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Introduction: The state monitoring of tobacco leaves during the curing process

is crucial for process control and automation of tobacco agricultural production.

While most of the existing research on tobacco leaves state recognition focused

on the temporal state of the leaves, the morphological state was often neglected.

Moreover, the previous research typically used a limited number of non-

industrial images for training, creating a significant disparity with the images

encountered in actual applications.

Methods: To investigate the potential of deep learning algorithms in identifying

the morphological states of tobacco leaves in real industrial scenarios, a

comprehensive and large-scale dataset was developed in this study. This

dataset focused on the states of tobacco leaves in actual bulk curing barn in

multiple production areas in China, specifically recognizing the degrees of

yellowing, browning, and drying. Then, an efficient deep learning method was

proposed based on this dataset to enhance the predictive performance.

Results: The prediction accuracy achieved for the yellowing degree, browning

degree, and drying degree were 83.0%, 90.5%, and 75.6% respectively. The

overall average accuracy, satisfied the requirements of practical application

scenarios with a value of 83%.

Discussion: Our proposed framework effectively enables morphological state

recognition in industrial curing, supporting parameter optimization and

enhanced tobacco quality.
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1 Introduction

Curing is an important process of tobacco production,

converting fresh leaves into commercially cigarette raw materials.

Curing quality of tobacco leaves directly determines farmers’

income and the cigarette quality. Matching the optimal curing

technology in real time according to the state of tobacco leaves is

the key to determine the curing quality of tobacco leaves (Siddiqui,

2001; Zhao et al., 2024). At present, the identification of tobacco leaf

states during the curing process mainly relies on people’s subjective

experience. Inaccurate cognition has caused problems such as

uneven curing quality of tobacco leaves, large curing losses, and

weak industrial usability (Ma et al., 2021).

The rapid development of technologies such as the Internet of

Things and artificial intelligence has proposed new methods for

solving such problems. Researchers conducted research on the state

of tobacco leaves during the curing process by using the collected

temperature, humidity and tobacco leaf images. The researches on

tobacco leaf state identification mainly can be divided into two

categories: temporal state and morphological state. The temporal

state of tobacco leaves refers to the division of the tobacco leaf

curing process into different stages based on the curing time of the

tobacco leaves, such as yellowing stage, color fixing stage, and stem

drying stage (Li et al., 2022; Lu et al., 2023). Although this method

has achieved high accuracy (More than 90%), it is difficult to adjust

the temperature and humidity of the curing room in real time based

on the recognition results. Therefore, some researchers focused on

the morphological state recognition (Wang et al., 2017; Wang and

Qin, 2022; Zhao et al., 2024). The morphological state of tobacco

leaves refers to the specific state of yellowing degree, drying degree

and browning degree of tobacco leaves identified based on tobacco

leaf images, thereby replacing the human eye observation and

subjective analysis during the curing process, and providing more

accurate, faster and scientific results for identifying the state of

tobacco leaves. Meanwhile, it can also provide an important

reference for the real-time adjustment of the curing technology

(Condorı ́ et al., 2020; Pei et al., 2024). To further improve the

recognition accuracy, the texture information of tobacco leaf images

has also begun to be gradually utilized except the widely used color

information (Wang et al., 2017).

However, there are still some problems limited the accuracy and

application of these recognition models. Previous research on

tobacco leaf state recognition often relied on small-scale (i.e.,

hundreds to just over a thousand samples) (Zhao et al., 2024) or

non-industrial datasets, which were collected using small ovens,

experimental chambers, etc (Wu and Yang, 2021; Condorı ́ et al.,
2020). For example, some studies have acquired images through

smartphone photography (Howard et al., 2017; Zhang et al., 2023),

but the quality and characteristics of these images differ significantly

from those captured in actual curing barns, limiting their

applicability to real-world bulk curing scenarios. Some researchers

tried to collect tobacco images in the actual curing barns, but the

complex environment during curing process resulted in image

distortion, out of focus, obvious color difference and only partial

tobacco image acquisition, which are still the core problems limiting
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the acquisition of tobacco condition information (Condorı ́ et al.,
2020; Pei et al., 2024; Wu et al., 2014; Wu and Yang, 2019; Zhang

et al., 2013) and further effected the wide application of the

recognition models.

