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Introduction: Soil salinization in Central Asia and Xinjiang, China, poses serious 
threats to agriculture and ecosystems. Solar-induced chlorophyll fluorescence 
(SIF), which reflects plant photosynthetic status and stress, shows promise for 
monitoring salinity but remains underutilized in this region. 

Methods: This study integrated SIF-derived indices (SIFI) with soil salinity data to 
build a region-specific prediction model. Using a random forest algorithm, soil 
salinity was classified into five levels based on satellite data and ground 
references from 2000–2020. Model performance, seasonal sensitivity, and 
spatial variation were analyzed across Central Asian countries and Xinjiang. 

Results: SIF effectively detected salinization dynamics, with highest sensitivity in 
Kazakhstan and Xinjiang. April was identified as the most responsive month, with 
SIFI1 being the key indicator. The model achieved over 80% accuracy in typical 
regions and around 70% in atypical regions. Kazakhstan had the largest salt-
affected area, followed by Turkmenistan and Xinjiang. Tajikistan showed high 
variability, while Xinjiang remained relatively stable. Most areas exhibited 
increasing salinity and expansion of saline lands. 

Discussion: These findings demonstrate the potential of SIF-based monitoring 
for large-scale salinity assessment. The integration of plant physiological signals 
with machine learning provides a valuable tool for early warning and sustainable 
land management in arid regions. 
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1 Introduction 

The issue of soil salinization in Centra (Singh, 2022)l Asia is 
becoming increasingly severe, posing a significant challenge to 
sustainable agricultural development and ecological environmental 
protection in the region. According to a 2015 report by the Food and 
Agriculture Organization of the United Nations, the area of saline-
alkali land in Central Asia has reached 91.5 million hectares, 
accounting for 20% of the global total, primarily concentrated in 
Kazakhstan, Uzbekistan, southern Turkmenistan, and the Xinjiang 
region of China (Khasanov et al., 2023). This phenomenon not only 
significantly reduces the agricultural productivity of the land but also 
leads to soil degradation, disrupts the balance of ecosystems, and 
consequently affects the livelihoods of residents and regional ecological 
security (Singh, 2022). 

The unique climatic conditions of Central Asia and Xinjiang, 
such as high evaporation rates, limited precipitation, and improper 
irrigation management, further exacerbate the problem of soil 
salinization. In Central Asia, salinization is mainly caused by 
secondary soil salinization and poor water resource management 
(Arshad et al., 2025). Drought conditions, inadequate irrigation 
systems, and frequent over-irrigation leading to rising water tables, 
result in salt accumulation, particularly prominent in the Amu 
Darya, Syr Darya river basins, and the Aral Sea area (Dong et al., 
2024). Salinization reduces the soil fertility in these areas and causes 
widespread land desertification, severely threatening local food 
security and economic development (Galvani, 2007). The 
Xinjiang region, China, also faces severe salinization issues, 
particularly in the Tarim Basin and Turpan Basin (Zhang et al., 
2024a). This phenomenon is linked to Xinjiang’s unique

geographical and climatic conditions, such as intense evaporation 
and arid environments, which further exacerbate the problem 
(Turdaliev et al., 2023). Furthermore, the salinization in Xinjiang 
is influenced by changes in land use and ecosystem vulnerability, 
leading to a decline in agricultural productivity and increasingly 
severe water scarcity issues (Wang et al., 2022). The negative 
impacts of soil salinization on local ecosystems, such as 
vegetation degradation and the reduction of biodiversity, have 
also attracted widespread attention (Ding et al., 2020). Currently, 
the management of salinization in Xinjiang and Central Asia faces 
significant challenges, requiring a comprehensive approach that 
includes water resource management (Shen and Lein, 2005), 
agricultural technology improvements, and ecological protection 
measures. The negative impacts on local ecosystems, such as 
vegetation degradation and biodiversity reduction, have also 
attracted widespread attention (Zhuang et al., 2021). 

Traditional soil salinization monitoring techniques encompass 
a range of advanced tools, including Sentinel series satellites, 
Landsat series satellites, Planet Scope satellites (Tan et al., 2023), 
and uncrewed aerial vehicles (Tan et al., 2024), among other remote 
sensing devices. These devices offer observational capabilities at 
various scales, from global to local. Visible light remote sensing (vis) 
primarily utilizes the reflective properties of soil or vegetation 
Frontiers in Plant Science 02 
within the visible light spectrum (400–700 nm) to analyze the 
extent of soil salinization (Wang et al., 2023). Soil salinization alters 
the spectral reflectance characteristics of vegetation, particularly in 
the red and near-infrared bands, where soils with higher levels of 
salinization typically exhibit characteristic spectral reflectance 
changes (Adeeb and Al-Timimi, 2021). However, VIS is easily 
influenced by factors such as cloud cover, vegetation coverage, 
and surface disturbances, leading to unstable data. Moreover, VIS 
technology primarily reflects surface soil information, making it 
difficult to directly obtain data on deeper salinization, which limits 
its application in salinization detection (Adeeb and Al-Timimi, 
2021). The NDVI vegetation index, calculated based on reflectance 
in visible and near-infrared bands, is susceptible to seasonal 
variations, particularly during crop fallow periods or natural 
vegetation growth cycles. Variations in NDVI at different growth 
stages increase the uncertainty in soil salinization monitoring 
(Montandon and Small, 2008). Additionally, NDVI is influenced 
by atmospheric conditions, the spectral properties of soil and 
vegetation, and sensor characteristics, which increase data 
uncertainty (Khalesi et al., 2024). These uncertainties limit the 
application of NDVI in soil salinization monitoring, particularly 
in areas with bare soil or sparse vegetation (Van Leeuwen 
et al., 2006). 

Solar-induced chlorophyll fluorescence (SIF) is widely used to 
assess the efficiency of vegetation photosynthesis. This method is 
based on plants absorbing light energy during photosynthesis and 
re-emitting part of it as fluorescence. This fluorescence signal, 
primarily concentrated in the 680–750 nm (red) and 750–800 nm 
(near-infrared) bands, is considered a direct indicator of plant 
photosynthetic efficiency (Wu et al., 2024). Although SIF signals 
are feeble, they can be precisely captured using modern 
hyperspectral sensors and spectrophotometers (Liu et al., 2020). 
Hyperspectral resolution typically ranges from 0.3 to 1 nanometer, 
ensuring the ability to distinguish fluorescence signals from solar 
scatter interference (Meroni et al., 2009). SIF measurements are not 
limited to ground observations; they can also be conducted via 
drones, aircraft, and satellite platforms (Miyauchi et al., 2025). The 
spatial resolution of satellite observations typically ranges from 
several hundred meters to several kilometers, while ground 
observations can achieve resolutions down to a few meters (Joiner 
et al., 2012). There is a strong correlation between SIF and 
photosynthetic efficiency, with correlation coefficients typically 
ranging from 0.6 to 0.9 (Tao et al., 2024). Therefore, SIF is widely 
used to assess the efficiency of plant photosynthesis, particularly in 
fields such as ecology, agricultural science, and global 
environmental monitoring (Li et al., 2018). 

