and leaf of nitrogen accumulation in cucumber, indicating its negative

regulatory role in low-nitrogen tolerance. Collectively, this study provides novel

genetic resources for improving NUE in cucumber breeding programs.
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1 Introduction

Nitrogen is a vital element for life, playing a critical role in plant

growth, yield, and stress tolerance. For instance, when plants

experience nitrogen deficiency, they exhibit several characteristic

symptoms, including stunted growth, pale yellowing leaves, reduced

branching, and decreased yield (de Bang et al., 2021). Furthermore,

nitrogen metabolism is essential for plant stress resistance, as it

regulates ion balance, reduces reactive oxygen species (ROS)

production, promotes chlorophyll synthesis, and maintains

normal photosynthesis (Soualiou et al., 2023). However, in

agricultural practice, excessive nitrogen fertilization exacerbates

environmental burdens and promotes the cultivation of nitrogen-

sensitive cultivars. This issue is especially prominent in facility

vegetable cultivation, where intensive cropping systems and

continuous cropping have led to elevated nitrate levels. As one of

the most widely cultivated crops in facilities, cucumbers are

particularly susceptible due to their shallow root systems and

strong preference for both water and nitrogen (Hua et al., 2022).

Therefore, understanding the molecular mechanisms underlying

low-nitrogen tolerance in cucumbers, along with identifying QTNs

and key genes associated with low-nitrogen tolerance, represents a

promising strategy for achieving sustainable development in the

cucumber industry.

Nitrogen regime classification is critical for stress phenotyping

and genetic analysis in plants, as nitrogen demands vary across

growth stages and genotypes, requiring concentrations that

distinguish nitrogen-responsive phenotypes without causing

irreversible physiological damage. In cereal crops like wheat, low

nitrogen (LN) is defined as 70–144 kg N ha-¹ and normal nitrogen

(NN) as 170–206 kg N ha-¹, thresholds that reduce biomass by 20%

while maintaining plant viability (Cormier et al., 2013). For

hydroponic systems, nitrogen concentrations are often optimized

based on modified Hoagland nutrient solutions: for example,

Rapeseed (Brassica napus L.) uses LN (a quarter of Hoagland

solution, 3.75 mM NO3
-) and NN (full Hoagland solution, 15

mM NO3
-), where LN reduces aboveground biomass by 24-80%

(Ahmad et al., 2022); watermelon seedlings employ LN (0.75 mM

NO3
-) and NN (7.5 mM NO3

-) to characterize root growth and

nitrogen acquisition traits under controlled conditions (Zhang et al.,
Abbreviations: QTN, quantitative trait nucleotides; GWAS, genome-wide

association study; SNPs, single nucleotide polymorphism; RNA-seq, RNA

sequencing; DEGs, differentially expressed genes; VIGS, virus-induced gene

silencing; SPAD, soil plant analysis development; ROS, reactive oxygen species;

NDT, nitrogen-deficiency tolerance; PH, plant height; SDW, shoot dry weight;

qRT-PCR, quantitative real-time PCR; RNAi, RNA interference; LN, low

nitrogen; GS, glutamine synthetase; GLM, generalized linear models; MLM,

mixed linear models; MLMM, multiple loci mixed linear model; FarmCPU,

fixed and random model circulating probability unification; QEI, QTN-by-

environment interactions; QQI, QTN-by-QTN interactions; FPKM, fragments

per kilobase of transcript per million mapped reads; GO, gene ontology; NN,

normal nitrogen; LD, linkage disequilibrium; PCA, principal component analysis;

NUE, nitrogen use efficiency.
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2025). In cucumber, previous transcriptomic studies on genotypes

with contrasting low-nitrogen tolerance validated LN (3 mM NO3
-)

and NN (14 mM NO3
-) as effective concentrations to differentiate

nitrogen-responsive gene expression without compromising plant

survival (Xin et al., 2021). Building on these standards, our study

defines LN as 3.5 mM nitrate and NN as 14 mM nitrate in

hydroponic cultures, aligning with both the physiological

thresholds established in cucumber and recent GWAS research

that validated these concentrations for phenotypic and genomic

analysis of nitrogen stress tolerance.

Regarding nitrogen status evaluation, handheld chlorophyll

meters, such as SPAD meters, have proven to be valuable tools

for the rapid, non-destructive assessment of chlorophyll content

and nitrogen levels in various crops. This method is frequently

employed to diagnose the need for nitrogen fertilization, ultimately

improving agricultural efficiency and minimizing nitrogen losses

and deficiencies. For example, Li et al. (2022a) assessed nitrogen-

deficiency tolerance (NDT) in 230 rice accessions by measuring

SPAD in flag leaves under two nitrogen levels. Their study revealed

significant genetic differences between indica and japonica

subspecies, with greater SPAD variation observed under nitrogen-

deficient conditions. Similarly, plant height (PH) is commonly used

as a key phenotypic indicator to evaluate plant growth and nitrogen

response. Wang et al. (2022) employed both PH and SPAD as shoot

traits to conduct a GWAS analysis on maize under low-nitrogen

stress. In parallel, Lv et al. (2021) identified four phenotypes,

including PH, as the main low-nitrogen-induced growth response

traits in 225 rice accessions (PH, tiller number, chlorophyll content,

and leaf length). In addition, shoot dry weight (SDW) can be used as

indicators for evaluating low-nitrogen tolerance in oat varieties

(Wang et al., 2023a) sorghum (Liu et al., 2020a), and soybeans (Guo

et al., 2024).

Recent genomic studies have significantly expanded our

understanding of the genetic mechanisms that regulate nitrogen

utilization and tolerance in cucumbers. For instance, key regulatory

factors such as CsbZIP55 and CsbZIP65 have been identified

through whole-genome analyses, quantitative real-time PCR

(qRT-PCR) analysis, and transcriptional activation experiments

(Hua et al., 2023). Moreover, RNA interference (RNAi) targeting

CsIVP has been shown to enhance cucumber plants’ resilience to

both nitrogen deficiency and high-temperature stress (Yan et al.,

2022). Amino acid transporters also play a vital role in organic

nitrogen transport and plant growth. For example, Yao et al. (2023)

revealed that extracellular amino acid accumulation in the roots of

CsAAP2 mutants could disrupt the pH balance of the apoplast,

thereby affecting auxin synthesis and its distribution within roots.

Furthermore, overexpression of CsGS1 significantly enhanced LN

tolerance and improved photosynthetic parameters, chlorophyll b

content, biomass, PH, root length, nitrogen accumulation, and

glutamine synthetase (GS) activity under LN (Xin et al., 2021).

