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Accurately detecting roses in UAV-captured greenhouse imagery presents

significant challenges due to occlusions, scale variability, and complex

environmental conditions. To address these issues, this study introduces

ROSE-MAMBA-YOLO, a hybrid detection framework that combines the

efficiency of YOLOv11 with Mamba-inspired state-space modeling to enhance

feature extraction, multi-scale fusion, and contextual representation. The model

achieves a mAP@50 of 87.5%, precision of 90.4%, and recall of 83.1%, surpassing

state-of-the-art object detection models. Extensive evaluations validate its

robustness against degraded input data and adaptability across diverse

datasets. These results demonstrate the applicability of ROSE-MAMBA-YOLO

in complex agricultural scenarios. With its lightweight design and real-time

capability, the framework provides a scalable and efficient solution for UAV-

based rose monitoring, and offers a practical approach for precision floriculture.

It sets the stage for integrating advanced detection technologies into real-time

crop monitoring systems, advancing intelligent, data-driven agriculture.
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1 Introduction
The floriculture industry, particularly rose cultivation, plays a

vital role in modern agriculture due to its economic and cultural

significance (Darras, 2021; Anumala et al., 2021). Accurate

monitoring of rose growth stages is essential for optimizing yield,

ensuring quality, and responding to fluctuating market demands

(Partap et al., 2023). Traditional monitoring methods primarily rely

on manual observation, visual inspection, and field surveys, which

involve trained horticulturists assessing plant growth, disease

symptoms, and blooming stages in person (Mohyuddin et al.,

2024). However, traditional methods heavily depend on manual

observation, which is labor-intensive, time-consuming, and prone

to errors, making them unsuitable for large-scale or high-precision

applications (Zhou et al., 2023; Wani et al., 2023). Automated

computer vision techniques present a promising alternative to

overcome these limitations (Yang and Kim, 2023; Wang and Su,

2022). Among these advancements, deep learning-based object

detection models have emerged as the leading tools for

automating such monitoring tasks (Li et al., 2024; Lan et al.,

2024; Zhou et al., 2023).

Deep learning-based object detection models are the backbone

of modern computer vision and can be categorized into single-stage,

two-stage, and Transformer-based architectures (Zaidi et al., 2022).

Two-stage detectors, such as Faster RCNN and Mask RCNN,

deliver high accuracy through a multi-step process of region

proposal and refinement (Jiang and Learned-Miller, 2017; He

et al., 2017). While effective in complex scenarios, their

computational demands and slow inference times make them

impractical for real-time applications like UAV-based rose

monitoring (Huang et al., 2017; Wu et al., 2019). Transformer-

based detectors, including DETR and Swin Transformer, excel at

capturing global and long-range dependencies via self-attention

mechanisms (Meng et al., 2021; Liu et al., 2021, 2022). However,

their high computational complexity and suboptimal performance

in small-object detection limit their utility in resource-constrained,

agricultural contexts (Khan et al., 2022).

Single-stage detectors, such as YOLO and SSD, offer a more

efficient alternative by directly predicting object classes and

bounding boxes in one step (Jiang et al., 2022). Among these, the

YOLO framework has become a benchmark in real-time object

detection due to its remarkable speed, lightweight design, and

strong balance between accuracy and efficiency (Diwan et al.,

2023). YOLOv10 introduced significant improvements in label

assignment and multi-scale detection without using non-

maximum suppression (NMS), making it highly suitable for

agricultural monitoring with dense object distributions (Alif,

2024). Building upon these advancements, YOLOv11 further

enhances feature extraction and inference speed, making it

especially suitable for UAV-based agricultural tasks requiring

rapid and scalable image processing (Khanam and Hussain,

2024). Despite these advances, even YOLOv11 can face challenges

in identifying small or occluded targets such as early-stage rosebuds

under complex greenhouse conditions (Liu et al., 2020).
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To address these limitations, state-space models (SSMs), such as

Mamba (Liu X, et al., 2024; Zhang et al., 2024), provide an efficient

solution for modeling long-range dependencies with linear

computational complexity (Ma X. et al., 2024). Initially developed

for natural language processing, Mamba has shown remarkable

versatility across diverse domains by efficiently modeling sequential

and contextual relationships (Gu and Dao, 2023; Qu H, et al., 2024).

Recent studies show that integrating Mamba into object detection

frameworks leads to enhanced robustness, particularly in detecting

small and occluded objects (Wang et al., 2024).

This study introduces a novel hybrid model combining Mamba

and YOLOv11 to tackle key challenges in rose detection across

different growth stages. Mamba’s ability to model long-range

dependencies complements YOLOv11’s efficiency and real-time

capabilities. The proposed approach integrates Mamba-inspired

modules to improve feature extraction, multi-scale fusion, and

con tex tua l under s t and ing , p rov id ing a robus t and

computationally efficient solution for UAV-based rose monitoring

(Chen et al., 2025). This integration effectively tackles challenges

such as scale variability and complex backgrounds, advancing the

accuracy and reliability of rose detection (Zhao et al., 2025).