To overcome these limitations, the objective of this study is to

(i) construct a comprehensive and large-scale image dataset

captured directly from actual bulk curing barns; (ii),propose a

deep learning approach to recognize the morphological states of

tobacco leaves throughout the curing process based on this dataset;

(iii) establish a benchmark framework using state-of-the-art

models, including the Swin Transformer V2, to enhance

predictive performance and support intelligent decision-making

during tobacco curing.
2 Materials and methods

2.1 Large-scale curing tobacco leaves
dataset

The large-scale curing tobacco leaves dataset involved gathering

a substantial amount of real-world data from bulk curing barn and

having them meticulously labeled by experts in tobacco curing. To

facilitate the recognition of tobacco leaves states during the curing

process, 17,420 images of tobacco leaves from 10 main production

areas in China were collected, including Henan, Fujian, Yunnan,

Guizhou, etc. All tobacco leaf images in the dataset were collected

by a newly developed autonomous imaging device (Figure 1). The

image device was installed in the middle shed on one side of the grill

near the heating chamber in the curing barns (Xu et al., 2024). The

sampling interval was set to 10 minutes, and the tobacco images of

the curing process were obtained, which marked the time, location,

temperature, and humidity in the curing barns and the status of the

tobacco leaves.

Experts in tobacco curing in China conducted evaluations

focusing on three distinct states of the tobacco leaf: the degree of

yellowing, the degree of browning, and the degree of drying.

Different degrees were categorized based on the extent of

morphological differences observed in the various states of the

tobacco leaves (Table 1). In Figure 2, some reference images

along were provided with their corresponding yellowing degree,

browning degree, and drying degree labels for further clarity. This

visual representation aids in understanding the various states and

degrees of tobacco leaves during the curing process.
2.2 Recognition algorithm

2.2.1 Method overview
A recognition algorithm was implemented to accurately and

efficiently identify tobacco states during the curing process based on

deep neural networks. As depicted in Figure 3, three components

were comprised in the recognition algorithm: (i) a pre-trained

backbone pre-trained on universal image recognition datasets

(e.g., ImageNet), (ii) a Fourier filter module, and (iii) a common
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color filter module. The pre-trained backbone extracted highly

discriminative image features Fimg by leveraging previously

learned information and further fine-tunes the parameters on the

proposed datasets. The Fourier filter module was designed to extract

the wrinkle information of tobacco leaves Fspect by utilizing the

Fourier spectrum map of the image and a convolution-based

network. The common color filter module calculated the

quantized color histogram of the image and filtered it by

frequency, thereby screening out high-frequency colors and the

order of the colors appearing in the image. It further employed a

fully connected layer to extract high-frequency color features Fcolor.

Finally, all features were concatenated and fed into the fully

connected classifier to predict three states of tobacco.

In summary, a three-branch network was presented in this

study incorporating two proposed modules: the Fourier filter

module and the common color filter module. Through joint

training, the network employs a multi-label recognition head to

simultaneously classify three tobacco states.

2.2.2 Pre-trained backbone
To build a deep learning benchmark and verify the efficacy of deep

learning networks for the tobacco leaves states recognition, four

extensively employed deep neural networks pre-trained on ImageNet

were utilized as backbone network, including VGG19, ResNet-152,

ViT, Swin-Transformer and Swin-Transformer v2 (Simonyan and

Zisserman, 2014; He et al., 2016; Dosovitskiy et al., 2020; Liu et al.,

2021; 2022). VGG19 is a profound convolutional neural network

comprising 16 convolution layers and 3 fully connected layers.

ResNet-152 is an exceptionally deep convolutional neural network,

reaching a depth of up to 152 layers, made possible by employing skip

connections to bypass certain layers. ViT-Large is a model that applies

the transformer architecture, which has demonstrated impressive

performance in the field of computer vision recently. The Swin

Transformer is a hierarchical vision model engineered for efficient

image recognition. It utilizes non-overlapping windows and self-

attention within each window to process images at multiple scales.

Swin-Transformer V2 enhances this approach with innovations like

scaled cosine attention, post- normalization, and a log-spaced

continuous position bias, boosting stability, scalability, and

overall performance.