In global carbon cycle research, SIF is commonly used to estimate 
the Gross Primary Productivity (GPP) of plants, which is a crucial 
indicator of an ecosystem’s carbon absorption capacity (Sun et al., 
2017). For instance, Europe’s Fluorescence Explorer (FLEX) satellite 
project is specifically designed to measure SIF signals globally to 
enhance understanding of the global carbon cycle (Köhler et al., 2018). 
By monitoring SIF in real-time, vital information can be obtained 
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about the physiological state of plants under different environmental 
conditions, providing a scientific basis for crop management and 
ecosystem protection (Yang, 2019). However, current research on the 
application of SIF in monitoring soil salinization in the arid regions of 
Central Asia is still relatively limited. Existing research, such as that by 
(Du et al., 2024), which utilizes SIF time-series data to build soil 
salinity models, has achieved some success. However, due to the sparse 
vegetation in the arid regions of Central Asia, the weak and unstable 
SIF signals limit the accuracy of monitoring. Therefore, this study aims 
to fill the research gap in SIF and soil salinization monitoring in 
Central Asia and Xinjiang. Specific objectives include: (1)Construct 
spatial zoning and high-precision modeling: The study area is divided 
using a 1°×1° grid, and typical and atypical regions are identified by 
analyzing the significance of the relationship between SIF and soil 
salinity. Based on this, the SIFI modeling method is improved by 
extending the SIF time series to a full year (January–December), and a 
high-accuracy soil salinity prediction model is developed for typical 
regions. The model is then transferred to atypical regions through 
transfer learning to assess spatial differences across regions.(2) 
Conduct temporal sensitivity analysis: Long-term (monthly) SIF 
data are used to evaluate the sensitivity of vegetation fluorescence 
responses to soil salinity dynamics across different months in the five 
Central Asian countries and the Xinjiang region of China.(3)Analyze 
sensitivity variations across land-use types: Land-use classification 
data are incorporated to assess how SIF responds to soil salinization 
under different land-use types, thereby enhancing the ecological 
interpretability of the model.(4)Retrieve regional soil salinization 
patterns: Based on the SIF–soil salinity models developed for typical 
and atypical regions, spatial distribution maps of soil salinity are 
constructed for the entire Central Asia and Xinjiang regions, revealing 
inter-country and intra-regional differences and temporal trends in 
salinization.(5)Evaluate observational and modeling limitations: The 
contribution of monthly SIFI indices to model accuracy is analyzed, 
along with the limitations imposed by the current spatial resolution of 
SIF data in monitoring soil salinization, offering insights for future 
sensor development and monitoring strategies. 
Frontiers in Plant Science 03 
2 Materials and methods 

2.1 Study area 

Due to their unique geographical and climatic conditions, 
Central Asia and China’s Xinjiang region face serious soil 
salinization issues (Jiang et al., 2019). The study area selected for 
this thesis includes the five Central Asian countries and the Xinjiang 
Province of China, covering latitudes from 55°27′40″N to 34°20′10″ 
N and longitudes from 46°29′30″E to 96°23′35″E, as shown in 
Figure 1. Due to their unique geographical and climatic conditions, 
Central Asia and the Xinjiang region face serious soil salinization 
issues. Central  Asia, including  Kazakhstan, Uzbekistan,

Turkmenistan, Tajikistan, and Kyrgyzstan, features a typical 
continental climate with vast plains and deserts. This results in 
higher evaporation than precipitation, high groundwater levels, and 
significant salt accumulation. The region predominantly comprises 
extensive plains and deserts, with the plains mainly located in the 
Syr Darya and Amu Darya river basins, and the deserts spread 
across the southern and eastern parts of Central Asia (Hamidov 
et al., 2016). Xinjiang, located in northwestern China, has an arid 
climate and complex terrain. The natural conditions, including the 
Tianshan and Kunlun mountain ranges and the vast Taklamakan 
Desert, further exacerbate soil salinization (Zhuang et al., 2021). 
Xinjiang is characterized by mountains, basins, and deserts, with the 
Tianshan and Kunlun Mountain ranges stretching from east to 
west. The Tarim Basin lies in the central part, which contains the 
vast Taklamakan Desert (Duan et al., 2022b). Irrational irrigation 
and drainage systems have exacerbated this issue, leading to 
reduced crop yields, soil structure degradation, and deterioration 
of the ecological environment, thereby affecting regional economic 
and sustainable agricultural development (Wang et al., 2019). 
Therefore, researching the causes, current status, and prevention 
measures of soil salinization in these areas is of significant 
importance for enhancing agricultural productivity and the 
quality of the ecological environment (Peng et al., 2019). 
FIGURE 1 

Location of the study area. 
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2.2 Data collection 

2.2.1 SIF observation dataset 
Zhang (2018) utilized OCO-2, the Moderate Resolution 

Imaging Spectroradiometer (MODIS), and meteorological analysis 
data (Zhang et al., 2018) to develop a global 0.05°Solar-Induced 
Chlorophyll Fluorescence (CSIF) dataset based on OCO-2. This 
dataset was generated using a neural network model built with 
MODIS channel reflectance and SIF observation data, producing 
SIF data with high temporal and spatial resolution. The temporal 
resolution of the data is every four days, and the spatial resolution is 
0.05°. Good estimation results were obtained. Therefore, the SIF 
time series provided by this dataset serves as the data source for 
solar-induced chlorophyll fluorescence observations in this paper. 

2.2.2 Soil salt content 
The WoSIS soil profile database contains over 100,000 

georeferenced soil profiles, serving as authentic reference data for 
soil salinity. We selected the upper soil layer (0-10cm) where 
salinity data was available and classified soil salinity into five 
levels: non-saline (EC< 2 dSm−1), slightly saline (EC = 2 ~ 4 
dSm−1), moderately saline (EC = 4 ~ 8 dSm−1), highly saline (EC 
= 8 ~ 16 dSm−1), and extremely saline (EC > 16 dSm−1). We defined 
soils with EC ≥ 2 ~4 dSm-1 as salt-affected soils and those with EC ≥ 
4~8 dSm−1 as saline soils. Ivushkin et al. (2019) used the SoilGrids 
global soil category and attribute map dataset and the thermal 
infrared bands of Landsat remote sensing images as features, with 
soil salinity samples from the WoSIS soil profile database serving as 
ground truth. They created global soil salinity classification maps 
using the random forest classification method on Google Earth 
Engine (GEE). In this study, the maps produced by Ivushkin et al. 
(2019) and the WoSIS soil profile database are used as data sources 
for global soil salinity information. However, WoSIS data is 
typically sampled annually, whereas CSIF data has a four-day 
temporal resolution. This inconsistency in time scales may affect 
data matching and analysis. To address this challenge, we 
aggregated the original CSIF data annually, calculating yearly 
CSIF values to ensure consistency between WoSIS sampling times 
and CSIF acquisition times. 

2.2.3 Surface land-use type 
When building soil salinity models, it is crucial to consider 

changes in land use data, as changes in land use patterns directly 
affect the physical structure and chemical properties of soil. For 
example, the increase in agricultural activities can lead to higher 
irrigation water use, which in turn influences the accumulation and 
distribution of soil salinity. In urbanization, changes in land cover, 
such as the reduction of vegetation cover and the increase of 
impervious surfaces, can also alter surface water runoff and 
evaporation characteristics, thereby affecting the soil’s water and 
salt balance. We conducted a comparative analysis of the model 
results based on different land use types to explore the variations in 
the relationship between Solar-Induced Chlorophyll Fluorescence 
Frontiers in Plant Science 04
(SIF) and soil salinity under different land use conditions. The 
GLC_FCS30D dataset represents a groundbreaking development in 
global land cover monitoring, offering comprehensive insights into 
land cover dynamics from 1985 to 2022 with a resolution of 30 
meters. The GLC_FCS30D was developed using a continuous 
change detection method, leveraging the extensive archive of land 
satellite images available on the Google Earth Engine platform. This 
dataset achieved high confidence in accuracy, validated by more 
than 84,000 global samples, with an overall accuracy rate of 80.88% 
(Zhang et al., 2024b). Twelve major land use types were 
summarized in Table 1 to simplify the model-building process. 
2.3 Sensitivity of solar-induced chlorophyll 
fluorescence to soil salinity 

