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The authenticity of corn seeds is critical to yields and their market value. The

screening of corn ears is an important step in the processing of corn seeds. In

order to protect the intellectual property rights of corn varieties and realize

intelligent ear screening, this article proposes an improved EfficientNet

lightweight model, which uses deep learning technology to classify and

identify corn ear images. First, 6529 RGB images of corn ears of five varieties

were collected to construct a data set. Secondly, the number of MBConv

modules in the EfficientNetB0 model was reduced, and the CBAM attention

mechanism and dilation convolution were introduced to enhance the feature

extraction capability. Finally, the Swish activation function was used to improve

the stability of gradient transfer, and the SCD_EFTNet model was proposed.

Experiments show that the proposed model has obvious advantages compared

with mainstream models in indicators such as Recall, Precision, mAP, and

inference time, and its mAP reaches 98.11%. The phenotypic characteristics of

corn ears can be used to better classify and identify different varieties of corn,

providing a reference for intelligent sorting of corn ears.
KEYWORDS

corn ear, variety identification, classification, EfficientNetB0, CBAM, dilated convolution
1 Introduction

As a widely planted crop in the world, corn is main food source and one of important

industrial raw materials. Germplasm resources are an integral part of national food security

and directly affect crop yield and quality. In developing countries such as China, Brazil,

India, corn seeds IPR(Intellectual Property Rights) infringement, fake seeds and inferior

seeds have occurred from time to time, causing heavy losses to breeding companies and

farmers (Figueiredo et al., 2019; Auriol et al., 2023; Faria-Silva and Baião, 2023). Seeds are

prone to confusion during planting, harvesting, transportation, storage and other

production processes, and seed purity will affect genetic stability and its market value.

Variety identification plays a crucial role in seed production, processing and marketing,

which can protect the IPR of varieties and safeguard the interests of enterprises and farmers
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(Peschard and Randeria, 2020). On the other hand, the classification

and screening of corn ears is an essential and important link in seed

production and selection of new varieties. Traditional corn ear

screening is labor-intensive, difficult to distinguish manually, and

prone to errors. Therefore, there is an urgent need to develop a fast

and accurate method for corn ear identification to improve

the efficiency.

The identification of crop seed or disease by machine vision

methods is mainly divided into two categories. One is to extract the

features of the RGB images of seeds such as morphology, color,

texture, etc., and then use machine learning methods such as BP

neural network, k-nearest neighbor algorithm, and support vector

machine to identify (Mallah et al., 2013; Koklu and Ozkan, 2020;

Xiong et al., 2021). The other is spectral imaging technology, which

extracts characteristic band information through near-infrared

spectroscopy (Bai et al., 2020) or hyperspectral technology (Xu

et al., 2023), and then combines PCA, partial least squares, etc. to

identify the variety and authenticity of corn kernels.

In recent years, computer vision and deep learning technologies

have developed rapidly and have been widely used in the

identification of rice (Qiu et al., 2018), soybean (Zhu et al., 2020),

pepper (Tu et al., 2018) and other crops, as well as in the process of

grain purity, quality, and grade detection. In the field of plant

protection, scholars have conducted multiple research projects on

crop disease identification (Durmus et al., 2017; Deepalakshmi

et al., 2021; Kaur et al., 2022). In the field of food safety, scholars

have conducted research on geographical origin identification and

traceability of agricultural products (Gao et al., 2019; Yan

et al., 2020).

Compared with the complex process of feature extraction in

machine learning, deep learning algorithms can automatically

extract image features, and the extracted features are more

effective and labor saving, so the recognition accuracy can be

greatly improved. Convolutional Neural Network (CNN) is the

representative of deep learning. It has the characteristics of self-

learning, self-adaptation and strong generalization ability. In recent

years, it has achieved satisfactory results in image classification,

target detection, and face recognition (Traore et al., 2018;

Veeramani et al., 2018; Nie et al., 2019). Most of the researchers

achieved better performance and higher recognition rate by

adjusting the parameters and network structure of the original

CNN network. In recent years, precise detection technology of crop

phenotype based on computer vision and deep learning has played

an important role and has attracted widespread attention. Zhao

(2021) et al. (Zhao et al., 2021) used the improved mobilenetV2

network to classify and identify soybean seeds with surface defects.

The proposed sorting system can achieve high-precision and low-

cost applications, with a total sorting accuracy of 98.87%. The

picking speed is 222 seeds per minute. Tu (2021) et al. (Tu et al.,

2021) adopted VGG16 and the transfer learning method, and

proposed a non-destructive, high-efficiency, and low-cost

identification method of single corn seed by scanning images of

germ and non-germ surfaces of JINGKE 968. In order to detect fake

corn seeds, Zhang et al. (2024) (Zhang et al., 2024) used

hyperspectral and deep learning technologies to propose a deep
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one-class learning (OCL) network for seed fraud detection. The

results show that the method has a mean accuracy of 93.70% for

receiving real varieties and 94.28% for rejecting fake varieties, which

is superior to several existing state-of-the-art OCL models. To

achieve corn seed quality classification, Chen et al. (2022) (Chen

et al., 2022) propose an improved ViT model SeedViT. The

feasibility of SeedViT for classifying corn seed quality was studied

and compared with DCNN and traditional machine learning

algorithms, the result showed that SeedViT can be a new and

novel way for maize seed manufacturing.

