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Introduction: Cotton, one of the most important economic crops worldwide,

has long been bred mainly for improvements in yield and quality, with relatively

little focus on salt–alkali resistance.

Methods: In this study, transcriptomic and metabolomic sequencing were

performed on Gossypium hirsutum exposed to alkaline stress for

different durations.

Results: The results of sample clustering, principal component analysis (PCA),

and the number of differentially expressed genes (DEGs) revealed that 12 hours

and 24 hours were the periods during which upland cotton presented the

strongest response to salt stress, with flavonoid biosynthesis and alpha-

linolenic acid metabolism playing significant roles during this time. A total of

6,610 DEGs were identified via comparison to the 0 h time point, including 579

transcription factors (TFs) that were significantly enriched in pathways such as

flavonoid biosynthesis, the cell cycle, the cytochrome P450 pathway,

phenylalanine metabolism, phototransduction, and alpha-linolenic acid

metabolism. Through ultrahigh-performance liquid chromatography–MS

(UPLC-MS), 4,225 metabolites were identified, and 1,684 differentially

accumulated metabolites (DAMs) were identified by comparison to the levels at

0 h. A joint analysis of RNA-seq andmetabolomic data revealed that the flavonoid

biosynthesis and alpha-linolenic acid metabolism pathways play key roles in the

response of G. hirsutum to alkaline stress, and the key genes in these pathways

were identified. The weighted gene correlation network analysis (WGCNA)

revealed 15 candidate genes associated with alkali tolerance in cotton,

including 4 TFs and 4 genes related to flavonoid and anthocyanin biosynthesis.
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Conclusion: In conclusion, our study provides a theoretical foundation for

understanding the molecular mechanisms underlying alkali tolerance in cotton

and offers new gene resources for future research.
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1 Introduction

Cotton is an important economic crop worldwide. The focus of

cotton breeding has long been on improving yield, quality and stress

resistance, while research on alkali resistance has been relatively

limited. In recent years, Xinjiang has become China’s largest cotton

production base, with the total output accounting for more than

90% of the national total. Xinjiang has a wide area of saline–alkaline

land, accounting for approximately one-third of the total land area.

Highly alkaline soil tends to shrink, become hard, crack, and

compact when it is dry and expands, and becomes muddy and

experiences poor aeration when it is wet, making it difficult for

cotton to grow normally and seriously affecting yield and fiber

quality (Fan et al., 2022). In addition, the widespread distribution of

alkaline soil has become an important environmental factor

restricting global agricultural production (Litalien and Zeeb, 2020;

Rahman et al., 2021).

Compared with salt stress, alkaline stress in high-pH

environments is more likely to induce oxidative stress in plants,

leading to more severe damage (Cui et al., 2022, 2025). In general, a

plant’s alkali tolerance is closely related to the structure of its root

system. For example, maize roots possess a hard outer cortex, making

maize more alkali tolerant than plants without such a layer (Cao et al.,

2022). Cotton, with its well-developed deep root system, can secrete

secondary metabolites such as polysaccharides and polyphenols,

granting it some alkali tolerance. However, the alkali tolerance of

cotton varies according to species, variety, and growth stage. Under

alkaline stress, cotton plants experience both osmotic and oxidative

stress caused by high ion concentrations, which can result in

difficulties during germination, wilting of leaves, and a negative

impact on photosynthesis (An et al., 2020). On the other hand,

high-pH toxicity also causes significant harm to plants. First, high pH

alters the state of minerals in the soil, further affecting the

physiological and ecological changes in the plant’s root system. In

severe cases, these changes can lead to morphological changes in the

roots or even a loss of function. Under acidic conditions, plant cells

grow and extend rapidly. However, when the pH of the intercellular

medium increases to alkaline levels, the loosening of the cell wall is

hindered, impeding cell elongation and inhibiting root hair growth

(Liu et al., 2022). Additionally, studies have shown that pH is related

to the opening and closing of stomata, with changes in the pH of

guard cells occurring during this process (Caine et al., 2023).
02
With the advancement of sequencing technologies and the

reduction in sequencing costs, multiomics approaches have been

widely applied in the study of plant growth, development, and stress

tolerance (Romero-Losada et al., 2025; Wu et al., 2025; Zhang et al.,

2025). Transcriptomics and metabolomics are two crucial high-

throughput technologies that play key roles in the study of plant

stress tolerance (Du et al., 2025; Lv et al., 2025). Transcriptomics

allows an investigation of the expression patterns and regulatory

networks of plant genes, whereas metabolomics focuses on the types

and quantities of plant metabolites. Together, these two approaches

can comprehensively reveal the essential regulatory pathways and

candidate genes involved in plant responses to stress conditions. By

integrating transcriptomic and metabolomic data, key genes,

important metabolic pathways, and regulatory networks associated

with stress tolerance can be identified, providing a theoretical basis

for breeding stress-resistant varieties and understanding stress

tolerance mechanisms (Choudhary et al., 2025). Combined

transcriptomic and metabolomic analyses of the salt–alkali-tolerant

rapeseed variety SCKY-6–27 revealed that the most highly enriched

pathways for the differentially expressed genes (DEGs) and

metabolites were starch, sucrose metabolism, and plant hormone

signal transduction (Ma et al., 2025). A similar combined analysis of

two alfalfa varieties under cold saline–alkali stress revealed significant

differences in gene expression and flavonoid contents in the flavonoid

biosynthesis pathway, with a further analysis suggesting that the

MsMYB12 gene may respond to stress by regulating the flavonoid

biosynthesis pathway (Liu et al., 2024). In a study of two castor bean

varieties (ZB8, alkali-sensitive; JX22, alkali-tolerant) under alkaline

stress, transcriptomic and metabolomic analyses revealed that

alkaline stress induced the upregulation of the ACX1 and RBOHD

genes in JX22, increasing reactive oxygen species (ROS) signaling and

subsequent stress response regulation. In contrast, ZB8 relies on less

efficient nonenzymatic systems, such as carotenoid antioxidants, to

mitigate oxidative damage, with genes such as CCD7 and CYP897B,

as well as metabolites such as lutein and zeaxanthin, playing crucial

roles (Cui et al., 2025). A study of the transcriptional and metabolic

responses of wheat root exudates to alkaline stress revealed that the

secretion of various metabolites containing –COOH groups is an

important regulatory strategy for wheat under alkaline stress.

