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Genetic improvement of wheat resistance to the devastating disease Fusarium 
head blight (FHB) is the most effective strategy to prevent economic, health, and 
food safety issues, and is also an environmentally friendly approach for disease 
control. However, wheat breeding for FHB resistance is hampered by complex 
resistance, which is controlled by multiple loci with minor effects and limited 
availability of resistance sources. Globally, sources of FHB resistance primarily 
stem from Asian wheat; however, excellent resistance has also been noted in 
European spring wheat cultivars and breeding lines. The success of breeding for 
the improvement of wheat resistance to FHB relies on the availability of a genetic 
pool that is adapted to local environments, possesses desirable agronomic traits, 
and includes a sufficient number of effective QTL for wheat resistance to FHB. A 
genome-wide association study (GWAS) was performed using a panel of 332 
spring wheat genotypes including 181 from Baltic, Nordic countries (65), Central 
and Western Europe (76) and exotic genotypes (10), employing a 25 K single 
nucleotide polymorphism (SNP) array. The objectives of this study were to 
identify SNPs significantly associated with wheat resistance, determine QTL 
with approximate regions, and identify candidate genes within these QTL by 
exploring a panel of wheat genotypes adapted to the Baltic and Nordic countries. 
A total of 65 significant marker-trait associations (MTAs) with FHB resistance 
were identified using GWAS. Resistance loci were distributed across 15 wheat 
chromosomes and three genomes. Furthermore, 55 QTL were identified, 10 of 
which had phenotypic variation explained (R2) values above 10%. QFHB-2AL.1 
and QFHB-2BL.1 were stably detected in 11 trials. An overall total of 52 candidate 
genes was identified by analyzing QTL regions in combination with published 
transcriptome data. This study demonstrated that a substantial number of QTL 
can be found in European spring wheat germplasm. Pyramiding of major effects 
along with small-effect QTL resulted in a positive additive effect on wheat 
resistance. Elite breeding lines with multiple resistance alleles were identified 
and could be used as valuable sources in wheat breeding for FHB resistance. 
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1 Introduction 

Bread wheat (Triticum aestivum L.) is a principal cereal crop, 
with an annual production of 760 million tons covering 219 million 
hectares (avg. of 10 years), contributing approximately 20% of the 
daily caloric intake of humans globally (Alisaac and Mahlein, 2023). 
Furthermore, it is predicted that a 60% increase in productivity is 
required to meet the food demands of the global population, which 
is expected to reach 9.6 billion by 2050 (Bahar et al., 2020). To fulfill 
this demand, there is a need to increase the production of wheat 
crops by reducing the gap between the actual and potential grain 
yields, which can be achieved by improving disease resistance. 

Fusarium head blight (FHB), also known as scab, is caused by at 
least nineteen Fusarium species, of which Fusarium culmorum, F. 
graminearum, and  F. avenaceum are the most aggressive and 
widespread species. It is a devastating disease that not only 
drastically lowers wheat yield but also degrades end-use quality 
by toxicating seeds through mycotoxin accumulation. It also has a 
significant negative impact on human health, animal health, and 
productivity, as well as on domestic and international trade (Pestka, 
2010; Pitt and Miller, 2017; Wu and Mitchell, 2016). Due to the 
health risks caused by the two main mycotoxins, deoxynivalenol 
(DON) and zearalenone (ZON), the improvement of resistance to 
FHB has become a top priority among all cereal diseases in the 
European Union (Miedaner et al., 2024). Furthermore, severe FHB 
epidemics have been reported in wheat-producing countries 
worldwide (Bai et al., 2018a; Bai and Shaner, 2004; Buerstmayr 
et al., 2009; Dubin, 1997; McMullen et al., 2012). Modifications in 
agricultural practices (such as zero tillage and simplified crop 
rotation), together with increased global warming, provide FHB 
pathogens with more favorable environmental conditions to 
flourish, even in areas where FHB has not been previously 
observed (Alisaac and Mahlein, 2023; Bai et al., 2018b; Dill-
Macky and Jones, 2000; Juroszek and von Tiedemann, 2015). A 
substantial shift in Fusarium head blight area has been observed in 
northern European regions, where the impact of the disease was 
previously negligible (Miedaner et al., 2024; Miedaner and Juroszek, 
2021). The presence of Fusarium spp. in Danish and Norwegian 
crops was reported in the late 20th and early 21st centuries 
(Andersen et al., 1996; Kosiak et al., 2003; Nielsen et al., 2011; 
Sundheim et al., 2013; Thrane, 2000). Moreover, the first detection 
of Fusarium spp. in Finland was published in 2019, indicating the 
emergence of the pathogen in an area where it had not been 
previously identified (Gagkaeva and Yli-Mattila, 2020; Hautsalo, 
2020). Similarly, in Lithuania, FHB was not a notable threat until 
2003; however, it has evolved into a considerable concern since 2012 
(Mačkinaitė et al., 2006; Sakalauskas et al., 2014; Suproniene 
et al., 2016). 

A comprehensive approach is required to control this disease, 
which encompasses various strategies, such as agricultural crop 
Abbreviations: FHB, Fusarium head blight; GWAS, genome-wide association 

study; QTL, Quantitative trait loci; SNP, Single nucleotide polymorphism; MTA, 

marker-trait associations; PVE, Phenotypic variance explained; MAF, minor 

allele frequency; LD, Linkage disequilibrium; PCA, Principal component analysis. 
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management practices, application of fungicides, and enhancement 
of plant resistance. However, the use of fungicides not only increases 
the risk of environmental contamination, but also raises the cost of 
production (McMullen et al., 2012). Conclusively, breeding wheat 
for resistance to FHB is the most crucial approach because of its 
greater effectiveness, durability, economic viability, and 
environmental safety (Bai and Shaner, 2004; Buerstmayr et al., 
2014; Buerstmayr et al., 2009; Ghimire et al., 2022; McMullen et al., 
2012; Steiner et al., 2017). To date, more than 600 quantitative trait 
loci (QTL) have been identified so far which are related to FHB 
resistance (Zheng et al., 2021). Gaire et al. (2021) suggested that 
pyramiding QTL from various genetic sources is an efficient strategy 
for improving FHB resistance in wheat cultivars (Gaire et al., 2021). 
However, the objective is complicated by the quantitative 
inheritance of resistance to FHB, which involves numerous QTL 
with minor effects, whereas major and stable QTL are easier to 
apply in breeding programs than small-effect QTL (Hu et al., 2020). 
The marker-assisted selection (MAS) technique provides effective 
results when the trait is controlled by a few major QTL, whereas it is 
not sufficiently effective when a trait is controlled by multiple small-

effect QTL. The transfer of a single QTL, even with a major effect, 
such as Fhb1, does not yield satisfactory outcomes (Mesterhazy, 
2020). However, advanced genetic approaches, such as genome-

wide association studies (GWAS) that leverage linkage 
disequilibrium (LD) and employ high-density SNP markers, allow 
the detection of a large number of significant marker-trait 
associations for FHB resistance (Hu et al., 2020; Verges et al., 
2021). LD mapping or association mapping enables the 
identification of associations between single nucleotide 
polymorphisms (SNPs) and complex phenotypic traits in a 
diverse germplasm population, essentially increasing mapping 
resolution over standard mapping populations (Flint-Garcia et al., 
2003; Myles et al., 2009; Sahoo et al., 2022; Scherer and Christensen, 
2016). LD analysis narrows down the genomic regions associated 
with phenotypic traits, hence pinpointing candidate genes located 
within these regions (Ma et al., 2022; Yan et al., 2020), such as FHB 
disease resistance genes. Moreover, the identified SNP markers can 
be applied successfully through MAS, if several major QTL are 
detected or can be incorporated into genomic selection (GS). In 
addition, GS is a powerful tool for complex traits, such as resistance 
to FHB, which enables the incorporation of multiple small-effect 
QTL, reduces the cost of phenotyping, and accelerates the breeding 
process (Arruda et al., 2016). 

Fusarium head blight is caused by a hemibiotrophic pathogen 
that penetrates the plant as biotroph and then shifts to the 
necrotrophic phase (Trail, 2009), approximately 48 h after 
inoculation (Seifi et al., 2023). According to the general concept, 
wheat resistance to FHB encompasses five different types or 
components of resistance: resistance to penetration (Type I), 
spreading within plant tissue (Type II), kernel resistance (Type 
III), resistance to toxin accumulation (Type IV), and tolerance to 
yield reduction (Type V). Moreover, overall resistance, which 
includes both Types I and II, has come into focus as an 
additional Type of resistance (Mesterházy et al., 2018, Mesterházy 
et al., 2015; Zwart et al., 2008a). Although these types of resistance 
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do not function as isolated systems, some genes overlap, expressed 
proteins interact, and activated pathways are interrelated 
(Mesterhazy, 2024; Sirangelo, 2024). The complete molecular 
mechanisms of all these types of resistance, and their interactions 
remain largely unknown. However, according to recent 
transcriptomic studies, wheat resistance to FHB is controlled by 
thousands of genes and is achieved through the downregulation and 
upregulation of gene expression (Buerstmayr et al., 2021). 