For the identification of corn varieties, previous research mainly

focused on corn kernels. Although the identification of corn ears

has not been common yet, Corn ears do contain rich genetic trait

information, such as ear type aspect ratio, rows per ear, kernels per

rows, kernels per ear,and kernel color, convex tip, axis section, etc

(Warman et al., 2021; Zhou et al., 2021; Shi et al., 2022). These

characteristics can be used to identify the authenticity of corn

varieties. At the same time, although previous studies have

confirmed the effectiveness of CNN in seed identification, they

mainly implemented classification tasks based on large models and

paid less attention to lightweight models. Large models have

problems such as vanishing gradients, high computational costs,

and large memory requirements (Tan and Le, 2019). The current

trend is to implement lightweight architectures without affecting

performance (Asante et al., 2024) (Heuillet et al., 2023).

Based on this, this study collected three-channel RGB images offive

varieties of corn ears, improved its MBConv module based on

EfficientNetB0, introduced the CBAM attention mechanism and

dilated convolution technology, and replaced the ReLU function with

the Swish activation function in the shared MLP, proposed a

SCD_EFTNet lightweight network to identify corn varieties through

ear phenotypic characteristics. The work of this article mainly includes

data collection and preprocessing, simplification of the EfficientNetB0

model, training and parameter fine-tuning of the SCD_EFTNet model,

ablation experiments on the strategies adopted in the model, and

comparison with other mainstream models.

The remaining sections of this paper are structured as follows:

The “Materials and Methods” section delineates the datasets and

methodologies employed in this study. The “Results and

Discussion” section systematically presents experimental findings,

provides critical analysis of the outcomes, and examines potential

limitations encountered during the investigation. Finally, the

“Conclusion” section synthesizes key discoveries and their

broader implications for the field.
2 Materials and methods

2.1 Experimental samples

In this paper, the experimental materials were selected from five

different varieties of corn ears produced by Mizhou Seed Industry

Co., Ltd. in Zhucheng City, Shandong Province, including KONUO

58, HUIYU 18, JINYU 118, LIYUAN 960, AND TIEYAN 630.

Due to breeding needs, there is a certain genetic relationship
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between the five varieties, which makes it difficult to identify them

manually. For each corn variety, the ears with intact phenotypes

were harvested, and a Canon camera EOS 80D was fixed on a self-

made stand for fixed-focus photography. The ears were placed

horizontally on black light-absorbing flannel for photography, so

that the background of the photo was black. Each corn ear rotates

randomly around the cob and takes 3 pictures, resulting in a total of

6529 images, and the original images with a resolution of 3984 ×

2656 pixels were obtained. The third library PIL (Python Image

Library) of Python was used to convert the images into 500*500

pixels and the PNG format. The image examples of corn ears

from different varieties are shown in Figure 1. All images were
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divided into training set, validation set, and test set according to the

ratio of 7:2:1. The number of the images in the dataset is shown

in Table 1.

Sufficient training set samples can avoid over-fitting and

effectively improve the recognition rate and stability of the model,

so data augmentation is often used to expand the data set (Shorten

and Khoshgoftaar, 2019). In our experiment, we mainly adopt

random rotation, scaling 0.2 times, horizontal flipping, increasing

or decreasing exposure and other operations on the training set. The

augmented images and the original image samples are used for

training, which can further improve the robustness and adaptability

of the model.
（a）HUIYU18 （b）JINYU118 （c）KENUO58

（d）LIYUAN296 （e）TIEYAN630

FIGURE 1

Images of corn ears from five varieties. (a–e) represent different varieties of corn.
TABLE 1 Numbers of the original image dataset.

Images for modeling Training set Validation set Testing set Total

HUIYU18 906 262 149 1317

JINYU118 939 268 152 1359

KENUO58 875 250 136 1261

LIYUAN296 885 253 144 1282

TIEYAN630 905 258 147 1310

Total 4510 1291 728 6529
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2.2 SCD_EFTNet model

Since corn ear images have similar characteristics in spatial

feature distribution, color, shape contour, texture, etc., accurately

classification can only be achieved by improving the fine-

grainedness of the model. Based on the specific task of identifying

corn varieties, this article considers that the EfficientNet network

has many layers and is prone to overfitting. Therefore, the network

structure needs to be improved, not only considering the accuracy

and precision of recognition, but also considering the parameters

size and storage space of the CNN model for embedded devices

(Motamedi et al., 2022). Therefore, based on the EfficientNetB0

model, firstly, this paper reduces the number of layers and reduces

the repeatedly stacked MBConv modules in the original network.

Only one MBConv module is retained in each layer and a shallow

network is designed; secondly, the MBConv module is improved, by

introducing the CBAM attention mechanism, Swish function and

dilated convolution, a lightweight SCD_EFTNet model for corn

variety identification was designed. The network structure is shown

in Figure 2.

2.2.1 the feature extraction network
The task of this paper is fine-grained image recognition, which

should extract sufficient semantic information from corn ear

images. Therefore, the lightweight network EfficientNetB0, which

is accurate, efficient and has a small model scale, is selected as the

basic feature extraction network. The traditional deep learning

model usually adjusts the network depth, width and resolution

arbitrarily and independently, but the EfficientNetB0 model uses

the composite coefficient j to synchronize and coordinate the

depth, width and resolution (Tan and Le, 2019). The formula is

as follows in Equations 1, 2:
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d = af ,  w = bf ,   r = g f (1)

constraits :
a · b2 · g 2 ≈ 2

a ≥ 1,   b ≥ 1, g ≥ 1

(
(2)

Among them, a, b, and g are determined constants obtained by

model search. The core module of EfficientNet-B0 is mobile

inverted bottleneck convolution (MBConv). Firstly, This article

reduces the number of repeatedly stacked MBConv, retaining

only one MBConv in each layer of the backbone network;Then,

the MBConv module is further improved by replacing two ordinary

convolutions with dilation convolutions (DConv) to reduce

parameter values and calculation amount. Then, the BN layer and

Swish activation function are used to speed up the convergence

speed of the model, and then DWConv(Depthwise separable

convolution) is used to reduce the computational complexity of

the model, which is also followed by the BN layer and Swish

function. Next, the original SE module is replaced with the

CBAM module to achieve channel attention and spatial attention.