GWAS and transcriptomic analysis has proven effective in

identifying QTNs and key genes associated with low-nitrogen

tolerance in cucumbers. In a related study, Li et al. (2023a)

conducted a GWAS analysis on 88 cucumber accessions under

low-nitrogen treatment and identified 9 significant loci and 5 genes
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associated with low-nitrogen tolerance. Additionally, RNA-seq

technology has proven invaluable in identifying nitrogen-

responsive genes across various plant species, including rice

(Zhang et al., 2024; Wang et al., 2023b; Subudhi et al., 2020),

wheat (Kaur et al., 2022; Wang et al., 2021a; Sultana et al., 2020;

Zhang et al., 2021), and Arabidopsis (Qiao et al., 2022).

The integration of GWAS and transcriptomics has emerged as a

powerful strategy for deciphering the genetic architecture of

complex traits. For instance, in rice, the combined application of

GWAS and RNA-seq uncovered OsHTAS-mediated ROS-hormone

crosstalk mechanisms underlying heat tolerance (Li et al., 2023b).

Similarly, multi-omics approaches in cotton identified GhAMT2 as

a central regulator of Verticillium wilt resistance through GWAS-

transcriptomics integration (Wang et al., 2025). Notably, such

integrative GWAS-RNA-seq frameworks have also demonstrated

considerable potential in mining heat tolerance candidate genes in

cotton, as evidenced by recent advancements (Luqman et al., 2025).

These achievements demonstrate that GWAS efficiently locates

trait-associated loci, while transcriptomic dynamics reveal

spatiotemporal specificity in gene expression regulation, providing

multidimensional evidence chains for functional gene discovery.

However, cucumber low-nitrogen tolerance research remains

limited to single-omics approaches, lacking systematic integration

of genetic variation with dynamic gene expression networks.

In this study, we performed a GWAS based on phenotypic data

(PH, SPAD, and SDW) and 594,066 SNPs generated from

resequencing 107 cucumber accessions. Subsequently,

transcriptomic profiling of two contrasting genotypes (low-

nitrogen tolerant F005 and sensitive F027) was conducted to

dissect their transcriptional dynamics under nitrogen deprivation.

Through multi-omics integration, 196 candidate genes were initially

identified within 50-kb flanking regions of QTNs, while

transcriptomic profiling revealed 3,765 low-nitrogen-responsive

genes. Subsequent intersection analysis and haplotype analysis

mapped 20 high-confidence candidates. By integrating VIGS

technology, we verified that downregulation of CsGATA9

expression significantly promotes SPAD and leaf of nitrogen

accumulation under LN. The findings from this study providing a

theoretical foundation for identifying low-nitrogen response genes

and improving low-nitrogen tolerance in cucumbers.
2 Materials and methods

2.1 Plant materials and phenotype
evaluation

A total of 107 cucumber accessions (88 from our core collection

(Li et al., 2023a) and 19 newly introduced) obtained from the

Tianjin Academy of Agricultural Sciences (China) were subjected to

hydroponic cultivation for GWAS: seeds were presoaked in 55°C

water, germinated at 28°C in darkness, acclimatized in a phytotron

(25°C, 7 days), and transplanted into rectangular boxes (59 × 38 ×

14.5 cm) containing half-strength Hoagland solution; after 9 days,
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uniform seedlings were exposed to LN (2.5 mM NO3¯ + 1 mM

NH4
+;) and NN (13 mM NO3¯ + 1 mM NH4

+;) treatments for 14

days, with triplicate measurements of PH, SPAD (SPAD-502Plus,

KONICA MINOLTA), and SDW (oven-dried at 105°C/30 min

followed by 65°C/72 h). For RNA-seq analysis, two extreme

genotypes (F005: low-nitrogen tolerant; F027: low-nitrogen

sensitive) identified were cultivated in vermiculite-filled pots

under controlled humidity (60–80%): germinated seeds received

purified water irrigation for 4 days, followed by half-strength

Hoagland solution for 9 days prior to LN/NN treatments (10

days), with all experiments conducted in triplicate to ensure

reproducibility. All accessions were cultivated at the experimental

station of the Tianjin Academy of Agricultural Sciences, which is

located in Wuqing, Tianjin, China (39°25’N, 117°02’E). The

detailed concentrations of elements in the various nutrient

solutions are provided in the Supplementary Material

(Supplementary Table 1). To maintain nutrient availability, the

nutrient solutions were refreshed every five days.
2.2 RNA sequencing and data analysis

Total RNA was extracted from LN and NN treated leaf tissues

using TRIzol® reagent (Invitrogen, USA). Polyadenylated mRNA was

enriched through oligo(dT)magnetic bead selection and converted into

strand-specific RNA-seq libraries via fragmentation, first-strand cDNA

synthesis, and PCR amplification. Libraries were sequenced on an

Illumina NovaSeq 6000 platform (LC-Bio, China) with 150 bp paired-

end configuration. Raw reads were quality-filtered using cutadapt

(v1.9) with stringent parameters: adapter trimming (-a/-A), quality

trimming (Phred score < 20), and length filtering (-m 100). High-

quality reads were aligned to the Cucumis sativus reference genome

(v3; Li et al., 2019a) via HISAT2 (v2.0.4) (Kim et al., 2015) with default

splice-junction detection settings. Transcript abundance was quantified

using StringTie (v1.3.4d) (Pertea et al., 2015) in reference-guided mode

(-G annotation.gtf), with expression levels normalized as fragments per

kilobase of transcript per million mapped reads (FPKM) through

Ballgown (v2.40.0) (Frazee et al., 2015). Differential gene expression

analysis was performed using edgeR (v4.6.1) (Robinson et al., 2010)

with generalized linear models. Genes exhibiting |log2(fold change)| ≥ 1

and pvalue < 0.05 were defined as DEGs. Gene ontology (GO) analysis

was performed using the online platform OmicShare (https://

www.omicshare.com/tools), as outlined by (Mu et al., 2024). The

top 20 items (P value < 0.023) were considered to be the most

significantly enriched biological processes.
2.3 Genotyping and data filtering

The 19 newly introduced cucumber accessions were subjected

to whole-genome resequencing (Illumina NovaSeq 6000 platform)

by Novogene Co. (Beijing, China). Genomic DNA was extracted

from leaf tissues using the TIANGEN® Plant DNA Secure Kit

(DP320, China). Sequencing libraries were prepared with the
frontiersin.org
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Illumina TruSeq Nano DNA Library Prep Kit (San Diego, CA)

following manufacturer protocols. Raw sequencing data from these

accessions were merged with existing genomic data of 88 cultivars

(Li et al., 2023a). The raw data were subjected to a filtration process

to discard reads that harbored over 50% low-quality bases (quality

value < 5), in excess of 10% unidentified bases (N), as well as any

adaptor contamination. Processed reads were mapped to the

Cucumis sativus v3 reference genome (Li et al., 2019a) using

BWA-MEM (v0.7.8) (Li and Durbin, 2009) with parameters -t 4

-k 32 -M. SAMtools (v1.3) was employed for BAM file sorting (sort)

and PCR duplicate removal (rmdup), achieving a mean mapping

rate of 82.3% and average sequencing depth of 18.45× (range: 10.1–

25.3×). The SNPs were called using GATK software (McKenna

et al., 2010) and filtered by VCFtools (v0.1.16) (Danecek et al., 2011)

with parameters max-missing 0.9, maf 0.05, minDP 2, maxDP 1000,

minQ 30, minGQ 0, min-alleles 2, and max-alleles 2. Collectively,

594,066 high-quality SNPs were amassed for subsequent analysis.
2.4 Population characteristics and linkage
disequilibrium analysis