Our contributions are as follows:
1. Integration of Mamba into YOLO: We combine Mamba-

inspired state-space modeling with YOLO’s real-time

detection framework to achieve enhanced feature

extraction and computational efficiency.

2. Optimized detection for floriculture: The proposed hybrid

model addresses challenges such as occlusions and small-

object detection, making it highly suitable for rose detection

across different growth stages.

3. Comprehensive validation: Extensive experiments

demonstrate the model’s robustness under degraded

input conditions and its scalability across different

datasets, showcasing its practical utility.

4. Practical applicability: The model balances detection

precision, recall, and computational efficiency, making it

scalable for real-world applications in floriculture.
2 Related work

2.1 Flower detection

Deep learning-based approaches have been widely adopted for

automated flower detection across various agricultural applications.

Shang et al. (2023) introduced a lightweight YOLOv5s-based model

for detecting apple flowers in natural environments. By integrating

ShuffleNetv2 into the backbone and a Ghost module in the neck, the

model effectively reduced computational complexity while

maintaining accuracy. With a precision of 88.4% and recall of

86.1%, it proved highly efficient for real-time applications such as

robotic flower thinning. Rahim et al. (2022) developed a

segmentation-based method for grapevine flower quantification
frontiersin.org
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using Mask R-CNN. Their two-step approach first localized

inflorescences and then detected individual flowers, achieving F1

scores of 0.943 and 0.903, respectively. This framework

demonstrated high accuracy in yield estimation, showcasing the

potential of deep learning for vineyard monitoring.

Beyond agricultural applications, Shirai et al. (2022) applied

UAV-based detection techniques to monitor Convallaria keiskei

colonies, an endangered plant species. Their model combined

Convolutional Neural Networks (CNNs) with fuzzy c-means

clustering to enhance classification accuracy, improving the F-

measure by 22.0% over conventional CNN approaches. Similarly,

Petrich et al. (2020) developed a CNN-based detection method for

Colchicum autumnale, a toxic flowering plant found in pastures.

Through data augmentation, their model achieved an 88.6%

detection rate, demonstrating the effectiveness of deep learning

for large-scale vegetation monitoring.

While these studies demonstrate significant progress in flower

detection, several challenges remain. Real-time detection models

offer efficiency and speed but often face difficulties in handling

occlusions and intricate floral structures (Malakar et al., 2023; Ma Y.

et al., 2024). UAV-based detection techniques enhance coverage

and automation but are influenced by image resolution,

environmental variability, and processing constraints (Zhou et al.,

2021; Zhao et al., 2024a). Overcoming these limitations is essential

to improve detection accuracy, adaptability, and efficiency in

floriculture applications.
2.2 State space models

State Space Models (SSMs) have long been employed to describe

dynamic systems in fields such as control theory, signal processing,

and economics (Zhou et al., 2023). More recently, they have

emerged as a powerful framework in deep learning, particularly

for sequence modeling tasks, including time series forecasting,

natural language processing (NLP), and video understanding (Gu

et al., 2022). Unlike traditional recurrent architectures, which suffer

from vanishing gradients and inefficient memory usage, SSMs

provide an effective mechanism for capturing long-range

dependencies while maintaining linear computational complexity,

making them highly scalable for large-scale applications (Gu

et al., 2021).

A breakthrough in deep learning came with the introduction of

Structured State Space Sequence Models (S4) by Gu et al. (2021) S4

demonstrated the ability of SSMs to efficiently model long-range

dependencies while scaling effectively with sequence length. It

introduced parameterized state-space layers that enhanced

sequence modeling, laying the foundation for further

advancements. Building on this, Smith et al. (2022) developed S5,

which incorporated multi-input multi-output (MIMO) SSMs and

an efficient parallel scan mechanism to further improve training and

inference efficiency. These innovations positioned SSMs as a

compelling alternative to traditional deep learning architectures,

particularly for tasks requiring efficient long-sequence modeling.
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Mamba, introduced by Gu and Dao (2023), represents the latest

advancement in SSMs, extending the principles of S4 and S5. By

integrating a selective state-space mechanism with time-varying

parameters, Mamba enhances sequence modeling without the

quadratic complexity of Transformers (Qu S, et al., 2024). It

achieves comparable or superior performance to Transformer

models in NLP tasks while maintaining linear complexity, making

it highly effective for large-scale sequential processing (Patro and

Agneeswaran, 2024). Mamba’s hardware-aware optimization

further boosts its efficiency, enabling real-world applications that

require both speed and scalability.

Encouraged by Mamba’s success in NLP, researchers have

expanded its application to computer vision. Vision Mamba, an

early attempt to develop a structured state-space model as a visual

backbone, adapts Mamba’s sequential modeling capabilities for

image-based tasks. It incorporates bidirectional scanning

mechanisms to handle spatial dependencies in images, enabling

effective feature representation while maintaining computational

efficiency (Rahman et al., 2024). Liu et al. (2024) further refined this

approach with VMamba, which integrates 2D-Selective-Scan

(SS2D) to enhance spatial relationship modeling. These

advancements demonstrate the potential of SSM-based

architectures in computer vision, proving that Mamba-inspired

models can efficiently process large-scale visual data while

retaining the scalability and efficiency advantages inherent to

state-space models.