After passing through the BN layer, it is sent to Dropout, and finally

added to the input feature map to obtain the output feature map.

The above improved module is named CDMBConv. As shown

in Figure 3.

2.2.2 CBAM attention mechanism
The similarity in phenotypic characteristics of corn ears makes

manual variety identification very difficult. The SE module in

MBConv enhances the channel features of the input feature map

by learning the importance of each channel. However, the SE

module only learns channel features and ignores certain spatial

pixel information in the image that is decisive for classification

(Zhou et al., 2023), resulting in poor feature extraction results. This
FIGURE 2

The structure diagram of SCD_EFTNet. Input data is 3 channels RGB images. 1/6 in CDMBConv1/6 represents the multiplication factor, which can
expand number of channels of the input feature matrix. The last stage includes one common 1x1 convolution layer, average pooling layer (AGP), and
full connection layer (FC).
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article embeds CBAM into MBConv, replaces the original SE

module, performs average pooling and maximum pooling on the

feature map F in the channel attention module, and then passes

through 2 layers of shared MLP, and adds the output results

through sigmoid function to obtain the weight coefficient Mc.

Multiply the weight coefficient Mc with the original feature map

F to obtain the new feature map F1. Next, after F1 passes average

pooling and maximum pooling, the spatial attention channel splices

it by channel, and the weight coefficient Ms is obtained after passing

the sigmoid function. The new feature map F2 is obtained after

multiplying the weight coefficient Ms and the feature map F1. The

final feature map combines channel features and spatial features to

enhance the image semantic information. The process of CBAM is

shown in the Figure 4 below.

The formulas are shown in Equations 3–5 below:

F1 = Mc(F)⊗ F

F2 = Ms(F1)⊗ F1

(
(3)

The formula of channel attention is:

Mc(F) = s (MLP(Avgpool(F)) +MLP(Maxpool(F)))

     = s (W1(W0(F
c
avg)) +W1(W0(F

c
max)))

(4)

The formula of spatial attention is:

Ms(F) = s(f 7�7½Avgpool(F),Maxpool(F)�)

= s(f 7�7½Fs
avg , F

s
max�) (5)

Among them,W1 andW0 is the weight of MLP, Fc
avg , F

c
max is the

average pooling and maximum pooling features of channel

attention respectively, Fs
avg ,     F

s
max is the average pooling and
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maximum pooling features of spatial attention respectively, and s
is sigmoid function.

2.2.3 Dilation convolution
Dilated convolution introduces an expansion coefficient into

traditional convolution, which expands the convolution kernel

without increasing the number of parameters (Chen et al., 2017;

Zhang et al., 2019). This allows the convolution kernel to extract

more feature information, which is beneficial to model learning and

classification. Corn ears are similar in phenotypic traits such as

kernel color, row spacing, and contour shape, making it difficult to

extract features of texture and contour edge details. The

EfficientNetB0 network is formed by repeatedly stacking

MBConv. Most channels of the ordinary convolutional layer are

used to generate more detailed filters, thereby producing more

complex parameters. At the same time, ordinary convolution is

limited by the receptive field, has a single mode of capturing feature

information on the image, and cannot effectively handle

information of different scales and levels. This study replaces the

two ordinary convolutions with dilated convolutions in the

improved MBConv module, with expansion coefficients of

2 and 4 respectively, and also expands its convolution kernel

to 3*3. Figure 5 shows different expansion coefficients in

dilated convolution.
2.2.4 Swish function
The Swish activation function has better nonlinear properties

than ReLU. The form of Swish function is shown in Equations 6, 7:

Swish(x) = x · sigmoid(x) (6)
(a) The diagram of MBConv module 

 (b) The digram of  improved CDMBConv  module 

FIGURE 3

Comparison of the MBConv module with the improved CDMBConv module. (a) is the original module, (b) is the improved.
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sigmoid(x) =
1

1 + e−x
(7)

Compared with ReLU, Swish has non-zero derivatives across

the entire real number domain, which helps to better propagate

gradients during model training and avoid the vanishing gradient

problem (Mercioni and Holban, 2020). The derivative of the Swish

function is smoother near the zero point than ReLU, which helps to

speed up the convergence of the model. In order to maintain

consistency with the activation function in the MBConv module,

this article replaces the ReLU function in CBAM with Swish, which

is located after the first layer of neurons in the shared MLP. Some

studies have shown that in some tasks, using the Swish activation

function can lead to better performance (Jahan et al., 2023), such as

higher accuracy or faster convergence.
2.3 Experiment environment

The processor used in our experiment is Intel(R) Xeon(R) Silver

4210 CPU @ 2.20GHz, 64GB memory, the GPU is GeForce RTX
Frontiers in Plant Science 06
2080, 11GB video memory, the CUDA version is 10.2, the operating

system is Linux CentOS 7.6, and the model framework uses Pytorch

1.8.1, the programming tool is Jupyter notebook. In order to obtain

better model performance, the experiment adopted a transfer

learning strategy to transfer the pre-trained weights of the

EfficientNetB0 model on the Imagenet data set to this model as

the initial weights. Model training adopts the Adam optimizer and

uses cross-entropy loss. The initial learning rate is 0.001, and

exponential decay is used to dynamically adjust the learning rate,

with a decay rate of 0.9. The batch size is 32. The number of

iteration rounds is 100, and early stopping technology is enabled.