Increased glycolysis, fatty acid synthesis, and phenolic acid

synthesis provide additional energy and substrates to help wheat

respond to alkaline stress (Wang et al., 2024b).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1604606
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Geng et al. 10.3389/fpls.2025.1604606
RNA-seq and metabolomic analyses have revealed numerous

key regulatory networks and genes associated with cotton fiber

quality and stress tolerance, providing important insights for cotton

improvement. However, research on the alkali tolerance of cotton

remains relatively limited, with recent studies focused primarily on

the fiber quality, drought resistance, salt tolerance, and heat

tolerance. Molecular studies of the alkali tolerance mechanisms of

G. hirsutum are still rare. Therefore, identifying genes related to

alkali tolerance in cotton, exploring their regulatory networks and

metabolic pathways, and understanding the underlying molecular

mechanisms to develop new alkali-tolerant lines and varieties

constitute the most cost-effective and efficient approaches. In this

study, G. hirsutum was subjected to alkaline stress treatments for

various durations, and transcriptomic and metabolomic sequencing

were performed. DEGs and metabolites were clustered, enriched,

and analyzed for transcription factor (TF) expression. Through

weighted gene coexpression network analysis (WGCNA) and qRT–

PCR, key pathways and genes related to cotton alkali tolerance were

identified. These findings provide a theoretical foundation for

further research on the molecular mechanisms of alkali tolerance

in cotton and new genetic resources for alkali tolerance studies.
2 Materials and methods

2.1 Plant materials

The cotton material used in this study was the G. hirsutum

variety Xinlu Zhong 61, which was provided by the Economic Crop

Research Institute of the Xinjiang Academy of Agricultural

Sciences. Seeds of appropriate maturity, plumpness, and

uniformity were selected and sown into pots filled with a mixture

of perlite and sterilized soil (1:2 ratio), with four seeds per pot. The

daytime temperature in the laboratory was maintained at 25–28°C,

with incandescent lighting provided on a 16-h light/8-h dark cycle

for germination. After germination, seedlings with consistent

growth were selected, and the substrate attached to the roots was

gently removed before seedlings were transferred to a hydroponic

box for cultivation. The hydroponic box was a 30 L plastic

container, and the culture mixture was Hoagland’s nutrient

mixture, which was changed weekly. A foam board, cut to fit the

culture box, was placed on top of the box, with uniformly spaced

holes (2 cm in diameter, 15 holes per board) for plant insertion. The

stems were wrapped in sponge strips and inserted into the holes in

the foam board, with the roots submerged in the nutrient mixture.

Continuous and uniform aeration was provided by an air pump to

ensure proper root respiration. When the seedlings reached the

three-leaf stage, they were treated with 100 mM NaHCO3 to induce

alkaline stress. The plants were grown in a growth chamber with a

daytime temperature of 28°C, a nighttime temperature of 25°C, and

a 16-h light/8-h dark cycle. Samples were collected at 0 h, 2 h, 4 h, 8

h, 12 h, and 24 h of stress treatment, rapidly frozen in liquid

nitrogen, and stored at -80°C for subsequent RNA-seq,

metabolomic sequencing, and qRT–PCR analyses.
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2.2 RNA-seq sequencing and analysis

The samples were sent on dry ice to Mavimetabolism (Wuhan,

China) for RNA-seq. RNA extraction was performed using TRIzol

reagent (Invitrogen). A certain amount of total RNA was extracted

and fragmented into smaller pieces. The fragmented mRNA was

then mixed with primers, and first-strand cDNA was synthesized

using PCR. Next, a second-strand synthesis reaction was performed,

and the second-strand products were recovered. The resulting

cDNA was subjected to end repair, the addition of an A base, and

adapter ligation. PCR amplification of the ligated products was

performed, followed by purification and recovery. The final library

was tagged, completing cDNA library construction. Library quality

was assessed using an Agilent 2100 instrument and Q–PCR. The

constructed library was sequenced using the Illumina HiSeq 2500

platform. After the raw sequencing data were obtained, Fastp

software (Chen et al., 2018) was used to remove adapter

sequences, filter low-quality reads, and eliminate sequences with a

greater than 5% N content, resulting in clean reads suitable for

analysis. The clean reads were aligned to the G. hirsutum TM-1

reference genome (https://www.cottongen.org/species/

Gossypium_hirsutum/ZJU-AD1_v2.1) using HISAT2 (Pertea

et al., 2016). The alignment results were quantified using

featureCounts. Setting the FDR standard to less than 0.01 ensures

that fewer than 1% of the DEGs screened are caused by random

differences. FDR<0.01 and |log2fold change|>1 were used as the

criteria for screening DEGs (Love et al., 2014). GO and KEGG

enrichment analyses were performed on all DEGs using the

clusterProfiler (version 4.14.4) package (Wu et al., 2021), with

statistical significance determined by hypergeometric tests. The

protein sequences of all DEGs were submitted to PlantTFDB

(https://planttfdb.gao-lab.org) for analysis and prediction to

obtain differentially expressed transcription factors (TFs).
2.3 Metabolite extraction

After vacuum freeze-drying, 50 mg of the sample was weighed,

mixed with 1000 mL of extraction solution (methanol/acetonitrile/

water, 2:2:1 v/v) and vortexed for 30 seconds. Steel beads were added,

and the sample was processed with a 45 Hz grinder for 10 minutes,

followed by ultrasonication for 10 minutes (in an ice–water bath).

The sample was then left to stand at -20°C for 1 h, followed by

centrifugation at 12,000 rpm for 15 minutes. The supernatant (500

mL) was carefully collected and transferred to an EP tube. The extract

was dried in a vacuum concentrator and then redissolved in 160 mL
of extraction solution (acetonitrile/water, 1:1, v/v). The mixture was

vortexed for 30 seconds, ultrasonicated in an ice–water bath for 10

minutes, and centrifuged again at 12,000 rpm for 15 minutes. The

supernatant was carefully collected for subsequent analysis.

Metabolites were analyzed using a Waters Acquity I-Class PLUS

ultrahigh-performance liquid chromatography system coupled with

an AB Sciex Qtrap 6500+ high-sensitivity mass spectrometer.

Chromatographic separation was performed on a Waters Acquity
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UPLC HSS T3 column (1.8 mm, 2.1*100 mm) with an injection

volume of 2 mL. The mass spectrometry conditions were as follows:

electrospray ionization (ESI) temperature of 550°C; ion spray voltage

(IS) of 5,500 V in positive ion mode and -4,500 V in negative ion

mode; and ion source gases I (GSI), II (GSII), and curtain gas (CUR)

set to 50 psi, 55 psi, and 35 psi, respectively, with collision-induced

dissociation (CID) parameters set to moderate intensity.
2.4 Metabolomic analysis

Metabolite identification was performed with the in-house

database GB-PLANT using secondary mass spectrometry data.