Initially, research on SSMs in vision tasks was primarily focused

on image classification and segmentation (Liu X, et al., 2024; Zhao

et al., 2024b). However, recent studies have extended their

applications to more complex domains such as remote sensing

and real-time object detection (Ma B, et al., 2024; Wang et al., 2024;

Zhao et al., 2024c). Mamba-based architecture has been proven

beneficial in UAV-based monitoring and agricultural applications,

where high-resolution image sequences require efficient processing

without excessive computational overhead. The ability of SSMs to

capture long-range dependencies while maintaining scalability

makes them an attractive alternative to CNNs and Transformers,

especially in resource-constrained environments (Qu H, et

al., 2024).
2.3 Real-time object detectors

Real-time object detection has become a cornerstone of modern

computer vision, enabling rapid and precise recognition of objects

in dynamic environments (Rane, 2023). Traditional object detection

techniques, such as Haar cascades, Histogram of Oriented

Gradients (HOG), and Deformable Part Models (DPM), are

limited by high computational costs and poor adaptability (Xu

et al., 2014; Hosain et al., 2024). The emergence of deep learning,

such as CNNs, revolutionized object detection by introducing

robust feature extraction and hierarchical representation learning,

significantly enhancing performance and efficiency (Aziz

et al., 2020).
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Among deep learning-based approaches, You Only Look Once

series (YOLO) has played a pivotal role in transforming real-time

detection with its end-to-end processing pipeline (Liang et al.,

2022). Unlike earlier region-based methods, YOLO performs

direct regression for object localization and classification in a

single forward pass, enabling significant improvements in speed

while maintaining competitive accuracy (Sirisha et al., 2023). Over

multiple iterations, the YOLO framework has undergone

substantial refinements to balance detection performance and

computational efficiency.

YOLOv1 introduced single-pass detection but struggled with

small-object recognition (Hussain, 2024). Subsequent versions

introduced enhancements gradually: YOLOv2 incorporated

anchor boxes for improved localization; YOLOv3 adopted multi-

scale feature maps; and YOLOv4 refined training strategies with

optimizations such as CSPDarknet-53 and self-adversarial training

(Alif, 2024). Later iterations, including YOLOv5, YOLOv6, and

YOLOv7, focused on model scaling, re-parameterization

techniques, and decoupled head structures to enhance

computational efficiency (Ali and Zhang, 2024; Li J, et al., 2025).

YOLOv8 further advanced feature aggregation and bounding box

regression, maintaining strong real-time performance across

diverse applications (Sohan et al., 2024; Zhao et al., 2024d).

YOLOv9 adjusted receptive fields to improve multi-scale

detection, while YOLOv10 incorporated an NMS-free training

approach with dual label assignments, enhancing both accuracy

and inference speed (Yaseen, 2024; Wang et al., 2024).

The latest iteration, YOLOv11, introduces several key

architectural advancements, including the C3k2 block, Spatial

Pyramid Pooling - Fast (SPPF), and the Convolutional block with

Parallel Spatial Attention (C2PSA). These enhancements

collectively improve feature extraction, multi-scale processing,

and computational efficiency (Khanam and Hussain, 2024).

YOLOv11 optimizes parameter efficiency while maintaining a

strong balance between accuracy and speed, making it adaptable

for deployment across various computational environments, from

edge devices to high-performance computing platforms. By refining

its architecture, YOLOv11 further advances real-time object

detection, offering a highly scalable and precise solution for high-

speed vision applications (Jegham et al., 2024).

The continual advancement of real-time object detectors

underscores the need for models that strike an optimal balance

between speed, accuracy, and computational efficiency. As

computer vision applications expand across industries such as

autonomous vehicles, surveillance, and precision agriculture, the

development of robust and adaptable detection frameworks

remains a critical focus in AI research (Janai et al., 2020; Tian

et al., 2020).
3 Materials and methods

To address the challenges of rose detection across different

growth stages, this study integrates advanced modules and

frameworks into a unified model and evaluates its performance
Frontiers in Plant Science 04
systematically. This chapter outlines the datasets, model

architecture, training methodologies, and evaluation metrics

employed to develop and validate the proposed approach.
3.1 Dataset

This study utilized the RoseBlooming dataset, specifically

designed for stage-specific rose detection and tracking in

greenhouse environments (Shinoda et al., 2023). The dataset

features high-resolution annotated images of two rose varieties,

Rosa hybrida hort. ‘Samourai 08’ and ‘Blossom Pink,’ cultivated

under controlled conditions at the Kizu Experimental Farm of

Kyoto University. With comprehensive annotations of roses at

different growth stages, it serves as a valuable resource for

evaluating object detection models.

The dataset categorizes roses into two growth stages: rose_small

and rose_large. The rose_small category encompasses roses from

the bud stage to the point where petals remain aligned with the

flower’s central axis, while the rose_large category includes fully

bloomed roses with petals extending visibly beyond this alignment.

Annotations were generated using Microsoft’s VOTT tool to ensure

consistent bounding box labels for each growth stage. Figure 1

illustrates annotated examples, where pink bounding boxes

represent rose_large and yellow bounding boxes denote rose_small.