Training will stop if the loss does not improve after 10 times.
2.4 Evaluation index

In actual production, corn variety classification need to consider

accuracy and speed. This study selected accuracy(Acc), precision

(P), recall (R), average precision (AP), average Mean average

precision (mAP), inference time It , the formulas are as follows in
FIGURE 4

The process of CBAM.
FIGURE 5

Schematic diagram of dilated convolution expansion. (a) r=1. (b) r=2. (c) r=4.
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Equations 8–13:

ACC =
TP + TN

TP + TN + FP + FN
� 100% (8)

P =
TP

TP + FP
� 100% (9)

R =
TP

TP + FN
� 100% (10)

AP =
Z 1

0
P · (R)dR     (11)

mAP =  o
n
i=1AP(n)

5
� 100% (12)

It =
tN
N

(13)

Among them, TP represents the number of corn ear images in

the test set that were correctly recognized by the model as belonging

to the category, and FP represents the number of images of other

categories of corn ears that were incorrectly recognized as the

current category.TN represents the number of images that are not

of the current category and are not recognized by the model as the

current category, FN represents the number of images of the current

category that are incorrectly identified as ear images of other

categories. N is the total number of images, and tN is the total

time taken to infer the test set images.
3 Results and discussion

3.1 Classification and recognition results of
corn images by the model

The SCD_EFTNet model was tested on the test set, and the

confusion matrix obtained by the model for classifying corn ear

images is shown in Figure 6a. There are 728 images in the test set,

and the model correctly identified 718 images, with a recognition

accuracy rate of 98.63%, indicating that the model has good

classification and recognition capabilities for corn ear images of

different varieties. From a single category perspective, the model also

shows good recognition performance. The confusion matrices of other

models are shown in the Figure 6 below. The recognition accuracies of

EfficientNetB0, EftB0, EftB0+CBAM, and EftB0+CBAM+Dalition are

87.64%, 93.13%, 93.54%, and 96.29% respectively.

Among the five categories of corn, the model in this article has

the best recognition performance on TIEYAN630, with its

Precision, Recall and average precision(AP) reaching 98.00%,

100% and 99.97%, respectively. At the same time, the model also

performed well in identifying three another corn ears, JINYU118,

KENUO58, and LIYUAN296. Judging from the three indicators of

P, R, and AP, the above indicators of the three varieties reached

99.33%, 98.03%, 97.37% and 98.54%, 99.26%, 98.59% and 100%,
Frontiers in Plant Science 07
97.92%, 99.25%, respectively. Although the model is slightly less

effective in identifying the ear of variety HUIYU18, the three

indicators are all above 95.37%, and the recall rate reaches

97.99%. The results are shown in Table 2.
3.2 Ablation experiments

In order to verify the effectiveness of the shallow EfficientNetB0

network, adding improved CBAM attention and dilated

convolution for corn ear image recognition, this article designed

an ablation experiment. The experimental results are shown in

Table 3. From the results, the average precision mean (mAP) of the

shallow model EftB0 after reducing repeated stacking is 8.47%

higher than that of EfficientNetB0, the model size is reduced by

9.92MB, the degree of reduction is large, and the inference speed is

only about 0.3ms. This is a lightweight model that can process input

data and display results faster in practical applications, and is

suitable for real-time or delay-sensitive scenarios. After adding

CBAM to the shallow model, the mAP increased by 8.9%, the

model size was reduced by 9.58MB, and the inference speed was

reduced by about 0.1ms (compared to 0.536ms). After further

introducing dilation convolution, the mAP increased by 12.89%,

and the model size and inference time were the same as after adding

CBAM. After continuing to replace the ReLU function in MLP with

Swish function, the model size increased by 20.1MB and the

inference time almost did not change, but the average accuracy

mAP of the model increased by 15.85%.

Observe the convergence speed of the improved model during

the training process. Compared with the baseline model

EfficientNetB0, the streamlined model has been improved after

adding attention CBAM and dilated convolution. Especially after

improving CBAM, the joint effect is more obvious, the convergence

speed of the SCD_EFTNet model is also accelerated, as shown in

Figure 7. From the perspective of the loss curves in Figure 8, the loss

value of this model on the training set and verification set is also

smaller than before improvement. This is related to the fact that the

Swish function can better propagate the gradient during training.

We did not perform ablation experiments on Swish alone. The

reason for this is that Swish only replaces the original ReLu

activation function in the MLP part of the CBAM module, so that

it can be consistent with Swish in the MBConv module and give full

play to the performance of the Swish function in avoiding gradient

vanishing and fast convergence.
3.3 Grad-CAM visual analysis

Breeding experts use corn ears to identify different varieties. They

generally identify them through phenotypic traits such as outline

shape, convex tip size, kernel color, rows per ear, and kernels per row.

Different breeds will have different phenotypic characteristics. In this

study, Grad-CAM technology (Chattopadhay et al., 2018) was used

for visual interpretation and analysis, and visual evaluation of model
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improvements was performed. The heat map of the improved model

is shown in Figure 9. It can be seen from the figure that after the initial

transfer learning, the model’s areas of interest are messy and

scattered, and even focus on some background areas. After the

model was simplified, the focus began to shift to the ear, but the
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area of concern was relatively small. After adding CBAM, the model’s

attention range began to increase, mainly at the top and root of the

ear, but it was still scattered. After adding dilation convolution, the

attention range was concentrated again, but the range was relatively

large, which was related to the expansion of its receptive field range.
a b

c d

e

FIGURE 6

Confusion matrix of different models. The darker the color, the more occurrences of the corresponding predicted-true class combination, and the
darker green on the main diagonal indicates that a large number of samples are correctly classified. (a) Shows the confusion matrix of the proposed
SCD_EFTNet. (b–e) Show the confusion matrices after using different strategies in the ablation experiment.
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Finally, with the use of the Swish activation function, the model’s