Isotope signals, redundant signals from K+, Na+, and NH4
+ ions,

and fragment ions corresponding to higher-molecular-weight

compounds were removed. The metabolites were quantified in

multiple reaction monitoring (MRM) mode with a triple

quadrupole mass spectrometer. After the mass spectrometry data

for different samples were obtained, the peak areas of all the

metabolites were corrected. Principal component analysis (PCA)

was conducted on the metabolite content data matrix using R

software. Metabolite classification and pathway functional

annotations were performed using the KEGG database (http://

www.genome.ad.jp/kegg/) to identify the major biochemical

metabolic and signal transduction pathways involved. Partial least

squares regression (PLSR) was applied to establish a model of the

relationships between metabolite levels and sample categories for

predictive modeling. DAMs were identified using the criteria of a

fold change >2 or a fold change < 1/2 and a P value <0.05.
2.5 WGCNA

The gene expression profiles of the DEGs were subjected to a

coexpression analysis using the dynamic branch cutting method in

the R package WGCNA (Langfelder and Horvath, 2008). The

weighting coefficient b was chosen to yield a correlation coefficient

of approximately 0.8 with a certain level of gene connectivity to

ensure a scale-free network. In this study, b=8 was selected as the

weighting coefficient. The network was constructed via an automatic

network construction function, blockwise modules, resulting in

multiple valid modules, each containing a different number of

genes. Modules with a similarity greater than 0.75 were merged

using minModuleSize = 30 and Merge Cut Height = 0.25 as

the criteria. The module eigengene (ME) was calculated and

correlated with hormone levels and different treatment durations.

Specific modules were selected using the criteria of r>0.80 and

P<0.05. The coexpression network was visualized using Cytoscape

(Shannon et al., 2003) (version 3.10.0) software.
2.6 qRT–PCR

Homologs of the candidate genes were identified using the

BLASTn (Altschul et al., 1990) function on the CottonGen (Yu
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et al., 2021) website (https://www.cottongen.org/), and specific

primers were designed using DNAMan (Lynnon Corporation,

Canada). Total RNA was extracted from samples collected after

various durations of stress with the RNAprep Pure Polysaccharide

Polyphenol Plant Total RNA Extraction Kit (Tiangen, Beijing,

China) according to the manufacturer’s instructions, and first-

strand cDNA was synthesized using a reverse transcription kit

(abm). Cotton Ubiquitin7 (GhUBQ7) was selected as the internal

reference gene, and qRT–PCR amplification of the relevant genes

was performed on an Applied Biosystems™ 7500 Fast Real-Time

PCR System (three biological replicates). Relative gene expression

was analyzed using the 2−DDCt method (Livak and Schmittgen,

2001), and the data were visualized using GraphPad Prism

version 8.0.1 for Windows. All primers used in this study are

listed in Supplementary Table S2.
3 Results

3.1 Overall analysis of RNA-seq data

RNA-seq was performed on 18 samples of G. hirsutum

subjected to alkaline stress at six time points (0 h, 2 h, 4 h, 8 h,

12 h, and 24 h). After filtering, we obtained a total of 153.89 Gb of

clean data, with each sample yielding more than 6.65 Gb of clean

data. The Q30 base percentage exceeded 95.90%, and the GC

content was above 43.55% (Supplementary Table S1). The

correlation between biological replicates not only indicates the

reproducibility of experimental procedures but also reflects the

reliability of the DEG identification and helps identify potential

outliers. The Pearson correlation coefficients for the three biological

replicates of the same sample were greater than 0.96 (Figure 1a).

Principal component analysis (PCA) revealed that samples from the

same biological replicate clustered together, confirming the

reliability and reproducibility of the RNA-seq data (Figure 1b).

PCA revealed a significant separation trend among the samples

from the alkaline stress control group and groups exposed to

alkaline stress for different times. As the duration of stress

increased, the distance between the samples from the treatment

groups and the control samples gradually increased, suggesting that

the response of G. hirsutum to alkaline stress became more

pronounced with prolonged treatment time.
3.2 Differential expression analysis

The differential expression analysis revealed a total of 751 DEGs

at 2 h of alkaline stress compared with 0 h, including 344

upregulated and 407 downregulated genes, with 148 unique

DEGs (Figures 2a, b). At 4 h of alkaline stress, 1,367 DEGs were

identified, with 652 upregulated and 715 downregulated genes and

624 unique DEGs, compared with those at 0 h. At 8 h of alkaline

stress, 1,317 DEGs were identified, with 813 upregulated and 504

downregulated genes and 486 unique DEGs, compared with those
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at 0 h. At 12 h of alkaline stress, 1,770 DEGs were identified, with

797 upregulated and 973 downregulated genes and 353 unique

DEGs, compared with those at 0 h. At 24 h of alkaline stress, 4,598

DEGs were identified, with 1,802 upregulated and 2,796
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downregulated genes and 2,840 unique DEGs, compared with

those at 0 h. In total, 6,610 DEGs were identified in plants under

alkaline stress, with 71 common DEGs detected among the groups.

KEGG enrichment analyses were conducted for the DEGs at
FIGURE 2

Numbers of DEGs and enrichment analysis results compared with those at 0 h of alkaline stress. (a) Numbers of upregulated and downregulated
DEGs identified at each time point compared with 0 h of stress. (b) Venn diagram of unique and common DEGs identified at each time point
compared with 0 h of alkaline stress. (c) KEGG enrichment analysis of DEGs identified at various time points compared with 0 h of alkaline stress.
(d) GO enrichment analysis of all DEGs compared with the genes detected at 0 h of alkaline stress.
FIGURE 1

Correlation analysis and PCA of the RNA-seq data from 18 (G) hirsutum samples under alkaline stress. (a) Correlation analysis of the samples; a value
from 0.4 to 1 represents the magnitude of the correlation coefficient between samples, with 0.4 indicating the lowest correlation coefficient and 1
indicating the highest correlation coefficient between samples. (b) PCA of the samples; each point represents a sample, with different colors used to
identify processing at different times.
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different time points of alkaline stress to reveal the dynamic

