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Advances in next-generation sequencing technologies over the last decade have

substantially reduced the cost and effort required to sequence plant genomes.

Whereas early efforts focused primarily on economically important crops and

model species, attention has now turned to a broader range of plants, including

those with larger and more complex genomes. In 2024, the genomes of 500

plant species were published, including 370 sequenced for the first time.

Tracking and providing access to published plant genomes (now covering

more than 1800 species) is an invaluable service for plant researchers.

PubPlant is an online resource that serves this purpose by cataloging published

plant genome sequences and offering multiple visualizations (https://

www.plabipd.de/pubplant_main.html). It includes a chronology of genome

publications, and cladograms to display the phylogenetic relationships among

the sequenced plants. An overview diagram for seed plants highlights taxonomic

orders and families with sequenced species and reveals those that have been

overlooked thus far. As a use case for PubPlant, we evaluated the status of

sequenced food crops. We found that the five plant families featuring the most

food crops were those containing the most sequenced plant species.
KEYWORDS
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Introduction

The first plant genome to be sequenced was that of the laboratory model Arabidopsis

thaliana, published in the year 2000 (The Arabidopsis Genome Initiative, 2000). It took 10

further years to achieve the milestone of 20 sequenced plant genomes, but only another 4 years

to pass 100 genomes, and by the year 2020 the milestone of 500 plant genomes had been
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achieved. Remarkably, 500 additional plant genomes were sequenced

in the next 2 years (one tenth of the time needed for the first 500). This

progress is still accelerating, mainly due to the advent of third-

generation long-read sequencing technologies (Jiao and

Schneeberger, 2017) and their continual refinement (Dumschott

et al., 2020; Pucker et al., 2022). Advances in sequencing

technologies have gone hand in hand with the development of more

powerful bioinformatics algorithms for the assembly and annotation of

genomic data. Genome assembly tools such as hifiasm (Cheng et al.,

2021a) and verkko (Rautiainen et al., 2023) can integrate data from the

two most popular long-read sequencing technologies, namely

nanopore sequencing developed by Oxford Nanopore Technologies

and single-molecule real-time sequencing commercialized as the

PacBio platform by Pacific Biosciences (van Rengs et al., 2022).

The advances in third-generation sequencing have reduced the

cost and effort needed for genome sequencing to such a degree that

it is now within the means of even moderately-funded research

groups. It is therefore unsurprising that recent years have seen a

dramatic increase in the number of plant whole-genome sequencing

projects (Figure 1). By the end of 2024, more than 1800 plant

species had been sequenced, more than 500 of which have been

sequenced twice and more than 200 of which have been sequenced

three or more times. The number of plant species that have been

sequenced is increasing steadily, but the number of individual

sequenced genomes is increasing at a much faster rate due to the

re-sequencing of the same species multiple times. Re-sequencing is

driven by the repetition of earlier sequencing efforts using more

advanced technologies to obtain better and more complete genomes

as well as intra-species pan-genome projects involving the

sequencing of multiple individuals (such as different varieties,
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cultivars or ecotypes) within a species to explore the full genomic

landscape (Golicz et al., 2016). Prominent examples of staple crop

pan-genomes include maize (Hufford et al., 2021), barley (Jayakodi

et al., 2020), wheat (Jiao et al., 2024), rice (Qin et al., 2021) and

potato (Tang et al., 2022; Bozan et al., 2023), as well as fruit crops

such as tomato (Gao et al., 2019; Zhou et al., 2022), and beverage

crops such as tea (Chen et al., 2023; Tariq et al., 2024).