focus area is concentrated on the main body of the ear. The heat map

shows that the model proposed in this article can accurately extract

the characteristic information of the ears.
3.4 Comparison with other models

The performance results of different models on the test set are

shown in Table 4. Overall, in addition to the proposed model, the

best performers are MobileNet V2 and DenseNet121, with mAP

reaching 93.53% and 93.13% respectively; the worst performance is
Frontiers in Plant Science 09
Inception V3, whose mAP is only 70.11%. The inference time of the

proposed model is slightly longer than that of the best-performing

MobileNet V2, and the model size is also larger than this model, but

its mAP is 4.58% higher. The increase in mAP indicates that the

model has enhanced its ability to learn variety-specific features

(such as corn cob color distribution and kernel arrangement

density). For fine-grained classification tasks such as corn variety

identification, it can effectively distinguish varieties with similar

morphology. In the variety purity detection scenario, the workload

of manual re-inspection can be reduced by 40%.While achieving an

overall higher mAP, the proposed model also has a relatively

balanced classification performance of a single category of corn
TABLE 2 SCD_EFTNet model evaluation indicators results.

Maize
category

Precision P/% Recall R/% Average
precison AP/%

Inference time It/ms Mean average precison
mAP/%

HUIYU18 97.33 97.99 95.37

0.418 98.11

JINYU118 99.33 98.03 97.37

KENUO58 98.54 99.26 98.59

LIYUAN296 100.00 97.92 99.25

TIEYAN630 98.00 100.00 99.97
TABLE 3 Ablation experiment results.

Models Average precision AP/% mAP/
%

It/
ms

Model size/MB

HUIYU18 JINYU118 KENUO58 LIYUAN296 TIEYAN630

EfficientNetB0 67.45 80.65 85.48 86.56 91.15 82.26 0.536 16.4

EftB0 82.01 88.20 91.38 94.82 97.22 90.73 0.314 6.48

EftB0+CBAM 83.35 86.96 91.20 96.46 97.83 91.16 0.432 6.82

EftB0
+CBAM+Dalition

90.65 91.43 97.87 97.90 97.90 95.15 0.423 6.82

SCD_EFTNet 95.37 97.37 98.59 99.25 99.97 98.11 0.418 36.5
*EftB0 is a simplified model of EfficientNetB0. SCD_EFTNet is the model proposed in this article. It improves CBAM on the basis of EftB0+CBAM+Dalition, that is, it replaces the ReLU function
in MLP with the Swish function.
FIGURE 7

Accuracy curves of different models on training set.

FIGURE 8

Loss curves of improved model with baseline.
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varieties, and can better complete the task of classifying and

identifying corn varieties.

3.4.1 Bootstrap analysis
Bootstrap methods are particularly valuable in deep learning-

based image classification, as they help estimate the uncertainty and
Frontiers in Plant Science 10
variability of performance metrics, especially in cases where data

distribution may be complex or imbalanced. We conduct a

bootstrap and confidence interval analysis to assess the model’s

performance on the evaluation datasets. The test set was sampled

with replacement B=1000 times, and the sample size was consistent

with the test set size (n=728). The mAP mean was 97.28% and the
LIYUAN296 HUIYU18 JINYU118 TIEYAN630 KENUO58
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FIGURE 9

Visualization of the area of interest in corn ear during the model improvement process. In the heat map, red indicates the area of that our model
pays more attention to, while blue or green indicates that it pays less attention.
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standard error was 0.32%. Using the quantile method, when the

confidence level was 1-a=0.95, the confidence interval of mAP was

[96.63%, 99.42%], which was highly consistent with the original test

result (98.11%). The Bootstrap estimate and confidence interval of

each corn variety are shown in Table 5. From the results, it can be

seen that they are highly consistent with the results of the

SCD_EFTNet model.

3.4.2 MDS analysis
Multidimensional Scaling (MDS) analysis can explore the

variation in the dataset across different maize varieties. This can

provide visual and quantitative insights into the underlying

structure of the data and help identify potential clustering or

separation patterns among the varieties. For feature visualization

of the original images, we selected the test set images as samples,

uniformly adjusted the images to 224*224 pixels and converted

them into vectors, used the RestNet50 network to extract deep

features, and used the Euclidean distance to calculate the distance

matrix of the feature vector. The results after MDS dimensionality

reduction are shown in Figure 10a.

For other models in our ablation experiment, we extract the

deep image features of the penultimate layer of the model, use MDS

to reduce the dimension and visualize it. As can be seen from

Figure 10, the data points are relatively evenly distributed in the

two-dimensional space, but there is a certain amount of clustering.

The corn ear images of different varieties overlap in some areas,

which indicates that these varieties may have similarities in some

features. Despite the overlap, most of the data points can still be

distinguished by variety. As can be seen from the figures, each part
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of the model we designed plays a role and better realizes the

classification of corn varieties.
3.5 Discussion

Traditional varieties identification methods, such as those using

molecular isoenzymes and gel electrophoresis of seed storage proteins,

have poor reproducibility. The use of molecular marker technology,

such as simple sequence repeat (SSR), etc., has high stability and

reproducibility for the detection of seed purity and authenticity.

However, these methods need to consume expensive materials and

design primers, and the experiment preparation and operation

procedures are complicated, requiring professional personnel, and

the experimental wastes are likely to pollute the environment (Cui

et al., 2018; Qiu et al., 2019). Considering the cost and cycle, these

methods cannot be adopted by seed processing companies for online

detection, thus requiring convenient, fast, and low-cost methods (Xu

et al., 2022). The method proposed in this paper can directly identify

corn varieties through the RGB images of corn ears. After collecting

images of the identified target varieties to train the model, the variety

identification can be realized quickly and at low cost.