changes in the response of G. hirsutum to alkaline stress

(Figure 2c). The DEGs at 2 h were significantly annotated to the

MAPK signaling pathway, phenylpropanoid biosynthesis pathway

and flavonoid biosynthesis pathway. The DEGs at 4 h were

significantly annotated to glucosinolate biosynthesis, linoleic acid

metabolism, glycerophospholipid metabolism and zeatin

biosynthesis pathways. The DEGs at 8 h were significantly

annotated to the phenylpropanoid biosynthesis, starch and

sucrose metabolism, glycerolipid metabolism and fatty acid

elongation pathways. The DEGs at 12 h were significantly

annotated to the flavonoid biosynthesis, alpha-linolenic acid

metabolism, linoleic acid metabolism and phenylpropanoid

biosynthesis pathways. The DEGs at 24 h were significantly

annotated to the flavonoid biosynthesis, glutathione metabolism,

phenylalanine metabolism and alpha-linolenic acid metabolism

pathways. Flavonoid biosynthesis and alpha-linolenic acid

metabolism pathways were significantly annotated at 12 h and 24

h, during which the greatest number of DEGs was observed,

indicating that these time points are the most intense periods of

the response of G. hirsutum to alkaline stress and that flavonoid

biosynthesis and alpha-linolenic acid metabolism play important

roles during these periods. GO enrichment analyses were

performed on the 6,610 DEGs. The GO analysis revealed

significantly enriched biological processes, including the cellular

response to phosphate starvation, the salicylic acid catabolic

process, the hormone catabolic process, the flavonoid biosynthetic

process, the regulation of the cell cycle process, the organic acid

catabolic process, the negative regulation of leaf senescence, the

jasmonic acid-mediated signaling pathway, inorganic anion

transmembrane transport, and the phenylpropanoid metabolic

process (Figure 2d).
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3.3 Clustering analysis of DEGs

K-means clustering was applied to the 6,610 DEGs, identifying

6 statistically significant clusters. A KEGG pathway enrichment

analysis was performed for each cluster (Figures 3a, b). Cluster 1

presented a decrease in expression at 2 h of stress, an increase at 4 h,

and a gradual decrease thereafter, with the lowest expression

observed at 24 h. This cluster contained 2,657 DEGs and 189

TFs. Significant enrichment was detected in the following

pathways: the cell cycle, cysteine and methionine metabolism, and

flavonoid biosynthesis. Cluster 2 showed a gradual decrease in

expression after 4 h of stress, with the lowest expression observed

at 24 h. This cluster contained 504 DEGs and 24 TFs. Significant

enrichment was detected in the flavonoid biosynthesis and betalain

biosynthesis pathways. Cluster 3 presented an increase in

expression at 2 h of stress, followed by a decrease at 4 h and then

a gradual increase, with expression peaking at 24 h. This cluster

contained 1,017 DEGs and 165 TFs. Significant enrichment was

detected in the phototransduction, carotenoid biosynthesis, and

circadian entrainment pathways. Cluster 4 presented an increase in

expression at 2 h of stress and a slight decrease from 4 h to 8 h,

followed by a gradual increase, with the highest expression

occurring at 24 h. This cluster contained 1,088 DEGs and 76 TFs.

Significant enrichment was detected in the pathways of alpha-

linolenic acid metabolism, fatty acid degradation, and glutathione

metabolism. Cluster 5 showed a rapid increase in expression under

stress, with expression peaking at 4 h, followed by a gradual

decrease. This cluster contained 631 DEGs and 77 TFs.

Significant enrichment was detected in the zeatin biosynthesis,

thiamine metabolism, and phenylalanine metabolism pathways.

Cluster 6 presented an increase in expression under stress, with

expression peaking at 8 h, followed by a gradual decrease. This
FIGURE 3

Clustering and enrichment analyses of all DEGs. (a) Line plot of the expression patterns of all the DEGs based on the clustering analysis. The red
numbers represent the quantity of DEGs and differentially expressed TFs identified in each cluster. (b) KEGG pathway enrichment analysis of each
category of DEGs. The intensity of the color represents the magnitude of the p value, specifically the value of -log10 (p value). A darker color
indicates a smaller p value, which corresponds to a larger value of -log10 (p value), whereas a lighter color indicates a larger p value, equating to a
smaller value of -log10 (p value).
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cluster contained 713 DEGs and 48 TFs. Significant enrichment was

detected in the phenylalanine metabolism, cytochrome P450, and

circadian rhythm pathways.
3.4 Metabolomic analysis

A total of 4,225 metabolites were identified in 18 samples of G.

hirsutum subjected to alkaline stress at six time points (0 h, 2 h, 4 h, 8

h, 12 h, and 24 h) via UPLC–MS. PCA revealed that samples of the

same biological replicates clustered together, indicating that the

metabolomic data were reliable and reproducible (Supplementary

Figure S1). The 4,225 identified metabolites were classified into 10

categories. Amino acids and their derivatives accounted for 35.10% of

the total, organic acids accounted for 16.77%, and benzene and

substituted benzene derivatives accounted for 11.31% (Figure 4a).

Through a differential abundance analysis, a total of 489 differentially

accumulated metabolites (DAMs) were identified at 2 h compared

with 0 h, with 206 upregulated and 283 downregulated DAMs,

including 135 unique DAMs (Figures 4b, c). At 4 h, 469 DAMs

were identified, with 192 upregulated and 277 downregulated DAMs,
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including 105 unique DAMs. At 8 h, 766 DAMs were identified, with

382 upregulated and 384 downregulated DAMs, including 278

unique DAMs. At 12 h, 647 DAMs were identified, with 220

upregulated and 427 downregulated DAMs, including 180 unique

DAMs. At 24 h, 698 DAMs were identified, with 387 upregulated and

311 downregulated DAMs, including 200 unique DAMs. A total of

1,684 DAMs were identified, including 57 shared DAMs. The KEGG

enrichment analysis of the 1,684 DAMs revealed significant

enrichment in pathways related to flavonoid biosynthesis, starch

and sucrose metabolism, photosynthesis, alpha-linolenic acid

metabolism, anthocyanin biosynthesis, folate biosynthesis,

phenylalanine metabolism, phenylpropanoid biosynthesis, carbon

fixation via the Calvin cycle, the pentose phosphate pathway, and

ascorbate and aldarate metabolism (Figure 4d).
3.5 DAM clustering analysis

Using k-means clustering, 6 statistically significant clusters were

identified from 1,684 DAMs, and metabolic classification was

performed for each cluster (Figures 5a, b). Cluster 1 showed a
FIGURE 4

DAMs and enrichment compared with the metabolites detected at 0 h of stress. (a) Percentages of classified metabolites, (b) numbers of
upregulated and downregulated DAMs at each time point compared with that at 0 h of stress, (c) Venn diagram showing unique and shared DAMs at
each time point compared with those at 0 h of stress, and (d) KEGG enrichment analysis of all DAMs compared with the metabolites detected at 0 h
of stress.
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gradual increase in metabolite levels under stress, with metabolite

