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Introduction: The detection of lucky bamboo (Dracaena sanderiana) nodes is a 
critical prerequisite for machining bamboo into high-value handicrafts. Current 
manual detection methods are inefficient, labor-intensive, and error-prone, 
necessitating an automated solution. 

Methods: This study proposes an improved YOLOv7-based model for real-time, 
precise bamboo node detection. The model integrates a Squeeze-and-
Excitation (SE) attention mechanism into the feature extraction network to 
enhance target localization and introduces a Weighted Intersection over Union 
(WIoU) loss function to optimize bounding box regression. A dataset of 2,000 
annotated images (augmented from 1,000 originals) was constructed, covering 
diverse environmental conditions (e.g., blurred backgrounds, occlusions). 
Training was conducted on a server with an RTX 4090 GPU using PyTorch. 

Results: The proposed model achieved a 97.6% mAP@0.5, significantly 
outperforming the original YOLOv7 (83.4% mAP) by 14.2%, while maintaining the 
same inference speed (100.18 FPS). Compared to state-of-the-art alternatives, our 
model demonstrated superior efficiency. It showed 41.5% and 153% higher FPS 
than YOLOv11 (70.8 FPS) and YOLOv12 (39.54 FPS), respectively. Despite 
marginally lower mAP (≤1.3%) versus these models, the balanced trade-off 
between accuracy and speed makes it more suitable for industrial deployment. 
Robustness tests under challenging conditions (e.g., low light, occlusions) further 
validated its reliability, with consistent confidence scores across scenarios. 

Discussion: The proposed method significantly improves detection accuracy and 
efficiency, offering a viable tool for industrial applications in smart agriculture and 
handicraft production. Future work will address limitations in detecting nodes 
obscured by mottled patterns or severe occlusions by expanding label categories 
during training. 
KEYWORDS 

lucky bamboo, handicraft, convolutional neural network, YOLOv7, object detection, 
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1 Introduction 

Lucky bamboo (Dracaena sanderiana) is a potted ornamental 
plant with excellent ornamental value (Chen, 2012; Akinlabi et al., 
2017; Gergel and Turner, 2017). Traditional lucky bamboo is only 
used for flower arrangement or direct potting, with low added value 
(Rout et al., 2006; van Dam et al., 2018; Abdel-Rahman et al., 2020). 
Processing lucky bamboo into handicrafts can substantially increase 
its ornamental value, which is deeply loved by the public and has a 
large demand in the international market (Sharma et al., 2014; 
Amin and Mujeeb, 2019; Liu et al., 2019). Since the processing of 
lucky bamboo is cutting the lucky bamboo according to the bamboo 
nodes to meet different requirements, identifying the lucky bamboo 
nodes is the first and most crucial step in processing lucky bamboo. 
However, the existing methods of identifying lucky bamboo nodes 
still mainly rely on manual work, which has the disadvantages of 
low efficiency, high labour cost, and prone to errors. Therefore, 
studying a method that can automatically recognize lucky bamboo 
nodes with high efficiency and precision is imperative. 

In recent years, traditional image processing methods have been 
widely used to identify bamboo-related fields. Juyal P et al. used 
methods such as logistic regression, support vector machine, naive 
Bayesian, random forest, convolutional neural network and ResNet 
to conduct a comparative analysis, and finally could accurately 
identify five common bamboos (Juyal et al., 2020). Watanabe used 
convolutional neural networks (CNN) to identify Japanese bamboo 
forest areas through Google satellite images, with an overall 
recognition accuracy of 93.7% (Watanabe et al., 2020). Kumar 
conducted research on bamboo leaf disease detection and 
developed a program to automatically recognize bamboo leaf 
diseases based on image processing and CNN (Kumar et al., 
2022). Ziwei Wang used a residual neural network, original 
dataset, and MixUp dataset to optimize the traditional algorithm 
CNN to further improve the classification ability of bamboo species 
(Wang et al., 2022). Pankaja used Fourier descriptors to extract 
bamboo leaf features and used the Bayes classifier to identify 
bamboo leaves with an accuracy of 88.03% (Pankaja and 
Thippeswamy, 2017). 