When vegetation is subjected to soil salinity stress, it is generally 
believed that the plant’s photosynthetic capacity decreases, and the 
SIF value correspondingly decreases (Song et al., 2018). However, the 
corresponding SIF value may not necessarily show significant 
differences when soil salinity changes significantly over time. 
Phenological changes, vegetation type, climatic conditions such as 
precipitation and temperature, and soil characteristics such as 
moisture and texture are also important drivers of SIF variation 
(Hamidov et al., 2016). Therefore, it is necessary to filter the samples 
to eliminate the influence of other factors on SIF and ensure that soil 
salinity is the dominant factor in SIF observations. Specifically, to 
avoid the impact of land use changes on SIF, we excluded samples 
where land use types changed during the study period (2000-2020). 
Next, we collected samples at 0.05-degree intervals and extracted the 
corresponding SIF observation values. Finally, we used multiple 
comparisons to test whether there were significant differences (p< 
0.05) in SIF observations under different salinity conditions. 
2.4 Improved standardized solar induced 
chlorophyll fluorescence index 

Du et al. (2024) developed a method to standardize SIF 
observations based on time-series data (2000-2020) and 
probability distribution functions. The standardized Solar-
Induced Chlorophyll Fluorescence Index (SIFI) was calculated 
from the time series of SIFI at different temporal scales. This SIFI 
was then used to develop a soil salinization model. This 
standardization method was initially used to normalize 
precipitation indices to characterize meteorological droughts. In 
this study, the improved standardized Solar-Induced Chlorophyll 
Fluorescence Index (SIFI) was calculated from the SIF observation 
time series at a monthly scale from January to December. The 
calculation method for the improved SIFI is as follows: 

First, the SIF time-series data is fitted to a probability 
distribution, in this case, a Gamma distribution, to account for its 
non-negativity and skewness. The probability density function of 
 frontiersin.org 
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the Gamma distribution is defined as: 

a−1 −x=bx e
f (x; a , b) =  

G (a)ba 

Here, x represents the SIF value, while a and b are the shape 
and scale parameters, respectively, and G is the Gamma function. 
The parameters a and b are obtained through maximum likelihood 
estimation (MLE) from the data. After estimating the parameters, 
the cumulative distribution function (CDF) of the Gamma 
distribution is calculated, yielding the cumulative probability G(x) 
for each SIF observation: 
Frontiers in Plant Science 05 
Z x ta−1 −t=be
G(x; a , b) =  dt 

0 G (a)ba 

Next, the cumulative probability G(x) is transformed into the 
corresponding quantile of the standard normal distribution, which 
gives the SIFI value: 

SIFIi = F−1(G(x)) 

The subscript i represents the time scale of SIFI. For example, 
SIFI1, SIFI2, and SIFI6 correspond to SIFI calculated from SIF 
observations over time scales of one month, two months, and six 
months, respectively. 
TABLE 1 The main land use types from the GLC_FCS30D dataset. 

Land use Land classification system LC id 

Rainfed cropland Rainfed cropland 10 

Herbaceous cover Herbaceous cover 11 

Irrigated cropland Irrigated cropland 20 

Forest Open evergreen broadleaved forest 51 

Closed evergreen broadleaved forest 52 

Open deciduous broadleaved forest 61 

Closed deciduous broadleaved forest 62 

Open evergreen needle-leaved forest 71 

Closed evergreen needle-leaved forest 72 

Open deciduous needle-leaved forest 81 

Closed deciduous needle-leaved forest 82 

Open mixed-leaf forest (broadleaved and 
needle-leaved) 

91 

Closed mixed leaf forest (broadleaved and 
needle-leaved) 

92 

Shrubland Shrubland 120 

Evergreen shrubland 121 

Deciduous shrubland 122 

Grassland Grassland 130 

Sparse vegetation Sparse vegetation 150 

Sparse shrubland 152 

Sparse herbaceous 153 

Wetlands Swamp 181 

Marsh 182 

Flooded flat 183 

Saline 184 

Mangrove 185 

Salt marsh 186 

Tidal flat 187 
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2.5 Estimation of soil salinity in arid regions 

2.5.1 Regional constraint modeling strategy 
In this study, the region was divided using a 1°×1° grid, and 

cross-validation of sample point data within the regions was 
conducted to determine the regional types. The specific method 
included dividing the regions based on latitude and longitude 
information and assigning each number. A two-sample t-test was 
used to compare the significance of point values within each region, 
marking them as typical or atypical regions. The results showed that 
264 regions were identified as typical (p<0.05), and 464 regions were 
classified as atypical, containing 83,659 typical sample points and 
133,616 atypical sample points. This method ensures a scientific 
regional division and provides fundamental data support for the 
development of the soil salinization model, as illustrated in the 
overall workflow shown in Figure 2. 

2.5.2 Typical regional models 
The model is constructed separately for each specific region, 

with inputs consisting of combinations of typical sample point SIFI 
values at different time scales. The number of input variables can 
vary between 2 and 10. The model output is soil salinity. The 
highest model accuracy determines the specific number of input 
variables (i.e., SIFI combinations) to ensure that the selection of 
inputs is based on performance optimization. We used a random 
forest classification algorithm to construct the soil salinity model to 
Frontiers in Plant Science 06
improve prediction accuracy and model efficiency. During the 
modeling process, we used GridSearchCV to systematically search 
for the optimal model parameters, including the number of trees, 
feature selection range, and maximum tree depth. GridSearchCV 
evaluates the effectiveness of various parameter combinations 
through cross-validation, ensuring the identification of the 
parameter configuration that yields the highest accuracy. 
Additionally, we introduced regularization techniques to control 
model complexity and prevent overfitting. By adjusting model 
parameters, such as maximum tree depth and the maximum 
number of features, we can limit the model’s learning capacity, 
enabling it not only to fit the details of the training data but also to 
generalize to new data. 

2.5.3 Atypical regional models 
SIF observations under different soil salinity levels did not 

show significant differences in atypical regions. To address this 
challenge, we adopted a transfer learning approach. Transfer 
learning allows us to leverage knowledge from related tasks to 
solve new problems. Specifically, we selected a pre-trained model 
with high estimation accuracy in typical regions to estimate soil 
salinity. The selection was based on the model’s accuracy in

estimating soil salinity in the typical areas. The selected optimal 
typical-region model was adjusted using transfer learning to better 
adapt its parameters to the environmental characteristics of 
atypical regions. 
FIGURE 2 

Research workflow diagram. 
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3 Results 