levels peaking at 12 h, followed by a decrease. This cluster contained

209 DAMs, classified mainly as amino acids and their derivatives

and benzene and substituted benzene derivatives. Cluster 2

maintained a relatively stable metabolite level before 12 h, and

the metabolite level increased sharply at 24 h. This cluster contained

320 DAMs, classified mainly as amino acids and their derivatives

and benzene and substituted benzene derivatives. Cluster 3 showed

a decrease in metabolite levels at 2 h and 8 h, with increases at 4 h

and 12 h. This cluster contained 238 DAMs, classified mainly as

amino acids and their derivatives, and organic acids. Cluster 4

showed a gradual increase in metabolite levels under stress, with the

levels peaking at 8 h, followed by a decrease. This cluster contained

344 DAMs, classified mainly as amino acids and their derivatives

and benzene and substituted benzene derivatives. Cluster 5

presented a slight increase in metabolite levels after 2 h of stress,

followed by a gradual decrease. This cluster contained 252 DAMs,

classified mainly as amino acids and their derivatives, benzene and

substituted benzene derivatives, and organic acids. Cluster 6 showed

a gradual decrease in metabolite levels under stress, with the

minimum levels observed at 24 h. This cluster contained 321

DAMs, classified mainly as amino acids and their derivatives and

organic acids.
3.6 Combined RNA-seq and metabolomic
analyses

The KEGG enrichment analysis of all the DAMs and DEGs

revealed that both groups were significantly enriched in the

flavonoid biosynthesis, phenylalanine metabolism, alpha-linolenic

acid metabolism, and ascorbate and aldarate metabolism pathways

(Figure 6a). First, we analyzed the expression patterns of genes in

the flavonoid biosynthesis pathway. In addition to the flavonol

synthase (FLS) and hydroxycinnamoyl transferase (HCT) genes,

other flavonoid biosynthesis genes, such as chalcone isomerase

(CHI), chalcone synthase (CHS) and dihydroflavonol 4-reductase
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(DFR), presented the highest expression at 8 h (Figure 6b).

Moreover, the levels of flavonoid metabolites, such as delphinidin

3-O-beta-D-sambubioside, malvidin 3-(6’’-p-coumarylglucoside),

peonidin 3-(6’’-p-coumarylglucoside), petunidin 3-(6’’-p-

coumarylglucoside), pelargonidin 3-sambubioside 5-glucoside,

and glycyphyllin, peaked at 24 h (Figure 6c). On the other hand,

the levels of naringenin chalcone, peonidin-3-O-alpha-

arabinopyranoside, petunidin 3-(6’’-acetylglucoside), 5H-

benzylohepten-5-one, and 1,8-bis((2R,3R)-3,5,7-trihydroxy-2H-1-

benzopyran-2-y l ) -3 ,4 , 6 - t r ihydroxy , and 2 ’ , 3 , 4 ,4 ’ , 6 ’ -

pentahydroxychalcone peaked at 0 h, with their levels decreasing

after exposure to stress. We calculated the correlation between

genes and metabolites to further explore the relationships between

the expression offlavonoid biosynthesis genes and metabolite levels,

visualizing those with an absolute correlation coefficient greater

than 0.8 and a p value less than 0.05 (Figure 6d). A total of 25

flavonoid biosynthesis genes were significantly correlated with 9

flavonoid pathway metabolites, with the expression of 14 genes

exhibiting negative correlations with the levels of 6 metabolites and

the expression of 16 genes showing positive correlations with the

levels of 5 metabolites. Specifically, GH_D11G1872 (CHI)

expression was significantly negatively correlated with the

peonidin 3-(6’’-p-coumarylglucoside), delphinidin 3-O-beta-D-

sambubioside, and malvidin 3-(6’’-p-coumarylglucoside) levels.

The alpha-linolenic acid metabolism pathway is an important

route for the synthesis of jasmonic acid (JA) in plants (Choudhary

et al., 2025). Both the alpha-linolenic acid metabolism and JA-

mediated signaling pathways were significantly enriched in

differentially expressed genes (DEGs) and differentially

accumulated metabolites (DAMs) at multiple stages. To this end,

an analysis was conducted on the changes in the levels of genes and

metabolites associated with other JA biosynthesis pathways, with an

initial focus on the variations in the expression levels of JA

biosynthesis genes (Figure 7a). The rate-limiting enzymes of JA

synthesis, allene oxide cyclase (AOC, GH_D08G0423) and allene

oxide synthase (AOS, GH_A04G1388, GH_A12G0282, and

GH_D06G0112), presented the highest expression after 4 h of
FIGURE 5

Clustering and classification of all the DAMs. (a) Line plot showing the pattern of changes in the contents of all the DAMs based on the clustering
analysis; the red numbers represent the quantity of DAMs identified in each cluster. (b) Classification of all the DAMs into different categories.
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stress. The JA level peaked at 12 h of stress, whereas the level of

methyl dihydrojasmonate peaked at 24 h of stress (Figure 7b). The

correlations between genes and metabolites were calculated to

further explore the relationships between the expression of JA

biosynthetic genes and metabolite levels, and those with absolute

correlation coefficients greater than 0.8 and p values less than 0.05

were visualized (Figure 7c). A total of 14 genes were significantly

correlated with 4 metabolites in the JA biosynthesis pathway, with

the expression of 7 genes exhibiting significant negative correlations

with JA and methyl dihydrojasmonate levels and the expression of 9

genes exhibiting significant positive correlations with methyl

dihydrojasmonate, (+)-7-iso-JA, and colfosceril palmitate levels.

GH_D10G0585 (LOX2S) expression was significantly positively

correlated with methyl dihydrojasmonate and (+)-7-iso-jasmonic

acid levels and significantly negatively correlated with JA levels.
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3.7 Analysis of differentially expressed TFs

TFs are key regulators of gene expression and play important

roles in plant growth, development, and stress response

mechanisms (Yan et al., 2025; Yang et al., 2025). In this study, we

identified a total of 579 differentially expressed TFs (DE-TFs) from

the 6,610 DEGs. The major TF families identified included the AP2/

ERF, MYB, bHLH, WRKY, NAC, bZIP, C2H2, HD-ZIP, and GRAS

families (Figure 8a). Using k-means clustering, we identified 5

statistically significant clusters of these DE-TFs, and we further

examined the TFs with the highest fold changes in each cluster

(Figure 8b). Cluster 1 showed a gradual decrease in TF expression

under stress, with the lowest expression occurring at 24 h. The TFs

with the greatest fold changes in expression in this cluster were

GH_D11G1947 (MYB), GH_A13G0333 (MYB) and GH_A11G0465
FIGURE 6

Results of the combined RNA-seq and metabolomic analyses, analysis of changes in DAMs and DEGs in the flavonoid biosynthesis pathway, and
correlation analysis. (a) KEGG pathway annotations of DAMs and DEGs. (b) Changes in the expression of DEGs in the flavonoid biosynthesis pathway
were quantified via standardized scoring, with values standardized to range from -2 to 2. (c) Heatmap of changes in the levels of DAMs in the
flavonoid biosynthesis pathway. Standardized scoring was used, with values standardized to range from -2 to 2. (d) Correlation network of flavonoid
biosynthesis pathway metabolites and genes; the red line represents a significant positive correlation, and the green line represents a significant
negative correlation.
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(MYB). Cluster 2 presented the highest TF expression at 0 h and 4 h.