Basal resistance (Type I), which provides the first layer of 
defense, involves the upregulation of genes that are involved in 
cell wall reinforcement (activation of structural proteins such as 
glycine-rich proteins and hydroxyproline-rich proteins (Kang and 
Buchenauer, 2003; Kikot et al., 2009; Soni et al., 2020; Walter et al., 
2010) and secondary metabolite production, such as terpenoids 
(Singh and Sharma, 2015). Type II of resistance, the spread of 
pathogen through the rachis is associated with the downregulation 
of reactive oxygen species (ROS), programmed cell death (PCD) 
and upregulation of ROS scavenging. ROS activation induces the 
expression of trichothecene biosynthetic genes (TRI), which 
produce DON mycotoxins in fungi and promote pathogen 
spread. Due to the pathogen’s ability to switch from the 
biotrophic to the necrotrophic phase, the activation of PCD 
pathways in plants promotes the necrotrophic phase of the 
fungus, while the suppression of PCD helps to restrict the growth 
of the fungus. Recent studies have demonstrated that susceptible 
wheat genotypes exhibit excessive expression of PCD-related genes, 
whereas the expression of such genes is limited in resistant 
genotypes. Type III wheat resistance is mainly associated with the 
upregulation of genes encoding UDP-glycosyltransferases (UGTs), 
glutathione S-transferases (GSTs), and ATP-binding cassette (ABC) 
transporter expression, which helps in the detoxification of DON 
mycotoxins (He et al., 2020; Sirangelo, 2024; Walter et al., 2015; 
Zhao et al., 2018). Additionally, some genes encode hormones that 
participate in the regulation of signaling pathways (jasmonic acid 
and salicylic acid) or in secondary metabolite production 
(terpenoids) (Buerstmayr et al., 2021; Seifi et al., 2023). Previous 
studies have demonstrated that Fhb1 and Qfhs.ifa-5A contain genes 
that are largely involved in secondary cell wall biogenesis and 
terpene metabolism (Buerstmayr et al., 2021). Exploring 
candidate genes within the QTL of resistance and their putative 
roles in defense might facilitate the proper choice of QTL pairing/ 
accumulation in breeding strategies to develop improved and 
durable wheat resistance to FHB. 

Nevertheless, intensive global efforts have been initiated to 
enhance FHB resistance in bread wheat. No substantial genetic 
improvement in wheat resistance has been found among registered 
wheat cultivars over the last 20 years (Mesterházy et al., 2018; 
Miedaner et al., 2024). Improving quantitative traits is a challenging 
task that requires several cycles of breeding to accumulate the 
associated alleles/QTL in one genotype. Furthermore, the 
associated QTL may have a linkage drag with FHB resistance. All 
well-known QTL with major effects, such as Fhb1, Fhb4, and Fhb5, 
are derived from exotic germplasm, and in addition to conferring 
resistance, also impart undesirable agronomic characteristics. The 
task is more feasible when resistance to FHB is identified in wheat 
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cultivars or breeding lines adapted for growing in areas of Europe, 
as such materials possess resistance QTL and do not have a linkage 
with undesirable traits. Therefore, the identification of resistance 
within breeding populations derived from locally adapted 
germplasms is paramount for improving FHB resistance (Zwart 
et al., 2008b). 

The objective of the present study was to perform a GWAS in a 
panel of 332 wheat genotypes using phenotypic data from multiple 
trials to identify significantly associated SNP markers, QTL, and 
candidate genes related to FHB resistance. This collection comprises 
the local breeding lines and adapted cultivars for the Nordic and 
Baltic regions, which possess high yield performance and/or other 
valuable agronomic traits, such as high grain quality, resistance to 
diseases, drought stress, and other important agronomic traits. 
Dissection of resistance and identification of QTL associated with 
FHB resistance in this wheat collection would provide information 
about the genetic architecture of FHB resistance in modern cultivars 
adapted to the Baltic and Nordic regions and may assist in the 
development of new spring wheat cultivars with improved FHB 
resistance and adapted to the region. 
̌

2 Materials and methods 

2.1 Experimental materials and trials 

In this study, 335 spring wheat genotypes (including 325 
European and 10 exotic genotypes from CIMMYT, China and 
Africa) were used to assess FHB resistance under field and 
controlled conditions. Initially, a set of 300 genotypes (breeding 
lines and varieties) from different origins, such as Norway, Estonia, 
Latvia, and Lithuania were genotyped and phenotyped for other 
agronomic traits, except for FHB resistance (Aleliūnas et al., 2024; 
Lin et al., 2024). Furthermore, for this study, we included 30 
advanced Lithuanian breeding lines, the Slovenian cultivar PS 
Perlicka, and the Chinese resistant landrace Wangshuibai that 
showed better performance in FHB resistance during one or two 
field inoculation cycles to the given set. During genetic quality 
control, three genotypes were excluded. Finally, the set comprised 
332 genotypes, of which 65 originated from Nordic countries, 181 
from Baltic countries, 76 from Central and Western Europe, and 10 
were exotic (foreign origin). There were well-known check cultivars 
with high resistance and susceptibility to FHB in the group of 
foreign origin group. For instance, the well-known Chinese highly 
resistant cultivar Sumai 3 and landrace Wangshuibai were used as 
resistance checks, while the South African cultivar Gamenya was 
used as a check for susceptibility. Other exotic genotypes, such as 
CIMMYT FHB resistant lines SHA3/CBRD and MILAN/SHA7 and 
the Chinese FHB resistant line N894037, also have well-known 
resistance and were included as references of resistance. The field 
experiments were carried out at the Institute of Agriculture, 
Lithuanian Research Centre for Agriculture and Forestry 
(LAMMC) in 2022 and 2023. Genotypes were grown in Alpha 
experimental design in a 1.5 m2 plot with two replicates. Spray 
inoculation method was used in the field and greenhouse. The 
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spikes were covered with plastic bags for 48 h to maintain moisture 
and were later assessed for type I resistance to FHB. For the spawn 
grain inoculation method, the genotypes were grown in pots and 
kept in a nursery where sprinklers were installed to create a humid 
environment for the plants. To inoculate plants, spawn grains were 
applied at a rate of 30 g/m2 at the stem elongation time, early 
booting stage, and at the end of the booting stage (Tekle et al., 2018). 
The same technique was followed for the point inoculation method 
in the greenhouse, where plants were grown in pots at 20-23°C 
temperature. When the plants reached the anthesis stage, the 
inoculum was injected into the central florets through glumes to 
provide mock disease pressure for each genotype to evaluate them 
for type II resistance. To conserve moisture, the spikes were covered 
with plastic bags for two days. The details of the trial design, 
preparation and concentration of inoculums, inoculation 
techniques and meteorological conditions were described in detail 
previously (Syed et al., 2024). 
 
       

2.2 Analysis of phenotypic data 

For phenotypic data, disease severity, FHB index and FHB 
incidence were recorded. 

2.2.1 Evaluation of overall resistance 
To evaluate disease severity, genotypes were spray inoculated in 

fields and greenhouse. After two weeks of inoculation, genotypes 
were visually assessed for severity. The infected spikes were 
evaluated visually by using 0-100% scale. Those genotypes having 
symptoms in one-fourth part of the spike considered 25% severity, 
if half spike have symptoms of FHB, then 50% and so on. The 
similar procedure was followed for evaluating severity in the spawn 
grain method. To evaluate FHB severity, again a 0-100% scale range 
was used (Stack and McMullen, 1998). 

For calculating FHB index, disease incidence and disease 
severity data were used to calculate index percentage: 

Disease incidence x disease severity 
FHB Index = 

100 
 
     

     

2.2.2 Evaluation of type II resistance 
To assess Type II resistance we used point inoculation method 

under greenhouse conditions, in which diseased and healthy 
spikelets per spike were counted. Later, the percentage of disease 
severity for point inoculated genotypes was calculated by: 

Number of infected spikelets
Disease severity = x 100 

Total number of spikelets=spike 
2.2.3 Evaluation of type I resistance 
For FHB incidence, genotypes were visually evaluated after 

seven days of inoculation under field conditions. The bunch of 
inoculated spikes were assessed as healthy or diseased spikes based 
on visual signs and symptoms of initial FHB infection. To calculate 
incidence, this formula was used: 
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Diseased spikes 

Disease incidence = x 100 
Total number of spikes 
2.3 Plant genotyping, population structure 

Genotyping of the 335 wheat genotypes performed using 25K 
SNP chip array at TraitGenetics GmbH (Germany) as described 
previously (Aleliūnas et al., 2024; Lin et al., 2024) under the 
framework of the NOBAL wheat project. Raw marker data were 
obtained from a previous study (Aleliūnas et al., 2024; Lin et al., 
2024). Additionally, 35 genotypes which were selected as resistant in 
one of two cycles of pre-breeding for FHB resistance were included 
in this study, and genotypic data curation and quality control were 
performed separately. Monomorphic markers were removed from 
the dataset along with completely failed markers. Afterwards, the 
filtering was done to remove the markers with more than 20% 
missing data and minor allele frequency (MAF) greater than 0.05. 
After the filtering, a subset of 18,417 high-quality genetic markers 
were selected for the analysis. Overall, 332 genotypes passed quality 
control and were included in GWAS. 
2.4 Statistical analysis 

GWAS was performed using a Bayesian-information and 
Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model 
with two the first principal components as covariates (Huang et al., 
2019) in R package “GAPIT3” (Wang and Zhang, 2021). To find out 
the optimal number of principal components (PCs), the Elbow 
method was applied (Supplementary Figure S1). The scree plot was 
built using “ggplot2” and “ggrepel” R packages for visualization. 
The genomic Inflation Factor (lambda) was closer to one for all 
studied traits when two PCs were included as covariates, confirming 
that two PCs were the optimal number. 