The population structure was evaluated by ADMIXTURE

(v1.23) (Alexander et al., 2009) investigate the population

structure with the number of assumed genetic clusters K ranged

from 1 to 10, and with subgroups assigned according to delta K

value. FastTree (v2.1) (Price et al., 2010) was used to construct a

phylogenetic tree using the maximum likelihood method. Principal

component analysis (PCA) was carried out using Plink (v1.9)

software (Purcell et al., 2007). LD decay analysis to identify

candidate regions was performed using PopLDdecay (v3.42)

(Zhang et al., 2019). The average R2 values of pairwise SNP

markers were calculated for all SNPs in the genome, and the

candidate region was identified where average R2 decreased to

half of the maximum value.
2.5 GWAS analysis

GWAS was carried out utilizing the recently developed

3VmrMLM model (Li et al., 2022b) on a genetic panel consisting

of 107 cucumber accessions and 594,066 SNPs. In the case of PH,

the association values were computed based on the nitrogen

response value RN_PH, which was obtained as RN_PH = (LNPH

− NNPH)/NNPH. Here, LNPH denotes the PH under LN, and NNPH

represents the PH under NN. Analogously, for the SPAD, the

association values were calculated in accordance with the nitrogen

response value RN_SPAD, which was derived as RN_SPAD =

(LNSPAD − NNSPAD)/NNSPAD, and RN_SDW= (LNSDW −

NNSDW)/NNSDW. This methodology effectively accentuates the

genetic responses of cucumber accessions to low-nitrogen stress,

facilitating the identification of crucial loci that contribute to NUE

and related traits. The R package “IIIVmrMLM” was utilized to

identify main-effect QTNs associated with RN_PH RN_SPAD, and

RN_SDW. The parameters for main-effect QTNs detection were
Frontiers in Plant Science 04
configured as follows: method = Single_env, SearchRadius = 20, and

svpal = 0.01. The population structure (Q) matrix was calculated

using admixture with k = 4, while the kinship (K) matrix was

obtained from the “IIIVmrMLM” package. Marker-trait

associations were established by applying a threshold of LOD

score ≥ 3.
2.6 Identification of candidate genes

Candidate genes related to low-nitrogen tolerance were

identified through GWAS. Putative candidate genes were located

within 50 kb upstream and downstream of the main-effect QTNs by

means of BEDTools (v2.31.0) software (Quinlan and Hall, 2010). To

identified key genes response to low-nitrogen, the candidate genes

were selected following three standards: (1) localization within

QTN regions; (2) differential expression in LN vs. NN treatments

of F005/F027; (3) significant haplotype effects (P value < 0.05) on

traits of RN_PH/RN_SPAD/RN_SDW. Based on functional

annotations, expression differences, and haplotype analysis, key

candidate genes were selected for further verification. The

haplotype analysis centered on SNPs from promoter regions

(defined as the 1-kb upstream sequence from the transcription

start site) and intragenic regions. Haplotype analysis was conducted

using the R package geneHapR (Zhang et al., 2023).
2.7 VIGS analysis

To verify the function of the identified candidate gene

CsGATA9, a VIGS system was employed. A 400-bp coding

sequence of CsGATA9 was amplified using specific primers:

forward primer 5′-GTGCGATGATTTAGCGGAACTC-3′ and

reverse primer 5′-CTTCTCCGCCTGACAATGCA-3′. The

fragment was cloned into the SnaBI restriction site of the pTRV2

vector via homologous recombination and transformed into

Agrobacterium tumefaciens strain GV3101. The transformed

Agrobacterium cultures were grown overnight in Luria-Bertani

liquid medium supplemented with appropriate antibiotics at 28°

C, and then resuspended in an induction buffer containing 10 mM

MES and 200 μM acetosyringone. When the primary roots of

germinating cucumber seeds (F005 genotype) reached 1 cm in

length, the seeds were vacuum infiltrated at 0.09 MPa for 8

minutes with a mixture of pTRSV1 and pTRSV2 vectors at a 1:1

ratio. The seeds were placed on half-strength Murashige and Skoog

solid medium containing 10 mM MES and 200 mM acetosyringone

until the presence of Agrobacterium was visible around the seeds.

Seedlings were then transferred into half-strength Hoagland

nutrient solution and grown for approximately three weeks until

TRSV2: CsPDS whitening was observed. Leaf tissues from plant of

TRSV: 00 and TRSV: CsGATA9 groups were collected for qRT-PCR

analysis. Total RNA was extracted using an RNA extraction kit

(Hlinggene, Shanghai, China) and reverse-transcribed into cDNA

using a Reverse Transcription Kit (Lablead, Fuzhou, China). Gene

expression levels were measured using SYBR Green Master (Yeasen,
frontiersin.org
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Shanghai, China) and calculated using the 2−DDCt method (Livak

and Schmittgen, 2001), with CsACTIN as the internal control

(forward primer: 5′-ATCGTGGTGATGTTGTGCCT-3′; reverse
primer: 5′-AGCAACACTGGTGGAGTTGG-3′). Plants with a

silencing efficiency greater than 70% were considered gene-

silenced lines and subjected to subsequent LN treatment. After

two weeks under LN, PH, SPAD, and leaf of nitrogen content (%)

were measured. PH was measured with a ruler, SPAD was

quantified using a chlorophyll meter (SPAD-502Plus, KONICA

MINOLTA, Inc., Japan), and nitrogen content (%) was determined

using a high-temperature combustion method with an elemental

analyzer (EA3100, Euro Vector, Italy) for both TRSV:00 and TRSV:

CsGATA9 groups. These data were used to analyze the phenotypic

effects and validate the role of CsGATA9 in low-nitrogen tolerance.
2.8 Statistical analysis

Statistical analyses were conducted using the Student’s t-tests, as

implemented in GraphPad Prism software. Significance levels were

indicated by asterisks, with *, ** and *** representing differences at P

< 0.05, P < 0.01 and P < 0.001, respectively.
3 Results

3.1 Phenotypic analysis of PH, SPAD and
SDW in response to low-nitrogen
tolerance

In this study, a phenotypic analysis was conducted on 107

cucumber accessions to evaluate PH, SPAD and SDW under LN

and NN. As shown in Figure 1, all three traits (PH, SPAD, and

SDW) exhibited significant reductions under LN compared to NN

conditions. The mean of PH, SPAD and SDW for the LN were 40.81

cm, 39.49 cm, and 4.01 g, whereas under the NN, these values were
Frontiers in Plant Science 05
45.91 cm, 64.72 cm, and 4.47g. The standard deviations for PH,