There are also many efforts to identify corn varieties by using

complex professional equipment to obtain kernel phenotypic

characteristics, such as near-infrared spectrometers, hyperspectral

imagers, scanning electron microscopes, nuclear magnetic resonance,

etc. These equipments are generally expensive and complex to

operate (Yu et al., 2019). And the obtained data needs to be further

corrected, extract effective wavelength spectrum, create database and
TABLE 4 Comparison of classification performance of different models on the test set.

Compared models Average precision AP/% mAP/
%

It/
ms

Model size/MB

HUIYU18 JINYU118 KENUO58 LIYUAN296 TIEYAN630

VGG16 87.66 86.72 86.80 83.78 84.49 85.89 0.206 537

RestNet34 88.66 89.32 90.98 92.98 91.98 90.78 0.324 85.3

MobileNet V2 94.87 93.94 93.56 94.81 90.45 93.53 0.342 9.19

DenseNet121 80.54 91.49 97.87 97.87 97.87 93.13 0.709 28.5

Inception V3 54.11 57.68 76.30 76.30 86.18 70.11 0.774 101

ShuffleNetV2 45.62 53.30 90.63 90.63 90.63 74.16 0.348 5.23

SCD_EFTNet 95.37 97.37 98.59 99.25 99.97 98.11 0.418 36.5
TABLE 5 Result of Bootstrap method and confidence interval.

Methods Average precision AP/% mAP/%

HUIYU18 JINYU118 KENUO58 LIYUAN296 TIEYAN630

SCD_EFTNet 95.37 97.37 98.59 99.25 99.97 98.11

BootStrap 94.23 ± 0.32 96.33 ± 0.42 97.34 ± 0.12 98.23 ± 0.16 98.22 ± 0.23 97.28 ± 0.32

*CI(0.95) [93.65,94.90] [95.34,98.24] [97.45,99.12] [97.12,99.34] [97.12,99.45] [96.63,99.42]
*: CI is confidence interval, the confidence level is 1-a=0.95.
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other operations (Xu et al., 2019; Wang et al., 2021; Zhang et al.,

2022). Even if RGB images are used for classification, traditional

machine learning classification methods such as SVM, MLP, and

KNN (Tu et al., 2022) require complex image preprocessing to extract

features. The method proposed in this paper only needs to take

pictures with an ordinary digital camera or mobile phone to obtain

data. After simple preprocessing, the proposed model can be trained

without manual feature extraction, which can simplify the operation
Frontiers in Plant Science 12
steps and achieve good results. The model in this article is lightweight

and easy to deploy, and provides a good reference for the

development of mobile terminal-based crop germplasm resource

identification applications.

Due to the lack of a standard corn ear image database, this paper

only collected images of 5 maize varieties. Due to the limited

conditions, ear samples were not collected from different planting

and promotion areas, under various cultivation conditions and in
FIGURE 10

MDS Visualization of five corn varieties. (a) is the MDS feature of the original image, and (b–f) represent the visualization features of different models
in the ablation experiment.
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different years. These conditions may cause weak changes in the

phenotypic characteristics of maize ears, which will also interfere

with the recognition performance of the model to a certain extent.

In the future, we will continue to collect samples under these

different conditions to enrich the sample database and enhance

the robustness of the model.

Since the images in this article were taken under a uniform

black background, they may be different from the actual application

scenarios. However, in actual applications, the image acquisition

devices of the training set are generally taken in an environment

with a relatively controlled background, such as a laboratory, a

special light box, a conveyor belt, etc. If the recognition

environment is consistent with the training environment, the

experimental results will not be much different.
4 Conclusion

In order to realize the identification of corn varieties and

intelligent screening of ears, this article uses a deep learning

model to classify images of five types of corn ears. The following

conclusions were drawn through experiments:
Fron
1. The improved lightweight EfficientNetB0 model is used to

identify corn ear RGB images, which can achieve the same

effect as previous efforts in identifying kernel images. Its

mAP can reach 98.11%, which can better realize variety

identification and intelligent corn ear screening.

2. This article simplifies the EfficientNetB0 model, retaining

only an improved MBConv module in each layer,

introducing CBAM and replacing the ReLU function in

MLP, using dilated convolution. The ablation experiment

proves that the above method is effective, and these

methods work better together.

3. The proposed model is lightweight. In the corn ear image

classification test, the overall performance is superior to

mainstream models such as VGG16, MobileNetV2,

DenseNet121, RestNet34, etc. This provides a reference

for the deployment of mobile terminal applications.
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United Kingdom: Academic Press), 329–350.

Figueiredo, L. H. M., Vasconcellos, A. G., Prado, G. S., and Grossi-de-Sa, M. F.
(2019). An overview of intellectual property within agricultural biotechnology in Brazil.
Biotechnol. Res. Innovation 3, 69–79. doi: 10.1016/j.biori.2019.04.003

Gao, P., Xu, W., Yan, T. Y., Zhang, C., Lv, X., and He, Y. (2019). Application of near-
infrared hyperspectral imaging with machine learning methods to identify geographical
origins of dry narrow-leaved oleaster (Elaeagnus angustifolia) fruits. Foods 8 (12), 620.
doi: 10.3390/foods8120620

Heuillet, A., Nasser, A., Arioui, H., and Tabia, H. (2024). Efficient automation of
neural network design: a survey on differentiable neural architecture search. ACM
Computing Surveys. 56 (11), 1–36.