3.1 Sensitivity distribution of SIF values to 
soil salinity in Central Asia and Xinjiang, 
China 

We  used  satell ite-based  Solar-Induced  Chlorophyll  
Fluorescence (CSIF) observation data to perform sensitivity 
analysis on all sample points. Figure 3 shows the sensitivity of SIF 
values to soil salinity in the five Central Asian countries and the 
Xinjiang region of China. The results show that 44.7% of the 
sensitive points were typical sample points in Kazakhstan, 
indicating many susceptible sample points in this region, followed 
by Xinjiang, which accounted for 29.4%. In contrast, the proportion 
of typical sample points in Turkmenistan, Uzbekistan, Kyrgyzstan, 
and Tajikistan was 12.9%, 8%, 3.5%, and 1.5%, respectively. Non-
Typical Sample Points were primarily distributed in Kazakhstan 
(53.4%) and Xinjiang (28.6%). Spatial distribution analysis indicates 
that typical sample points in Kazakhstan are predominantly 
concentrated in its southern region, while those in China’s 
Xinjiang are primarily located in the northern areas. This 
distribution pattern may be associated with the spatial extent of 
core irrigated agricultural zones in both regions: Southern 
Kazakhstan and Northern Xinjiang represent significant 
agricultural hubs within their respective territories. Large-scale 
irrigation under arid/semi-arid climatic conditions may 
contribute to the development of secondary soil salinization, 
Frontiers in Plant Science 07 
potentially resulting in heightened sensitivity of vegetation 
photosynthesis  to  soil  salinity  changes  in  these  areas.  
Turkmenistan exhibits a significantly higher number of typical 
sample points compared to non-typical points, suggesting a 
potentially strong association between SIF values and soil salinity 
in this region, with the model demonstrating relatively favorable 
performance here. This observation may reflect Turkmenistan’s 
distinctive environmental context—characterized by extreme 
aridity intense evapotranspiration, and an irrigated oasis 
agriculture system. These factors collectively may drive 
widespread and severe soil salinization. Within relatively sparse 
vegetation and potentially less complex environmental stress 
regimes in desert/saline-alkali landscapes, SIF signals may 
experience reduced interference from confounding biophysical 
factors. Consequently, the SIF response to soil salinity—as a key 
stressor—might appear more discernible, potentially enhancing 
model performance. Conversely, Tajikistan shows a higher 
proportion of non-typical sample points, and the statistical 
correlation between SIF values and soil salinity is markedly 
weaker than in other study regions. This indicates that the SIF 
response to soil salinity variations may be relatively weak or non­
significant in this area. Potential underlying reasons for this 
discrepancy may lie in Tajikistan’s complex mountainous terrain: 
Fragmented topography drives substantial heterogeneity in 
hydrothermal conditions and diverse local microclimates. 
Vegetation  growth  and  associated  SIF  signals  may  be  
predominantly influenced by, or interact strongly with, 
FIGURE 3 

Sensitivity distribution of SIF observation to soil salinity. 
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topography-controlled water availability, temperature stress, 
variations in vegetation community types, or other environmental 
factors not fully quantified. The presence of these complex factors 
may partially explain the weaker-than-expected association 
between observed SIF values and soil salinity, posing challenges to 
model applicability in this region. 
3.2 Time distribution of SIF sensitivity to 
soil salinity 

Figure 4 reveals significant temporal differences in the 
sensitivity of SIF to soil salinity across the five Central Asian 
countries and Xinjiang, China, which are closely related to 
seasonal climate conditions and land-use activities in each region. 
We found that April is the most sensitive month for all countries. 
This suggests that in spring, the response of land-use types to 
changes in soil salinity and model accuracy is most pronounced 
because increasing temperatures and moisture availability may 
enhance soil salinity effects, making them easier to detect. 
Additionally, spring is typically a period of increased agricultural 
activity, with environmental changes driven by both natural and 
human-induced factors, making SIF data more sensitive to salinity 
changes during this month. April was the most sensitive month in 
Xinjiang, Turkmenistan, and Tajikistan, demonstrating that spring 
plays a crucial role in land-use types in these regions. In contrast, 
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Kazakhstan was most sensitive in December, Uzbekistan in June, 
and Kyrgyzstan in November. These differences reflect each 
country’s specific land-use patterns and climate condition changes 
during these months. For example, the sensitivity in Uzbekistan in 
June may be related to higher temperatures and soil moisture 
variations in early summer, while the high sensitivity in 
Kazakhstan in December may be linked to cold-season moisture 
retention and salinity accumulation before deep winter. The 
distribution of sensitive months also showed significant 
differences across various terrain types. In Kazakhstan, rainfed 
cropland, forest, and grassland were most sensitive in November, 
while herbaceous cover, irrigated cropland, and shrubland showed 
the highest sensitivity in December, and wetlands peaked in 
September. This illustrates the different response characteristics of 
terrain types to seasonal changes, reflecting their varying 
adaptability to environmental conditions. In Xinjiang, most 
terrain types, including rainfed cropland, herbaceous cover, 
irrigated cropland, shrubland, grassland, sparse vegetation, and 
wetlands, showed peak sensitivity in April, while only forests were 
most sensitive in December. This consistent sensitivity pattern 
suggests that April is a critical transition period for soil moisture 
and salinity effects in Xinjiang. Rainfed cropland in Uzbekistan was 
most sensitive in June, while herbaceous cover peaked in May, 
irrigated cropland in October, and forest in April. Shrubland and 
grassland exhibited peak sensitivity in April and June, respectively, 
while sparse vegetation and wetlands were most sensitive in 
FIGURE 4 

Months sensitive to soil salinity observed by SIF in various regions. 
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November and February. These variations indicate that seasonal 
changes in soil moisture and vegetation growth cycles significantly 
impact salinity sensitivity. In Kyrgyzstan, the overall peak sensitivity 
occurred in November. However, different land cover types 
exhibited varied sensitivity peaks: rainfed cropland, irrigated 
cropland, and forest were most sensitive in January, herbaceous 
cover in June, and shrubland, grassland, sparse vegetation, and 
wetlands in November. These patterns suggest that the interactions 
between soil salinity and environmental factors are strongly 
influenced by winter conditions and early growing season 
changes. In Turkmenistan, the sensitivity peak in April was 
particularly notable in rainfed cropland, herbaceous cover, and 
forest, while irrigated cropland was most sensitive in December, 
shrubland in October, grassland in November, sparse vegetation in 
January, and wetlands in March. These results indicate that salinity 
fluctuations in different land cover types are influenced by distinct 
seasonal processes, including irrigation patterns, evaporation rates, 
and precipitation regimes. In Tajikistan, most land cover types, 
including rainfed cropland, irrigated cropland, forest, shrubland, 
and grassland, exhibited peak sensitivity in April. In contrast, 
herbaceous cover, sparse vegetation, and wetlands showed the 
highest sensitivity in May. These findings suggest that spring is a 
critical period for soil salinity dynamics in Tajikistan, likely due to 
increased precipitation, snowmelt, and early agricultural activities. 
3.3 Regional distribution of soil salinity 
estimation accuracy 

(Figure 5a) shows the distribution of classification accuracy in 
different regions for 2016 based on Solar-Induced Chlorophyll 
Fluorescence (SIF) data. The study found that in most regions, 
the classification models exhibited high accuracy, further validating 
the effectiveness and reliability of SIF technology in large-scale soil 
salinity monitoring. Regarding classification accuracy in typical 
regions, the model performed well in Tajikistan, which had the 
highest model accuracy, followed by Kyrgyzstan and Xinjiang, both 
of which also demonstrated high accuracy. This indicates that SIF 
data can effectively distinguish the spatial variability of soil salinity 
in these regions, and the models in these areas have predictive solid 
capabilities when dealing with typical samples. In contrast, the 
classification model accuracy in typical regions of Uzbekistan and 
Turkmenistan was relatively lower. This is related to the diversity of 
soil types, vegetation cover, and the complexity of land-use patterns 
in these regions, which resulted in more significant classification 
errors. In non-typical regions, Kyrgyzstan and Tajikistan again 
demonstrated high classification accuracy, particularly when 
handling complex environmental samples, showcasing their 
models’ strong adaptability and reliability. Xinjiang also 
performed well, indicating that SIF data in non-typical regions of 
this  area  had  high  monitoring  capabil it ies .  However,  
Turkmenistan’s classification accuracy in non-typical regions was 
significantly lower, indicating that the model in this region has 
apparent deficiencies when addressing complex environmental 
changes, requiring further parameter optimization or the 
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integration of other data sources to improve accuracy. (Figure 5b) 
shows the 3D scatter plot distribution of overall accuracy in various 
regions. The study found that the spatial distribution of accuracy 
exhibits some geographical variability. Overall, areas with higher 
classification accuracy were mainly concentrated in Xinjiang, 
Tajikistan, and Kyrgyzstan, while regions with lower accuracy 
were primarily distributed in Turkmenistan and Uzbekistan. 