The history of plant genome sequencing has been summarized at

intervals to highlight the status of sequenced plant genomes at the time

of publication, often focusing on particular technological advances

(Michael and Jackson, 2013; Chen et al., 2019; Kersey, 2019; Shirasawa

et al., 2021; Kress et al., 2022; Sun et al., 2022; Bernal-Gallardo and de

Folter, 2024). But such is the pace of change that such review articles

are often out of date by the time they are published. One attempt to

present a more frequently updated resource is the Plants-Genomes-

Technologies (N3) database (Xie et al., 2024). The current iteration is

version 3.0 (accessed February 17, 2025), which was published on

January 11, 2024. Here, we describe an additional online resource

called PubPlant (https://www.plabipd.de/pubplant_main.html) that

has tracked and continuously updated published plant genome

sequences for almost a decade.
Methods

Tracking published plant genomes

PubPlant tracks published plant genomes using manual search

and curation methods. Searches are conducted using the Google

search engine, cited reference searches in the Web of Science
FIGURE 1

Number of plant species with sequenced and published genomes over time. The light green bars show the number of species that have been
sequenced at least once, the medium green bars represent species that have been sequenced at least twice, and the dark green bars are those that
have been sequenced three or more times. The bar chart shows quarterly data for the past decade.
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database (Clarivate, 2025), and the NCBI PubMed citation database

(PubMed, 2025). All search results are reviewed manually, and

relevant information is extracted and entered into JavaScript Object

Notation (JSON) files via copy and paste. These manually curated

JSON files serve as the data source for the web-based diagrams that

visualize the current status of sequenced plant genomes. The JSON

source files also encode phylogenetic information, with taxonomic

relationships based on the classifications listed in Table 1. Diagrams

are generated client-side using a JavaScript script that employs the

D3.js library (v4, https://d3js.org) for cladogram rendering, and the

Vis.js library (v3.1, https://visjs.org) for the timeline visualizations.

To be included in PubPlant, the sequenced genome must belong

to a plant (from the Archaeplastida group, which includes land

plants, charophytes, green algae, glaucophytes, red algae and

Rhodelphidophyta) and must be comprehensively described in a

peer-reviewed journal. This means that the reads must be assembled

into contigs, the contigs must have undergone scaffolding, and

structural gene annotation must be completed. Accordingly,
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PubPlant excludes highly fragmented genomes or those with

incomplete or missing structural annotations.

If a publication includes the genomes of multiple accessions

representing a single species, such as an intra-species pan-genome,

PubPlant counts the species as sequenced and published once. If a

pan-genome is based on the genomes of different species – often

described as a super pan-genome (Khan et al., 2020) – each species

is counted individually. The accepted scientific names of vascular

plant species are cross-checked against Plants of the World Online

(POWO), 2025 (Govaerts et al., 2021). The lowest recognized

taxonomic rank is the species. Accordingly, genomes of different

subspecies or varieties are pooled.
Food crops

All statistical data concerning major food crop species were

extracted from the Food and Agriculture Organization Corporate

Statistical Database (FAOSTAT, 2024). The data provided by

FAOSTAT refer to crop categories with an annual production of

more than 5000 tons in 2022. Each of these categories contains one or

several food crops. The NCBI Taxonomy Database (Schoch et al.,

2020) was used to assign correct scientific names to individual crops.
Results and discussion

Chronology of published plant genomes

PubPlant’s timeline view displays sequenced plant genomes

according to the chronology of their first publication dates

(Figure 2, a full list of published plant genomes is presented in

Supplementary Table 1). If there are two publications for the same
FIGURE 2

Timeline view of published plant genomes in PubPlant. The colored boxes refer to sequenced genomes of an individual species or a genus and multiple
species (spp. for species pluralis) if the publication describes several species of the same genus. On the website, the mouse-over function displays the
scientific name (or a list of scientific names if the box refers to several species of the same genus, as in the example shown for Selaginella spp.), the
common plant name, the genome size, and the citation of the first publication. Clicking on the box links to the full-text publication in a new window.
TABLE 1 Resources used for phylogenetic classification in the diagrams
presented by PubPlant.