As shown in Figure 2, the dataset contains representative image

samples of roses at different developmental stages, clearly

distinguishing between rose_small and rose_large categories based

on petal structure and growth characteristics.

The dataset consists of 519 images, which are divided into

training, validation, and test sets in a 6:2:2 ratio. This structured

division provides sufficient data for both model training and

evaluation. With over 7,000 annotated bounding boxes, the

dataset captures the density and variability of roses in realistic

greenhouse environments, covering a range of developmental stages

and environmental conditions.
3.2 Model architecture

Object detection methods have seen significant advancements,

with single-stage approaches like YOLO gaining prominence for

their efficiency in real-time applications (Alif and Hussain, 2024).

Unlike two-stage methods, which rely on region proposals followed

by refinement, single-stage frameworks directly predict object

locations and classes in one pass (Zhang et al., 2018; Meng et al.,

2021). This design improves computational efficiency, making it

well-suited for high-speed and scalable tasks.

Expanding upon previous advancements, YOLOv11 integrates

novel architectural components, including the C3k2 block, SPPF,

and C2PSA, further refining feature extraction and computational

efficiency. These enhancements enable YOLOv11 to achieve state-

of-the-art performance in feature extraction, multi-scale processing,

and computational efficiency (Alif, 2024; Jegham et al., 2024).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1607582
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


You et al. 10.3389/fpls.2025.1607582
Despite these advancements, applying YOLOv11 to UAV-

collected rose imagery presents challenges due to complex

backgrounds, high dynamic ranges, and densely packed objects

(Tang et al., 2023). These issues result in difficulties such as

occlusion handling, accurate small-object detection, and effective

feature fusion across scales. To address these limitations, this study

introduces Rose-Mamba-YOLO, a hybrid architecture built upon

YOLOv11 with the following four key enhancements: 1).

Integration of Mamba-based modules to efficiently capture long-

range dependencies. 2). Enhanced spatial attention mechanisms to

handle densely distributed roses and mitigate occlusions. 3).

Improved multi-scale feature fusion to address scale variations in

rose detection. 4). Contextual feature integration to improve the

representation of small objects like rose buds.
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These enhancements collectively improve YOLOv11’s

robustness and accuracy, making Rose-Mamba-YOLO well-suited

to the challenges of stage-specific rose detection in greenhouse

environments. A schematic representation of the proposed model is

shown in Figure 3, illustrating the integration of Mamba-based

modules and the architectural advancements over standard

YOLOv11. The following sections provide detailed explanations

of each innovation and its contributions to the architecture and

performance of Rose-Mamba-YOLO.

3.2.1 Mamba-based modules
The integration of Mamba-based modules into the YOLOv11

backbone significantly enhances detection capabilities for UAV-

captured rose images. In particular, the original C3k2 backbone of
FIGURE 1

Example image from the RoseBlooming dataset (left), and annotated version from the labeling interface (right).
FIGURE 2

Sample images from the dataset, showcasing the two annotated growth stages.
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YOLOv11 was replaced by the VSSBlock and VisionClueMerge

components derived from the Mamba model, enabling the

redesigned backbone to leverage state-space modeling while

significantly improving feature extraction and multi-scale

representation (Khanam and Hussain, 2024; Wang et al., 2024).

Among these, the VSSBlock serves as a core module, leveraging an

optimized State Space Model (SSM) and depthwise separable

convolution techniques (Ma X, et al., 2024). This design enables
Frontiers in Plant Science 06
the effective extraction of complex features, such as object shapes,

textures, and spatial relationships, addressing challenges like

occlusions and densely packed arrangements (Feng et al., 2024).

The VSSBlock’s structure, shown in Figure 4, highlights its

integration of state-space modeling and convolutional operations,

contributing to enhanced feature extraction.

To further improve multi-scale feature processing, the

XSSBlock is integrated into the neck of the YOLOv11
FIGURE 4

VSSBlock and XSSBlock structure.
FIGURE 3

Schematic Representation of Rose-Mamba-YOLO Architecture. Components adapted from YOLOv11 and modules inspired by the Mamba model are
labeled by name and function, with their origins further elaborated in this Section.
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architecture. This module is especially effective in detecting small

objects, such as rose buds, which frequently appear in low-

resolution regions of UAV imagery. By incorporating pyramid

attention mechanisms and a Feature Pyramid Network (FPN)

configuration, the XSSBlock refines multi-scale features, enabling

accurate detection of both large-scale, high-resolution targets and

small-scale, low-resolution objects (Zhu et al., 2022). As depicted in

Figure 4, the XSSBlock combines multi-scale attention with feature

refinement, ensuring robust feature representation across varying

resolutions and scales.

The combined integration of the VSSBlock, XSSBlock, and

VisionClueMerge significantly enhances YOLOv11’s feature

extraction and multi-scale processing while maintaining

computational efficiency and real-time applicability. These

modules were not appended as auxiliary components but were

directly embedded and substituted into the core architecture,

ensuring seamless integration of Mamba principles within the

YOLOv11 framework.