This study evaluated the accuracy of classification models for 
typical and non-typical regions in the five Central Asian countries 
(Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and 
Uzbekistan) and the Xinjiang region of China. By analyzing the 
2016 regional divisions and model accuracy data, the median 
classification accuracy for each region was calculated, allowing for 
a comparison of model performance across the countries. Due to 
the imbalance in salinity categories during the modeling process, 
the estimated models produced more conservative predictions. 
Most regional models exhibited high classification accuracy, 
indicating that SIF technology can effectively monitor changes in 
soil salinity. This result suggests that SIF can be a reliable remote 
sensing tool for large-scale soil salinity monitoring. The 
classification accuracy rankings for typical regions were as 
follows: Tajikistan > Kyrgyzstan > Xinjiang > Kazakhstan > 
Turkmenistan > Uzbekistan. This indicates that the classification 
models for Tajikistan, Kyrgyzstan, and Xinjiang performed well in 
typical regions, exhibiting high accuracy, while the classification 
performance in Uzbekistan and Turkmenistan needs improvement. 
The classification accuracy rankings for non-typical regions were 
Kyrgyzstan > Tajikistan > Xinjiang > Kazakhstan > Uzbekistan > 
Turkmenistan. Kyrgyzstan and Tajikistan performed exceptionally 
well in the non-typical areas, showing that their models have high 
accuracy when dealing with complex environments. In contrast, the 
classification accuracy in the non-typical Turkmenistan regions was 
significantly lower, indicating substantial deficiencies in the model’s 
classification performance in this region. We further analyzed the 
model’s performance across typical and atypical regions. A 
comparative analysis of Tables 2 and 3 reveals that the soil 
salinity classification model based on solar-induced chlorophyll 
fluorescence (SIF) demonstrates robust performance in typical 
sample regions. In particular, the F1-scores for the “Non” and 
“Slightly” saline categories reached 0.95 and 0.88, respectively, with 
an overall accuracy of 0.85. These results suggest that the model can 
effectively capture the nonlinear relationship between SIF signals 
and soil salinity levels in areas with stable spectral responses and 
sufficient vegetation cover. In contrast, the classification 
performance declines notably in atypical sample regions, where 
the overall accuracy drops to 0.75, and the F1-scores for the 
“Moderately,” “Highly,” and “Extremely” saline classes are 
significantly lower. This performance degradation can be 
attributed to the complex environmental conditions in atypical 
areas, including sparse vegetation, heterogeneous soil backgrounds, 
and frequent fluctuations in soil water and salt dynamics. Moreover, 
the number of training samples for the “Highly” and “Extremely” 
saline classes is considerably limited in these regions, which 
constrains the model’s ability to learn their discriminative features 
effectively and leads to insufficient recognition accuracy for these 
 frontiersin.org 

https://doi.org/10.3389/fpls.2025.1603159
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cui et al. 10.3389/fpls.2025.1603159 
minority classes. Figure 6 provides a visual comparison of the 
classification results between typical and atypical regions through 
confusion matrices. As shown in (Figure 6a), the majority of 
samples in the typical region are correctly classified, especially in 
the “Non” and “Slightly” categories, which exhibit minimal 
misclassification. In contrast, (Figure 6b) illustrates increased 
confusion among the moderate to extreme salinity classes in the 
atypical region, confirming the model’s limited ability to generalize 
under less stable and underrepresented conditions. Nevertheless, 
the performance gap between typical and atypical regions provides 
meaningful insights into the model’s reliability and stability. The 
high accuracy achieved in typical samples indicates that the 
proposed SIF-based feature framework is capable of delivering 
accurate predictions in well-structured and representative regions. 
Meanwhile, the intentional construction of atypical sample sets and 
the observed performance drop therein serve as a valuable approach 
to assess the model’s generalization boundaries and application 
scope. This validation strategy, which incorporates sample 
representativeness as a key factor, enhances the interpretability of 
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model performance and offers a practical framework for evaluating 
classification models under complex ecological conditions. 
3.4 Regional distribution of soil salinity in 
Central Asia and Xinjiang, China 

(Figures 7a, b) are generated based on the SIFI index and 
regional models by analyzing the relationship between SIF data 
and soil salinity, creating soil salinity distribution maps for salt-
affected and saline lands. The results show that Kazakhstan has the 
largest area of salt-affected and saline lands, particularly in the 
southern part of the country where irrigation-induced secondary 
salinization dominates, significantly more than other nations. 
Additionally, northern Xinjiang characterized by endorheic basins 
amplifying salt accumulation and southern Turkmenistan 
exhibiting capillary-driven salt efflorescence also exhibit relatively 
high areas of salt-affected land. Northern Xinjiang and southern 
Turkmenistan also have relatively large areas of salt-affected land. 
FIGURE 5 

(a) Accuracy distribution map of typical and atypical regions (b) Statistical scatter plot of accuracy in typical and atypical regions. 
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SIF observation results can identify the distribution of salt-affected 
-1)lands (EC ≥ 2~4 dS m in Central Asia and Xinjiang 

demonstrating moderate-salinity detection capability. According 
to (Figure 7c), Kazakhstan has the largest total area of affected 
saline land, reaching 56.54 Mkm² reflecting widespread irrigation 
legacy impacts, indicating that salinization is the most severe in this 
country. Next are Turkmenistan and Xinjiang, with 25.60 Mkm² 
tied to intensive cotton monoculture and 24.50 Mkm² concentrated 
in northern piedmont oases respectively. Uzbekistan has 13.66 
Mkm² of saline land primarily in the Fergana Valley, while 
Kyrgyzstan and Tajikistan have relatively more minor areas, with 
2.12 Mkm² limited by mountainous drainage and 1.79 Mkm² 
restricted by steep topography respectively. This distribution 
difference indicates that Kazakhstan faces the most severe soil 
salinization problem, affecting a significant portion of its land, 
whereas Kyrgyzstan and Tajikistan are relatively less affected. 
(Figure 7d) shows the data for saline land (EC ≥ 4~8 dS m-1), 
with Kazakhstan having 4.41 Mkm² of saline land notably near Aral 
Sea disaster zones, followed by Xinjiang with 1.34 Mkm² associated 
with paleo-salt deposits and Uzbekistan with 0.38 Mkm². 
Turkmenistan has 0.23 Mkm² of saline land focused along canal 
networks, while Kyrgyzstan and Tajikistan have 0.17 Mkm² 
confined to valley bottoms and 0.15 Mkm² in localized 
depressions respectively. 
3.5 Distribution of SIFI contributions to soil 
models at different time scales 

The contributions of different SIFI indices to the model vary; 
therefore, we analyzed the feature importance of each SIFI index 
across different months to explore its influence over time. This 
study employed a random forest model to analyze the feature 
importance of SIFI1-SIFI12 variables across different months, 
revealing significant differences in predictive capability across 
temporal scales. As shown in the Figure 8, some variables, such as 
SIFI1 and SIFI12, consistently exhibited high importance 
throughout the year, suggesting that they may carry stable and 
critical environmental information and contribute significantly to 
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soil salinity prediction. In contrast, other variables, such as SIFI6 
and SIFI8, had relatively low importance in certain months, 
indicating that their influence might be restricted to specific time 
windows. Additionally, in months like February, June, and 
September, some variables exhibited considerable fluctuations in 
importance, implying that the predictive ability of SIFI indices 
during these periods could be affected by external environmental 
factors. Overall, the temporal evolution trend indicates substantial 
variations in the importance of specific variables across different 
months. In long-term prediction tasks, it is advisable to prioritize 
stable key variables that maintain high importance throughout the 
year while employing time-series-based dynamic modeling 
strategies for variables whose importance fluctuates over time to 
optimize predictive performance. Furthermore, the temporal 
variability in feature importance suggests that SIFI indices may be 
influenced by seasonal climate conditions or other environmental 
factors. Future studies could integrate external environmental 
variables, such as precipitation and temperature, to further 
investigate their impact on SIFI indices. 
4 Discussion 

4.1 Trend distribution/regional differences 
of SIF values in Central Asia and Xinjiang, 
China, on soil salinity and soil salinity 
distribution 

We used Solar-Induced Chlorophyll Fluorescence (SIF) 
observation data from all sample points in Central Asia and 
Xinjiang between 2000 and 2020 to create a soil salinity change 
map for 2000-2020 (Figure 9). The results show a significant 
increase in soil salinity in southern Kazakhstan and around Lake 
Balkhash, while the salinity in northern Kazakhstan has decreased. 
The soil salinity in western Xinjiang also showed an increasing 
trend. This is consistent with the findings of Issanova et al. 
(Issanova et al., 2017). The increase in soil salinity in southern 
Kazakhstan and southern Central Asia primarily occurs in bare 
land, shrubland, and irrigated cropland. These land types are 
TABLE 2 Classification metrics for typical sample region. 