The significance Level (a) was adjusted using the Bonferroni 
correction, dividing the original significance level of 0.05 by the 
total number of tested SNPs (0.05/18417 = 0.0000027149) and was 
converted into -log10 (p) of 5.565 to improve data visualization. 

The pairwise LD of SNP markers were calculated separately for 
each chromosome applying the full-matrix option in “TASSEL 5” 
software package (Bradbury et al., 2007). The results from TASSEL 
were used to estimate the LD decay over physical distance (Mbp) in 
R. The nonlinear model of Marroni et al. (2011) was applied to 
summarize the relationships between LD decay and physical 
distance (Marroni et al., 2011). Subsequently, a half-decay 
distance based on the maximum LD R2 value and decay distance 
using a fixed LD threshold of 0.2 were found. QTL determination: 
MTAs were grouped as one part of the same QTL region when the 
LD (R2) coefficient was greater than 0.5. 

GWAS was conducted using the Best Linear Unbiased 
Estimates (BLUEs) from individual trials and BLUEs across 
different years, as well as among different types of trials, to assess 
the stability and genetic pattern of resistance of found significant 
marker–trait associations (MTA). 
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To describe the effects of SNPs, we used three characteristics/ 
metrics: allelic effects (b), PVE, and the coefficient of determination 
R2 (adjusted). 

Allelic effects (b) were computed using the BLINK model, and 
PVE was calculated using the following formula: 

b2
*2*MAF(1 − MAF) 

s 2 

where: 
MAF: Minor Allele Frequency of the SNP. 
b: Estimated effect size of SNP.
 
s²: Total phenotypic variance of the trait.
 
The coefficient of determination R2 (adjusted) was estimated by
 

fitting the Ordinary Least Squares (OLS) regression model using the 
lm() function in R. Furthermore, R² (adjusted) values were extracted 
and converted to percentages by multiplying by 100. The adjusted 
coefficient of determination is denoted as R2 throughout the text. 

Population analysis and identification of genotype clusters were 
performed using Principal Component Analysis (PCA) and 
hierarchical clustering based on 18,417 polymorphic SNPs. PCA 
was performed using the GAPIT package and BLINK method with 
default settings in R. The centering of genotypes was done without 
scaling using the prcomp function. Missing data was imputed with 
the middle values (Huang et al., 2019). The PCA plot was drawn 
using ggplot2 package. Hierarchical clustering was based on the first 
two principal components of PCA. To perform hierarchical 
clustering, a distance matrix was computed using the Euclidean 
distance metric. Hierarchical clustering was performed using the 
hclust function with Ward’s method, and the cutree function was 
used to assign genotypes to clusters. Linkage distances were 
normalized to a percentage scale. The factoextra package was 
used to draw a dendrogram plot (Kassambara and Mundt, 2020). 

Best linear unbiased estimates (BLUEs) were calculated for 
individual trials and across different combinations of trials using 
the META-R software (Alvarado et al., 2020). In the linear mixed 
model, genotypes were fitted as fixed effects, while environments, 
replicates, and genotype-by-environment interactions were treated 
as random effects. Broad-sense heritability (H²) was estimated using 
the following formula: 

var(genotypic)
H2 = 

var(phenotypic) 

The details of calculating broad-sense heritability (H²) 
mentioned in the article (Syed et al., 2024). 

Calculating the R2 (phenotype explained variation), the average 
means of the markers were used to replace NA, since replacing them 
with a major allele could slightly distort the effect of alleles. 

To compare the genotypic responses between different clusters, 
violin plots with boxplots, jitter, and means were created using the 
ggplot2 package in R. Pairwise Wilcoxon tests were performed to 
compare the genotypes responses to FHB between clusters. The p-
values were adjusted using the Bonferroni method (Hollander 
et al., 2013). 

Multiple regression analysis was performed using the lm() function 
from the base R package to determine the effects of MTAs/QTL on 
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wheat phenotypic resistance (BLUEs across eight trials). Furthermore, 
the proportional contributions of major and minor alleles to the 
explained phenotypic variation were calculated using the LMG 
(Lindeman–Merenda–Gold) method via the function calc.relimp() 
from the package relaimpo in R (Grömping, 2007). 

The visual displaying of major QTL on wheat chromosomes 
was built using an online tool “MG2C” for drawing genetic maps 
(Chao et al., 2021). 
2.5 Candidate genes analysis 

To identify putative candidate genes associated with FHB 
resistance, a list of genes in the genomic region within the 
identified QTL was extracted from the published spring wheat 
“Chinese Spring” RefSeq Annotation v1.1 (International Wheat 
Genome Sequencing Consortium (IWGSC), 2018) using a custom 
R script. The GO terms for the identified genes were obtained using 
the DAVID online tool (Sherman et al., 2022). GO term definitions 
were downloaded from https://geneontology.org/docs/download
ontology/ (The Gene Ontology Consortium et al., 2023). 
Combined protein families, domains, and the functional 
annotations (InterPro descriptions) were collected from 
EnsemblPlants (https://plants.ensembl.org/) connected to “Plants 
Genes 60” and “Triticum aestivum Refseqv2 genes” databases. 
3 Results 

Disease evaluation was performed using three types of 
inoculation: spray inoculation in 2022 and 2023 under field 
conditions and controlled conditions in 2023, spawn inoculation 
in 2022 and 2023, and point inoculation under controlled 
conditions. In individual trials, the heritability of FHB resistance 
was 0.68 on average, the highest heritability of 0.95 and 0.96 was 
found in the field spray trials in 2022 and 2023, respectively. The 
lowest heritability of 0.23 was observed in the spray inoculation trial 
under controlled conditions, and in the spawn inoculation trial in 
2023 (0.28) (Table 1). Additionally, the heritability level increased 
when the BLUE values were calculated across several combinations 
of trials (Table 2). The phenotypic results of these experiments were 
reported in detail previously (Syed et al., 2024). 
3.1 The population structure 

Principal Component Analysis (PCA) was applied to investigate 
the population structure and detect the genetic patterns that explained 
the variation based on allele variation. The first principal component 
explained the largest amount of variation (9.2%). The first two 
principal components explained 15.1% of the variation, and the first 
three principal components explained 20.2%. The Elbow method 
demonstrated that two PCs capture the major genetic variation in 
our population and can be applied as covariates to adjust for 
population structural alleles (Supplementary Figure S1). Apart from 
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that, the genomic inflation factor (l) was closer to one when two 
principal components (PCs) were included as covariates, confirming 
that using two PCs as covariates resulted in sufficient correction for the 
population structure. Adding a third PC might not improve the 
findings, but could lead to overcorrection, potentially removing 
true associations. 

The set of studied genotypes consisted of 10 exotic genotypes and 
322 genotypes of European origin. To determine the number of clusters 
within the population, all genotypes were distributed according to their 
positions on the first two principal components, and the Elbow method 
was applied. According to the Within-Cluster Sum of Squares in the 
Elbow method, there were at least three subgroups within our 
population (Supplementary Figure S2). However, a cut-off point was 
selected at a 10% level of dissimilarity, assigning the genotypes into 13 
clusters/subgroups for a detailed comparison of genetic relatedness 
between exotic resistant genotypes and adapted resistant genotypes 
(Supplementary Figure S3). 
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Analysis of the genetic structure of the population based on 
18,417 SNP markers demonstrated that Cluster 12 was the most 
distinct. Some distinctness was found for Clusters 13, 8, and 11 and, 
to a lesser extent, for Cluster 3. The other 8 clusters were relatively 
closely centered, indicating their close genetic relatedness 
(Figure 1). Among the 13 clusters, 2, 7, 8, 12, and 13 did not 
comprise any resistant or moderately resistant genotypes, while 
resistant fell closer to the middle of the population (Figures 1, 2). 
Interestingly, exotic genotypes were intermixed with European 
genotypes and fell into two Clusters, 4 and 5, which were located 
in the middle of the population (Figure 1; Supplementary Table S1). 