The TFs with the greatest fold changes in expression in this cluster

were GH_D11G1947 (MYB), GH_A09G2571 (AP2/ERF) and

GH_A08G1918 (AP2/ERF). Cluster 3 showed an increase in TF

expression, with the expression peaking at 24 h. The TFs with the

greatest fold changes in expression in this cluster were

GH_D05G2112 (MADS), GH_D08G0585 (bHLH) and

GH_A05G2081 (MADS). Cluster 4 presented the highest TF

expression at 4 h. The TFs with the greatest fold changes in

expression in this cluster were GH_D08G1271 (bHLH),

GH_A08G2170 (AP2/ERF) and GH_A08G1275 (bHLH). Cluster 5
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presented the highest TF expression at 8 h. The TFs with the

greatest fold changes in expression in this cluster were

GH_D09G2504 (AP2/ERF) and GH_D11G0488 (MYB).
3.8 WGCNA

WGCNA was performed on the expression matrix of the 6,610

DEGs to identify the core genes related to alkali tolerance in cotton,

which resulted in 13 distinct coexpression modules (Figure 9a). The

correlation between each module and the duration of stress was
FIGURE 7

Changes in DAMs and DEGs in the JA biosynthesis pathway and correlation analysis. (a) Changes in the expression of DEGs in the JA biosynthesis
pathway were quantified via standardized scoring, with values standardized to range from -2 to 2. (b) Heatmap of changes in the levels of DAMs in
the JA biosynthesis pathway; standardized scoring was used, with values standardized to range from -2 to 2. (c) Correlation network between
metabolites and genes in the JA biosynthesis pathway; the red line represents a significant positive correlation, and the green line represents a
significant negative correlation.
FIGURE 8

Proportions and expression patterns of differentially expressed TFs. (a) Proportional area chart of differentially expressed TFs. (b) Heatmap of the
differential expression patterns of TFs, with the TFs exhibiting the greatest fold changes shown on the right.
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calculated. The results indicated that the pink module was highly

correlated with 0 h, the green module was correlated with 4 h, the

brown module was correlated with 8 h, the magenta module was

correlated with 12 h, and the blue module was correlated with 24 h

(Figure 9b). By calculating the kME (eigengene connectivity) value

of each module gene, the gene with the highest absolute kME value

was used as the hub gene of each module. Three hub genes were

identified for each module, resulting in a total of 15 candidate genes

associated with salt tolerance in cotton (Figure 9c).

The functions of these 15 candidate genes were annotated based

on the homologous genes in A. thaliana (Table 1). GH_A03G1732

(NAC), GH_A05G2081 (MADS), GH_A13G2571 (MYB), and

GH_D02G1891 (NAC) encode four TFs that are involved

primarily in the response to stress. GH_A10G1801 encodes a late

embryogenesis abundant (LEA) protein that is crucial for

maintaining osmotic pressure and protecting cell membrane

structures. GH_A01G0048 encodes a 3-ketoacyl-CoA synthase

(KCS) that is involved in the biosynthesis of very-long-chain fatty
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acids. GH_A01G2352 encodes a glutathione S-transferase (GST)

that is involved in scavenging ROS. GH_A05G4235 and

GH_D05G2419 encode a chalcone isomerase (CHI) and a

chalcone synthase (CHS), respectively, which are involved in

flavonoid biosynthesis. GH_A07G2044 encodes the UDP-

glycosyltransferase 82A1 (UGT82A1), which catalyzes the

glycosylation of flavonoids. GH_A09G0143 encodes a calmodulin-

like (CML) protein, a calcium signal effector. GH_A09G0432

encodes a lysine histidine transporter (LHT) that is involved in

amino acid absorption and transport via roots. GH_A12G0029

encodes a sulfate transporter (SULTR) that is involved in sulfate

transport. GH_A12G0282 encodes an allene oxide synthase (AOS)

that is involved in JA biosynthesis. GH_D06G2326 encodes an

anthocyanidin-3-O-glucosyltransferase (UFGT) that is involved in

the biosynthesis of anthocyanins.

The relationships between these 15 candidate genes and salt

tolerance in cotton was further explored using qRT–PCR to analyze

their expression patterns in cotton under salt stress at different time
FIGURE 9

WGCNA and analysis of the candidate gene expression patterns. (a) WGCNA clustering dendrogram, with different colors representing different
modules. (b) Correlation and significance analyses between modules and alkaline stress in cotton at different time points. The thickness of the lines
represents the magnitude of the correlation coefficient between the modules and periods, with gray indicating a p value greater than or equal to
0.05 and green indicating a p value less than 0.05. (c) Gene network diagrams for the pink, green, brown, magenta, and blue modules. (d) Analysis of
the expression patterns of the 15 candidate genes in cotton under alkaline stress. The error bars represent the average values ± SDs from three
replicates (*P<0.05 and **P<0.01).
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points (Figure 9d). Among these genes, GH_A01G0048 ,

GH_A03G1732, GH_A05G2081, GH_A05G4235, GH_A07G2044,

GH_A09G0143, GH_A09G0432, GH_A10G1801, GH_A12G0282,

GH_A13G2571, GH_D05G2419 and GH_D06G2326 presented

significant increases in expression under salt stress. Three genes

(GH_A01G2352, GH_A12G0029 and GH_D02G1891) presented

significant decreases in expression. In summary, 15 candidate

genes associated with cotton salt tolerance, including 4 TFs, were

identified through WGCNA and qRT–PCR.
4 Discussion

The global area of saline–alkaline land is approximately 1

billion hm, and it is increasing at a rate of 1.0 × 10⁶ to 1.5 × 10⁶

hm annually. Saline–alkaline land is primarily distributed in desert

and semidesert regions, but it is also common in fertile alluvial

plains, river basins, coastal areas, and irrigation zones (Liu et al.,

2025b). Given the limited amount of arable land, the development

and utilization of saline–alkaline land are particularly important. In

most cases, alkaline stress causes more severe damage to plants than

does salt stress. This difference is because the hydrolysis of CO3
3

and HCO3
3 increases the soil pH, altering its physicochemical

properties and structure and decreasing soil aeration and water

conductivity, leading to a deficiency of soluble minerals and

ultimately impairing root growth and survival (Bai et al., 2025).