Existing target detection algorithms can be roughly divided into 
two categories. The first category is the two-stage R-CNN (He et al., 
2017) series of algorithms based on region proposal, such as R
CNN, Fast R-CNN (Li et al., 2017), Faster R-CNN (Salvador et al., 
2016), etc. The position of the object frame usually needs to be 
found first and then the category of the object frame will be 
determined by this algorithm. Although this type of method has 
high recognition accuracy, it takes a long time to calculate and is not 
suitable for real-time detection. The second category is the one-
stage algorithm (Tian et al., 2022) represented by YOLO (Redmon, 
2016) and SSD (Liu et al., 2016). This type of algorithm takes 
regression as the core, omitting the region proposal link of the two-
stage algorithm, directly distinguishing specific categories and

returning the bounding box (Redmon and Farhadi, 2017). Shilan 
Hong used optimized YOLOv4 to model the detection of bamboo 
shoots and proposed a classification and screening strategy to track 
each bamboo shoot (Hong et al., 2022). The experimental results 
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showed that the average relative error and variance of the number of 
bamboo shoots were 1.28% and 0.016%, respectively, and the 
average relative error and variance of the corresponding pixel 
height results were -0.39% and 0.02%, respectively. The advantage 
of this method is that it can perform real-time detection, which is 
beneficial to improving the recognition efficiency of bamboo nodes. 
However, there is much room for improvement in the detection 
accuracy and robustness of this method, and its detection ability for 
small targets is also relatively poor. The current target detection 
algorithm cannot take into account both detection accuracy and 
timeliness, and the detection effect for small target units such as 
bamboo nodes is relatively poor. 

To solve the above problems, this paper proposed a method for 
real-time and precise detection of luck bamboo nodes based on the 
improved model of YOLOv7. Firstly, an attention mechanism was 
introduced into the feature extraction network to enhance effective 
feature information and suppress invalid information. This can help 
the model locate and identify the lucky bamboo nodes faster and 
more accurately. Then, WIoU was introduced in the loss value 
calculation to optimize the bounding box regression process of the 
bamboo node through a dynamic weighting mechanism, thereby 
improving the model’s detection ability for complex scenes and 
small bamboo nodes. 

The main objectives of this research were to (a) construct the 
image dataset of lucky bamboo nodes using the data augmentation 
method, (b) establish the lucky bamboo node detection model using 
the improved YOLOv7, and (c) evaluate the detection stability and 
accuracy of the proposed method. 
2 Materials and methods 

2.1 Dataset construction 

The image collecting equipment used in this study is shown in 
Figure 1. The equipment consisted of an USB industrial camera, an 
assembly line workbench, and a laptop. The assembly line 
workbench was equipped with conveyor belt, a conveyor belt 
motor, conveyor belt speed control controller, bamboo posture 
corrector, a cutting motor, a blade for cutting bamboo, a blade 
bearing housing, and conveyor belt base. The industrial camera was 
mounted on the tube, parallel to the conveyor belt. 

The lucky bamboo samples were planted in the processing base 
of Fugui Horticultural Farm in Mazhang District, Zhanjiang City, 
Guangdong Province, China. The images of lucky bamboo were 
collected using USB industrial camera connected to a laptop on 
November 1, 2023. The focal length of the camera lens is 3.6 mm. 
Specifically, the lucky bamboo was placed on the horizontal 
conveyor belt and then photographed at a vertical height of 50 
mm from the lucky bamboo. Since the original lucky bamboo image 
had a resolution of 2 million pixels, which was too large and will 
increase the amount of calculation, OpenCV in Python was used to 
process the original image. Finally, the original images were 
compressed to 640×640 pixels, with a horizontal and vertical 
resolutions of 96 dpi. Among them, the lucky bamboo image was 
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stored in JPG format with a size of 32 MB. In the end, a total of 
1,000 lucky bamboo images were collected, as shown in Figure 2. 

To improve the generalization ability and robustness of the 
model and avoid model overfitting, the transforms module based on 
the Pytorch deep learning framework was used to perform data 
augmentation and expansion on the collected images (Figure 3A) 
(Cubuk et al., 2019). Since two major data enhancement methods 
(geometric transformation (flip) and color space perturbation (jitter 
+ grayscale) had been widely proven to effectively improve the 
generalization ability of the model (Shorten and Khoshgoftaar, 
2019). Therefore, the lucky bamboo images were performed 
random horizontal flip (Figure 3B), random vertical flip 
(Figure  3C),  and  color  j i t ter  (Figure  3D).  Also,  the  
Frontiers in Plant Science 03 
RandomGrayscale function was used to convert the image to 
grayscale with a probability of 2.5% (Figure 3E), allowing the 
model to learn image features without color information and 
enhance the detection capabilities in complex scenes. After data 
enhancement, a total of 5000 images were obtained. Finally, 2000 
representative images were obtained for constructing the lucky 
bamboo dataset. Also, the bamboo dataset was randomly divided 
into training set, verification set, and testing set in a ratio of 7:2:1 for 
model training and testing. 