The most resistant genotypes were found within 4 Clusters: 3, 4, 
5, 6, and 10. There was no clear relationship between the origin of 
genotypes, their resistance and genetic distinctness (based on 18,417 
polymorphic SNPs). Resistant genotypes and genotypes of exotic 
origin did not form separate clusters (Figure 2). The clusters that 
comprised the most resistant genotypes also contained susceptible 
TABLE 2 The number of significant MTAs associated with FHB resistance across different combinations of the trials. 

MTA 
number H2 Type of 

resistance 
Number of 

trials Abbreviation Description 

11 0.82 Overall, I, II 8 8_env_all 
2 spawn, 2 field spray, spray greenhouse, point inoculation 

greenhouse, FHB index, incidence 

7 0.75 Overall, I, II 7 7_env_5plus_a 
2 spawn, 2 field spray, spray greenhouse, point 

inoculation, incidence 

12 0.85 Overall, I 7 7_env_b 2 spawn, 2 field spray, spray greenhouse, FHB index, incidence 

10 0.82 Overall 6 6_env_c 2 spawn, 2 field spray, spray greenhouse, FHB index 

10 0.78 Overall, I 6 6_env_b 2 spawn, 2 field spray, spray greenhouse, incidence 

12 0.70 Overall, II 6 6_env_a 2 spawn, 2 field spray, spray greenhouse, point inoculation 

12 0.72 Overall 5 5_env 2 spawn + 2 field spray + spray greenhouse 

11 0.71 Overall 4 4_env 2 spawn+2 field 

10 0.67 Overall 3 3_env 2 field spray + spray greenhouse 

9 0.64 Overall 2 2_env_a 2 field spray 

2 0.43 Overall 2 2_env_b 2 spawn 
 

TABLE 1 The number of significant MTAs associated with resistance in individual trials. 

MTA number H2 Type of resistance Abbreviation Description 

8 0.79 overall FHBindex_2023 FHB index (2023) 

6 0.95 overall Field_spray_2022 Field spray (2022) 

6 0.96 overall Field_spray_2023 Field spray (2023) 

1 0.77 II Greenhouse_precise_2022 Greenhouse point (2022) 

3 0.23 overall Greenhouse_spray_2023 Greenhouse spray (2023) 

3 0.76 I Incidence_field_2023 Incidence field (2023) 

2 0.68 overall Spawn_severity_2022 Spawn severity (2022) 

5 0.28 overall Spawn_severity_2023 Spawn severity (2023) 
*MTA = marker-trait associations, H2= broad-sense heritability (H2 values were obtained from Syed et al., 2024). 
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genotypes. Lithuanian genotypes prevailed among the most resistant, 
and few of them were of exotic and Latvian origin (Figure 2). 
Lithuanian breeding line DS-1577-8-DH does not have exotic 
relatives in the pedigree, had comparable levels of resistance to 
Sumai 3 (Syed et al., 2024) and belonged to the large genetic Cluster 
10, which comprised both highly resistant and susceptible genotypes. 
Exotic resistant genotypes such as Wangshuibai, Gen020 (SHA3/ 
CBRD), Gen066 (N894037), and the Lithuanian resistant breeding 
line DS-1401-6-DH and moderately resistant DS-570-2-DH and DS
1401-6-DH belonged to the same Cluster 4 (Supplementary Table 
S1). Clusters 3, 6 and 10 did not contain any exotic germplasms but 
comprised several resistant or highly resistant local genotypes. For 
example, Cluster 6 contained several resistant genotypes of Latvian 
origin. Clusters 6 and 10, comprised several resistant genotypes of 
Lithuanian origin. Genotypes which belonged to Cluster 1 had the 
highest susceptibility on average. According to the BLUEs values 
across the eight trials, the resistance of the genotypes in Cluster 1 
differed significantly from that in Clusters 4, 6, 10, 11, and 12. Cluster 
12 comprised mostly genotypes of Latvian origin with similar level of 
moderate resistance (Figure 2). 

The LD pattern of the 332 spring wheat genotypes is depicted in 
a scatter plot of pairwise LD (r2) over physical distance in Mbp 
(Supplementary Figure S4). The average half-decay distance was 
0.57 Mbp (when r2 decreased to half of the maximum value) with 
the longest distance in the B genome (0.76 Mbp) followed by the D 
and A genomes (0.57 and 0.39 Mbp). The fastest LD decline was 
Frontiers in Plant Science 07 
observed in chromosomes 2A and 6A (0.24 Mbp) and the longest 
LD was observed in chromosome 3B (1.03 Mbp) (Supplementary 
Table S2). The half-decay distances indicate that approximately half 
a million base pairs may belong to one LD block. Thus, on average, 
one SNP marker may be associated with about half a million base 
pairs. The level of genetic recombination was moderate in our 
population and consistent with other studies conducted on diverse 
wheat populations (Ghimire et al., 2022). 
3.2 Association analysis between SNPs 
markers and FHB resistance 

Significant MTAs were identified across all individual trials and 
among different combinations of trials. In total, 58 MTAs with 
known positions and seven with unknown positions were identified 
(Supplementary Table S3). The lowest number of MTAs was found 
in the greenhouse experiment, where point inoculation was used, 
and the largest number (12 MTAs) was found in the combinations 
of different trials (Tables 2, 3). 

Among 65 SNP markers, 12 explained more than 10% of the 
phenotypic variation according to the adjusted coefficient of 
determination (R2). Among them, 7 MTAs had R2 >10% and were 
stable (were detected in more than 1 trial) (Supplementary Table S3). 

MTAs were found across 15 chromosomes (1B, 2A, 2 B, 2D, 3A, 
3B, 4A, 4D, 5A, 5B, 5D, 6B, 6D, 7A, and 7D) in the three wheat 
FIGURE 1 

The PCA plot was developed based on 18,417 polymorphic SNPs, demonstrating the population structure of 332 spring wheat genotypes. 
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genomes. Among them, 25 MTAs were found in the A genome, 27 in 
the B genome, and six in the D genome. Cumulatively, across all the 
trials, not within a single trial, they explained 338%, 321%, and 37% 
of the variation (R2), respectively. The A and B genomes harbored 
the largest number of MTAs and explained a major part of the 
variation. Individual SNP analysis was performed for all significantly 
associated SNPs across the trials, where the associations were 
significant at the adjusted significance level of 5.565 (-log10). 
Comparing the BLUE values of groups with different alleles, the 
Wilcoxon test indicated that there were significant differences for 56 
SNPs and no significant differences for nine SNPs. The results are 
presented in Supplementary Table S3. The strongest and most stable 
a s soc i a t i ons  were  f ound  be tween  the  SNP  marke r  
Tdurum_contig91519_224 and FHB resistance. The allele effect of 
this marker ranged from 4.41% to 6.94%, PVE from 0.97% to 7.18%, 
and R2 from 8.86% to 15.18%. The resistance to FHB was associated 
with minor allele “T” which had frequency of 17% in our panel, while 
most genotypes had “G” allele associated with susceptibility (83%). 
The difference in disease severity between the two groups ranged 
from 12.2% to 18.7% (Supplementary Table S3). The significant 
effects of this SNP marker were identified in nine different 
combinations of trials, demonstrating stable effects. However, a 
significant effect of this marker was identified in only one 
individual trial, namely field spray trial in 2023. A visual 
comparison of the groups with different alleles across eight 
individual trials and nine trial combinations is shown in Figure 3. 
Comparing the average values between groups with “G” and “T” 
alleles the Wilcoxon test demonstrated a significant effect of alleles in 
all trials and combinations, even in the trials where significant 
associations were not detected by GWAS (under a threshold of 
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-log10(p) = 5.565). Significance at the level of p ≤ 0.05 between two 
groups was found in the following trials: spawn severity (2023), 
greenhouse point inoculation (2022), and incidence (2023); in other 
trials, the differences were significant at p ≤ 0.001 (Figure 3). 
3.3 Accumulation effect of R alleles 

Up to 12 alleles significantly associated with resistance were 
found in the combinations when BLUE values were calculated 
across five, six, and seven trials and from one to eight alleles in 
the individual trials (Tables 2, 3). However, many of these alleles 
provided minor effects (Supplementary Table S3). To select the 
most meaningful ones and analyze their cumulative effect an R2 

threshold of 5% was applied. Furthermore, to investigate the 
pyramiding effect of resistant (R) alleles, the wheat genotypes 
were divided according to the number of R alleles. The alleles 
associated with FHB resistance were labeled as “R alleles” and the 
number near the letter “R” indicates the number of associated alleles 
(Figure 4). Comparison of the average BLUE values of the groups 
according to the number of R alleles demonstrated a relationship 
between the number of R alleles and the level of resistance 
(Figure 4). The Kruskal-Wallis test (p < 0.05), followed by Dunn’s 
test for multiple post hoc pairwise comparisons with Bonferroni 
correction, were conducted among  the genotype groups  to
determine if the differences were significant between groups. 
Across a two-year field spray trial, four MTAs (four R alleles) 
with R2 effects above 5% were identified, and the level of resistance 
gradually increased depending on the number of R alleles. The 
average disease severity mean of the null group was 75.0%, the 
FIGURE 2 

Comparison of clusters by phenotypic (BLUE) values for combined resistance (across eight trials). 
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group with one allele had disease severity of 66.5%, while two, three 
and four alleles reduced disease severity to 58.6%, 50.1%, and 40.0%, 
respectively. The group that contained four R alleles was 
significantly more resistant than the groups with 0, one and two 
R alleles. The groups with two and three R alleles significantly 
differed from the groups with 0 and one alleles, and the group with 
one R allele significantly differed from the group with no R 
alleles (Figure 4A). 