SPAD and SDW under LN were 11.16, 8.65 and 1.29, compared to

14.60, 11.95 and 1.72 under NN (Table 1). Additionally, a

significant negative correlation between PH and SPAD was

observed under both LN and NN, with correlation coefficients of

−0.09 under LN and −0.27 under NN. Notably, a significant

negative correlation of SDW with SPAD (−0.12 under LN, −0.22

under NN) while positive with PH (0.75 under LN, 0.84 under

NN) (Figure 1B).
3.2 Population structure and LD decay
analysis

The population structure of the 107 accessions was analyzed

using several complementary methods. Initially, the optimal

number of clusters (K) was determined by calculating the cross-

validation error values for K ranging from 1 to 10 (Figure 2A). The

cross-validation error reached a minimum at K=4, indicating that

four clusters best represent the population structure of the

association panel. Phylogenetic analysis further elucidated the

relationships among the 107 accessions (Figure 2B). The

phylogenetic tree revealed distinct clades corresponding to the

geographical origins of the accessions, with clear separation

between the European, Japanese, Northern China, and Southern

China types, which showed the diversity of cucumber accessions.

PCA provided additional insights into the population structure

(Figure 2C). The first two principal components (PC1 and PC2)

explained 65.03% and 13.13% of the total genetic variation,

respectively. The PCA plot demonstrated a clear separation of the

accessions, consistent with their geographical origins. The

European type (red squares) formed a distinct cluster, while the

Japanese type (green circles), the Northern China type (green

triangles), and the Southern China type (purple diamonds) were

also well-separated. LD decay analysis was conducted to evaluate

the extent of LD within the association panel (Figure 2D). The LD
A B

FIGURE 1

Phenotypic analysis of PH, SPAD and SDW in response to LN. (A) PH, SPAD and SDW for 107 cucumber accessions under LN andNN. *** denote
significance at P < 0.001, ** at P < 0.01, and * at P < 0.05. (B) Correlation analysis of PH, SPAD and SDW. The size of the circles represents the
correlation coefficient, and the gradient color indicates the direction and strength of the correlation (positive or negative).
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decay curve illustrated that r² decreased rapidly with increasing

physical distance. By applying the criterion of LD decay distance,

defined as the physical distance at which the average LD coefficient

declines to half of its maximum value, we observed that the average

LD coefficient reached this threshold at approximately 50 kb. This

rapid LD decay indicates a high level of recombination and genetic

diversity present within the association panel. In summary, the

population structure analysis revealed distinct genetic clusters

corresponding to the geographical origins of the accessions, while

the LD decay analysis indicated a significant level of genetic

diversity within the panel. These findings provide a solid

foundation for subsequent GWAS and other genetic analyses.
3.3 GWAS identified Main-effect QTNs and
candidate genes

In this study, we conducted a GWAS to identify main-effect

QTNs and their associated genes related to RN_PH, RN_SPAD and

RN_SDW. Utilizing the 3VmrMLM model, we analyzed 594,066
A

C

B

D

FIGURE 2

Population structure and LD decay analysis of the association panel consisting of 107 accessions. (A) Cross-validation error values for different
numbers of clusters (K=1-10) based on genotype data. (B) Phylogenetic trees constructed based on maximum likelihood method. (C) PCA of the 107
accessions, with different colors representing different groups: Eurasian (red squares), Japanese (green circles), North Chinese (green triangles), and
South Chinese (purple diamonds). (D) LD decay analysis of the 107 accessions.
TABLE 1 Descriptive statistics of PH, SPAD and SDW under LN and NN.

Trait Mean Maximum Minimum SD

LN_PH 40.81 74.28 13.50 11.16

LN_SPAD 39.49 70.27 29.07 8.65

LN_SDW 4.01 7.14 0.84 1.29

NN_PH 45.91 81.42 15.20 14.60

NN_SPAD 64.72 102.25 39.43 11.95

NN_SDW 4.47 7.52 1.19 1.72

RN_PH -0.07 0.76 -0.50 0.22

RN_SPAD -0.38 0.06 -0.60 0.13

RN_SDW -0.06 0.69 -0.52 0.21
LN_PH, PH under LN; LN_SPAD, SPAD under LN; LN_SDW, SDW under LN, NN_PH, PH
underNN; NN_SPAD, SPAD under NN; NN_SDW, SDW under NN; RN_PH, the nitrogen
response value of RN_PH, which was derived as RN_PH = (LNPH – NNPH)/NNPH;
RN_SPAD, the nitrogen response value of RN_SPAD, which was derived as RN_SPAD =
(LNSPAD – NNSPAD)/NNSPAD; RN_SPAD, the nitrogen response value of RN_SPAD, which
was derived as RN_SDW = (LNSDW – NNSDW)/NNSDW; Max, Maximum; Min, Minimum;
SD, std. devt; PH, measured in cm; SDW measured in g.
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SNPs across 107 cucumber accessions, revealing key genetic loci

that influence these important traits. A total of 29 main-effect QTNs

were identified; of these, RN_PH was associated with 9 QTNs,

accounting for 69.72% of the phenotypic variation, RN_SPAD was

associated with 9 QTNs that explained 69.13% of the phenotypic

variation, and RN_SDW was associated with 11 QTNs that

explained 55.23% of the phenotypic variation (Table 2).

Furthermore, the QTN located at chr7_22371357, associated with

RN_SPAD, exhibited the largest r² and LOD values. Although the

QTNs identified in this study are not identical to those reported in

previous studies, several QTNs were found in close proximity to

previously reported loci (RN_SPAD_3407 near LNC_6476 on chr3,
Frontiers in Plant Science 07
RN_PH_1111 near NAR_9927/NUpER_9927 on chr4, and

RN_SPAD_5156 and RN_SDW_9445 near NupER_5252 on chr6)

(Figure 3). This close proximity suggests that these loci may belong

to the same LD block or represent overlapping regulatory regions.

Such results support the reliability of our findings, as they partially

validate previous studies while also identifying novel QTNs that

were not detected in prior research. A total of 196 genes were

identified within the QTN regions, comprising 65 associated with

RN_PH, 62 with RN_SPAD and 69 with RN_SDW (Supplementary

Table 2). Notably, the gene CsaV3_2G013230, which is homologous

to At5G43700, is considered a key player in nitrogen metabolism

(Gaudinier et al., 2018). The research demonstrated through yeast
TABLE 2 Main-effect QTNs associated with the traits of RN_PH, RN_SPAD and RN_SDW detected in 107 cucumber accessions.