Plant group Classification

Angiosperms APG-IV system
(The Angiosperm Phylogeny Group, 2016; Zuntini
et al., 2024)

Gymnosperms Yang et al. (2022)

Lycophytes and
ferns

PPG-I system
(The Pteridophyte Phylogeny Group, 2016; Hassler, 2025)

Bryophytes Bechteler et al. (2023)

Primary algae Guiry and Guiry (2025)

Others NCBI Taxonomy (Schoch et al., 2020); COL (2025)
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plant species on the same date, the publication with the earliest

acceptance date is listed. The timeline view groups the plant entries

as belonging to dicotyledons, non-dicotyledons, non-angiosperms

or algae (Figure 2).
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Phylogeny of sequenced plant genomes

PubPlant’s cladogram view arranges published plant genomes

according to the phylogenetic position of each species (Figure 3).
FIGURE 3

Cladogram view of plant species with sequenced genomes in PubPlant, showing the order Sapindales as an example. The cladogram view goes
beyond the taxonomic rank of family, also showing subfamilies and species with sequenced genomes. On the website, the mouse-over function on
the scientific name displays a popup box showing the genome size and listing publications (up to three for plants that have been sequenced multiple
times) with links to the full-text article(s).
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The cladograms for flowering and non-flowering plants are displayed

separately to improve legibility. Each entry in the cladogram provides a

mouse-over function that displays a popup box containing the

scientific name, common name and genome size of the plant.

Publication details (one or more publications), including links to the

corresponding full-text articles, are also provided in the popup box.
Overview diagram of sequenced seed
plants

The two major groups of seed plants are the angiosperms and

gymnosperms. Angiosperms are by far the most diverse extant plant
Frontiers in Plant Science 05
group, comprising more than 350,000 known species assigned to more

than 400 families in 64 orders. The gymnosperms are a much smaller

group, containing only 1100 living species, which is comparable to

some of the larger angiosperm genera (e.g., Solanum, Acacia and

Rhododendron) in terms of species numbers. By the end of 2024, 1700

angiosperm species and 26 gymnosperm species had been sequenced.

While the cladogram diagrams in PubPlant focus at the

individual species level, the overview diagram provides a view at

the taxonomic family level using an embedded progress bar. The

cladogram displays the phylogenetic position of each plant family

while the progress bar depicts the number of sequenced species in

that family (Figure 4). The overview diagram also includes families

lacking any sequenced species thus far. This reveals that there are
FIGURE 4

Overview diagram of sequenced angiosperms. The example shows the order Caryophyllales, which contains 38 families according to the APG-IV
system. The family sizes are represented by light brown bars. The dark brown bars show how many of the species have been sequenced. All bars use
a logarithmic scale. On the website, the mouse-over function on a dark bar shows the names of the genera and the number of species with
sequenced genomes in a popup box. A yellow dot indicates recently published genomes. A mouse-over tooltip lists the individual species names
and links to the full-text articles.
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many plant families with no sequenced species (e.g., 25 of 38

families in the order Caryophyllales).
Use case: sequenced food crops

As a use case, we evaluated the current status of sequenced food

crops. Economically important food crop plants have always been a

major target for sequencing efforts because this provides information

about the genes responsible for agronomically favorable traits. The

enormous genome sizes of some of these crops, mainly due to

polyploidy, the presence of repetitive DNA (Jackson et al., 2011)

and very long introns (Xu et al., 2024), hindered progress until the

advent of long-read sequencing (Pellicer and Leitch, 2020). For

example, the sizes of the onion and broad bean genomes are 16

Gbp (Hao et al., 2023) and 13 Gbp (Jayakodi et al., 2023), respectively.