Cotton, a pioneer crop for saline–alkaline land, has been reported to

be affected by alkaline stress. Under Na₂CO3 stress, cotton roots

exhibit severe wilting and blackening, leaves lose their luster, leaf
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veins darken, and the chlorophyll content and relative water

content decrease significantly (Zhang et al., 2018). Under

NaHCO3 stress, the leaves wilt and lose water, the roots turn

yellow, the bases of the stems turn reddish-brown, and the veins

of true leaves yellow (Fan et al., 2021). However, in-depth studies on

the molecular mechanisms underlying the response of cotton to

alkaline stress are lacking. Therefore, investigating the regulatory

mechanisms involved in the response of cotton to alkaline stress is

highly important. In this study, RNA-seq and metabolomic

sequencing were conducted to analyze gene expression and

metabolic changes in cotton under alkaline stress at different time

points. The clustering analysis and PCA of the RNA-seq and

metabolomic data revealed that as the duration of alkaline stress

increased, the correlations between samples decreased, whereas the

number of DEGs and DAMs increased. This result could be due to

the stimulation of alkaline tolerance-related gene expression in

cotton, leading to the activation of more biological processes to

increase the ability of the plant to adapt to alkaline stress.

Flavonoids are a group of plant secondary metabolites widely

distributed in the plant kingdom that accumulate in plants in

response to various abiotic stresses (such as drought, high

temperature, phosphorus deficiency, and salinity) (Liu et al., 2021).

The regulation of flavonoid biosynthesis has been recognized as an

important mechanism by which plants resist alkaline stress, and this

mechanism has been reported in crop species such as Arabidopsis,

rice, and maize (Han et al., 2023; Li et al., 2022; M. Zhang et al.,

2023). Additionally, flavonoids have antioxidant properties that

allow them to scavenge ROS in response to both biotic and abiotic

stresses. Studies have shown that flavonoids increase plant alkali
TABLE 1 Functional annotations of candidate genes.

Gene ID Gene name
Homologous genes in
Arabidopsis thaliana

Functional annotation

GH_A10G1801 LEA AT4G15910
Maintains the osmotic pressure of the cell and protects the cell
membrane structure

GH_A01G0048 KCS AT1G19440 Very-long-chain fatty acid biosynthetic process

GH_A01G2352 GST AT5G02790 Reactive oxygen species scavenging

GH_A03G1732 NAC AT5G13180 Response to salt stress

GH_A05G2081 MADS AT1G22130 Response to adversity stress

GH_A05G4235 CHI AT5G05270 Flavonoid biosynthetic process

GH_A07G2044 UGT82A1 AT3G22250 Catalyzes the glycosylation of flavonoid compounds

GH_A09G0143 CML AT5G39670 Ca2+ signal effector identification

GH_A09G0432 LHT AT5G40780 Absorption and transport of amino acids by roots

GH_A12G0029 SULTR AT3G51895 Sulfate transport

GH_A12G0282 AOS AT5G42650 JA biosynthesis

GH_A13G2571 MYB AT3G46130 Response to adversity stress

GH_D02G1891 NAC AT5G13180 Response to adversity stress

GH_D05G2419 CHS AT5G13930 Flavonoid biosynthetic process

GH_D06G2326 UFGTs AT4G27570 Biosynthesis of anthocyanins
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tolerance by influencing antioxidant enzyme activity. Severe alkaline

stress often inactivates antioxidant enzymes, while flavonoid

accumulation effectively clears ROS (Zhu et al., 2024). Genes such

as CHI, C4H, 4CL, DFR, and CHS are key components of the

flavonoid biosynthesis pathway (Liu et al., 2021). InMedicago sativa,

MsFLS13 promotes salt–alkaline stress tolerance by increasing

flavonol accumulation, the antioxidant capacity, osmotic balance,

and photosynthetic efficiency (Zhang et al., 2023). In soybean, the

overexpression of GmCHI4A and GmCHI4B significantly increases

the total isoflavonoid content and improves salt tolerance (Zhang

et al., 2024). The overexpression of CHS1 from Iris halophila Pall. in

transgenic Arabidopsis leads to reduced membrane lipid

peroxidation, an increased proline content, increased antioxidant

enzyme activity, and increased levels of flavonoids and other

phenylpropanoid compounds, which improve salt tolerance (Liu

et al., 2025c). In our transcriptomic analysis, we also identified 4

C4H genes (GH_A10G1944, GH_A13G2635, GH_D10G2039 and

GH_D13G2625), 10 CHI genes (GH_A02G1972, GH_A05G4235,

GH_A11G1837, GH_A12G0599, GH_A13G0216, GH_D03G0093,

GH_D04G0140 , GH_D11G1872 , GH_D12G0618 and

GH_D13G0214), and 7 CHS genes (GH_A02G0270, GH_A05G3278,

GH_A10G2687 , GH_D02G0295 , GH_D05G2419 and

GH_D10G1568) that were upregulated in cotton under alkaline

stress. Furthermore, our metabolomic data revealed a regulatory

network of flavonoid biosynthesis genes and metabolites in cotton

under alkaline stress. Notably, GH_D11G1872 (CHI) expression was

significantly negatively correlated with peonidin 3-(6’’-p-

coumarylglucoside), delphinidin 3-O-beta-D-sambubioside, and

malvidin 3-(6’’-p-coumarylglucoside) levels. These comprehensive

findings suggest that cotton can increase flavonoid accumulation by

upregulating key genes in the flavonoid biosynthesis pathway, thereby

effectively scavenging ROS and increasing its survival rate under

alkaline stress.

Plants trigger changes in the levels of endogenous hormones

(such as JA and abscisic acid (ABA)) to respond to alkaline stress

(Chen et al., 2024; Liu et al., 2022; Yan et al., 2019). JA plays a

crucial role in the response to abiotic stresses such as alkalinity. For

example, the exogenous application of JA significantly reduces the

Na+ content in rice and alleviates salt stress-induced damage and

photosynthetic impairment in seedlings (Hussain et al., 2022).

Studies also indicate that the expression of JA signaling pathway

genes in significantly induced in Arabidopsis thaliana under

alkaline stress (Pérez-Martı ́n et al., 2021). Furthermore, a

previous study showed that a JA pretreatment can increase the

alkaline stress tolerance of corn by altering ion homeostasis and the

activities of antioxidant and glyoxalase systems (Mir et al., 2018). In

Arabidopsis thaliana, AtJAZ10 expression decreases in response to

alkaline stress, and the corresponding T-DNA insertion mutant

shows significantly better growth under alkaline conditions than

wild-type plants (Wang et al., 2020). Recent research on tomato has

revealed that the SlWRKY42–SlMYC2 module regulates JA

signaling, lowers the Na+/K+ ratio, and thus enhances salt–

alkaline stress tolerance (Liu et al., 2025c). In this study, through

RNA-seq and metabolomic analyses of cotton under alkaline stress,
Frontiers in Plant Science 13
we observed the significant enrichment of the alpha-linolenic acid

metabolism pathway. This pathway, which is an important route for

JA biosynthesis, led us to construct a regulatory network between JA

biosynthetic genes and metabolites. We identified the rate-limiting

enzymes AOC (GH_D08G0423) and AOS (GH_A04G1388,

GH_A12G0282 and GH_D06G0112), as well as increased JA

levels, in cotton under alkaline stress. Through WGCNA, we also

identified GH_A12G0282 (AOS) as an important candidate gene for

alkali tolerance in cotton. These findings provide new insights for

future research into the role of JA in the alkali tolerance of cotton.