To enable the model to accurately locate bamboo nodes, the 
open-source software LabelImg was used to manually annotate all 
the lucky bamboo images after data augmentation (Figure 4) 
(Darrenl, 2017). In this study, the content of annotation was each 
node of lucky bamboo, that was, the collected location coordinate 
information. After labeling, all data were saved in the Pascal VOC 
dataset format. The annotation diagram is shown in Figure 4. 
Among them, the green frame represented the position of the 
bamboo nodes of lucky bamboo in the image. 
2.2 Bamboo node detection method 

2.2.1 Advantage of YOLOv7 model 
YOLO (You Only Look Once) was a deep learning algorithm for 

real-time object detection that only required one forward 
propagation through a given neural network to detect all objects 
in the image (Redmon, 2016). This gave the YOLO algorithm an 
advantage over other algorithms in terms of speed, making it one of 
the most famous detection algorithms to date. 

YOLO divided the image into multiple small grids and predicted 
multiple bounding boxes in each grid, as well as the object categories 
within each bounding box. YOLO used a single neural network to 
predict all bounding boxes and classes in an image, instead of using 
multiple neural networks to predict each bounding box. The 
advantage of YOLO was that it can run in real time and can detect 
FIGURE 2 

Images of lucky bamboo. 
FIGURE 1 

Acquisition equipment of lucky bamboo images. 
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FIGURE 4 

The image annotation of lucky bamboo nodes (Darrenl, 2017). 
FIGURE 3 

Data augmentation of luck bamboo nodes. (A) original image; (B) random horizontal flip, (C) random vertical flip, (D) color jitter, (E) random grayscale. 
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more objects. YOLOv7 (Wang et al., 2023) was optimized on the basis 
of YOLOv4 (Bochkovskiy et al., 2020), training a better model with 
less training time. The input layer of YOLOv7 supported image 
enhancement (such as Mosaic) and adaptive anchor box calculation. 
Its backbone network used CSPDarknet53 and enhanced feature 
extraction capabilities by using CSPNet. Also, the Neck module in 
YOLOv7 combined Path Aggregation Network (PANet) and Spatial 
Pyramid Pooling (SPP) modules, which can better handle multi-scale 
features and enhance the accuracy of the model. 

The algorithm mainly consisted of an input terminal, a feature 
extraction network, a feature fusion network, and an output terminal 
(Figure 5). Compared with YOLOv4, YOLOv7 employed a Focus 
operation that sampled the original image at double intervals in both 
horizontal and vertical directions. This reduced FLOPs value and 
computational complexity, thereby improving detection speed. 
Additionally, in the feature extraction module, YOLOv7 replaced the 
original CSP module with the C3 module. This modification enhanced 
training speed, reduced gradient redundancy, and improved learning 
efficiency. For network input processing, YOLOv3 (Farhadi and 
Redmon, 2018) and YOLOv4 required executing a separate program 
to compute initial anchor boxes when training on different datasets. In 
contrast, YOLOv7 integrated this functionality directly into the 
framework, enabling adaptive calculation of optimal anchor boxes 
for each training scenario. Also, unlike two-stage algorithms (e.g., 
Faster R-CNN), YOLOv7 eliminated the computationally intensive 
feature extraction and region proposal steps, significantly reducing 
inference time.  Although  the accuracy of  YOLOv7 was  slightly  lower  
than that of Faster RCNN, its detection speed was faster and supported 
real-time detection. Therefore, YOLOv7 was selected as the basic 
framework for detecting lucky bamboo nodes. 
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2.2.2 Problems caused by using YOLOv7 model 
YOLOv7 was currently the best-engineered generation object 

detection model of the YOLO series. It achieved real-time image 
processing speeds while maintaining accuracy compared to state-of
the-art models. Therefore, it was widely used in real-time vision 
applications. However, YOLOv7 still had some shortcomings in the 
application environment of lucky bamboo node detection in this 
paper, which were mainly reflected in the following aspects. 
 