This adaptation improves the model’s robustness and stability,

particularly for UAV-based rose detection tasks that require

precision and efficiency in dynamic environments. By replacing

the standard C3k2 backbone with Mamba-based structures, the

proposed model achieves substantial improvements in detection

accuracy, computational performance, and scalability (He

et al., 2025).

3.2.2 Spatial attention mechanisms
The Receptive Field Block (RFB), inspired by the human visual

system’s receptive field mechanisms, enhances a network’s ability to

process multi-scale features effectively (Zhang M, et al., 2023).

Building on this concept, a novel module named RFCBAMBlock

is proposed, as illustrated in Figure 5, which incorporates spatial

attention into receptive field modeling. This newly designed

structure enables the network to dynamically reweight features

across multiple receptive field regions—an integration not

previously explored in YOLO-based detectors, to the best of our

knowledge. By addressing the parameter-sharing limitations

associated with varying convolutional kernel sizes, RFCBAMBlock

demonstrates strong performance in dense-object recognition tasks,

particularly within structured agricultural imaging environments.

In the YOLOv11 architecture, the existing C3k2 module

exhibits limitations in feature extraction, particularly for detecting
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small objects in UAV-based rose imagery (Zhang et al., 2025). To

address this issue, the RFCBAMBlock is incorporated into the C3k2

module, resulting in the improved C3k2_RFCBAM module

(Figure 6). By leveraging spatial attention mechanisms, the

C3k2_RFCBAM module adaptively adjusts the receptive field size,

significantly enhancing the network’s capability to process multi-

scale features.

From a feature extraction perspective, the inclusion of

RFCBAMBlock greatly improves C3k2’s ability to capture multi-

scale features. Traditional convolutional layers, constrained by fixed

receptive fields, struggle to effectively handle features at varying

scales, particularly for small objects (Ma J, et al., 2024). The

RFCBAMBlock resolves this limitation by allowing flexible

adjustments to the receptive field size , enabl ing the

C3k2_RFCBAM module to efficiently handle diverse shapes and

scale variations of small objects, which are critical in UAV-based

rose detection tasks.

Additionally, the integration of spatial attention mechanisms

within the RFCBAMBlock enhances feature extraction by

dynamically prioritizing convolutional kernel responses across

different receptive field regions. This design mitigates parameter-

sharing issues caused by varying kernel sizes, enabling more precise

feature extraction in complex scenes. By replacing the original C3k2

module with the enhanced C3k2_RFCBAM, YOLOv11 achieves

significant improvements in feature extraction, multi-scale

processing, and small-object detection capabilities, demonstrating

superior performance in challenging environments.
3.2.3 Multi-scale feature fusion
In UAV-based detection tasks, Spatial Pyramid Pooling - Fast

(SPPF) is commonly used to accelerate pooling computations and

facilitate multi-scale feature fusion (Lu and Sun, 2025). However,

pooling operations often result in the loss of fine-grained details,

particularly when addressing extreme scale variations, which can

compromise detection accuracy (Chen et al., 2024). To overcome

these limitations, the Multiscale Dilated Feature Pyramid

Convolution (MDFPC) module is proposed, as shown in

Figure 7. MDFPC utilizes dilated convolutions with varying

dilation rates (6, 12, 18) to enhance global context awareness

while preserving fine-grained details, demonstrating significant

advantages in small-object detection (Zhao et al., 2019).
FIGURE 5

RFCBAMBlock model structure diagram.
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The core innovation of the MDFPC module lies in its use of

dilated convolutions to expand the receptive field without

increasing computational overhead. By introducing “holes” within

the convolutional kernels, dilated convolutions effectively enlarge

the receptive field while maintaining computational efficiency.

Convolutions with lower dilation rates focus on extracting local

features from small objects, capturing fine details critical for

detecting rose buds, while higher dilation rates expand the

receptive field to improve global context understanding for larger

objects and background features. This dual capability enables

MDFPC to address the scale variability challenges inherent in

UAV imagery of roses.

The module begins with a 1×1 convolutional layer to compress

input feature channels, reducing computational complexity while

preserving essential information. The compressed features are then

processed through dilated convolutions with varying dilation rates,

allowing the extraction of multi-scale information. These multi-

scale features are subsequently concatenated and fused using

another 1×1 convolutional layer, integrating extracted features

while further compressing dimensions to balance computational

efficiency and model performance. Unlike traditional pooling

operations that often lead to fine-grained detail loss, MDFPC

retains critical information, making it particularly effective for

small-object detection (Gholamalinezhad and Khosravi, 2020).

By expanding the receptive field without increasing

computational overhead, MDFPC captures a broader range of

contextual information while maintaining efficiency. Although
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compressing feature dimensions can result in minor information

loss, especially for small-object features, extensive experimentation

has fine-tuned the compression ratio to achieve an optimal balance

between efficiency and detection accuracy. This enhancement is

particularly beneficial for UAV-based rose detection, where small

objects like rose buds coexist with larger-scale features, requiring

precise multi-scale processing to ensure accurate detection across

varying resolutions.
3.2.4 Contextual feature integration
UAV-based rose detection tasks present significant challenges,

particularly in capturing fine-grained features at the P3, P4, and P5

layers of the Feature Pyramid Network (FPN) (Lin et al., 2017).