QTNs name Trait Chromosome Position LOD variance r2(%) P-value

RN_SDW_8148 RN_SDW chr1 168148 4.292 0.0014 3.3208 5.11E-05

RN_SDW_5932 RN_SDW chr1 10945932 6.2983 0.0018 4.2901 7.22E-08

RN_PH_5768 RN_PH chr1 16415768 11.9907 0.0050 10.4745 1.08E-13

RN_SDW_6980 RN_SDW chr1 22876980 10.0697 0.0021 4.7877 8.53E-11

RN_PH_7565 RN_PH chr1 32007565 6.7266 0.0032 6.6681 1.88E-07

RN_PH_0785 RN_PH chr2 3290785 6.5938 0.0032 6.5906 2.55E-07

RN_SDW_6888 RN_SDW chr2 3766888 7.3876 0.0026 6.106 4.10E-08

RN_PH_3232 RN_PH chr2 5883232 8.892 0.0044 9.2013 1.56E-10

RN_SPAD_1089 RN_SPAD chr2 7271089 9.112 0.0013 7.4846 9.31E-11

RN_SPAD_4805 RN_SPAD chr2 10844805 3.2135 0.0005 2.8818 1.20E-04

RN_SDW_5702 RN_SDW chr2 14775702 4.4637 0.0015 3.4588 3.44E-05

RN_SDW_5683 RN_SDW chr2 20735683 5.9514 0.0013 3.1006 1.65E-07

RN_SPAD_3407 RN_SPAD chr3 7043407 7.1409 0.0012 6.7425 7.23E-08

RN_SDW_2728 RN_SDW chr3 13592728 6.5902 0.0022 5.196 2.57E-07

RN_SPAD_9016 RN_SPAD chr3 16729016 5.9264 0.0007 4.2146 1.75E-07

RN_PH_7433 RN_PH chr3 18577433 5.0991 0.0024 5.0559 7.96E-06

RN_SPAD_8948 RN_SPAD chr4 368948 6.1673 0.0006 3.375 9.86E-08

RN_SDW_8702 RN_SDW chr4 7698702 11.3788 0.0038 8.7074 4.53E-13

RN_PH_1107 RN_PH chr4 22511107 8.1782 0.0042 8.7084 6.64E-09

RN_SPAD_2691 RN_SPAD chr5 282691 8.5069 0.0013 7.2181 3.11E-09

RN_SDW_1534 RN_SDW chr5 6401534 4.8351 0.0016 3.5991 1.46E-05

RN_SPAD_9438 RN_SPAD chr5 23719438 10.0582 0.0013 7.5385 8.75E-11

RN_SPAD_5156 RN_SPAD chr6 465156 13.2414 0.0026 14.4581 5.78E-15

RN_SDW_9445 RN_SDW chr6 629445 7.4952 0.0027 6.2755 3.20E-08

RN_PH_6807 RN_PH chr6 16006807 6.9138 0.0033 6.8065 1.22E-07

RN_PH_8892 RN_PH chr6 22118892 8.817 0.0046 9.5245 1.53E-09

RN_PH_0481 RN_PH chr7 16520481 15.7609 0.0032 6.6938 1.60E-17

RN_SDW_4109 RN_SDW chr7 20814109 9.9489 0.0028 6.392 1.13E-10

RN_SPAD_1357 RN_SPAD chr7 22371357 30.8431 0.0027 15.2159 1.44E-31
variance, the variance of each QTN; r2 (%), the proportion of total phenotypic variance explained by each QTN; P-value, calculated from LOD score using c2 distribution.
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one-hybrid experiments that IAA4 regulates essential processes in

nitrogen metabolism, including nitrogen transport, assimilation,

and signaling. Furthermore, we also identified a growth regulator,

CsaV3_6G000720, which is similar to a growth regulator factor

(GRF). GRFs are an important transcription factor family in plants,

with GRF4 shown to regulate multiple nitrogen metabolism genes

and interact with DELLA proteins, enhancing cereal yield and

exacerbating dwarfism in rice (Li et al., 2018). These findings

suggest that genes from the GRF family may promote adaptive

responses to LN by regulating nitrogen metabolism-related gene

expression. These consistent research results with previous studies

indicate the reliability of GWAS.
3.4 Transcriptional analysis of low-nitrogen
tolerant and low-nitrogen sensitive
cucumber genotypes under low-nitrogen
tolerance

Typically, F027 showed a remarkable growth inhibition, whereas

F005 exhibited a slight growth inhibition under LN. Significantly

lower PH and SPAD for F027 compared to F005 under LN whereas,

no significant differences were observed under NN (Figure 4A-B).

F005 demonstrated a higher capacity for nitrogen accumulation

under LN in previous study, consistent with its observed higher PH

and SPAD under these conditions. The strong tolerance exhibited by

F005 may be attributed to more efficient nitrogen utilization

mechanisms. To further explore transcriptional differences under

LN, we analyzed the expression profiles of leaf tissues from two

parental lines (F005 and F027) under LN and NN. After filtering out

low-quality sequences and adapters, an average clean dataset of 6.43

gigabases per sample was obtained, with a Q30 mean of 97.70%. The
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average unique mapping rate across all samples was 83.2%

(Supplementary Table 3). DEGs in leaves were identified by

comparing two nitrogen levels (F005_LN vs. F005_NN and

F027_LN vs. F027_NN) and two genotypes (F005_LN vs.

F027_LN) (Supplementary Tables 4-6). The analysis revealed

distinct gene expression profiles induced by LN in F005 and F027.

Specifically, F005 exhibited a greater number of upregulated genes,

whereas F027 showed a higher number of downregulated genes. This

significantly impacted nitrogen metabolism-related pathways and

genes. In contrast, when comparing LN to NN, 3,167 DEGs were

regulated in F005 and 598 in F027. Moreover, 3,318 DEGs were

identified exclusively in both genotypes under LN, surpassing other

combination comparisons (Figure 4C). These results suggested that

DEGs identified under LN, distinguishing low-nitrogen tolerant and

low-nitrogen sensitive cucumber genotypes, merit further

investigation. Venn diagram analysis (Figure 4D) revealed unique

and overlapping gene sets between the two accessions under different

nitrogen conditions. Notably, 91 common genes were identified at the

intersection of the three groups, which are likely crucial in the

response to LN, and CsNRT2.5 was pinpointed in the differential

comparison groups of all three groups and exhibited upregulated

expression across all groups (Supplementary Table 7). GO

enrichment analysis of these 91 genes indicated significant

enrichment in biological processes and molecular functions

associated with the LN response, including nitrogen metabolic

regulation, and amino acid synthesis and transport (Supplementary

Table 8, Figure 4E). These findings imply that the low-nitrogen

tolerant genotype F005 employs enhanced transcriptional regulation

to mitigate nitrogen limitation. These insights provide a new

understanding of the tolerance mechanisms in cucumbers under

LN stress and offer potential molecular targets for future research

aimed at improving nitrogen efficiency in crops.
FIGURE 3

Chromosomal distribution of main-effect QTNs associated with RN_PH, RN_SPAD and RN_SDW. The numbers on the left of a chromosome
indicate the physical locations of the corresponding main-effect QTNs, measured in Mb. Main-effect QTNs associated with RN_PH are marked in
green, RN_SPAD are marked in red, and RN_SDW are marked in brown. QTNs previously reported in published literature are marked in purple and
underlined (Li et al, 2023a).
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3.5 Screening key genes for low-nitrogen
tolerance and the functional identification
of CsGATA9

The GWAS analysis identified 196 genes associated with RN_PH,

RN_SPAD and RN_SDW. Additionally, RNA-seq analysis across two

comparisons (F005_LN vs. F005_NN and F027_LN vs. F027_NN)

revealed a total of 3765 DEGs. Notably, 24 genes overlapped between

the DEGs and the GWAS-identified genes. According to the haplotype

analysis of 24 genes, 20 genes showed significant phenotype differences

among different haplotypes (Table 3). Among these genes, 16 genes

were differential expressed in the comparisons of F005_LN vs.