(a) The regression idea of the YOLO algorithm was to divide 
the image into S×S grids, that was, each grid could only 
predict at most one object. Consequently, when multiple 
objects occupied the same grid, the algorithm’s detection 
performance degraded significantly, often failing to identify 
all objects. 

(b)	 The original network employed the Generalized 
Intersection over Union (GLoU) (Rezatofighi et al., 2019) 
loss function for bounding box regression. However, GIoU 
demonstrated limited effectiveness for small object 
detection, as it failed to explicitly incorporate object scale 
considerations. Furthermore, this loss function may induce 
a bias toward predicting larger bounding boxes, ultimately 
compromising detection accuracy. 
2.2.3 Construction of bamboo node detection 
model 

In response to the problems raised above, the following 
improvements were made to the YOLOv7 original network in 
this paper. 
FIGURE 5 

Architecture of the improved YOLOv7. 
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Fron
(a) Adding the SE attention mechanism (Hu et al., 2018; Niu 
et al., 2021) can make the network pay more attention to the 
bamboo nodes to be detected, thereby improving the model 
accuracy. The SE attention mechanism adaptively 
recalibrated channel-weight feature responses through its 
Squeeze and Excitation operations, selectively enhancing 
discriminative features. This mechanism enhanced feature 
representation accuracy by adaptively amplifying salient 
features while suppression irrelevant channel responses. 
Furthermore ,  the  SE  module  enhanced  model  
performance in complex scenarios through learned 
channel-weight adaptation, dynamically optimizing 
feature attention to improve both robustness and 
detection accuracy. 

(b) To enhance model detection efficiency, we implemented the 
Weighted Intersection over Union (WIoU) bounding box 
loss function (Cho, 2021; Tong et al., 2023) at the network’s 
output layer. The proposed method introduced an efficient 
IoU-based loss function that addressed the limitations of 
conventional approaches, achieving both accelerated 
convergence and enhanced regression accuracy. The WIoU 
loss function incorporated a dynamic non-monotonic 
focusing mechanism that more effectively evaluated anchor 
quality. This approach reduced dominance by high-quality 
anchors while mitigating harmful gradients from low-quality 
samples. This allowed the WIoU loss function to focus on 
anchor frames of ordinary quality and improve overall 
detection performance. 
2.2.3.1 SE attention mechanism 
In the traditional convolutional neural network (CNN) 

architecture, convolutional layers and pooling layers were the core 
components for building deep feature representations (Sawarkar 
et  al. ,  2024). These layers formed hierarchical feature 
representations by gradually extracting local features in the image 
and reducing the spatial dimension of the data. However, there was 
an implicit assumption in this process. That was, each channel of 
the feature map was equally important to the final task. 
Nevertheless, in practical applications, different channels often 
carry different amounts of information or importance, and 
contribute differently to the task (Chen et al., 2017). To solve this 
problem, Hu et al. proposed the SE attention mechanism 
architecture, which improved the model’s ability to express 
tiers in Plant Science 06
features by adaptively recalibrating the importance of each 
channel (Hu et al., 2018). Firstly, global average pooling was used 
to capture the global information of each channel, and then a 
channel weight vector was generated using a fully connected layer 
and a sigmoid activation function. Then, this weight vector was 
applied to each channel of the original feature map, and the feature 
map was scaled by element-by-element multiplication between 
channels, thereby enhancing the feature representation of those 
important channels and weakening the influence of those irrelevant 
or redundant channels. This adaptive channel recalibration 
mechanism enabled the model to focus more on the features that 
contributed most to the task, thereby improving the performance 
and generalization ability of the network. Therefore, a three-layer 
SE attention mechanism was added to the backbone network of the 
original YOLOv7 model. The structure diagram of the SE attention 
mechanism is shown in Figure 6. 