These layers often struggle to extract the detailed information

required for small-object detection. Traditional solutions attempt

to mitigate this issue by introducing an additional P2 layer before

the P3 layer to enhance small-object detection capabilities (Oksuz

et al., 2020). However, such approaches often come at the cost of

increased computational demands and extended post-processing

times, reducing overall efficiency. To address these limitations, the

Contextual Multi-Scale Feature Pyramid Network (CMFPN) is

proposed, as shown in Figure 8 (Li et al., 2022).

The CMFPN enhances the PAN-FPN structure by introducing

a new feature map, P3’, at the P3 and P4 layers, specifically designed

to improve the detection of small objects, such as rose buds. The P3’

feature map is processed through the ContextGuidedBlock_Down

(CGBD) module, which strengthens contextual awareness for small

objects in UAV-captured rose images (Wu et al., 2020). The

structure of the CGBD module is illustrated in Figure 9. By

integrating contextual information, the P3’ feature map captures

enriched features for small objects, which are then fused with the

upsampling layer (Upsample) and the original P3 layer features.

These fused features are passed into the CSPOmniKernel module

for multi-scale feature fusion.

The CSPOmniKernel module, depicted in Figure 10 combines

the OmniKernel algorithm with the Cross Stage Partial (CSP)

concept to enhance feature expression, improve gradient flow,

and reduce model complexity (Cui et al., 2024). The CSP design

facilitates cross-stage feature fusion, alleviating gradient vanishing

issues while lowering computational complexity and reducing the

parameter count. Meanwhile, the OmniKernel algorithm

dynamically adjusts kernel sizes to expand the receptive field,

allowing the model to better handle variations between small

objects and large-scale targets. The CSPOmniKernel module

integrates global, large-scale, and local branches, fusing them

through addition, followed by a 1×1 convolution to effectively

combine multi-scale features. This design enables simultaneous

processing of features across scales, significantly improving small-

object detection precision.

The introduction of the CMFPN structure enables superior

small-object detection without compromising computational

efficiency. By combining P3’ features, the CGBD module for

contextual enhancement, and the CSPOmniKernel module for

multi-scale fusion, the model captures detailed and diverse

features across scales.
FIGURE 6

C3k2_RFCBAM model structure diagram.
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3.3 Network training and optimization
The experimental environment and configurations used in this

study are summarized in Table 1. The experiments were conducted

on an Ubuntu 18.04 operating system with 64GB of memory,

utilizing an NVIDIA GeForce RTX 4090 GPU with 24GB of

memory. The CPU used was an Intel(R) Xeon(R) Platinum i9-

13900k processor. Model training was performed using the

PyTorch 1.10 deep learning framework, with GPU acceleration

provided by CUDA 11.1 and CUDNN 8.0.4.

The input image size for model training was set to 640×640

pixels, with an initial learning rate of 0.01. The Stochastic Gradient

Descent (SGD) optimizer was employed, with a momentum of 0.937

and a weight decay of 0.0005. To enrich the diversity of detection

backgrounds and enhance robustness, Mosaic data augmentation was

applied during training. This process involved randomly selecting,

flipping, and scaling four images, which were then stitched together

into a composite image. These augmentation strategies effectively

simulate real-world variability such as changes in lighting, object

occlusion, and background complexity, contributing to the model’s

robustness in practical deployment scenarios.

To further mitigate overfitting and improve generalization, label

smoothing was applied with a smoothing factor of 0.01. The model

was trained for 200 epochs with a batch size of 8, while 8 worker

threads were utilized to optimize data loading performance. These

training configurations, combined with the proposed architecture,
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ensured efficient learning and convergence while maintaining

robust generalization to the complex and diverse UAV-captured

rose images.
3.4 Evaluation metrics for object detection

Evaluating the performance of detection model involves

analyzing multiple metrics that measure both prediction accuracy

and localization precision (Qu S, et al., 2024). Among these,

precision and recall serve as foundational indicators of model

performance. Precision quantifies the proportion of correctly

predicted positive instances (true positives) among all positive

predictions, providing insight into the model’s ability to avoid

false positives. Recall, on the other hand, measures the proportion

of true positives detected by the model relative to all actual positive

instances, reflecting its effectiveness in capturing relevant objects

(Miao and Zhu, 2022).

In addition to precision and recall, Intersection-over-Union

(IoU) is a crucial metric for evaluating the spatial accuracy of object

detection (Wang and Song, 2021). IoU is defined as the ratio of the

intersection area to the union area between a predicted bounding

box and the corresponding ground truth box. A higher IoU value

indicates better alignment between the predicted and actual object

locations, demonstrating more precise localization.
FIGURE 7

MDFPC model structure diagram.
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Beyond these fundamental metrics, Average Precision (AP) and

mean Average Precision (mAP) are widely used to evaluate overall

detection performance (Takahashi et al., 2021). AP balances

precision and recall for a specific object category, measuring the

model’s ability to accurately detect objects within that category

while minimizing false positives and false negatives. However, AP

focuses on individual categories and does not provide a holistic view

of the model’s performance across multiple classes. To address this

limitation, mAP averages the AP scores across all object categories,

offering a comprehensive assessment of the model’s detection

capabilities (Bazame et al., 2021).