Non Slightly Moderately Highly Extremely Accuracy 

F1-score 0.95 0.88 0.74 0.62 0.60 0.85 

Precision 0.97 0.86 0.78 0.57 0.60 — 

Recall 0.94 0.90 0.70 0.67 0.60 — 
TABLE 3 Classification metrics for atypical sample region. 

Non Slightly Moderately Highly Extremely Accuracy 

F1-score 0.87 0.78 0.29 0.00 0.00 0.75 

Precision 0.93 0.82 0.22 0.00 0.00 — 

Recall 0.82 0.75 0.40 0.00 0.00 — 
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sensitive to environmental changes and prone to salinization. This 
may be related to reduced local precipitation, increased 
evaporation, and improper irrigation practices (Lobell et al., 
2011). In contrast, the decrease in soil salinity in northern 
Kazakhstan  may  reflect  improvements  in  agricultural  
management practices, such as adopting more efficient irrigation 
technologies, reducing over-cultivation, and promoting natural 
vegetation restoration (Zhang et al., 2010). The increasing trend 
in soil salinity in western Xinjiang may be closely related to 
agricultural expansion, improper water resource management, 
and secondary salinization caused by irrigation in the region 
(Zaitunah et al., 2018). More than 60% of the sample points in 
Central Asia and Xinjiang show an increasing trend in soil salinity, 
further confirming that the expansion of saline land has become a 
widespread phenomenon in these regions. Soil salinization poses a 
serious threat to agricultural production and may trigger a range of 
ecological and environmental issues, such as vegetation 
degradation, soil erosion, and the deterioration of soil structure 
(Tarolli et al., 2024). These issues are particularly pronounced in 
arid and semi-arid regions, as soil salinization often exacerbates 
water scarcity, further impacting regional ecological balance and 
sustainable development (Doan et al., 2023). The spatiotemporal 
variation of soil salinity is influenced by multiple factors, including 
climate change, human activities, and natural geographic features 
(Haj-Amor et al., 2023).  The increase in salinity in southern

Kazakhstan and around Lake Balkhash may be related to reduced 
precipitation and increased evaporation caused by global warming, 
and it could also be the result of agricultural expansion and 
improper irrigation (Tarolli et al., 2024). On the other hand, the 
decline in salinity in northern Kazakhstan may  be  related to

improvements in agricultural management strategies in recent 
years, such as introducing more scientific irrigation techniques 
and natural vegetation restoration measures (Rakhmanov et al., 
2024). The increase in salinity in western Xinjiang also warrants 
attention, as this phenomenon may be due to improper water 
resource management and secondary soil salinization caused by 
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irrigation during the region’s agricultural development (Bai et al., 
2023). Therefore, improving irrigation techniques, increasing soil 
organic matter, promoting salt-tolerant crops, and encouraging 
vegetation restoration are effective methods to slow the process of 
salinization (Liu et al., 2022). At the same time, using advanced 
remote sensing technologies like SIF for long-term monitoring 
allows for precise tracking of the dynamic changes in soil salinity 
and provides vital reference data for formulating more scientific and 
practical soil management policies. This will help ensure the 
sustainability of regional ecosystems and support the long-term 
stable development of agricultural production (Aburas et al., 2015). 
4.2 Comparison of SIF global validation 
results in Central Asia and Xinjiang, China 

Using Solar-Induced Chlorophyll Fluorescence (SIF) data from 
2000 to 2020, combined with machine learning methods and the 
Standardized Solar-Induced Chlorophyll Fluorescence Index (SIFI), 
a systematic analysis of the spatiotemporal changes in soil salinity 
across the five Central Asian countries and the Xinjiang region of 
China was conducted. It was found that the increase in soil salinity 
poses a severe threat to agricultural production, with significant 
differences in the degree and trends of soil salinization across the 
countries.  The increase in soil salinity is typically negatively 
correlated with crop growth inhibition (Shi et al., 2023). Optical 
and thermal remote sensing technologies effectively monitor this 
process, especially by using data that reflect vegetation biochemical 
and physical characteristics, such as leaf water content, leaf area, 
and chlorophyll content, which can indirectly infer soil salinity 
levels (Jiang and Shu, 2019). Chlorophyll fluorescence technology is 
particularly effective, as salinity stress directly inhibits plant 
photosynthesis, affecting the chlorophyll fluorescence signal 
(Zaghdoudi et al., 2011). Additionally, by measuring the content 
of ions such as sodium, potassium, and calcium in the leaves, as well 
as leaf conductivity, the effects of soil salinity on plants can be 
FIGURE 6 

Confusion matrices of the classification results. (a) typical Region (b) Atypical Region. 
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further reflected and assessed (Munns and Tester, 2008). These 
physiological response parameters provide direct evidence of plant 
health and serve as effective indicators for monitoring soil 
salinization. Between 2000 and 2020, the area of salt-affected land 
(soil electrical conductivity, EC ≥ 2–4 dS·m⁻¹) in Tajikistan 
fluctuated significantly, ranging from 20% to 60%, as shown in 
Figure 10. This fluctuation may be closely related to Tajikistan’s 
climate conditions, land-use patterns, and changes in agricultural 
management practices (Orlovsky and Orlovsky, 2002). In contrast, 
the area of salt-affected soil in Xinjiang, China, has remained 
relatively stable, with fluctuations around 15%. This relative 
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stability in Xinjiang may be attributed to the region’s stricter

water resource management and ongoing land improvement 
measures (Yang et al., 2019). However, the area changes of saline 
land (EC ≥ 4~8 dSm−1) in various countries have been more drastic 
than in salt-affected land, highlighting the severity of soil 
salinization in Central Asia and Xinjiang. For example, the 
fluctuation range of saline land in Tajikistan is between 50% and 
150%, far exceeding that of other countries. This may be related to 
the country’s extreme climatic conditions, limited water resources, 
and improper irrigation practices (Turdaliev et al., 2023). In 
contrast, the relatively stable changes in saline land in Kazakhstan 
FIGURE 7 

(a, b) Distribution of Salt-Affected and Saline soil Land Area (c, d) Statistical Chart of Salt Affected Land Area and Salt Affected Land Area. 
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may reflect the progress the country has made in recent years in 
agricultural management and improvements in irrigation 
techniques (Duan et al., 2022a). Kyrgyzstan and Tajikistan 
exhibited significant interannual fluctuations, with sharp 
alternations in the extent of both salt-affected and saline lands, 
reflecting high sensitivity to climate variability and instability in 
land use and irrigation management. In particular, Tajikistan 
Frontiers in Plant Science 14 
showed annual variation rates in saline land exceeding 100% in 
multiple years, highlighting its high risk under extreme climatic 
conditions and improper irrigation practices. Uzbekistan 
experienced considerable fluctuations in the early years of the 
study period, but gradually showed a trend of stabilization after 
2010. In contrast, Turkmenistan continued to exhibit intense year­
to-year variability, with changes in saline land reaching up to 150%, 
FIGURE 8
 