2.2.3.2 WIoU loss function 
The Generalized Intersection over Union (GIoU) loss function 

was used in the original YOLOv7 architecture (Bochkovskiy et al., 
2020; Wang et al., 2023). In most cases, GIOU can calculate IoU at a 
wide level. When predicted boxes perfectly coincided with ground 
truth boxes, their intersection area equaled their individual areas. 
Also, their minimum bounding rectangles were also the same. In 
this case, the GIoU value saturated at 1, making it unable to 
distinguish subtle deviations in predicted box alignment. Under 
this condition, GIoU reduced to standard IoU. Furthermore, the 
GIoU loss function suffered from two key limitations: (a) higher 
computational overhead, and (b) slower convergence compared to 
more recent alternatives. To calculate GIoU, it was necessary to find 
the minimum bounding rectangle for each predicted box and the 
true box. This approach introduced significant computational 
overhead and adversely impacted training convergence, 
particularly when processing high-volume datasets or high-
resolution imagery. To solve this problem, this paper adopted the 
Weighted Intersection over Union (WIoU) loss function in the 
improved network. WIoU incorporated a dynamic non-monotonic 
mechanism for bounding box regression that adaptively modulated 
gradient distributions based on overlap states, effectively mitigating 
both excessive and harmful gradients form outlier samples. 
Through optimized gradient allocation, the WIoU loss function 
enhanced model performance in normal cases while demonstrating 
superior robustness in extreme scenarios, simultaneously 
accelerating convergence and improving training efficiency. 
GURE 6 FI

The structure of SE attention mechanism. 
 frontiersin.org 

https://doi.org/10.3389/fpls.2025.1604514
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1604514 
 

Consequently, this study replaced the original YOLOv7’s GIoU loss 
function with the WIoU variant to enhance bounding box 
regression performance. The calculation process of GIoU and 
WIoU loss function were shown in the following Equations 1–6. 

    Bp ∩ Bgt
IoU =   (1)   Bp ∪ Bgt

    C n(BP ∪ Bgt )
GIoU = IoU − (2)

Cj j  

LGIoU = 1  − GIoU (3) 

    n Bp ∩ Bgtb = :   (4)   a Bp ∪ Bgt

WIoU = IoU · b (5) 

LWIoU = 1  − WIoU (6) 

Where Bp is the predicted bounding box, Bgt is the true 
bounding box, C is the smallest rectangle that can contain both 
the predicted box Bp and the true box Bgt, b is dynamic weight, n is a 
normalization factor and a is a learnable parameter. 
2.3 Experimental environment 

The experiment platform in this research was an autonomously 
configured server running in the deep learning framework. The 
hardware environment is Intel Core i9-14900KF processor with 
64GB running memory, and the graphics card is Nvidia GeForce 
RTX 4090 with 24GB memory. The software environment is a 
virtual environment built using Anaconda under the Ubuntu20.04 
operating system. The virtual environment consisted of Pytorch 
2.1.0, CUDA 12.3, and Python 3.8.6. The Python language was used 
as the main language for writing program codes. Also, the numpy, 
pandas, OpenCV and other required libraries were called to 
implement the training and testing of the lucky bamboo node 
detection model. The hardware and software configurations for the 
established model were listed in Table 1. 
Frontiers in Plant Science 07 
2.4 Evaluation of bamboo node detection 
model 

In this study, objective indicators such as precision, recall, and 
loss function convergence curve would be used to evaluate the 
performance of bamboo node detection model. Among them, 
Intersection over Union (IOU) represents the ratio of the 
intersection and union between the detected bounding box and the 
real bounding box, which is a common indicator for evaluating the 
performance of object detection model. The higher the IOU value, the 
better the model detection performance. Precision refers to the ratio 
of the number of correctly detected bamboo nodes to the total 
number of detected bamboo nodes. Recall is the ratio of the 
number of correctly detected bamboo nodes to the number of 
actual true bamboo nodes. The precision and recall were computed 
by Equations 7 and 8. True  Positive  (TP) indicates the number of 
correctly detected lucky bamboo nodes when the IOU is greater than 
or equal to the selected threshold. False Positive (FP) indicates the 
number of misjudged bamboo nodes when the IOU is smaller than 
the selected threshold. False Negative (FN) represents the number of 
undetected bamboo nodes. Average Precision (AP) refers to the area 
under the Precision-Recall curve. The higher the AP value, the better 
the performance of the model in detecting bamboo nodes. Mean 
Average Precision (mAP) refers to the mean value of AP for all 
categories. The AP and mAP were computed by Equations 9 and 10. 