Across five trials of overall resistance, four MTAs with R2 effects 
greater than 5% were detected. According to the average means of 
each group, an increased number of MTAs per genotype resulted in 
an improved resistance to FHB. The average severity level of the 
null group was 55.8%, while the severity levels for groups with 
increasing numbers of alleles were as follows: one allele (49.6%), two 
alleles (44.6%), three alleles (39.5%), four alleles (30%), five alleles 
(20.8%). The average means of groups 5R, 4R, and 3R significantly 
differed from the groups with 0, one, and two R alleles, and the 
groups 0R, 1R, and 2R significantly differed from each 
other (Figure 4B). 

Across all trials, five significantly MTAs with R2 effects greater 
than 5% were identified. Comparing the average means of each 
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group, a clear relationship between the number of accumulated R 
alleles and disease resistance levels was observed. The average 
severity of the null group was 60.0%, while the severity levels for 
groups with increasing numbers of R alleles were as follows: one 
allele (53.2%), two alleles (46.5%), three alleles (41.0%), four alleles 
(31.8%), and five alleles (9.8%). The groups with two, three, four 
and five alleles differed significantly only from the groups 0 and 1R, 
while the average means of the groups 0 and 1R significantly 
differed from each other and the groups with two, three, four, 
and five R alleles (Figure 4C). The group that accumulated 5 alleles 
likely did not differ significantly from the other groups, because it 
was represented by only one genotype. 

In total, 58 significantly associated MTAs were found across 
different individual trials and combinations of trials. Furthermore, 
the relationships between the number of these MTAs and BLUE 
values across eight trials were determined. Additionally, the 
genotypes were grouped according to the number of MTAs and 
their geographic origin (Figure 5). Multiple regression analysis was 
performed to determine the effect of 58 MTAs and partial 
contributions of 10 major and 48 minor MTAs. Collectively, 58 
MTAs explained 55% of the variation in resistance. A larger part of 
TABLE 3 Significant QTL with R2 larger than 10%. 

QTL SNP Chr 
Pos 
(bp) 

-Log10 

(p.value) MAF 
Allele 
Effect 
(%) 

PVE, 
% 

R2 , 
% Trials 

QFHB
2AL.1 

Tdurum_contig91519_224 2A 451809379 
from 5.8 
to 18.0 

0.17 
4.41 

to 6.94 
0.97
7.18 

8.86
15.18 

2_env_a, 3_env, 4_env, 5_env, 6_env_a, 
6_env_b, 6_env_c, 7_env_a, 7_env_b, 

8_env_all, Field_spray_2023 

QFHB
3AL.5 

AX-109493460 3A 743554170 6.3 0.36 5.61 2.58 10.35 Field_spray_2022 

QFHB
3AL.1 

Excalibur_c52772_1592 3A 341284496 
from 6.8 
to 9.9 

0.13 
2.87 

to 4.14 
1.61
2.95 

13.37
15.07 

8_env_all, 5_env, 7_env_b, 6_env_a 

QFHB
4AL.1 

AX-109477914 4A 590276039 7.3 0.08 5.64 0.50 11.92 2_env_field_spray 

QFHB
5AS 

tplb0056h22_2113 5A 48894696 9.1 0.19 3.61 2.49 11.02 7_env_b 

QFHB
2BL.2 

AX-94456169 2B 588688399 5.9 0.16 4.36 1.86 12.98 Incidence_field_2023 

QFHB
2BL.4 

BobWhite_c6365_965 2B 731894245 9.05 0.48 1.96 1.52 11.12 Spawn_severity_2023 

QFHB
2BL.1 

Excalibur_c29707_318 2B 412662314 
from 5.8 
to 12.9 

0.21 
from 
-2.79 

to -4.57 

0.73
3.28 

10.49
13.94 

2_env_a, 3_env, 4_env, 5_env, 6_env_a, 
6_env_b, 6_env_c,7_env_b, 7_env_a, 

8_env_all, Field_spray_2023 

QFHB
3BS 

AX-94428728 3B 299598299 
from 6.16 
to 6.19 

0.11 6.53-6.56 
0.85
1.26 

12.43
12.52 

FHBindex_2023, Field_spray_2023 

QFHB 
-6BL 

Tdurum_contig46828_730 6B 643165761 5.8 0.37 
from 
-2.30 

to -2.57 

1.73
1.88 

11.25
11.42 

6_env_c, 5_env 
 

* QTL = genomic region linked to variation in quantitative trait, SNP= Single nucleotide polymorphism used as SNP marker, Chr = Chromosome where specific QTL or SNP is located, Pos(bp) =
 
the physical location of SNP in base pairs on chromosome, MAF = the frequency of minor allele, Allele effect = effect of major allele on the trait, R2 = coefficient of determination.
 
*2_env_a (field spray of 2022 + 2023), 2_env_b (spawn grain of 2022 + 2023), 3_env (2-year field + greenhouse spray), 4_env (field spray 2022–23 + spawn grain 2022–23), 5_env (2-year field
 
spray + 2-year spawn grain + greenhouse spray), 6_env_a (3 spray + 2 spawn grain + point inoculation), 6_env_b (3 spray + 2 spawn grain + FHB incidence), 6_env_c (3 spray +2 spawn grain +
 
FHB index), 7_env_a (3 spray + 2 spawn grain + point inoculation + incidence), 7_env_b (3 spray + 2 spawn grain + incidence + FHB index), 8_env_all (3 spray + 2 spawn grain + point
 
inoculation + incidence + FHB index).
 
Among 65 SNP markers, 12 explained more than 10% of the phenotypic variation according to the adjusted coefficient of determination R2). Among them, 7 MTAs had R2 >10% and were stable
 
(detected in more than 1 environment) (Supplementary Table S3).
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this variation was explained by 10 major MTAs (31%), while 48 
minor  MTAs  were  responsible  for  the  remaining  24%  
(Supplementary Figure S5). Most of these MTAs were unstable, 
identified in single trials (or across a specific combination of trials), 
and demonstrated only minor effects (Supplementary Table S3). 
Nevertheless, a relatively strong correlation (r=0.69, p < 0.001) and 
Frontiers in Plant Science 10 
linear regression coefficient of determination (adjusted R2 = 0.55) 
were found between the number of resistant alleles and BLUEs 
across eight trials (Figure 5, Supplementary Figure S5). The most 
resistant cultivars derived from Baltic countries, and a few 
genotypes had an exotic origin (Figure 5). Additionally, the 
associations were determined only for major MTAs (using a 
FIGURE 3 

Comparison of FHB resistance (BLUEs) between genotypes carrying G and T alleles of the SNP marker (Tdurum_contig91519_224) in individual trials 
and across different combinations of trials. * - 0.01 < p ≤ 0.05, *** - 0.0001 < p ≤ 0.001, **** - p ≤ 0.0001. 
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threshold of R2 >10%) to determine the overall effect of major 
MTAs (Figure 6). Ten major-effect MTAs explained the largest part 
of resistance (r=0.61, p < 0.001; R2 = 0.31) (Figure 6, Supplementary 
Frontiers in Plant Science 11 
Figure S5). However, considering only major QTL, some genotypes 
fell into the tails of violins as most resistant, but belonged to the 
second group possessing only 4–6 MTAs (Figure 6). In contrast, 
when all MTAs were considered, the most resistant genotypes (in 
the tails of violins) belonged to the Group 3 with the highest 
number of MTAs (Figure 5). Overall, 48 minor MTAs explained 
24% of the variation, indicating that small-effect MTAs also 
contributed significantly to resistance. 
3.4 QTL determination 

Across all trials and their combinations, we identified a total of 
65 MTAs, 58 of which had known physical positions within the 
genome (Supplementary Table S3). To define QTL regions 
associated with FHB resistance, half-decay chromosome-specific 
distances were applied (Supplementary Table S2). If the LD values 
were higher than 0.5 between nearby MTAs, they were assigned to 
one QTL. Overall, 55 QTL were defined (Supplementary Table S4), 
10 of which had R2 coefficients higher than 10% (Table 3). Among 
them, 51 were related to overall resistance, and only one QFHB-2D 
was associated with Type II resistance (R2 value was 6.2%). Three 
QTL were associated with Type I resistance FHB-2B.3, with an R2 

value of 13%, and QFHB-7A with an R2 value of 6%, while the third 
QFHB-2BS was related to both Type I resistance and overall 
resistance (Supplementary Table S4). 