However, when the impact of JA on the alkali tolerance of cotton is

studied, the interconnections between various plant hormones are

crucial. Therefore, a focus on the interactions between two specific

plant hormones and a consideration of the collective actions of

multiple plant hormones on plant stress resistance are important.

High-pH stress disrupts the root proton gradient across the

membrane, inhibiting Na+ efflux, which leads to Na+

overaccumulation. This phenomenon has been validated in

various plant species and serves as a critical physiological basis

for alkaline stress-induced damage (Lu et al., 2025). Ca2+ is

considered one of the most important signaling molecules

involved in the response to salt stress, and elevated Ca2+ levels

can alleviate Na+ toxicity. Alkaline soils typically contain large

amounts of CO3
2-, which directly precipitates Ca2+, leading to a

dramatic decrease in the activity and availability of Ca2+ around the

roots and resulting in a severe deficiency of bioavailable Ca2+ (Hao

et al., 2024). Indeed, under alkaline stress, many Ca2+-related genes

in cotton exhibit significant changes in expression, such as the

upregulation of the CBL and CIPK genes. Additionally, we

identified GH_A09G0143, which encodes a CML protein that

primarily participates in Ca2+ signal effector recognition. Studies

have reported that a CML family transmembrane protein can

prevent excess ROS accumulation in roots and potentially

regulate Ca2+ signaling, vesicular transport, and the formation of

diffusion barriers, thereby improving plant tolerance to salt stress

(Zhang et al., 2021).

Many studies have shown that transcription factors can directly

or indirectly regulate the expression of genes related to alkaline

stress responses, thereby affecting the ability of plants to adapt to

alkaline stress (Yang et al., 2024). In recent years, significant

progress has been made in the research of transcription factors

involved in plant alkali tolerance, with dozens of transcription

factors identified as participating in plant responses to alkaline

stress (Fang et al., 2021). These transcription factors belong to

several major families, such as AP2/ERF, bZIP, NAC, MYB, MYC

andWRKY (Erpen et al., 2018). We also identified 579 differentially

expressed TFs among the 6610 DEGs, with the highest proportions

observed for AP2/ERF, MYB, bHLH, WRKY, NAC, bZIP, C2H2,

HD-ZIP, and GRAS transcription factors. For example, BpMYB06

mainly regulates the response of birch to alkaline stress by

increasing reactive oxygen species scavenging and regulating the

osmotic and ion balance, thus affecting the stomatal aperture (Zhou

et al., 2025). MYB5 coordinates the biosynthetic regulation of

sesquiterpenes and proanthocyanidins in rose in response to
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alkaline stress by directly regulating the expression of TPS31 and

ANR (Wang et al., 2024a). QTL-seq and QTLmapping revealed that

OsMYB305 can regulate the alkali tolerance of rice, with further

studies indicating that OsMYB305 modulates the alkali tolerance of

rice by affecting the transport of Na+ and K+ in the root system and

in seedlings (Li et al., 2024). Through WGCNA combined with

qRT–PCR, GH_A13G2571 (MYB) was identified as a candidate

gene for alkali tolerance in upland cotton, with the peak expression

occurring at 8 hours of alkaline stress (fold change > 5). By

regulating the expression of NAC transcription factors, the

morphology and growth of plant roots can be influenced to

respond to stress tolerance. GmNAC06 can control the Na+/K+

ratio in root hairs, inducing the expression of genes related to

proline, glycine betaine, and ROS metabolism, thereby lowering the

osmotic potential and ROS levels in soybean plants under salt stress

and maintaining ionic homeostasis (Li et al., 2021). Transgenic lines

overexpressing sorghum GsNAC2 presented significant increases in

the plant height, dry weight, water content, root vitality, leaf length,

chlorophyll content, stomatal conductance, relative root vitality,

relative chlorophyll content, relative stomatal conductance, and

relative transpiration rate (Wu et al., 2023). We also identified

two NAC transcr ip t ion fac tors (GH_A03G1732 and

GH_D02G1891), among which GH_A03G1732 showed peak

expression at 4 h of alkaline stress (fold change > 2). In addition

to these genes, we identified numerous TFs involved in the alkaline

stress response. These genes and TFs are important genetic

resources for understanding the alkali tolerance of cotton and

could serve as key targets for future research.
5 Conclusions

This study combined RNA-seq and metabolomics to explore

the molecular mechanisms involved in the response of cotton to

alkaline stress at different time points. The KEGG enrichment

analysis revealed that the flavonoid biosynthesis and JA

biosynthesis pathways were significantly enriched in cotton under

alkaline stress, and the expression levels of several key genes

changed significantly in response to stress. In particular, genes

involved in flavonoid biosynthesis, such as C4H, CHI, and CHS,

were upregulated by alkaline stress, promoting flavonoid

accumulation and increasing plant stress tolerance. By

constructing a regulatory network between flavonoid biosynthesis

genes and metabolites, we determined that GH_D11G1872 (CHI)

expression is significantly correlated with the levels of several

flavonoid metabolites, potentially playing a crucial role in the

response to alkaline stress. In terms of JA biosynthesis, the

expression of the AOC and AOS genes, as well as the

accumulation of JA and methyl dihydrojasmonate, increased

significantly in plants under alkaline stress, highlighting the

important role of JA in the alkali tolerance of cotton. WGCNA

identified key candidate genes closely related to the alkaline stress

response, with GH_A12G0282 (AOS) emerging as an important

candidate gene that may play a crucial role in the alkali tolerance of
Frontiers in Plant Science 14
cotton. Furthermore, genes related to Ca2+ signaling, such as CBL,

CIPK, and CML, were upregulated in response to alkaline stress,

potentially increasing cotton tolerance to alkaline stress by

regulating Ca2+ homeostasis and ROS clearance. Overall, this

study provides an in-depth investigation into the molecular

mechanisms involved in the response of cotton to alkaline stress

through multiomics analyses and identifies key genes and

metabolites. These findings lay a theoretical foundation for the

future molecular breeding of alkali-resistant cotton.
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