TP 
P = (7) 

TP + FP 

TP 
R = (8) 

TP + FN 

Z 
AP = P(R)dR (9) 

0 

1 NmAP = 1 APi (10) 
N o 
3 Results and discussion 

3.1 Performance of lucky bamboo node 
detection model 

The training results of lucky bamboo node detection model are 
shown in Figure 7. With the increase of training epochs, the 
precision value, and mAP value of lucky bamboo node detection 
model gradually increased. The details are as follows. During 
epochs 0-20, the precision values of the model increased rapidly. 
Afterwards, the precision values of the model remained stable 
between 0.95 and 0.97. Similarly, the mAP of the model increased 
rapidly during epochs 0–20 and then remained stable between 
0.96 and 0.99. Conclusively, the training was suspended at 
300 epochs. 
TABLE 1 The hardware and software configurations for the 
established model. 

Project Content 

Operating system Ubuntu20.04 

CPU Intel Core i9-14900KF 

GPU NVIDIA GeForce RTX 4090 

RAM 64GB 

Compiled language Python3.8.6 

Deep learning framework CUDA12.3 Pytorch 2.1.0 
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3.2 Detection result of lucky bamboo node 
detection model 

The lucky bamboo node detection model was tested on additional 
400 RGB images collected later. Figure 8 shows some examples of the 
Frontiers in Plant Science 08
detected bamboo nodes in different environmental conditions. The 
confidence scores were indicated  beside each detected node. The high 
scores (up to 1.000) demonstrated that the results were quite reliable. In 
Figure 8A, even though the lucky bamboo plant was in low-light 
environment and blurry, the bamboo nodes thereon can still be 
FIGURE 8 

Detection results of lucky bamboo node detection model. (A) low light condition, (B) high light condition, (C) complex condition, (D) 10 cm shooting 
distance. 
FIGURE 7 

Comparison of training results between the original model and the lucky bamboo node detection model. (A) precision curve, (B) mAP curve. 
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correctly detected. In images taken in high-light conditions, the 
bamboo nodes appeared brighter and the bamboo nodes were 
similar in color to the background and surrounded by black 
shadows. It would be hard to recognize them manually, but the 
developed model was able to detect all the nodes in the image with 
high confident scores (Figure 8B). In Figure 8C, the  bamboo  nodes  
were occluded by a bamboo leaf, and one of them was occluded by 
more than 50%. But they were all successfully detected. In images taken 
at a high shooting distance condition (Figure 8D), the bamboo nodes 
accounted for a small proportion of pixels in the image, which would 
be difficult to be recognized. Nevertheless, every bamboo node was 
recognized with a high confidence score. 

Among the 400 images, a total of 1385 bamboo nodes were 
manually counted from the captured images by two people. With the 
same 400 images, the lucky bamboo node detection model detected 
1376 true positives, 84 false positives, and 9 false negatives. 
Comparing two sets of results, the lucky bamboo node detection 
model was in good agreement with the manual counting, as indicated 
Frontiers in Plant Science 09
by the low errors, for example, 0.346 for RMSE. The minor 
discrepancies between the lucky bamboo node detection model and 
the manual counting could attribute to the following reasons. When 
training the CNN model, the white mottled rings of lucky bamboo 
(Figure 9A), the blocky mottled patches (Figure 9B), and the blurred 
bamboo body with scratches (Figure 9C) were not labeled when 
manually annotating the bamboo nodes. This meant that the model 
was not trained for these cases. This may lead to false positives (FP) in 
the detection. Avoiding these cases would improve the accuracy of 
bamboo node detection. In some cases, dry bamboo leaves that were 
not completely removed severely blocked the bamboo nodes, causing 
the CNN model to mistakenly classify the nearby nodes as 
background (Figure 9D). All these would explain the higher nodes 
counts of the bamboo node detection model. The resulting 
discrepancies could be minimized by labeling white mottled rings, 
blocky mottled patches, and blurred bamboo body with scratches as 
additional categories during image preprocessing, which would be 
explored in future studies. Overall, the low error showed that the 
FIGURE 9 

Examples of images which might have caused bamboo nodes detection errors. (A) blurred conditions, (B) similarities of bamboo spot and node, 
(C) sick bamboo node, (D) dried bamboo leaf. 
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model could successfully detect most of the bamboo nodes under 
various environmental conditions. 
 