The evaluation metrics used in this study are formally defined in

Equations 1–5,

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

IoU =
Area of Overlap
Area of Union

(3)

AP(y, y*) =
1
Nocarea(Pr) (4)
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mAP =
1
no

n
i=1APi (5)

In these equations: True Positive (TP) refers to instances

correctly identified by the model. False Negative (FN) denotes

positive instances missed by the model. False Positive (FP)

represents instances incorrectly classified as positive.

A high precision score indicates a lower false positive rate, while

a high recall score shows that the model successfully captures most

true positives (Pratap and Kumar, 2023). IoU, as a measure of

localization accuracy, ensures that the detected bounding boxes

align closely with the ground truth.

This study specifically employs mAP@50, which evaluates the

mean Average Precision at an IoU threshold of 0.5. This threshold

strikes a balance between strict localization accuracy and the

flexibility needed for robust detection in real-world scenarios. By

averaging AP scores across categories, mAP@50 provides a

comprehensive evaluation of the model’s ability to detect objects

of varying scales and categories (Shen et al., 2022).

These metrics collectively form a robust framework for

assessing the performance of target detection models. Precision,

recall, and IoU measure specific aspects of detection quality, while

AP and mAP offer a broader evaluation across categories. Together,

they provide valuable insights into the strengths and limitations of
FIGURE 8

CMFPN model structure diagram.
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the model, ensuring a detailed and balanced analysis of its

detection capabilities.

4 Result and discussion

4.1 Ablation study

The ablation study evaluates the impact of integrating the

proposed modules—C3k2_RFCBAM (N1), MDFPC (N2), and

CMFPN (N3)—into the YOLOv11n+Mamba framework. Table 2

presents the results, illustrating their influence on precision, recall,

mAP@50, model size, and FPS.

The baseline YOLOv11n model achieved a precision of 81.8%,

recall of 80.5%, and mAP@50 of 83.3%. Despite its compact size of

6.1 MB, the model delivered the highest FPS at 250, making it

efficient for real-time applications (Meribout et al., 2022). However,

its limited ability to model long-range dependencies and insufficient

multi-scale processing hindered its overall detection performance,

particularly for small and occluded rosebuds.

Incorporating Mamba into YOLOv11n significantly enhanced

detection capabilities while maintaining a lightweight architecture.

The YOLOv11n+Mamba configuration improved precision to

84.6%, recall to 78.7%, and mAP@50 to 83.5%, with FPS

increasing to 72. This improvement underscores Mamba’s ability

to enhance long-range feature dependencies while preserving

computational efficiency.
FIGURE 9

CGBD model structure diagram.
FIGURE 10

CSPOmniKernel model structure diagram.
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The introduction of the C3k2_RFCBAM (N1) module into the

YOLOv11n+Mamba framework resulted in further performance

gains. The YOLOv11n+Mamba-N1 configuration enhanced spatial

feature prioritization, particularly for small-object detection,

improving precision to 85.7% and recall to 81.2%, with a mAP@

50 of 85.1%. This improvement came with a slight trade-off in

computational efficiency, as the FPS decreased to 128 while the

model size grew to 11.4 MB. These results demonstrate the ability of

C3k2_RFCBAM to effectively address the challenges of occlusion

and scale variability in UAV-based rose imagery.

Building on this foundation, the integration of the MDFPC

(N2) module in the neck network produced the YOLOv11n

+Mamba-N12 configuration. By employing dilated convolutions

with varying dilation rates, the MDFPC module enhanced multi-

scale feature fusion and contextual representation. This addition

increased recall significantly to 84.2%, while precision improved

slightly to 85.8%, resulting in a mAP@50 of 86.5%. Although the

model size increased to 15.5 MB, the FPS rose to 167, highlighting

the MDFPC module’s efficiency in balancing computational

demands with performance improvements.

The final enhancement involved integrating the CMFPN (N3)

module into the head network, creating the complete YOLOv11n

+Mamba-N123 model, also referred to as ROSE-MAMBA-YOLO.
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This final configuration achieved the highest precision (90.4%) and

mAP@50 (87.5%), while recall remained strong at 83.1%. The

CMFPN module’s contextual feature integration and multi-scale

fusion enabled the model to excel in detecting small and densely

packed roses within complex greenhouse environments. Although

this integration introduced additional computational complexity,

the model size increased only modestly to 16.6 MB, and FPS

remained at 139, well within the real-time threshold for UAV-

based monitoring. This trade-off is justified by the substantial

accuracy gains, as the improved spatial awareness and multi-scale

adaptability enable more reliable detections with minimal

performance loss, ensuring that ROSE-MAMBA-YOLO remains

an efficient and practical solution for precision agriculture

applications (Tong and Wu, 2022).