These pre-trained backbones extract highly discriminative

image features by leveraging the information learned before and

further fine-tuning the parameters on the proposed datasets. An

evaluation of the predictive accuracy of these four networks in

determining the state of tobacco was conducted. To further enhance

their performance, Swin-Transformer v2 was incorporated as the

backbone network and its core components including the following

two aspects.

2.2.2.1 The attention mechanism

In the Swin-Transformer v2, the attention mechanism is a

crucial component (Vaswani et al., 2017). It performs multiple

attention operations to extract highly discriminative features. Given

N image patches within an image and their corresponding features

F ∈ RN×d′ (the process to obtain F will be detailed in the
TABLE 1 The detailed definition of the states of tobacco leaf.

States Degrees

Yellowing degree

0. 50%∼60% yellowing

1. 70%∼80% yellowing

2. Leaves yellow, veins green and green base

3. Leaves yellow and veins green

4. Main veins fade cyan to white

5. Partial main veins shrink and turn purple

6. Main vein purpling

Drying degree

0. Leaf swell and harden

1. Leaf tip softening

2. Leaf softening

3. Leaf wilt completely

4. Leaf blade hook tip curl

5. Leaf drying 1/2∼2/3

6. Leaf drying completely (Large roll)

7. Main vein drying 1/2

8. Main vein drying completely

Browning degree

0. 0%

1.<10%

2. 10%∼20%

3. 20%∼30%

4. 30%∼50%

5. >50%
FIGURE 1

Image acquisition device and installation photos of tobacco leaves
during curing process.
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subsequent paragraph), the operation of the self-attention

mechanism is as follows:

First, the query (Q), key (K), and value (V) are computed using

a linear transformation with the trainable weight W ∈ Rd′×3d

(Equations 1):

Q,  K ,  V   = WF (1)

where Q, K, V ∈ RN×d, W represents the weight matrix of a

linear layer, where d′ is the input channel dimension of the feature F

∈ K V × d′, d is the output channel dimension of the linear layer.

Then, the attention mechanism is applied to extract the output

feature (Equations 2, 3):

Attention(Q,  K ,  V) = SoftMax(cos(Q,  K)=g + B)V (2)

SoftMax(X)i =
exp(Xi)

oN
j=1exp(Xj)

(3)
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where cos(Q, K) ∈ RN×N is the pair-wise cosine similarity, g is a
learnable scalar and N denotes the number of image patches. The B

∈ RN×N serves as a relative positional encoding which is predicted

by two trainable fully connected layers g (Equation 4):

B(DX,  DY) = g(DX,  DY) (4)
2.2.2.2 Patch splitting and merging

The attention mechanism is implemented within the image

patches, which are derived from segmenting an input image into

non-overlapping patches. Each patch is regarded as an individual

unit, referred to as a “token”. Then a linear projection transforms

each token to the token features F. The token features are

subsequently fed into numerous layers of the Swin-Transformer

V2. Each layer is designed to extract and refine the information

embedded within the tokens. This refinement process involves a

series of operations that integrate attention mechanisms. As the
Leaf swell and hardened

50% to 60% yellowing

Leaf swell and hardened

50% to 60% yellowing

Leaf tip softening

50% to 60% yellowing

Leaf tip softening

50% to 60% yellowing

Leaf softening

70% to 80% yellowing

Leaf softening

70% to 80% yellowing

Leaf wilt completely

Leaves yellow, veins green 

and green base

Leaf wilt completely

Leaves yellow, veins green 

and green base

Leaf blade hook tip curl

Leaves yellow and veins 

green

Leaf blade hook tip curl

Leaves yellow and veins 

green

Leaf drying 1/2~2/3

Main veins fade cyan to white

Leaf drying 1/2~2/3

Main veins fade cyan to white

Leaf drying completely 

Partial main veins shrink and 

turn purple

Leaf drying completely 

Partial main veins shrink and 

turn purple

Main vein drying 1/2

Main vein purpling

Main vein drying 1/2

Main vein purpling

(a) (b)

FIGURE 2

Reference image data of (A) Pingdingshan and (B) Zunyi of different yellowing and drying degrees of tobacco leaves during curing.
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tokens progress further into the depths of the network, a method

known as patch merging is employed. This method reduces the

number of tokens by integrating the features of neighboring

patches. The result is an ensemble of tokens, thereby effectively

establishing a hierarchical representation of the initial image.