To assess the correspondence between the identified QTL and 
previously published ones, we compared their physical positions. 
For comparison, we used a set of published QTL from 2000 to 2020 
compiled by Zheng et al. (2021). The authors collected 625 FHB 
associated QTL from 113 publications and determined their 
physical positions by aligning flanking and peak markers to the 
Chinese Spring reference genome, RefSeq v1.1 (International 
Wheat Genome Sequencing Consortium (IWGSC), 2018) (Zheng 
et al., 2021). 

Comparing the physical positions of QTL identified in this study 
with previously published, we found that 46 QTL were collocated 
with previously reported QTL (Supplementary Table S5), whereas 8 
QTL did not match any published QTL, 4 of them (AX-89483131, 
TA001900-1836, AX-158584923 and IAAV6297) had R2 values 
above 5% and the difference between the two groups of alleles 
was significant at p ≤ 0.001. AX-95100505 and AX-158585120 had 
R2 values of 2.87% and 2.65%, respectively. AX-111556997 and 
TA016804–1075 had R2 values close to 0% and there was no 
significant difference between the two groups of alleles. Meanwhile, 
all 10 QTL with phenotypic variation (R2) higher than 10% collocated 
with previously reported QTL (Table 4). 

Additionally, we reviewed recent GWAS that reported 
associations with wheat resistance to FHB. Overall, 1760 MTAs 
were found in 13 articles (Supplementary Table S5). To evaluate the 
potential collocation of our QTL with previously published MTAs, 
we manually added ±20 Mb to the positions of the markers. It was 
found that 42 QTL were potentially related to the MTAs from 
previous GWAS studies. When both published QTL and MTAs 
were compared with the QTL from this study, only 2 QTL (QFHB-
FIGURE 4 

Accumulative effects of alleles associated with FHB resistance (R2 > 5%).  
(A) represents the accumulation effect of R alleles across a 2-year spray 
field trial. (B) demonstrates the accumulation effect across five trials. 
(C) shows the accumulation effect across all trials. The letters above the 
plots indicate statistically significant differences between the groups 
according to the Kruskal-Wallis test (p < 0.05), followed by Dunn’s test  
for multiple post hoc pairwise comparisons with Bonferroni correction. 
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FIGURE 5 

Relationship between resistance and the number of alleles (58 SNPs in total). 
FIGURE 6 

Relationships between resistance and the number of major-effect alleles (R2>10%). 
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TABLE 4 Collocation of QTL (R2 > 10%) identified in this study with previously published QTL based on physical positions. 

QTL in this study Previously published* 

Name R2 effect Reference Population PVE or R2 

QFHB-4AL.1 11.92 
Szabó-Hevér et al., 2012 DH (Frontana/Remus) 9 

Petersen et al., 2016 F5RIL (NC-Neuse/AGS 2000) 11.5 

QFHB-3AL.5 10.35 Gervais et al., 2003 F7RIL (Renan (resistant)/Recital (susceptible) 6.2 

QFHB-3BS 12.43-12.52 

Zhang et al., 2004 F7RIL (Wangshuibai/Alondra) 15.7 

Zhang and Mergoum, 2007 F5RIL (Sumai 3/Stoa) 12.4 

Holzapfel et al., 2008 RIL (Apache/Biscay) 2.1 

Zhang et al., 2012a F6RIL (Baishanyuehuang/Jagger) 8.1 

Islam et al., 2016 F9RIL (Truman/MO 94-317) 10.3 

Shah et al., 2017 F2 (Zhoumai-27/Shengxuani-6) 7.29 

QFHB-2BL.2 12.98 
Xue et al., 2010 RIL (Nanda2419/Wangshuibai) 17.9 

Zhang et al., 2018 DH (FL62R1/Stettler) 16.2 

QFHB-2BL.4 11.12 Eckard et al., 2015 
RIL (Wheaton (PI 469271)/Sapporo Haru Komungi Jugo 

(PI 81791) 
3.91 

QFHB-3AL.1 13.37-15.07 

Cai and Bai, 2014 F5RIL (HCD/Jagger) 7.5 

Zhang et al., 2012a RIL (Heyne/Trego) 14 

Shen et al., 2003 F5RIL (Patterson/F201R) 13 

Zhang et al., 2012b F6RIL (Baishanyuehuang/Jagger) 4.8 

Buerstmayr et al., 2013 F6BC1 (Mt. Gerizim #36/Helidur) 22 

QFHB-2AL.1 8.86-15.18 Zhang et al., 2014 F8RIL (Ben/PI41025) 8 

QFHB-5AS 11.02 

Chen et al., 2006 DH (W14/Pion2684) 16 

Li et al., 2012 F8RIL (HFZ/Wheaton) 6.9 

Á gnes et al., 2014 DH (GK Mini Mano/Frontana) 12.2 

Eckard et al., 2015 F2: Wesley-Fhb1-BC56 7.5 

Ren et al., 2019 F6RIL (Luke/AQ) 9.8 

Chen et al., 2006 DH (W14/Pion2684) 8 

Jiang et al., 2007 F7RIL (Veery/CJ 9306) 5.2 

Lu et al., 2013 F6RIL (SHA3/CBRD/Naxos) 10.8 

QFHB-2BL.1 10.49-13.94 

Gervais et al., 2003 F7RIL (Renan (resistant)/Recital (susceptible) 12 

Somers et al., 2006 DH (strongfield/blackbird) 26 

Xue et al., 2010 RIL (Nanda2419/Wangshuibai) 17.9 

Islam et al., 2016 F9RIL (Truman/MO 94-317) 16.1 

QFHB-6BL 11.25-11.42 

Lin et al., 2004 F6RIL (Nanda2419/Wangshuibai) 17.8 

Szabó-Hevér et al., 2012 DH (Frontana/Remus) 6.8 

Buerstmayr et al., 2013 F6BC1 (Mt. Gerizim #36/Helidur) 22 

Á gnes et al., 2014 DH (GK Mini Mano/Frontana) 20.5 

Buerstmayr and 
Buerstmayr, 2015 

F5RIL (Capo/Arina) 5.4 
F
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*the list of published QTL (from 2000 to 2020) and their physical positions were determined by Zheng et al., 2021 by aligning flanking and peak markers to the Chinese Spring reference genome, 
RefSeq v1.1 (IWGSC, 2018). 
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4DS and QFHB-7DS.1) were not collocated in physical positions 
and are presumably novel (Supplementary Table S7). QFHB-4DS 
was found only in one individual trial (spawn 2022) with an R2 

value of 7.68%, and the difference between the two groups of 
different alleles was 11.67% at the 0.001 significance level, while 
QFHB-7DS.1 was found in one individual trial (FHBindex_2023) 
with an R2 value close to 0%, and no significant difference between 
the two groups was found. 
 

3.5 Candidate gene identification 

Using annotated wheat genome data for high-confidence genes 
from the International Wheat Genome Sequencing Consortium 
(IWGSC) RefSeq v1.1 (International Wheat Genome Sequencing 
Consortium (IWGSC), 2018), 705 gene names and their physical 
positions were extracted from the physical regions of 55 identified 
QTL. Furthermore, 12590 matching GO terms were found for 543 
genes (Supplementary Table S8). Alongside, significantly up- or 
downregulated genes from previous transcriptomic studies were 
collected, in which gene expression was analyzed by comparing 
resistant and susceptible genotypes/groups in response to 
inoculation with Fusarium graminearum, to assess their 
correspondence with identified genes in this study (Buerstmayr 
et al., 2021; Pan et al., 2018; Seifi et al., 2023). Subsequently, 52 genes 
could be referred as candidate genes, since they matched both our 
identified genes and those reported in transcriptomic studies as 
significantly associated with FHB. These 52 genes were found 
within 25 QTL identified in our study (Supplementary Table S9). 
Most genes were downregulated, 36 exhibited significantly 
decreased expression, while only 16 were upregulated, which is 
consistent with findings from previous studies (Buerstmayr et al., 
2021; Seifi et al., 2023). Notably, several genes were found within the 
same QTL. For example, eight candidate genes were found within 
QFHB-1BS.2, seven within QFHB-1BS.1, six within QFHB-1BS.3, 
four within QFHB-3BL.4, three within QFHB-4DS and QFHB-
2BL.1, and  two within  QFHB-2AL.5, QFHB-2DL, and  QFHB

3AL.5 (Supplementary Table S9). 
Some candidate genes were inside or within close proximity to SNP 

markers, such as TraesCS1B02G324300, TraesCS1B02G046300, 
TraesCS3A02G527200, and TraesCS1B02G075200, which were merely 
122, 1129, 1452, 1787 bp away from the SNP markers (Supplementary 
Table S9). The identified candidate genes encoded proteins that play key 
roles in pathogen detection and defense signaling. For example, 
TraesCS3B02G598200, TraesCS3B02G598400, TraesCS1B02G047000 
and TraesCS1B02G324300 contribute to cell wall reinforcement. 
TraesCS5A02G367100, TraesCS2B02G536500, TraesCS1B02G046000, 
TraesCS1B02G046300, TraesCS1B02G114100, TraesCS6B02G052400, 
TraesCS3A02G530200 and TraesCS2B02G296300 participate in 
pathogen recognition that can be referred to as Type I resistance. 
TraesCS1B02G114300, TraesCS1B02G113600, TraesCS1B02G113800, 
and TraesCS5B02G426400 were associated with regulation of ROS 
and programmed cell death that hints to Type II resistance. Other 
genes were associated with Type III resistance, such as DON 
detoxification (TraesCS3B02G598200 TraesCS3B02G598400, 
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TraesCS1B02G047000, TraesCS1B02G114300). Moreover, some genes 
(TraesCS5A02G367100, TraesCS1B02G114100, TraesCS3B02G596200) 
play putative roles in susceptibility pathways, such as calcium signaling or 
receptor-like kinases (RLKs). Functional description of all the identified 
genes are presented in Supplementary Table S9. 
4 Discussion 