F005_NN, only 1 gene in F027_LN vs. F027_NN, 3 genes were

differential expressed in the both comparisons. CsaV3_7G035390 and

CsaV3_7G033010were upregulated in the comparisons of F005_LN vs.

F005_NN but downregulated in the comparisons of F027_LN vs.

F027_NN. Conversely, CsaV3_3G008170 was consistently

upregulated across both two comparisons (Figure 5A).

CsaV3_7G035390 was mapped to chromosome 7 (Chr7) between

genomic positions 22371588 and 22373765 bp, encoding a GATA9

transcription factor. Haplotype analysis of the GATA9 transcription

factor revealed a SNP that resulted in two haplotypes among the 107

accessions: Hap.1 (T) and Hap.2 (A). Significant phenotypic differences

in RN_SPADwere observed between two haplotypes (Figure 5B-C). To

investigate the potential role of CsaV3_7G035390 in low-nitrogen

tolerance in cucumber, a tobacco ringspot virus (TRSV)-based VIGS

system was employed. The cucumber phytoene desaturase gene
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(CsPDS) served as a positive control (TRSV: CsPDS), resulting in a

photo-bleaching phenotype (Figure 5D). Plants infected with the

empty TRSV vector (TRSV: 00) were used as the negative control.

qRT-PCR analysis confirmed that the expression levels of

CsaV3_7G035390 were significantly lower in VIGS plants compared

to the negative control (Figure 5E), indicating successful silencing of the

target gene. Under low-nitrogen treatment for two weeks, silencing of

CsaV3_7G035390 led to significant phenotypic changes. Compared

with the TRSV: 00 group, the TRSV:CsaV3_7G035390 plants exhibited

a remarkable reduction in PH and a notable increase in SPAD and

nitrogen content of leaf (Figure 5F). These results suggest that

CsaV3_7G035390 plays a critical role in nitrogen allocation. The

reduction in PH implies that silencing this gene may impair stem

growth under nitrogen-deficient conditions. Conversely, the increased

SPAD and nitrogen content in the leaves reflect a compensatory

mechanism, where nitrogen resources are redistributed to enhance

chlorophyll synthesis and sustain photosynthetic activity.
4 Discussion

4.1 Novel genetic loci related to cucumber
low-Nitrogen tolerance at the seedling
stage were mined by GWAS

NUE refers to a plant’s ability to effectively absorb and utilize

nitrogen under specific nitrogen supply conditions. Plant growth
E

A

C

F027_LN F005_LN

D

BF027_NN F005_NN

FIGURE 4

DGEs between two genotypes (F005, F027) under LN and NN. (A) Phenotypic presentation of F027 and F005 after nitrogen treatment. The scale bar
represents 16 cm. (B) PH and SPAD for F027 and F005 after nitrogen treatment, with **** indicating significance at P < 0.0001, ** denote
significance at P < 0.01, and “ns” indicating no significant difference. (C) Numbers of up- and downregulated DEGs under LN and NN conditions in
F005 and F027. (D) Venn diagram analysis of line F005 and F027 under LN and NN. (E) GO analysis of 91 DEGs in (D), the size of the circles
represents the number of genes, while the color gradient indicates the magnitude of the P value.
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traits, such as PH, SPAD and SDW, are key phenotypic indicators

used to assess plant nitrogen response (Guo et al., 2022; Fu et al.,

2019; Hou et al., 2021). In this study, a significant reduction in PH,

SPAD and SDW were observed in 107 cucumber seedlings after two

weeks of low- nitrogen treatment, indicating that nitrogen

starvation inhibited cucumber seedling growth and restricted

chlorophyll synthesis. This result is consistent with findings in

rice (Lv et al., 2021) and maize (Wang et al., 2022). Further analysis

revealed that the low-nitrogen tolerant line F005 exhibited a

significant growth advantage under LN, with higher PH and

SPAD compared to the low-nitrogen sensitive line F027.

Additionally, F027 showed noticeable chlorosis after two weeks of

LN treatment, in contrast to F005. These results are in agreement

with our previous study (Li et al., 2023a), which showed that F005

accumulated significantly more nitrogen in its shoot under LN

than F027.

In cucumber GWAS studies, traditional analysis models are

commonly used. However, LN tolerance is a complex agronomic

trait potentially controlled by multiple loci. Most GWAS methods

rely on single-marker analysis, which require stringent P-value

correction. As a result of these rigorous significance tests, some

important association loci may be excluded. In this study, we

adopted a 3VmrMLM method based on multi-locus model to

avoid false positives. Previous studies have shown that using
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mrMLM improves the efficiency and robustness of association

analysis (Wang et al., 2016). The multi-locus model enhances the

power of association analysis, enabling the identification of more

loci associated with target traits. a novel GWAS model based on the

mrMLM framework, known as 3VmrMLM, has been developed to

further interpret genotype effects. Using this approach, we identified

29 QTNs significantly associated with RN_PH, RN_SPAD and

RN_SDW, explaining between 2.88% and 15.22% of the

phenotypic variation. Specifically, the SNP chr7_22371357, which

had an additive effect, and SNP chr6_465156, which had a

dominant effect, contributed the most to the RN_SPAD

phenotype, accounting for 15.22% and 14.46%, respectively. These

loci may represent the most promising candidates for marker-

assisted selection (MAS). We compared our findings with

previous studies on LN tolerance in cucumber. The RN_PH locus

at chr4_22511107 identified in our study is close to the previously

reported NAR_9927 and NUpER_9927 (Li et al., 2023a).
4.2 Roles of DEGs in low-nitrogen
tolerance in cucumber

In this study, we performed transcriptome analysis of cucumber

seedlings from low-nitrogen tolerant line F005 and low-nitrogen
TABLE 3 Annotation and haplotype analysis of 20 candidate genes.