2.2.3 Fourier filter module
The prediction of drying is more dependent on the

morphological characteristics of the tobacco leaves compared to

the prediction of yellowing and browning. As depicted in Figure 4,

images of tobacco leaves with a higher degree of drying display a

greater number of wrinkles, which are associated with the high-

frequency information in the image’s Fourier spectrum. As the

drying process progresses, the formation of surface wrinkles on
Frontiers in Plant Science 05
tobacco leaves increases, thereby amplifying the high-frequency

intensity in the corresponding images.

To validate this hypothesis, the average high-frequency and low-

frequency intensities of images with different degrees of drying within the

training set were computed. The results, as illustrated in Figure 5, revealed

that the average high-frequency intensity of the corresponding image

exhibits an upward trend as the degree of drying increases. This suggested

a correlation between the image’s frequency domain information and its

degree of drying. Consequently, the Fourier spectrumwas incorporated as

information into the network and a Fourier filter was construct to aid in

the prediction of the degrees of drying.

Specifically, the image was converted into a gray-scale image at

first and then its two-dimensional Fourier spectrum was calculated

(Equation 5):
Tobacco Image

Convolutional
layers

Fourier spectrogram

TopK
color histogram

Fourier 
Transform

Linear
Layer

Color with
High Frequency

pre-trained backbone

Common Color Filter Module

Fourier Filter Module

Classifier Browning
Degree

Yellowing
Degree

Dryning
Degree

FIGURE 3

The overview of the recognition algorithm, including three key components: (A) a pre-trained backbone (Swin-Transformer v2), (B) a Common
Color Filter Module and (C) a Fourier Filter Module. Each module was designed to extract distinct features, which were then integrated and fed into
the subsequent classification network to predict the states of tobacco leaves.
FIGURE 4

Images of tobacco leaves with (A) low drying and (B) high drying degrees.
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F(u, v) =oH−1
m=0oW−1

n=0 f (m, n)e−j2p(um=H+vn=W) (5)

where F is the Fourier spectrum with the same shape as the

input image. The H and W are the height and width, respectively.

Then the real and imaginary components of each frequency

position within this matrix are utilized as input for the neural

network. Where the values of real and imaginary components are

represented as separate image channels. Four-layer convolutional

layers are constructed to extract spectral features Fspect from this

input. This approach enables the effective capture of intricate

patterns within the Fourier spectrum, thereby enhancing the

robustness of the drying prediction.

2.2.4 Common color filter module
In conjunction with the Fourier Filter module, which is

primarily designed to augment the prediction of drying, an

additional module denoted as the Common Color Filter was

introduced. This module was specifically engineered to enhance
Frontiers in Plant Science 06
the prediction accuracy of the states intrinsically tied to the color of

the tobacco leaves. However, the image signal frequently

encompasses elements beyond the mere color of the tobacco, the

presence of noise color could potentially compromise the final

prediction. Therefore, it is important to eliminate as many noisy

pixels as possible to mitigate color interference. To address this

challenge, the characteristic that the tobacco in the bulk curing barn

is densely arranged and typically occupies a consistent position were

exploited. This strategy aided in the effective reduction of noise and

enhanced the accuracy of the proposed model.

As depicted in Figure 6, this algorithm filtered out the most

common colors in an image and extracts relevant features for

subsequent use. It accomplished this through a series of steps.

Firstly, it applied a center-cropping technique to the image. This

process focused on the central part of the image, which contained

the most important information and reduced the impact of

potential noise from the image’s periphery. Next, it quantized the

color space. Quantization was a process that reduced the number of

distinct colors used in an image, while still maintaining its overall

visual construction. This step can reduce the size of the color space

and the computation load when calculating the color histogram.