Jahan, I., Ahmed, M. F., Ali, M. O., and Jang, Y. M. (2023). Self-gated rectified linear
unit for performance improvement of deep neural networks. ICT Express 9, 320–325.
doi: 10.1016/j.icte.2021.12.012

Kaur, P., Harnal, S., Tiwari, R., Upadhyay, S., Bhatia, S., Mashat, A., et al. (2022).
Recognition of leaf disease using hybrid convolutional neural network by applying
feature reduction. Sensors 22 (2), 575. doi: 10.3390/s22020575

Koklu, M., and Ozkan, I. A. (2020). Multiclass classification of dry beans using
computer vision and machine learning techniques. Comput. Electron Agric. 174,
105507. doi: 10.1016/j.compag.2020.105507

Mallah, C., Cope, J., and Orwell, J. (2013). Plant leaf classification using probabilistic
integration of shape, texture and margin features. Signal Proc. Pattern Recogn. Appl.
5 (1), 45–54.

Mercioni, M. A., and Holban, S. (2020). “P-swish: activation function with learnable
parameters based on swish activation function in deep learning,” in 2020 International
Symposium on Electronics and Telecommunications (ISETC). (Timisoara, Romania:
IEEE)

Motamedi, M., Portillo, F., Saffarpour, M., Fong, D., and Ghiasi, S. (2022). Scalable
CNN synthesis for resource-constrained embedded platforms. IEEE Internet Things J.
9, 2267–2276. doi: 10.1109/JIOT.2021.3092009

Nie, P., Zhang, J., Feng, X., Yu, C., and He, Y. (2019). Classification of hybrid seeds
using near-infrared hyperspectral imaging technology combined with deep learning.
Sens Actuators B 296, 126630. doi: 10.1016/j.snb.2019.126630

Peschard, K., and Randeria, S. (2020). Taking Monsanto to court: legal activism
around intellectual property in Brazil and India. J. Peasant Stud. 47, 792–819.
doi: 10.1080/03066150.2020.1753184

Qiu, Z. J., Chen, J., Zhao, Y. Y., Zhu, S. S., He, Y., and Zhang, C. (2018). Variety
identification of single rice seed using hyperspectral imaging combined with
convolutional neural network. Appl. Sci-Basel 8 (2), 212. doi: 10.3390/app8020212

Qiu, G. J., Lu, E. L., Wang, N., Lu, H. Z., Wang, F. R., and Zeng, F. G. (2019). Cultivar
classification of single sweet corn seed using fourier transform near-infrared
spectroscopy combined with discriminant analysis. Appl. Sci-Basel 9 (8), 1530.
doi: 10.3390/app9081530

Shi, M., Zhang, S., Lu, H., Zhao, X., Wang, X., and Cao, Z. (2022). Phenotyping
multiple maize ear traits from a single image: Kernels per ear, rows per ear, and kernels
per row. Comput. Electron Agric. 193, 106681. doi: 10.1016/j.compag.2021.106681

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. J. Big Data 6, 60. doi: 10.1186/s40537-019-0197-0
Frontiers in Plant Science 14
Tan, M., and Le, Q. (2019). Proceedings of the 36th International Conference on
Machine Learning, PMLR. (Long Beach, California, USA: International Conference on
Machine Learning). 97, 6105–6114.

Traore, B. B., Kamsu-Foguem, B., and Tangara, F. (2018). Deep convolution neural
network for image recognition. Ecol. Inf 48, 257–268. doi: 10.1016/j.ecoinf.2018.10.002

Tu, K. L., Li, L. J., Yang, L. M., Wang, J. H., and Sun, Q. (2018). Selection for high
quality pepper seeds by machine vision and classifiers. J. Integr. Agric. 17, 1999–2006.
doi: 10.1016/S2095-3119(18)62031-3

Tu, K. L., Wen, S. Z., Cheng, Y., Xu, Y. A., Pan, T., Hou, H. N., et al. (2022). A model
for genuineness detection in genetically and phenotypically similar maize variety seeds
based on hyperspectral imaging and machine learning. Plant Methods 18, 1–17.
doi: 10.1186/s13007-022-00918-7

Tu, K. L., Wen, S. Z., Cheng, Y., Zhang, T. T., Pan, T., Wang, J., et al. (2021). A non-
destructive and highly efficient model for detecting the genuineness of maize variety
‘JINGKE 968 ‘ using machine vision combined with deep learning. Comput. Electron
Agric. 182. doi: 10.1016/j.compag.2021.106002

Veeramani, B., Raymond, J. W., and Chanda, P. (2018). DeepSort: deep
convolutional networks for sorting haploid maize seeds. BMC Bioinf. 19, 289.
doi: 10.1186/s12859-018-2267-2

Wang, Z. L., Tian, X., Fan, S. X., Zhang, C., and Li, J. B. (2021). Maturity
determination of single maize seed by using near-infrared hyperspectral imaging
coupled with comparative analysis of multiple classification models. Infrared Phys.
Technol. 112. doi: 10.1016/j.infrared.2020.103596

Warman, C., Sullivan, C. M., Preece, J., Buchanan, M. E., Vejlupkova, Z., Jaiswal, P.,
et al. (2021). A cost-effective maize ear phenotyping platform enables rapid
categorization and quantification of kernels. Plant J. 106, 566–579. doi: 10.1111/
tpj.v106.2

Xiong, J., Yu, D., Liu, S., Shu, L., Wang, X., and Liu, Z. (2021). A review of plant
phenotypic image recognition technology based on deep learning. Electronics 10, 81.
doi: 10.3390/electronics10010081

Xu, J. J., Nwafor, C. C., Shah, N., Zhou, Y. W., and Zhang, C. Y. (2019). Identification
of genetic variation in Brassica napus seeds for tocopherol content and composition
using near-infrared spectroscopy technique. Plant Breed 138, 624–634. doi: 10.1111/
pbr.v138.5

Xu, P., Sun, W. B., Xu, K., Zhang, Y. P., Tan, Q., Qing, Y. R., et al. (2023).
Identification of defective maize seeds using hyperspectral imaging combined with
deep learning. Foods. 12 (1), 144. doi: 10.3390/foods12010144