SIFI index’s contribution to the model. (a-i) Analysis of Model Contribution from January to December.
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likely associated with periodic accumulation and leaching cycles of 
salt. The Xinjiang region displayed clear cyclical patterns, and since 
2010, saline land has steadily decreased, indicating the positive 
effects of long-term governance and mitigation efforts. These 
interannual variation patterns are valuable for distinguishing 
between short-term, climate-driven transient salinization and 
structural  salinization  caused  by  poor  water  resource  
management, thus providing a basis for region-specific 
differentiated control strategies. Overall, from 2000 to 2020, the 
dynamics of soil salinization in the five Central Asian countries and 
the Xinjiang region exhibited significant spatial heterogeneity and 
temporal variability. Countries such as Kazakhstan and Xinjiang 
have shown a certain degree of effectiveness in governance and 
trend stability, whereas Tajikistan and Turkmenistan still face 
frequent fluctuations and high-intensity salinization pressure. 
Such disparities are closely related not only to differences in water 
resource regulation, agricultural management, and irrigation 
efficiency, but also to the long-term impacts of climatic 
conditions and land use structures. Therefore, when formulating 
regional soil salinization control strategies, it is essential to fully 
consider each area’s climatic vulnerability, governance capacity, and 
the underlying mechanisms of salt accumulation. Tailored, locally 
adapted management approaches should be adopted to ensure the 
sustainable use of land resources and the resilient development of 
agricultural ecosystems. 
4.3 Land-type-specific contributions of SIFI 
indicators 

The modeling contribution of standardized solar-induced 
chlorophyll fluorescence indices (SIFI1–SIFI12), derived from 
annual SIF time series, was evaluated across eight representative 
land cover types. This approach produces phenologically 
interpretable indicators that characterize the statistical structure 
of SIF variations and emphasize their differential responsiveness 
across diverse land cover types, enabling robust comparisons 
among ecosystems with distinct vegetation characteristics. 
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Figure 11 reveals that SIFI1 consistently exhibits high 
contribution across all land cover types, underscoring its 
robustness as a general sensitivity indicator. Its wide-ranging 
applicability may stem from its ability to capture early-season 
physiological activity or reflect persistent structural traits of 
vegetation that influence SIF dynamics throughout the year. In 
addition, SIFI4, SIFI5, SIFI7, and SIFI8 show particularly strong 
contributions in rainfed cropland, herbaceous cover, irrigated 
cropland, and shrubland. These indices correspond to the mid-

growing season, typically associated with peak photosynthetic 
activity from April to August. During this period, vegetation in 
these land types is especially responsive to environmental stressors 
such as salinity, drought, or nutrient limitations, which enhances 
the explanatory power of SIF-based indicators. In contrast, SIFI10, 
SIFI11, and SIFI12 exhibit higher contributions in forest and sparse 
vegetation, indicating their sensitivity to ecological dynamics in late 
autumn and early winter. This seasonal window is critical for 
capturing declines in photosynthetic activity, changes in carbon 
assimilation efficiency, and other long-term traits of perennial or 
woody vegetation systems. 
4.4 Study limitations and future work 

4.4.1 limitations of spatial resolution 
Although this study demonstrates the great potential of SIF 

technology in soil salinity monitoring, there are still some 
limitations. For example, current satellite observations of Solar-
Induced Chlorophyll Fluorescence (SIF) have certain restrictions in 
terms of spatial resolution. The resolution of SIF observations 
typically only reaches the kilometer level, which is insufficient for 
regions requiring high-precision monitoring, making it challenging 
to meet the demands for detailed observations. This issue 
significantly affects our ability to detect and analyze small-scale 
soil salinity changes accurately. To address this, future research 
should focus on using new fluorescence satellites with higher 
resolution, such as those with 300-meter resolution, to conduct 
experimental studies. This is expected to significantly improve the 
FIGURE 9 

Statistical distribution of soil salinity trend in the study area (a) Salinity Trend Distribution Map (b) Salinity trend bar chart. 
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spatial resolution of soil salinity monitoring and enhance early 
warning and management of saline land. Additionally, although the 
random forest model has shown good robustness and accuracy in 
handling soil salinity monitoring data, it still has limitations when 
dealing with data from complex terrain or variable climate 
conditions, which may lead to increased prediction errors 
(Suleymanov et al., 2023). Therefore, future research should 
explore more advanced machine learning methods, such as Deep 
Learning and Support Vector Machines (SVM), to further improve 
Frontiers in Plant Science 16 
the models’ prediction accuracy and generalization capabilities (Cui 
et al., 2023). Through their ability to perform automatic feature 
extraction and nonlinear mapping, these methods can better 
capture the complex relationships between soil salinity and 
environmental variables. Additionally, the fusion of multi-source 
remote sensing data (such as spectral, radar, and thermal infrared 
data) can provide more comprehensive soil and vegetation 
information, significantly enhancing the accuracy and reliability 
of soil salinity monitoring (He et al., 2023). With these 
FIGURE 10 

(a–f) Spatiotemporal changes in land area affected by salt in various countries, (e–l) Spatiotemporal changes in land area affected by salt in various 
countries. 
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technological improvements, future soil salinity monitoring will 
achieve higher spatiotemporal resolution, more accurate salinity 
change predictions, and provide a more scientific basis for land 
management and agricultural decision-making. 

4.4.2 Temporal resolution and ground-truthing 
limitations 

Although CSIF, as a high-temporal-resolution solar-induced 
chlorophyll fluorescence index, can effectively characterize plant 
photosynthetic activity and short-term stress responses, there exists 
a significant temporal scale mismatch between CSIF and the WoSIS 
soil profile data. This inconsistency may introduce systematic bias 
into model development and interpretation. Specifically, CSIF is 
acquired at a 4-day interval, reflecting the dynamic and continuous 
physiological status of vegetation, whereas WoSIS provides soil 
salinity observations that are mostly based on single, annual-scale 
sampling events. The temporal information in WoSIS is often 
coarse, typically limited to the sampling year, which lacks the 
ability to capture intra-annual variations in soil conditions. This 
temporal mismatch may introduce uncertainty on several levels. In 
agricultural systems, especially those with drip irrigation, crop 
rotation, or multiple cropping practices, the response relationship 
between soil salinity and SIF signals is often asynchronous. On the 
one hand, CSIF may increase rapidly following irrigation, rainfall, 
or short-term climatic fluctuations, capturing the short-term 
recovery of photosynthetic activity. On the other hand, soil 
salinity, as a cumulative variable, usually exhibits a delayed and 
gradual intra-annual response. For example, in typical cotton-
growing regions of Xinjiang, CSIF values peak between mid-April 
and mid-August due to active crop growth and irrigation. During 
this period, surface SIF may remain high, while the actual soil 
electrical conductivity (EC) in the upper profile may still indicate 
moderate or high salinity levels, leading to inconsistencies between 
remotely sensed indices and measured soil salinity. In natural 
ecosystems—such as sparse vegetation zones, shrublands, or 
Frontiers in Plant Science 17 
forest edges—annual soil salinity variation is mainly governed by 
soil water redistribution, evapotranspiration balance, and root-level 
ion uptake. The magnitude of such changes is generally small. 
However, SIF is highly sensitive to plant physiological responses, 
and even minor water-salt stress may induce noticeable changes in 
fluorescence intensity. As a result, CSIF in these regions often shows 
faster and more pronounced variation than the actual soil salinity, 
further exacerbating the temporal mismatch and potential bias. 
5 Conclusion 