Following this, the most common colors were selected. These colors

are shown in Figure 7, it depicted typically the tobacco leaves. By

focusing on these colors, the algorithm can more accurately predict

the state of yellowing and browning. Finally, the common color

feature Fcolor was extracted using a single fully-connected layer.
2.3 Preprocessing and evaluation metrics

During training, input images were resized to 384×384, the

supported input size of our image backbone. Data augmentation

was applied using the RandAugment method with a magnitude of 9

and a standard deviation of 0.5.
FIGURE 5

Statistical (normalized) high/low frequency intensity of images with
different drying degrees.
FIGURE 6

Implementation procedure of filtering algorithm.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1604382
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2025.1604382
The primary evaluation metric employed to assess the

algorithms’ performance was top-1 accuracy, expressed as a

percentage. Specifically, the network’s prediction probability for

the most likely state was selected as the predicted result and

compared with the ground-truth label. The accuracy is then

calculated using the (Equation 6):

Accuracy =
#TruePostive

#TruePositive + #FalsePostive
(6)

where #TruePostive represents instances where the model

accurately predicts the positive class, #FalsePostive denotes

instances of incorrect predictions by the model, the symbol “#”

indicates the number of corresponding instances or categories. The

individual prediction accuracy for three different tobacco leaves

states as well as their average accuracy were separately evaluated.
3 Results and discussion

3.1 Accuracy of tobacco leaves state
prediction

3.1.1 Comparison with traditional algorithms
The performance of three traditional algorithms on the same task,

including K nearest neighbor (KNN), support vectormachines (SVM),

and random forest (RF), was compared with our deep-learning

method (Cover and Hart, 1967; Hearst et al., 1998; Breiman, 2001).

Three distinct predicted states of tobacco leaves and hyperparameters

for each method are shown in Tables 2, 3, respectively.
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Firstly, the deep-learning method significantly outperformed

the three traditional methods, highlighting the potential benefits of

using deep learning for this task. Secondly, the KNN method

performed well in predicting browning degree by directly

computing the difference between two images as the norm, and

was ineffective for yellowing degree and drying degree. This

suggested that the prediction of browning degree relied more on

the color information within the image.

3.1.2 Comparison with deep learning algorithms
As shown in Tables 4, 5, Swin-Transformer v2-Large achieved

state-of-the-art performance among all other single backbones and

benefited from a larger in-put size. The method proposed in this

study further enhanced Swin-Transformer v2-Large’s performance,

demonstrating a higher accuracy with an average accuracy of 83.0%.

To verify the effectiveness of the two proposed modules (FFM and

CCFM), The new method was also implemented based on the Swin-

Transformer-Large as the pre-trained backbone network. It can be

observed that after integrating FFM and CCFM modules with the

Swin-Transformer, an improvement in accuracy was achieved

(81.8% vs. 81.6%). This indicated that these modules possessed a

certain degree of robustness.

To further verify the impact of image resolution and pre-trained

image datasets on the accuracy of tobacco condition recognition,

experiments with different parameters based on Swin-Transformer

and Swin-Transformer v2 were conducted. The results indicated

that the accuracy of tobacco leaves states recognition can benefit

from being pre-trained on a larger image dataset (i.e., ImageNet-

22k), even if it was not directly related to tobacco leaves. Higher
Crop and
Quantization

Color 
Filtering

(a) (b) (c)
FIGURE 7

Visualization of filtering process: (A) input image, (B) quantized and center- cropped image and (C) after histogram filtering. The pixel positions
corresponding to the retained colors (shown in purple) primarily focus on the tobacco leaves rather than other background areas.
TABLE 2 The prediction accuracy of different traditional methods.

Methods
Accuracy

Yellowing Browning Drying All

Traditional

KNN 66.5 84.5 54.6 68.5

RF 71.2 84.3 64.6 73.4

SVM 73.9 85.7 64.4 74.7

Deep learning Ours 83.0 90.5 75.6 83.0
Bold font is the best result in each experiment.
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input resolution can also improve prediction accuracy, suggesting

that it is possible to further enhance the accuracy of tobacco leaf

recognition by increasing the input resolution. Moreover, this

method required low computational cost and provided fast

output, with a less than 2GB of GPU memory for inference

during testing and an average prediction time of under 0.5

seconds per image.
3.2 Ablation experiment of the proposed
component

Ablation experiments were conducted to demonstrate the

effectiveness of the three proposed components in this paper. As

depicted in Table 6, when compared to the standalone backbone

model, the Fourier Filter Module (FFM) contributed an absolute

improvement of 1.0% in drying prediction accuracy, underscoring

its efficacy in enhancing drying prediction. Similarly, the Common
Frontiers in Plant Science 08
Color Filter Module (CCFM) accounted for an absolute increase of