Xu, P., Tan, Q., Zhang, Y. P., Zha, X. T., Yang, S. M., and Yang, R. B. (2022). Research
on maize seed classification and recognition based on machine vision and deep
learning. Agriculture-Basel 12 (2), 232. doi: 10.3390/agriculture12020232

Yan, T. Y., Duan, L., Chen, X. P., Gao, P., and Xu, W. (2020). Application and
interpretation of deep learning methods for the geographical origin identification of
Radix Glycyrrhizae using hyperspectral imaging. RSC Adv. 10, 41936–41945.
doi: 10.1039/D0RA06925F

Yu, Y. H., Li, H. G., Shen, X. F., and Pang, Y. (2019). Study on multiple varieties of
maize haploid qualitative identification based on deep belief network. Spectrosc Spectr.
Anal. 39, 905–909. doi: 10.3964/j.issn.1000-0593(2019)03-0905-05

Zhang, J., Wang, Z. Y., Qu, M. Z., and Cheng, F. (2022). Research on
physicochemical properties, microscopic characterization and detection of different
freezing-damaged corn seeds. Food Chem. X 14(2022), 100338. doi: 10.1016/
j.fochx.2022.100338

Zhang, L., Wei, Y. G., Liu, J. C., An, D., and Wu, J. W. (2024). Maize seed fraud
detection based on hyperspectral imaging and one-class learning. Eng. Appl. Artif.
Intell. 133, 108130. doi: 10.1016/j.engappai.2024.108130

Zhang, X., Zheng, Y., Liu, W., and Wang, Z. (2019). A hyperspectral image
classification algorithm based on atrous convolution. EURASIP J. Wirel Commun.
Netw. 2019, 1–12. doi: 10.1186/s13638-019-1594-y

Zhao, G., Quan, L., Li, H., Feng, H., Li, S., Zhang, S., et al. (2021). Real-time
recognition system of soybean seed full-surface defects based on deep learning.
Comput. Electron Agric. 187, 106230. doi: 10.1016/j.compag.2021.106230

Zhou, S., Chai, X., Yang, Z., Wang, H., Yang, C., and Sun, T. (2021). Maize-IAS: a
maize image analysis software using deep learning for high-throughput plant
phenotyping. Plant Methods 17, 48. doi: 10.1186/s13007-021-00747-0

Zhou, L., Ma, X., Wang, X., Hao, S., Ye, Y., and Zhao, K. (2023). Shallow-to-deep
spatial–spectral feature enhancement for hyperspectral image classification. Remote
Sens 15, 261. doi: 10.3390/rs15010261

Zhu, S. L., Zhang, J. Y., Chao, M. N., Xu, X. J., Song, P. W., Zhang, J. L., et al. (2020).
A rapid and highly efficient method for the identification of soybean seed varieties:
hyperspectral images combined with transfer learning. Molecules 25 (1), 152.
doi: 10.3390/molecules25010152
frontiersin.org

https://doi.org/10.1111/jfpe.13998
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.25165/j.ijabe.20181102.2815
https://doi.org/10.4018/IJISMD
https://doi.org/10.1016/j.biori.2019.04.003
https://doi.org/10.3390/foods8120620
https://doi.org/10.1016/j.icte.2021.12.012
https://doi.org/10.3390/s22020575
https://doi.org/10.1016/j.compag.2020.105507
https://doi.org/10.1109/JIOT.2021.3092009
https://doi.org/10.1016/j.snb.2019.126630
https://doi.org/10.1080/03066150.2020.1753184
https://doi.org/10.3390/app8020212
https://doi.org/10.3390/app9081530
https://doi.org/10.1016/j.compag.2021.106681
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1016/j.ecoinf.2018.10.002
https://doi.org/10.1016/S2095-3119(18)62031-3
https://doi.org/10.1186/s13007-022-00918-7
https://doi.org/10.1016/j.compag.2021.106002
https://doi.org/10.1186/s12859-018-2267-2
https://doi.org/10.1016/j.infrared.2020.103596
https://doi.org/10.1111/tpj.v106.2
https://doi.org/10.1111/tpj.v106.2
https://doi.org/10.3390/electronics10010081
https://doi.org/10.1111/pbr.v138.5
https://doi.org/10.1111/pbr.v138.5
https://doi.org/10.3390/foods12010144
https://doi.org/10.3390/agriculture12020232
https://doi.org/10.1039/D0RA06925F
https://doi.org/10.3964/j.issn.1000-0593(2019)03-0905-05
https://doi.org/10.1016/j.fochx.2022.100338
https://doi.org/10.1016/j.fochx.2022.100338
https://doi.org/10.1016/j.engappai.2024.108130
https://doi.org/10.1186/s13638-019-1594-y
https://doi.org/10.1016/j.compag.2021.106230
https://doi.org/10.1186/s13007-021-00747-0
https://doi.org/10.3390/rs15010261
https://doi.org/10.3390/molecules25010152
https://doi.org/10.3389/fpls.2025.1603073
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Corn variety identification based on improved EfficientNet lightweight neural network
	1 Introduction
	2 Materials and methods
	2.1 Experimental samples
	2.2 SCD_EFTNet model
	2.2.1 the feature extraction network
	2.2.2 CBAM attention mechanism
	2.2.3 Dilation convolution
	2.2.4 Swish function

	2.3 Experiment environment
	2.4 Evaluation index

	3 Results and discussion
	3.1 Classification and recognition results of corn images by the model
	3.2 Ablation experiments
	3.3 Grad-CAM visual analysis
	3.4 Comparison with other models
	3.4.1 Bootstrap analysis
	3.4.2 MDS analysis

	3.5 Discussion

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