We combined Solar-Induced Chlorophyll Fluorescence (SIF) 
data, soil salinity observation data, and land-use information to 
train standardized SIF indices (SIFI) across different time scales 
using machine learning methods to estimate soil salinity in Central 
Asia and the Xinjiang region. The main advantage of SIF technology 
in this experiment is that it can directly reflect the photosynthetic 
state of plants, which is significantly affected by soil salinity. 
Therefore, SIF, as an indirect tool for soil salinity detection, 
demonstrates high sensitivity. In addition, SIF is less affected by 
atmospheric and soil background interference in soil modeling, 
making it more suitable for arid regions with sparse vegetation, such 
as Central Asia and Xinjiang, than traditional remote sensing 
techniques. By conducting a multi-period analysis of SIF data, we 
can capture dynamic changes in soil salinity over different time 
scales, thus constructing a more accurate soil salinity model. 
Regarding data processing, we used a random forest classification 
algorithm to analyze SIF data. We determined the optimal response 
period of SIF to soil salinity changes through sensitivity analysis. 
The study found that: (1) SIF observations in April showed the 
highest sensitivity to soil salinity, especially in Kazakhstan and 
Xinjiang, where the response of SIF data to soil salinity was 
particularly significant. The model’s classification accuracy in 
typical regions exceeded 80%, while in non-typical areas, it 
FIGURE 11 

Relative modeling contributions of standardized SIFI indicators across eight representative land cover types. 
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reached over 70%. (2) The model also revealed the spatiotemporal 
distribution of soil salinity in the five Central Asian countries and 
Xinjiang, showing that between 2000 and 2020, salinization was 
most severe in Kazakhstan and Xinjiang, while soil salinity in 
Tajikistan fluctuated significantly. (3) The advantages of SIF 
observations make it more effective than other remote sensing 
technologies for large-scale soil salinity monitoring, allowing for a 
better reflection of soil salinity trends in complex environments. In 
summary, this study validated the effectiveness of SIF technology in 
large-scale soil salinity monitoring. It demonstrated its scientific 
application value in addressing salinization issues in Central Asia 
and Xinjiang. The results provided precise tools for monitoring soil 
salinity dynamics in regional agricultural production and offered 
essential references for ecological management and optimal land 
resource utilization. Future research can further combine higher-
resolution SIF data with multi-source remote sensing data to 
improve the accuracy and applicability of the model. 
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Smanov, Z. (2024). Assessment of agricultural land salinization via soil analysis and 
remote sensing data: Case study in Pavlodar region, Kazakhstan. Soil Water Res. 19, 
111–121. doi: 10.17221/5/2024-SWR 

Shen, Y., and Lein, H. (2005). Land and water resources management problems in 
Xinjiang Uygur Autonomous Region, China 59, 237–245. doi: 10.1080/ 
00291950500228212 

Shi, X., Song, J., Wang, H., Lv, X., Tian, T., Wang, J., et al. (2023). Improving the 
monitoring of root zone soil salinity under vegetation cover conditions by combining 
canopy spectral information and crop growth parameters. Front. Plant Sci. 14, 1171594. 
doi: 10.3389/fpls.2023.1171594 

Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use 
Manage. 38, 39–67. doi: 10.1111/sum.12772 
Frontiers in Plant Science 19 
Song, L., Guanter, L., Guan, K., You, L., Huete, A., Ju, W., et al. (2018). Satellite sun-
induced chlorophyll fluorescence detects early response of winter wheat to heat stress in 
the Indian Indo-Gangetic Plains. Glob. Change Biol. 24, 4023–4037. doi: 10.1111/ 
gcb.14302 

Suleymanov, A., Gabbasova, I., Komissarov, M., Suleymanov, R., Garipov, T., 
Tuktarova, I., et al. (2023). Random forest modeling of soil properties in saline semi­
arid areas. Agriculture 13, 976. doi: 10.3390/agriculture13050976 

Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D., Jung, M., Guanter, L., et al. (2017). 
OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll 
fluorescence. Science 358. doi: 10.1126/science.aam5747 

Tan, J., Ding, J., Han, L., Ge, X., Wang, X., Wang, J., et al. (2023). Exploring 
planetScope satellite capabilities for soil salinity estimation and mapping in arid regions 
oases. Remote Sens. 15, 1066. doi: 10.3390/rs15041066 

Tan, J., Ding, J., Wang, Z., Han, L., Wang, X., Li, Y., et al. (2024). Estimating soil 
salinity in mulched cotton fields using UAV-based hyperspectral remote sensing and a 
Seagull Optimization Algorithm-Enhanced Random Forest Model. Comput. Electron. 
Agric. 221, 109017. doi: 10.1016/j.compag.2024.109017 

Tao, S., Chen, J. M., Zhang, Z., Zhang, Y., Ju, W., Zhu, T., et al. (2024). A high-
resolution satellite-based solar-induced chlorophyll fluorescence dataset for China 
from 2000 to 2022. Scientific Data 11, 1286. doi: 10.1038/s41597-024-04101-6 

Tarolli, P., Park, E., Luo, J., and Masin, R. (2024). “Preserving coastal agriculture: 
Nature-based solutions for the mitigation of soil salinization,” in Copernicus Meetings. 
EGU General Assembly 2024, EGU24-4213. 

Turdaliev, A., Askarov, K., Abakumov, E., Makhkamov, E., Rahmatullayev, G., 
Mamajonov, G., et al. (2023). Biogeochemical state of salinized irrigated soils of 
central fergana (Uzbekistan, central asia). Appl. Sci.. 13,  6188.  doi: 10.3390/
app13106188 

Van Leeuwen, W. J., Orr, B. J., Marsh, S. E., and Herrmann, S. M. (2006). Multi-
sensor NDVI data continuity: Uncertainties and implications for vegetation 
monitoring applications. Remote Sens. Environ. 100, 67–81. doi: 10.1016/ 
j.rse.2005.10.002 

Wang, Z., Fan, B., and Guo, L. (2019). Soil salinization after long-term mulched drip 
irrigation poses a potential risk to agricultural sustainability. Eur. J. Soil Sci. 70, 20–24. 
doi: 10.1111/ejss.12742 

Wang, Y., Xie, M., Hu, B., Jiang, Q., Shi, Z., He, Y., et al. (2022). Desert soil salinity 
inversion models based on field in situ spectroscopy in southern xinjiang, China. 
Remote Sens. 14, 4962. doi: 10.3390/rs14194962 

Wang, D., Yang, H., Qian, H., Gao, L., Li, C., Xin, J., et al. (2023). Minimizing 
vegetation influence on soil salinity mapping with novel bare soil pixels from multi-
temporal images. Geoderma 439, 116697. doi: 10.1016/j.geoderma.2023.116697 

Wu, H., Zhou, P., Song, X., Sun, W., Li, Y., Song, S., et al. (2024). Dynamics of solar-
induced chlorophyll fluorescence (SIF) and its response to meteorological drought in 
the Yellow River Basin. J. Environ. Manage. 360, 121023. doi: 10.1016/ 
j.jenvman.2024.121023 

Yang, P. (2019). Interpretation of sun-induced chlorophyll fluorescence for remote 
sensing of photosynthesis (University of Twente). 

Yang, H., Chen, Y., and Zhang, F. (2019). Evaluation of comprehensive improvement 
for mild and moderate soil salinization in arid zone. PLoS One 14. doi: 10.3990/ 
1.9789036545914 

Zaghdoudi, M., Msilini, N., Govindachary, S., Lachaâl,  M., Ouerghi, Z.,  and
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