But thanks to the advances mentioned earlier, almost all of the food

crop species listed in the FAOSTAT database (FAOSTAT, 2024) have

now been sequenced.
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Further analysis of the most highly sequenced plant families

(Poaceae, Fabaceae, Solanaceae, Rosaceae and Brassicaceae) indicated

that these also contain the largest number of food crop species

(Figure 5, listed in Table 2). Other families such as Salicaceae,

which do not contain any food crops, also may have sequenced

species, but this reflects the numerous poplar and willow species in

that family, which are important to the timber industry. Similarly,

many species of Orchidaceae have been sequenced (Figure 5) despite

the presence of only one crop species (vanilla), due to the economic

importance of many orchids as ornamental plants.

Only a few food crops remain to be sequenced (Table 3), including

several culinary spices belonging to the Apiaceae (e.g. anise), leek

(Amaryllidaceae), gooseberry and currants (Grossulariaceae). Notably,

the blackcurrant (Grossulariaceae) is one of the most recently

sequenced crop plants (Ziegler et al., 2024). Almost all of the food

crops yet to be sequenced rank in the bottom half of the top 120 food

crops ordered by production quantity (Table 3). Although all

important food crop plants have now been sequenced, the remaining

unsequenced species tend to be important in countries that contribute
FIGURE 5

Scatter plot showing plant families in which more than 20 species have been sequenced. The x-axis indicates the number of species per family with
sequenced genomes (evaluated February 2025) and the y-axis indicates the number of major food crops per family according to the FAOSTAT
database (FAOSTAT, 2024), including those that have yet to be sequenced.
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less to plant genome sequencing (Table 3). The countries that have

contributed the most to the publication of crop plant genomes are

China, the USA, Japan, Germany and Australia (Xie et al., 2024).
Conclusion

In recent years, the publication of newly sequenced plant

genomes has increased to such an extent that it has become a
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weekly event (Figure 1). Periodic review articles provide a snapshot

of the situation at the time the manuscripts were written but are

quickly outdated. We therefore seek to highlight the online resource

PubPlant, which provides up-to-date information on published plant

genomes. PubPlant features a timeline view, where sequenced plant

genomes are arranged in chronological order by the date of first

publication (Figure 2), and a cladogram view, showing all sequenced

plant species arranged according to their phylogeny (Figure 3).

Separate cladograms are provided to display the phylogenetic
frontiersin.org
TABLE 2 Plant families with the highest numbers of sequenced genomes.

Taxonomic family Plants with sequenced
genomes a

Food crop species with sequenced genomes a,b

Poaceae 141 species Sugar cane Saccharum x sp.
Maize/corn Zea mays
Wheat Triticum aestivum
Rice Oryza sativa
Barley Hordeum vulgare
Sorghum Sorghum bicolor
Millet Setaria italica, Panicum miliaceum, Cenchrus americanus, Eleusine coracana
Oat Avena sativa
Rye Secale cereale
Fonio millet Digitaria exilis

Fabaceae 129 species Soybean Glycine max
Groundnut Arachis hypogaea
Pea Pisum sativum
Chickpea Cicer arietinum
Cowpea Vigna unguiculata
Broad bean Vicia faba
Pigeon pea Cajanus cajan
Lentil Lens culinaris
Lupins Lupinus albus, Lupinus angustifolius
Common (string) bean Phaseolus vulgaris
Vetch Vicia sativa
Bambara bean Vigna subterranea
Locust bean Ceratonia siliqua

Rosaceae 91 species Apple Malus domestica
Peach and nectarine Prunus persica
Pears Pyrus communis, Pyrus pyrifolia
Plum and sloe Prunus domestica
Strawberry Fragaria x ananassa
Apricot Prunus armeniaca
Almond Prunus dulcis
Cherry Prunus avium
Sour cherry Prunus cerasus
Raspberry Rubus idaeus
Quince Cydonia oblonga

Solanaceae 119 species Potato Solanum tuberosum
Tomato Solanum lycopersicum
Eggplant Solanum melongena
Chilies and peppers Capsicum annuum, Capsicum frutescens, Capsicum chinense,
Capsicum baccatum, Capsicum pubescens