4.1 Genome-wide association analysis 

Fusarium head blight (FHB) is a challenging threat to wheat 
production worldwide. Resistance to FHB is regulated by a complex 
network of small-effect genes (Buerstmayr et al., 2021). In previous 
studies, plant breeders and researchers relied on genetic tools that 
enabled them to work with a limited number of genes or QTL. 
Traditional genetic methods were limited to screening large 
genomic regions, which is crucial for investigation of complex 
traits such as FHB resistance. However, after the development of 
high-density genotyping techniques such as high-density SNP 
arrays and genotyping-by-sequencing (GBS) combined with 
Linkage Disequilibrium analysis, research on FHB resistance has 
gained momentum, opening new possibilities to develop improved 
disease resistance in wheat (Mir et al., 2023; Myles et al., 2009; Saini 
et al., 2021). Using LD analysis, which can be performed directly in 
a diverse breeding population, a large part of the wheat genome can 
be quickly analyzed for associations to FHB resistance without the 
need for the whole-genome resequencing. Furthermore, physical 
regions that include the responsible genes can be defined by 
performing LD analysis. Although LD does not provide direct 
information about genetic linkage, it provides statistical evidence 
of linkage between alleles based on their actual distribution. That is 
not completely random, the frequency can be affected not only by 
genetic linkage but also by genotype pedigree, adaptability to 
specific environments, and breeding selection (Flint-Garcia et al., 
2003; Sahoo et al., 2022; Scherer and Christensen, 2016). The use of 
LD strength between markers in diverse populations provides quick 
LD-based detection of QTL regions; however, the physical regions 
are not fine-mapped, do not have precise boundaries, and are based 
on selected statistical probability levels. 
4.2 QTL mapping in diverse and bi-parental 
populations 

Traditionally, QTL identification is performed using mapped 
populations such as recombinant inbred lines (RILs), near-isogenic 
lines (NILs), or doubled haploids (DHs) (Zheng et al., 2021). 
Alternatively, GWAS, which is based on high-density genotyping 
of diverse populations, is usually used to identify MTAs without 
explicitly defining the specific QTL  regions.  In  GWAS, when

genetically diverse populations are used, the structural alleles can 
increase the risk of detecting false associations (Mir et al., 2023). 
When mapping populations in which all progenies are genetically 
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related are used for analysis, the detection of associations between 
markers and traits is more reliable. However, the development of 
mapping populations requires significant time and effort. Because of 
the lower frequency of recombination events in such populations, 
the linkage disequilibrium decay is slower, and defined QTL regions 
are relatively large. Conversely, the application of diverse 
populations makes it possible to use the existing breeding 
populations. The higher frequency of recombination events in 
diverse populations results in higher LD decay. In our study, LD-
based detection of QTL region was used. The main purpose of 
defining approximate QTL regions based on chromosome-specific 
half-decay distance was to set the searching boundaries for 
candidate genes and to check the collocation between relatively 
small QTL identified in diverse populations and previously detected 
QTL from mapping populations. 
 

4.3 Overview of identified MTAs and QTL 

Overall, 58 MTAs with known positions and seven with 
unknown positions were identified in the studied wheat panel. A 
comparable number of identified MTAs was found in previous 
GWAS studies of FHB resistance in wheat, when diverse 
populations were studied (Ghimire et al., 2022). In contrast, 
mapped biparental populations do not possess such diversity of 
favorable MTAs/QTL, and the number of identified QTL is usually 
several times smaller in biparental populations than in diverse 
populations  (Zheng  et  al. ,  2021).  Applying  half-decay  
chromosome-specific distances, 55 QTL were determined in the 
spring wheat population. Three pairs of MTAs were merged 
because they were strongly associated, LD values between them 
varied from 0.94 to 1.0. By comparing the physical collocation of the 
QTL identified in this study with previously detected QTL from 
mapped populations using chromosome-specific half-decay

distances, we surprisingly found that 46 out of 55 were collocated 
with known QTL. This might indicate that the significantly 
associated markers were relatively closely positioned to the causal 
genes, and the LD approach of defining boundaries of QTL can be 
applied for approximate determination. Almost all identified QTL 
were associated with overall resistance. Only QFHB-2D (AX
94872625) was associated with Type II resistance after point 
inoculation under controlled conditions, with an value of R2 

6.2%. Three QTL associated with Type I resistance: QFHB-2B.3 
(AX-94456169) with R2 value of 13%, and QFHB-7A (AX
158591608) with R2 value of 6%, which are presumably related to 
the initial regulation of wheat defense. The third QFHB-2BS 
(BobWhite_c8113_532) was connected not only with initial 
resistance but was associated with later resistance and found in 
ten different combinations of trials (Supplementary Table S3). The 
remaining 51 QTL were related to overall resistance. Crossing wheat 
cultivars that possess different types of resistance might be an 
effective strategy to combine the different components of 
resistance. For example, the breeding line Gen323 (DS-1401-6
DH) possesses three QTL of Type I resistance and nine QTL of 
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overall resistance (across five trials of overall resistance) but does 
not contain QTL of Type II resistance. Crossing this breeding line 
with other breeding lines that already possess Type II resistance 
allele, along with a complex of overall alleles (e.g. breeding line 
Gen322), might result in the development of transgressive 
segregates with improved FHB resistance. 

Some minor QTL from this study collocated with QTL with 
relatively high effects in other studies. For example, QFHB-2DL had 
R2 value of 6.18 in our study, while in other studies, its effect ranged 
from 12.6 to 18 (Supplementary Table S5). It is noteworthy that the 
most stable and effective QTL, QFHB-2AL.1, collocated with only one 
published QTL by Zhang et al. (2014). However, the authors defined 
a large region from 341.9 Mbp to 534.9 Mbp indicating 193 Mbp 
length/window at 2A chromosome and used mapping population, 
while in our study we defined regions from 451.6 Mb to 452 Mbp 
using only 0.48 Mbp window. Moreover, no genes related to FHB 
resistance were found within QFHB-2AL.1 and QFHB-3AL.1, 
according to the GO terms (Supplementary Table S8) and InterPro 
descriptions (Supplementary Table S10). Presumably, resistance 
genes were located outside these defined QTL. When the region of 
QTL is defined based on LD, the causal genes are more likely to be 
within this region; however, they can still be out of the defined region. 
Therefore, additional analysis of QTL regions is required. 
4.4 Candidate genes and resistance 
mechanisms 

In total, 705 genes were extracted from the physical regions of 
55 identified QTL. Matching significantly up- and downregulated 
genes from the transcriptomic studies (Buerstmayr et al., 2021; Pan 
et al., 2018; Seifi et al., 2023) with genes located within determined 
QTL, 52 candidate genes were found. Among them, 36 (69.2%) 
were downregulated and 16 (30.8%) were upregulated in response 
to inoculation with FHB (Supplementary Table S9), which is 
consistent with the findings of previous studies (Buerstmayr et al., 
2021; Seifi et al., 2023). We did not find any functional validation of 
these 52 candidate genes, such as gene silencing or overexpression, 
in published literature to prove the true relationship between these 
genes and FHB resistance. However, some identified candidate 
genes encode wheat proteins, the roles of which have been well 
studied in wheat defense against FHB, supporting their potential 
contribution to FHB resistance (Ma et al., 2022; Sirangelo, 2024). 
For instance, TraesCS3B02G598200 encodes a glycosyltransferase 
that plays a vital role in DON detoxification by modifying it into 
DON-3-glucoside, cell wall reinforcement, and hormone regulation 
(Ghimire et al., 2022; Gottwald et al., 2012; He et al., 2018; 
Lemmens  et  al. ,  2005).  TraesCS1B02G114300  encodes  
Glutathione S-transferase (GST) that is also a well reported 
protein for FHB resistance, associated with defense activation, 
detoxification, and oxidative stress (ROS). Additionally, it is an 
antioxidant that contributes to minimizing PCD (Gullner et al., 
2018) by forming DON-glutathione conjugates, and aids in DON 
detoxification (Edwards et al., 2000; Gardiner et al., 2010; Seifi et al., 
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2023). TraesCS5A02G367100 and TraesCS2B02G536500 are 
encoded for receptor-like protein kinases (RLKs). These proteins 
are paramount for plant growth, strengthening of the cell wall, 
oxidative stress responses, and activation of defense signaling. 
Protein kinases play a crucial role in signaling when a pathogen is 
identified (Romeis, 2001; Tang et al., 2017). Furthermore, 
TraesCS7A02G051800 is identified as a 2-oxoglutarate/Fe(II)
dependent oxygenase (2OG oxygenase) superfamily enzyme 
involved in secondary metabolite synthesis (Jia et al., 2017). 
Inspection of the functions of candidate genes might provide 
additional insights into their resistance mechanisms and facilitate 
the proper pairing of QTL to attain durable FHB resistance. In our 
analysis, it was found that some QTL contributed to basal defense, 
while others participated in the detoxification of FHB mycotoxins 
(Supplementary Table S9). Seifi et al. (2023) has previously 
postulated that if PCD is inhibited but DON production is not 
limited, the visual symptoms may be reduced, nevertheless, a high 
level of mycotoxins would be present. Conversely, if DON 
production is limited via the activation of ROS scavengers, and 
plant cell death process is not limited, visual symptoms would be 
visible; however, the levels of DON would be low in the grain. 
Therefore, breeders should aim to develop such resistance when 
both DON production and PCD are limited (Seifi et al., 2023). 
 