Gene_ID Haplotype No. Haplotype traits Regulation Significant

CsaV3_1G000260 3 RN_SDW, RN_SPAD down yes in F5

CsaV3_1G029650 3 RN_SDW up yes in F5

CsaV3_1G036980 3 RN_SDW up yes in F5

CsaV3_2G007460 4 RN_SPAD up yes in F5

CsaV3_2G013230 2 RN_SDW up yes in F5

CsaV3_3G008180 2 RN_SDW down yes in F5

CsaV3_3G008170 2 RN_SPAD up yes in F5&F27

CsaV3_4G000610 2 RN_SPAD up yes in F5

CsaV3_4G000620 2 RN_SPAD up yes in F5

CsaV3_4G031970 2 RN_SPAD up yes in F5

CsaV3_5G000590 2 RN_SPAD up yes in F5

CsaV3_5G028580 2 RN_SPAD up yes in F5

CsaV3_5G028620 2 RN_SPAD up yes in F5

CsaV3_5G000530 2 RN_SPAD up yes in F27

CsaV3_6G038670 2 RN_SPAD up yes in F5

CsaV3_7G033020 2 RN_SPAD down yes in F5

CsaV3_7G035350 2 RN_SPAD up yes in F5

CsaV3_7G035430 2 RN_SPAD up yes in F5

CsaV3_7G033010 2 RN_SPAD up yes in F5&F27

CsaV3_7G035390 2 RN_SPAD up yes in F5&F27
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sensitive line F027 under 10 days of nitrogen deprivation

conditions. RNA-seq analysis identified 91 DEGs common to all

three comparison groups. GO enrichment analysis revealed the top

20 enriched GO terms for these 91 genes, offering valuable insights

into the molecular mechanisms underlying cucumber’s adaptation

to LN. Notably, the “cinnamic acid metabolic process in

phenylpropanoid metabolism,” a conserved signaling pathway,

was significantly enriched in the low nitrogen-treated

transcriptome, consistent with previous studies (Zhao et al.,

2015), thereby confirming the reliability of our data. Furthermore,
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enriched pathways such as “urea transport” and “cellular response

to nitrate” suggest that these DEGs play a crucial role in nitrogen

uptake and utilization. Of particular interest, the CsNRT2.5 was

identified for the first time in this transcriptomic study of long-term

nitrogen deprivation, exhibiting significant upregulation across all

three comparison groups. The nitrate transporter AtNRT2.5 is a

high-affinity plasma membrane nitrate transporter that plays a

critical role in severe nitrogen starvation in adult plants. Under

nitrogen starvation, the expression of AtNRT2.5 is upregulated, and

after long-term deprivation, it is most abundant among seven NRT2
TRSV: CsPDS TRSV: 00 TRSV: CsaV3_7G035390

3 
3 

cm

3  
6 

cm

3 
6 

cm

C

D

CsaV3_7G035390 (5'->3')

BA

F

E

FIGURE 5

Candidate genes and functional validation of CsGATA9 by VIGS. (A) Heatmap showing the expression levels (FPKM) of candidate genes. The genes ID
marked black across F005_LN vs. F005_NN, marked green across F027_LN vs. F027_NN, the overlap genes of two group marked orange. (B) Haplotype
analysis of CasV3_7G035390 (CsGATA9), showing the expanded upstream 1 kb region and the distribution of different haplotypes (Hap. 1 and Hap. 2). (C)
Boxplot showing the phenotypic performance of the two haplotypes of CsGATA9 in RN_SPAD and RN_PH. (***P<0.001 and “ns” indicating no significant
difference). (D) Phenotypic differences among TRSV: CsPDS, TRSV: 00, and TRSV: CsGATA9 cucumber plants under low-nitrogen treatment for two weeks.
TRSV: CsPDS plants, used as a positive control, exhibited typical chlorotic leaves, indicating the effectiveness of the TRSV system. TRSV: CsGATA9 plants
showed reduced growth compared to TRSV:00 plants. (E) Relative expression levels of CsGATA9 in leaves of TRSV:00 and TRSV: CsGATA9 plants, measured
by qPCR 14 days after viral inoculation. A significant reduction in CsGATA9 transcript levels confirms successful gene silencing (***P < 0.001). (F) Quantitative
comparison of PH, SPAD and leaf of nitrogen content(%) between TRSV:00 and TRSV:CsGATA9 plant sunder LN. Plant height in TRSV:CsGATA9 plants was
significantly reduced, while SPAD values and nitrogen content of leaf(%) were significantly increased compared to TRSV:00 plants (*P<0.05 and **P<0.01).
Each bar represents the mean ± SD of three independent experiments, with three biological 867 replicates per experiment (n=3). Statistical significance was
determined using Student’s t-test.
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family members in the shoots and roots of adult plants (Lezhneva

et al., 2014). A growth analysis of multiple NRT2.1, NRT2.2,

NRT2.4, and NRT2.5 mutants revealed that AtNRT2.5, in

conjunction with NRT2.1, NRT2.2, and NRT2.4, ensures efficient

nitrate uptake and participates in the phloem loading of nitrate

during the redistribution process, supporting the growth of

nitrogen-starved adult plants. Ruan et al. (2019), through root

morphology, amino acid, and nitrogen-related gene expression

analysis, evaluated the response mechanisms of different tea tree

varieties to soil nitrogen spatial heterogeneity. They found that the

gene CsNRT2.5, involved in nitrogen transport and assimilation,

was upregulated in nitrogen-efficient varieties and downregulated

in inefficient varieties, suggesting that CsNRT2.5 plays a key role in

the adaptation to soil nitrogen spatial heterogeneity in tea trees.

Moreover, NRT2.5 has been shown to be expressed in roots, leaves,

and seeds in various plants and interacts with NAR2.1 as well as

several transcription factors to mediate nitrate signaling (Liu et al.,

2020b). These findings suggested that CsNRT2.5may play a key role

of nitrogen transport in cucumber under LN.
4.3 Novel genes related to cucumber low-
Nitrogen tolerance at the seedling stage
were identified by GWAS and RNA-seq

Thus far, only a few reports have identified the genes associated

with cucumber low-Nitrogen tolerance, especially via the GWAS

method. Our integrated multi-omics approach uniquely identified 20

high-confidence candidate genes, a strategy not previously reported in

cucumber low-nitrogen studies. In the present study, a total of 196

genes were identified in 29 QTN regions for the three low-nitrogen

tolerance related traits. To further reduce the number of candidate

genes, we integrated the results of the GWAS and RNA-seq analysis,

and detected 24 potential genes for the low-nitrogen tolerance traits.

Among them, several genes involved in low-nitrogen tolerance that

were previously reported in other crops. For example, TaWRKY46

improves drought resistance in wheat through both ABA-dependent

and -independent pathways (Li et al., 2020). AtWRKY46 regulates

lateral root development in Arabidopsis under salt stress (Ding et al.,

2014), and GmWRKY46 negatively regulates phosphorus tolerance in

soybean by altering root morphology (Liu et al., 2022).AtWRKY46 also

enhances plant tolerance to ammonium toxicity by regulating protein

N-glycosylation and IAA content (Di et al., 2021). In our study,

CsaV3_3G008170 encoding a WRKY46 protein was associated with

the RN_SPAD traits, so it was identified as a strong candidate gene.