Brassicaceae 88 species Cabbages Brassica oleracea, Brassica rapa
Rapeseed Brassica napus
Mustard Sinapis alba, Brassica nigra, Brassica juncea
Other vegetables Raphanus sativus, Eruca sativa, Lepidium sativum, Eutrema
japonicum, Armoracia rusticana
aEvaluated in February 2025.
bFood crop categories according to FAOSTAT database.
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positions of sequenced flowering and non-flowering plants. A

summary diagram shows the phylogenetic position of all sequenced

seed plants down to the taxonomic family rank, including those

without any species sequenced thus far. It shows the total number of

species for each family, the number of sequenced species, and the

sequenced genera, while highlighting recently published

genomes (Figure 4).

As a use case for PubPlant, we evaluated the status of sequenced

food crop plants, which tend to be prioritized for genome

sequencing. Unsurprisingly, almost all major food crop species

(FAOSTAT food crop categories ranked by production quantity,

full list in Supplementary Table 2) have already been sequenced. In
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addition, the five plant families with the greatest number of

sequenced plant genomes (Poaceae, Fabaceae, Rosaceae,

Solanaceae and Brassicaceae) are also those containing the most

major food crop species (Table 2).

PubPlant has been available online for more than 9 years and

has been widely used, including as a resource to prepare review

articles summarizing plant genome sequencing progress (Jiao and

Schneeberger, 2017; Hao et al., 2022; Bernal-Gallardo and de Folter,

2024) and to evaluate the status of sequenced medicinal plants

(Cheng et al., 2021b). Whereas other plant genome resources release

irregular updates, PubPlant is updated on a monthly basis,

providing a simple and intuitive source of current and historical
TABLE 3 Food crop plants that have not been sequenced, or have been sequenced very recently.

Food crop category a Ranking by
production
quantity b

Total production
quantity (kiloton)

Main producers by production
quantity (production share) c

Current status in
genome
sequencing d

Anise, badian, coriander, cumin,
caraway, fennel, juniper berries
Pimpinella anisum
Illicium verum
Coriandrum sativum
Cuminum cyminum
Carum carvi
Foeniculum vulgare
Juniperus communis

76th 2751 India (68.6%)
Turkey (12.6%)

not sequenced (except
Coriandrum sativum)

Leek
Allium ampeloprasum

80th 2109 Indonesia (30.3%)
Turkey (8.0%)

not sequenced

Yerba Maté
Ilex paraguariensis

82nd 1653 Argentina (56.3%)
Brazil (37.4%)

sequenced (Vignale
et al., 2025)

Currants
Ribes nigrum
Ribes rubrum

97th 764 Russian Fed. (66.6%)
Poland (19.1%)

Ribes nigrum sequenced
(Ziegler et al., 2024)

Yautıá
Xanthosoma sagittifolium

103rd 396 Cuba (22.7%)
Venezuela (22.3%)

not sequenced

Kola nuts
Cola acuminata
Cola nitida

104th 315 Nigeria (55.3%)
Côte d’Ivoire (18.6%)

not sequenced

Gooseberry
Ribes uva-crispa

112th 95 Russian Fed. (89.0%)
Ukraine (8.0%)

not sequenced

Brazil nut
Bertholletia excelsa

113th 79 Brazil (48.1%)
Bolivia (42.9%)

sequenced (Wang
et al., 2025)

Locust bean
Ceratonia siliqua

114th 56 Turkey (44.5%)
Morocco (39.1%)

sequenced (Akutsu
et al., 2024)

Peppermint, spearmint
Mentha x piperita
Mentha spicata

115th 51 Morocco (84.0%)
Argentina (13.7%)

Mentha x piperita
Sequenced (Talbot
et al., 2024)
aFood crop categories according to the FAOSTAT database.
bRanking among the top 120 food crop categories (data for 2022).
cTop two countries with the largest share of world production (data for 2022).
dEvaluated in February 2025.
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information on sequenced plant genomes for the benefit of the

entire plant research community.
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