0.8% in browning prediction, affirming its utility in tasks

significantly influenced by color attributes. Moreover, as indicated

in the final row, the synergistic integration of both modules lead to

further enhancements in prediction precision, thereby confirming

that their combined application can substantially bolster

overall performance.
3.3 Effectiveness of the hyper-parameters
in the common color filter module

The effectiveness of the two hyper-parameters, quantization

parameter Q and the number of colors reserved K, related to the

common color filter module were evaluated. Different values of

Q and K were chosen. The experimental results are shown in

Table 7. The optimum value was obtained when Q = 4 and K =

20. When Q = 2, the color granularity became smaller and showed

higher performance in predicting browning and yellowing, and the

drying slightly decreased. One possible reason was that this fine

color information dominated the feature extraction. Under the

same Q, sampling with different K will also lead to different

results, indicating that the balance the situations of insufficient

sampling and excessive noise sampling through K was required.
3.4 Effectiveness of production area
independent prediction

The large scale dataset comprised images acquired across

various production areas, sensor discrepancies, tobacco varieties

and ecological environmental variations can all contribute to

inherent difference of images. While a unified training approach

was straightforward and widely adopted, the impact of area

specificity on the recognition of tobacco states was also explored
TABLE 3 The hyperparameters of different traditional methods.

Methods Hyperparameters Value

KNN
neighbors 5

distance type Frobenius norm

SVM

C 1

kernel Linear

Penalty term L2

loss squared hinge

RF

Number of trees 100

Split criterion Gini impurity

bootstrap True

n_bins 1024
TABLE 4 The prediction accuracy of different deep learning methods.

Methods Resolution Pre-trained
Accuracy

Yellowing Browning Drying All

VGG-19 224×224 ImageNet1K 79.2 87.7 70.6 79.1

ResNet-152 224×224 ImageNet1K 78.7 88.7 70.1 79.2

ViT-Large 224×224 ImageNet22K 80.7 90.1 71.4 80.7

Swin-Base 224×224 ImageNet1K 80.8 89.3 73.0 81.0

ConvNeXt V2 224×224 ImageNet22K 81.5 90.1 74.0 81.9

Swin-Base 224×224 ImageNet22K 81.1 89.7 73.3 81.4

Swin-Large 224×224 ImageNet22K 81.3 90.2 73.2 81.6

Ours(Swin-Large) 224×224 ImageNet22K 81.3 90.3 73.9 81.8

SwinV2-Large 256×256 ImageNet22K 82.2 90.2 73.9 82.1

SwinV2-Large 384×384 ImageNet22K 82.6 89.6 75.0 82.4

Ours(SwinV2-Large) 384×384 ImageNet22K 83.0 90.5 75.6 83.0
Bold font is the best result in each experiment.
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in this study. Three representative production areas with substantial

data volume were selected and individual training processes were

conducted. In addition, the integrated training model in all areas

was used to make separate predictions for these areas and compared

them with the results of the separately trained model. This allowed

assessments on area-specific models’ effectiveness and their

practicality for different tobacco production areas.

The experiment was conducted in three distinct production

areas, labeled as A, B, and C. Each bulk curing barn employed an

image device, with the corresponding data statistics presented in

Table 8. As shown in Table 9, it was evident across three distinct

areas that the integrated model outperformed models trained

individually for each area in terms of prediction accuracy. This

suggested that despite the inherent difference present in images

from different areas, the model can still leverage a larger image
Frontiers in Plant Science 09
dataset to enhance its performance, surpassing that of models

trained individually in each area.
3.5 Visualization of the confusion matrix

As shown in Figure 8, a deeper analysis of the confusion matrix

corresponding to the three predicted states was conducted. The

results illustrated that the proposed method demonstrated

remarkable predictive accuracy. For each ground-truth label across

the three states, the majority of the predicted labels align with either

the ground-truth labels or their neighboring labels (the cumulative

probability for these exceeds 99%), which was reasonable given the

inherent difficulty in distinguishing between neighboring state image

features due to their significant similarity. It is difficult to capture the

morphological changes at the critical stage of the tobacco leaf curing

process. Even if experienced experts make judgments, they may still

misjudge. The prediction of the browning degree (Figure 8b)