GATA transcription factors, which are evolutionarily conserved,

specifically recognize WGATAR sequences. Recent studies have

highlighted their role in nitrogen metabolism regulation. For

example, Wu et al. (2024) discovered an excellent haplotype,

GATA8-H, in modern rice varieties. Under LN, OsGATA8-H

promotes the expression of OsAMT3.2, facilitating ammonium

uptake in rice and improving NUE and yield. Under high nitrogen

conditions, OsGATA8-H also promotes the expression of OsTCP19,

enhancing the development of effective tillers and reducing ineffective

tillers, thereby improving yield and NUE. Zhang et al. (2020)
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demonstrated that GmGATA58 is induced by nitrogen levels and

plays a key role in regulating chlorophyll synthesis in soybean.

Overexpression of GmGATA58 in the Arabidopsis thaliana ortholog

AtGATA21mutant (gnc) restores the green phenotype by upregulating

genes involved in chlorophyll biosynthesis, thereby increasing

chlorophyll content and indirectly enhancing the net photosynthetic

rate. Therefore, CsaV3_7G035390, which encodes the GATA9 protein

identified in this study, is also considered a strong candidate gene. In

addition, the gene CsaV3_1G000260 encoding NAC domain-

containing protein was identified, and its Arabidopsis homolog

AT2G33480 is believed to be related to nitrogen metabolism

(Gaudinier et al., 2018), phosphorus metabolism (Hammond et al.,

2003), and cold tolerance (Lee et al., 2005).

In addition, two genes involved in ion transport were found to be

associated with low-nitrogen tolerance. Wang et al. (2021b)

demonstrated that CNGC15 has the function of a calcium ion

permeation channel, which interacts with the nitrate receptor

NRT1.1 to constitute a molecular switch that, upon the formation or

dissociation of the NRT1.1-CNGC15 complex, acts as an ion

permeation channel, modulation of calcium channel activity of

CNGC15 by sensing nutrient status. The studydemonstrated that

CNGC15 has the function of a calcium ion permeable channel,

which interacts with the nitrate receptor NRT1.1 to form a

molecular switch. When the NRT1.1-CNC15 complex is formed or

dissociated, the calcium channel activity of CNGC15 is regulated by

sensing the nutritional status. Different nutrients in plants are not

independently regulated Research has found that there is a synergistic

regulatory mechanism between nitrogen, phosphorus, and potassium

to achieve the balance of different nutrients in plants. The Potassium

channel AKT1 gene is involved in potassium uptake by plant roots.

OsAKT1 was specifically induced by NO3
- (Teng et al., 2025). Fang

et al. (2020) found that the close relationship between K+ and NO3- is

mediated by AtNRT1.1. We further identified two ion transport-related

genes: CsaV3_5G000590 (encoding a cyclic nucleotide-gated channel)

and CsaV3_1G029650 (encoding a potassium channel AKT1). These

findings suggest that ion transport mechanisms may critically

contribute to low-nitrogen adaptation in cucumber. We also

identified CsaV3_2G013230 and CsaV3_5G028620, encoding a

auxin-responsive and Auxin efflux carrier protein that are likely to

be involved in the auxin regulatory pathway in cucumber

nitrogen metabolism.

In this study, we selected CsGATA9 as a strong candidate gene for

further analysis. The haplotype analysis showed that one SNP existed in

the promoters. Based on the SNP, the 107 cucumber accessions were

clustered into two haplotypes, Hap.1 with 96 accessions andHap.2 with

8 accessions. Further correlation analysis showed that the RN_SPAD

was significantly higher in Hap.2 than Hap.1, implying that CsGATA9

might play a vital role in low-nitrogen tolerance. We then knocked-

down the expression of CsGATA9 in cucumber seedlings via VIGS

technology, and found that silencing CsGATA9 led to a reduction in

PH, while SPAD and leaf nitrogen accumulation significantly

increased. This is consistent with the results of our phenotypic

correlation analysis which revealed that a significant negative

correlation between PH and SPAD under LN stress (correlation

coefficient: −0.09). Similar conclusions have been reported in rice.
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For example, Liu et al. (2021) conducted large-scale field experiments

over three consecutive years under two nitrogen conditions (low and

medium nitrogen) on NILOsTCP19-H series and its corresponding

recipient parent Kos. The field trials consistently showed that under

low and medium nitrogen conditions, NILOsTCP19-H plants exhibited

more tillers, higher 1000-grain weight, and shorter PH compared to the

Kos plants. These results indicate that the gene regulates plant growth

by limiting certain growth processes (such as height increase) and

reallocating resources to optimize nitrogen metabolism and growth.

However, how CsGATA9 regulates nitrogen allocation to balance plant

growth and nitrogen accumulation remains to be further investigated.

To our knowledge, this is the first study to integrate GWAS and RNA-

seq for dissecting low-nitrogen tolerance in cucumber, identifying

CsGATA9 as a negative regulator.

The integration of genetics and multi-omics approaches,

particularly extending natural variation analysis to molecular

mechanisms, is critical for unraveling plant growth, adaptation,

and developmental processes (Ahmed et al., 2024). Building on this

paradigm, our study synergized GWAS and RNA-seq to analyze

low-nitrogen tolerance in cucumber. Through GWAS, we identified

multiple QTNs significantly associated with nitrogen stress

responses, while RNA-seq profiling under contrasting nitrogen

regimes revealed dynamic transcriptional reprogramming in

roots. Cross-omics intersection narrowed 196 candidate genes

within QTN flanking regions to 24 high-confidence targets, with

haplotype analysis further pinpointing 20 key candidates. Crucially,

VIGS-mediated silencing of CsGATA9 confirmed its role in

balancing growth suppression (reduced plant height) and

nitrogen allocation (enhanced SPAD and leaf nitrogen

accumulation) under low nitrogen. Our findings underscore the

power of coupling population-scale genetic variation with

spatiotemporal transcriptomic dynamics to bridge genotype-

phenotype gaps in complex stress tolerance traits.
5 Conclusion

Using a panel of 107 cucumber accessions, the low-nitrogen

tolerance traits of PH, SPAD and SDW were assessed. Phenotypic

characterization analysis revealed significant differences among these

three traits. GWAS and RNA-Seq was subsequently employed to map

genetic loci associated with nitrogen tolerance phenotypes, and

identified 29 QTNs and 20 candidate genes. Of them, CsGATA9 was

experimentally confirmed to play a vital role in low-nitrogen tolerance.

These results can provide elite loci and gene resources to aid in the

genetic improvement of low-nitrogen tolerance in cucumber.
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