 

4.5 Contribution of identified QTL and the 
pyramiding effect 

The results of the current study confirm the commonly 
accepted statement that wheat resistance to FHB is controlled by 
multiple number of small-effect QTL, and the determination of 
which is hampered by environmental effects (Mesterhazy, 2024; 
Miedaner et al., 2024). In this study, the GWAS was conducted 
using phenotypic data obtained from different inoculation methods 
under field and controlled conditions. Moreover, GWAS was 
carried out not only within individual trials but also across 
different combinations of trials that extended the number of 
identified significantly associated QTL. Altogether, 55 QTL were 
identified, most of which had small effects and were found only in 
one individual trial or in one combination of trials (Supplementary 
Table S3). The association between the number of QTL and FHB 
resistance was relatively strong, considering that FHB resistance is 
highly complex, some QTL related only to one type of resistance 
(Type I, Type II or overall), and were determined only under 
specific inoculation methods or environments. A relatively strong 
Pearson correlation (r=0.69, p < 0.001) and linear regression 
coefficients of determination (adjusted R2 = 0.55)  were  found
between the number of resistant alleles and the BLUE values of 
resistance across eight trials (Figure 5). Consequently, the effect of 
10 major QTL was 31% (R2 = 0.31), while the effect of 45 minor 
QTL was 24% (R2 = 0.24) on the phenotypic variation 
(Supplementary Figure S5). The results demonstrate that even not 
stable “hardly detected” minor QTL  are essential  for wheat

resistance to FHB and should not be neglected. The range of 
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accumulated favorable QTL varied from 10 to 40 per genotype, 
while the number of major QTL varied from 0 to 10. The results 
demonstrate that these major QTL explained a large part of the 
variation and could potentially facilitate wheat breeding for FHB 
resistance. Additionally, this might indicate that modern cultivars 
possess plenty of favorable small-effect QTL, and new superior 
genotypes can be developed due to the transgressive segregation 
using selection under high disease pressure. The development of 
improved FHB resistance through transgressive segregation was 
observed by Mesterházy et al. (2018) and Zhang et al. (2018). 
Furthermore, the findings indicate that the inheritance of resistance 
to FHB had an accumulative nature. The more favorable QTL 
stacked, the greater the resistance to FHB. The positive additive 
effect of pyramiding small-effect QTL for improving wheat 
resistance has been reported in many studies (Haile et al., 2023; 
Kirana et al., 2023). For example, in the study by Ghimire et al. 
(2022) investigating the resistance of 278 elite winter wheat 
breeding lines, 11 QTL with R2 greater than 10% were detected 
using GWAS. The severity of FHB was reduced by 21.6% when 
breeding lines possessed three alleles associated with FHB, a 
combination of four alleles resulted in a reduction of 32.6%, and a 
combination of five alleles caused a reduction of 42.6% compared to 
the null group (Ghimire et al., 2022). However, it should be noted 
that in this study some genotypes possessed close to the maximum 
number of favorable alleles, whereas they had an average or even 
below-average level of resistance (Figure 5). These results might 
suggest that there were other factors influencing resistance, such as 
phenotyping inaccuracies caused by environmental effects, the 
presence of additional unidentified FHB-related QTL, epistatic 
gene interactions, or epigenetic regulations that contributed to the 
expression of FHB resistance (Brar et al., 2019; ElDoliefy et al., 2024; 
Kumar et al., 2020; Mierziak and Wojtasik, 2024). 
4.6 Summary and conclusions 

The largest limitations in wheat breeding for FHB resistance are 
the lack of adapted sources of resistance and the genetic linkage 
between resistance and undesirable agronomic traits. The widely 
utilized Chinese sources of resistance, such as Sumai 3 and 
Wangshuibai, possess inferior agronomic traits and do not 
perform well in the environments of the Baltic and Nordic 
countries. Therefore, the search of resistance for ‘native’ 
resistance within locally adapted germplasm is an alternative 
breeding strategy for FHB resistance (Brown-Guedira et al., 2008; 
Mesterházy et al., 2018; Thambugala et al., 2020). Phenotyping a 
panel of 332 spring wheat varieties and breeding materials 
demonstrated that FHB resistance can be found in adapted 
genotypes to these regions (Syed et al., 2024). The medium 
resistance was found in breeding materials from general breeding 
and the most resistant breeding lines were detected in a subset of 
resistant breeding lines (breeding lines from Gen303 to Gen336) 
(Syed et al., 2024) which was previously selected after one or two 
cycles of screening under artificial inoculation. Some of these lines 
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had resistance comparable to that of Sumai 3 (Syed et al., 2024). In 
our study, GWAS revealed ten major favorable alleles in wheat 
genotypes adapted to the environments of Baltic and Nordic 
countries. Although most of the identified QTL were found 
within previously published genomic regions, it was demonstrated 
that resistance to FHB can be found in the European gene pool, and 
moderate to high levels of resistance are controlled by the additive 
effect of major and small-effect QTL. A GWAS conducted on a large 
collection of adapted genotypes to Baltic and Nordic countries 
enabled identification of QTL, which presumably do not possess a 
negative linkage with crucial agronomic traits because they were 
selected within adapted breeding material. The accumulation of 
QTL identified in this study and the utilization of breeding lines 
carrying resistance alleles will facilitate further genetic 
improvement of wheat resistance to FHB in the environments of 
the Baltic and Nordic countries. These findings demonstrate that 
FHB resistance in wheat cultivars for these regions can be further 
improved by pyramiding these R alleles. 

In conclusion, 55 QTL for wheat resistance to FHB were 
identified in the European gene pool. Among 55 QTL associated 
with FHB resistance, 10 had major effects (R2 >10%), two QTL 
(QFHB-4DS and QFHB-7DS.1) have not been previously published 
and are presumably novel. The majority of QTL (52 QTL) were 
associated with overall resistance, one QTL (QFHB-2DL) was  linked  
with Type II resistance, and two QTL (QFHB-7AS and QFHB-2BL.2) 
were associated with Type I resistance. According to the principal 
component analysis performed on the basis of 18,417 SNPs, resistant 
genotypes did not fall into separate clusters, but were placed in 
Clusters 3 and 4 in the middle of the population. Cluster analysis 
demonstrated that exotic resistant genotypes did not form a separate 
cluster, resistance was fairy well distributed within the population, 
and it can be found within the European wheat gene pool. Pyramiding 
of three and more major QTL resulted in improved resistance. A total 
of 52 candidate genes were identified by analyzing genes near 
significantly associated SNPs in combination with published 
transcriptome data. All identified QTL were found in elite, adapted 
breeding materials, and can be utilized in wheat breeding for 
improving FHB resistance in the Baltic and Nordic regions. 
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SUPPLEMENTARY FIGURE 1 

Determination of the optimal number of principal components (PCs) using 
the Elbow method. 

SUPPLEMENTARY FIGURE 2 

Estimation of the optimal number of clusters using the Elbow method. 

SUPPLEMENTARY FIGURE 3 

A dendrogram of 332 genotypes using hierarchical cluster analysis of 18,417 
polymorphic SNPs. 
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SUPPLEMENTARY FIGURE 4 

Scatter plot of genome-wide linkage disequilibrium (LD) (r2) versus physical 
distance (Mbp) for the 332 spring wheat genotypes based on 18,417 SNP markers 
within whole genome. The fitted locally weighted polynomial regression-based 
(LOESS) curve is indicated. The red dashed lines demonstrate the intersection 
between the critical LD value r² = 0.2 and physical distance. 
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SUPPLEMENTARY FIGURE 5 

Proportion of explained variation by three QTL groups: 55 QTL, 10 major and 
45 minor in wheat resistance (BLUEs across eight trials) 

SUPPLEMENTARY FIGURE 6 

Distribution of major QTL on wheat chromosomes based on RefSeq v1.1. 
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