3.3 Ablation experiment 

To further verify that the bamboo node detection model with 
added SE attention mechanism and WIoU loss function performs 
better than the original YOLOv7 model, four ablation experiments 
were conducted. The same data set and the same training parameters 
and methods were used to complete the training of each set of 
experiments. The experimental results are shown in Table 2, where
“×” represents that the corresponding improvement strategy is not 
used in the network model, and “√” represents that the improvement 
strategy is used. Among them, Model 1 is the original YOLOv7 model, 
and model 2, model 3 and model 4 are models that add the SE attention 
mechanism, WIoU loss function, and SE attention mechanism-WIoU 
loss function to the original YOLOv7 model, respectively. The results 
showed that the detection accuracy (mAP) of the model 1 without any 
improvement strategy was 83.4%. Model 2, which introduced the SE 
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attention mechanism based on the original YOLOv7 model, embedded 
spatial position information into channel attention. This enabled the 
model to achieve better prediction results when detecting bamboo 
nodes that relied on position information, thereby improving the 
detection accuracy (mAP) by 15.5%. Model 3 introduced a new 
bounding box loss function MIoU to reduce the overlap error 
between the predicted box and the true box, thereby improving the 
detection accuracy and stability of the model. Therefore, the detection 
accuracy (mAP) of model3 was improved by 12.7%. Model 4 (i.e. our 
developed model), which introduced the SE attention mechanism and 
MIoU loss function based on the original model, optimized the 
prediction accuracy of the YOLOv7 model for the recognition and 
localization of bamboo nodes, thereby improving the model detection 
accuracy (mAP) by 14.2%. Over all the four pretrained models, the 
model 4 had the best mAP (97.6%). 

To further evaluate the improved models, the P-R curves for the 
four models were plotted. The P-R curves showed that the model 4 
had the highest precision consistently over the recall range of 0.90 to 
1.00 (Figure 10). All these performance indicators proved that our 
proposed lucky bamboo node detection model was superior than 
the other three models. 
3.4 Comparison with other latest models 

To better demonstrate the excellent performance of the proposed 
model, the proposed model was compared with the current 
mainstream YOLOv11 and YOLOv12 models. Compared to the 
baseline YOLOv7, our proposed model demonstrated comparable 
inference speed but achieved a significant 17.03% improvement in 
mAP (0.976). When benchmarked against Model 2, YOLOv11, and 
TABLE 2 Results of ablation experiment. 

Model name 
Improvement strategies 

mAP (%) 
SE-mechanism WIoU 

Model 1 × × 83.4 

Model 2 ✓ × 98.9 

Model 3 × ✓ 96.1 

Proposed model ✓ ✓ 97.6 
FIGURE 10 

P-R curve of ablation experiment. 
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YOLOv12, our proposed model showed moderate mAP reductions of 
1.3%, 1.22%, and 0.41% respectively. However, it delivered substantial 
Frame Per Second (FPS) enhancements-increasing FPS from 75.20 to 
100.18 against Model 2, 70.8 to 100.18 versus YOLOv11, and 39.54 to 
100.18 compared to YOLOv12 (Table 3). These computational 
efficiency gains represent critical advantages for industrial 
deployment scenarios. Consequently, our proposed model exhibited 
reduced inference time and higher processing throughput, 
demonstrating particular advantages for video stream analysis and 
enhanced suitability for real-world deployment scenarios. 
4 Conclusion 

In this study, a high-precision and high-efficiency method was 
proposed based on a deep learning CNN mode for automatic detection 
of lucky bamboo node on the bamboo plant. Using the method, a high-
throughput and low-cost application was developed and evaluated 
using lucky bamboo plant samples. The following conclusions were 
drawn. The CNN-based lucky bamboo node detection model was 
capable of recognizing and locating bamboo node in the lucky bamboo 
plant. The model was found to be the most efficient model for 
recognizing and locating bamboo nodes on the lucky bamboo plant 
structure. When compared to manual detection of bamboo node, the 
developed method had an estimated accuracy of 97.6%. The accuracy of 
the developed method was not affected by complex environment. The 
developed method shows great promise as a robust tool for computer-

aided detecting of bamboo nodes on the lucky bamboo plant structure, 
which will help artisans rapidly and accurately identify lucky bamboo 
nodes to speed up the processing of lucky bamboo. However, more tests 
may be required to further verify the developed method. 
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