demonstrates high accuracy across all degrees. However, further

improvements are still required in the prediction of the middle

degrees of yellowing (Figure 8a) and drying (Figure 8c). Generally,

the accuracy of the proposed method complete recognition is 83%,

the accuracy rate of adjacent stages is more than 99%, and the fault

tolerance rate is within ±1 stage, which has little impact on the curing

quality during the actual curing process.
3.6 Visualization of the gradient.

In Figure 9, GradCam (Selvaraju et al., 2017) was used to

visualize the gradients for each state. The results showed that in
TABLE 5 The hyperparameters of our methods.

Hyperparameters Value

warmup learning rate 2e-8

base learning rate 2e-4

end learning rate 2e-7

batch size 8

decay-epoch 5

learning rate schedule cosine

optimizer AdamW

drop-path 0.1

gradient clip 1
TABLE 6 The ablation of the proposed component.

Backbone FFM CCFM
Accuracy

Yellowing Browning Drying All

✓ 82.6 89.6 75.0 82.4

✓ ✓ 83.0 89.5 76.0 82.8

✓ ✓ 82.5 90.4 75.4 82.8

✓ ✓ ✓ 83.0 90.5 75.6 83.0
TABLE 7 The ablation of the hyper-parameters in the common color filter module.

Q K
Accuracy

Yellowing Browning Drying All

4 10 82.7 89.8 75.3 82.6

4 20 83.0 90.5 75.6 83.0

4 30 82.7 90.1 75.3 82.7

8 20 83.1 90.2 74.9 82.8

2 20 83.2 90.5 75.0 82.9
Bold font is the best result in each experiment.
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this example, the model proposed in this study focused primarily on

the brown parts of the image when predicting browning degree, on

the petiole when predicting drying degree, and on larger areas of

leaf content when predicting yellowing degree. This is similar to the
Frontiers in Plant Science 10
reference positions and standards that people use to judge the three

states of tobacco leaves during the curing process.
4 Conclusions

In this study, an large-scale dataset including 17,420 images of

tobacco leaves from 10 main production areas in China was

developed, with a specific emphasis on recognizing the degrees of

yellowing, browning, and drying. This is a large-scale dataset

specifically dedicated to the morphological recognition of the

states of tobacco leaves within an actual bulk curing barn setting.
TABLE 8 Data statistics of three typical production areas.

Production area A B C

Training data 1.2k 2.9k 1.2k

Test data 0.5k 1.2k 0.5k

All data 1.7k 4.1k 1.7k
TABLE 9 The comparison of training of different areas separately.

Area
Individual model Integrated model

Yellowing Browning Drying All Yellowing Browning Drying All

All – – – – 83.0 90.5 75.6 83.0

A 84.7 87.1 76.9 82.9 84.8 87.6 78.7 83.7

B 82.2 90.9 77.7 83.6 83.7 90.6 77.5 84.0

C 86.0 89.0 77.8 84.3 84.6 90.5 79.5 84.9
FIGURE 8

The confusion matrices for the prediction of the (A) Yellowing, (B) Browning and (C) Drying states of the tobacco leaves.
A B C D

FIGURE 9

Visualization of gradients with respect to ground truth labels. (A) Original image, (B) Browning, (C) Drying and (D) Yellowing states.
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A deep learning benchmark was then established for this dataset

using various deep learning networks. To further enhance the

predictive performance of the deep backbone network, an

efficient deep learning method was proposed, including Fourier

filter module and common color filter module. This method

integrated the spectral characteristics of tobacco leaves images

and filters out color noise, which effectively enhanced the

accuracy of our model with prediction accuracy for the yellowing

degree, browning degree, and drying degree were 83.0%, 90.5%, and

75.6% respectively. The high overall average accuracy with a value

of 83.0% and the availability and feasibility in different production

areas have demonstrated the superior performance of the proposed

method in this study, which provides a solid foundation for future

research in this area.
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