The results highlight the progressive contributions of the

proposed modules. The C3k2_RFCBAM module improved small-

object detection through spatial attention, the MDFPC module

enhanced multi-scale feature extraction, and the CMFPN module

refined contextual integration for complex scenes. Together, these

modules culminate in the final ROSE-MAMBA-YOLO model,

which achieves an optimal balance of accuracy, computational

efficiency, and real-time performance. This makes it a robust and

scalable solution for UAV-based rose detection in challenging

agricultural environments.
4.2 Comparative experiment

To evaluate the performance of various object detection models

for UAV-based rose detection, twelve models—including SSD, RT-

DETR, Faster R-CNN, and multiple YOLO variants—were analyzed

across precision, recall, mAP@50, model size, and FPS. All models

were trained and evaluated under the same dataset, input size, and

training configurations to ensure a fair comparison. The results,

summarized in Table 3, highlight the superior performance of the

proposed ROSE-MAMBA-YOLO model.

ROSE-MAMBA-YOLO achieved the highest mAP@50 of

87.5%, outperforming all tested models, including the second-

ranked YOLOv11n with a mAP@50 of 83.3%. Although ROSE-
TABLE 2 Performance comparison of proposed modules in ablation studies.

Model N1:
C3k2_RFCBAM

N2:
MDFPC

N3:
CMFPN

Precision
(%)

Recall
(%)

mAP@50
(%)

Size
(MB)

FPS

YOLOv11n × × × 81.8 80.5 83.3 6.1 250

Mamba × × × 75.8 78.6 80.7 12.3 61

YOLOv11n+Mamba × × × 84.6 78.7 83.5 12.1 72

YOLOv11n
+Mamba -N1

✓ × × 85.7 81.2 85.1 11.4 128

YOLOv11n
+Mamba -N12

✓ ✓ × 85.8 84.2 86.5 15.5 167

YOLOv11n
+Mamba -N123

✓ ✓ ✓ 90.4 83.1 87.5 16.6 139
frontier
*A check mark (√) indicates the strategy module was used and a cross (×) indicates it was not used.
TABLE 1 Experimental environment parameters.

Parameter Value

Operating system Ubuntu 18.04

System architecture 32-bit

RAM 64GB

GPU GeForce RTX 4090

GPU memory 24GB

CPU Intel(R) Xeon(R) Platinum i9-13900k

Deep learning framework PyTorch 1.10

CUDA version 11.1

CUDNN version 8.0.4
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MAMBA-YOLO has a lower FPS of 139 compared to YOLOv11n’s

250, it remains highly suitable for real-time UAV-based agricultural

monitoring, where precision and robustness are critical

(Delavarpour et al., 2021; Su et al., 2023). The model’s precision

(90.4%) and recall (83.1%) underscore the effectiveness of its

advanced modules—C3k2_RFCBAM, MDFPC, and CMFPN—

that enhance feature extraction, multi-scale fusion, and

contextual modeling.

Among the YOLO variants, YOLOv11n demonstrated strong

performance with a mAP@50 of 83.3%, precision of 81.8%, and

recall of 80.5%. Its compact size (6.1 MB) and high FPS of 250 make

it an efficient choice for real-time applications. However, its limited

ability to handle small-object detection and complex environments

highlights the value of the advanced modules incorporated in

ROSE-MAMBA-YOLO (Mirzaei et al., 2023). YOLOv9 and

YOLOv8n also performed competitively, with mAP@50 scores of

81.7% and 81.2% and FPS values of 303 and 238, respectively. While

they balance accuracy and efficiency, their lack of advanced feature

fusion and contextual modeling restricts their applicability to more

complex UAV-based detection tasks (Parambil et al., 2024; Wan

et al., 2024).

Transformer-based models, such as RT-DETR, achieved

moderate performance with a mAP@50 of 70.7% and a high FPS

of 385 (Zhao et al., 2024). While their self-attention mechanisms

effectively capture global dependencies, their larger model size (53.5

MB) and limited small-object detection capabilities make them less

pract ical for real-t ime agricultural applicat ions with

constrained resources.

Two-stage detectors, including Faster R-CNN, showed a mAP@

50 of 79.1% but were hindered by low FPS (44) and high

computational complexity (113.5 MB). The reliance on a Region

Proposal Network (RPN) and multi-step refinement processes adds

significant computational overhead, making these detectors less
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suited for time-sensitive UAV tasks compared to one-stage models

(Shih et al., 2019; Hou et al., 2022).

Lightweight models, such as YOLOv5n, YOLO-Ghost-p6, and

YOLO-Worldv2, excelled in speed, achieving FPS values of 323,

333, and 385, respectively. However, their reduced parameter

counts and simplified architectures compromised detection

accuracy, with mAP@50 scores of 74.9%, 65.3%, and 62.0%

(Chakrabarty et al., 2024). These results highlight the trade-off

between computational efficiency and detection performance,

which limits their ability to capture the intricate details of UAV-

captured rose images (Huang et al., 2017; Xu et al., 2022).

Figure 11 visually compares detection confidence across

models. It demonstrates that ROSE-MAMBA-YOLO consistently

produces higher confidence scores for rose detection,

outperforming other models, especially in detecting small and

partially occluded roses.

In conclusion, ROSE-MAMBA-YOLO delivers substantial

improvements over existing models by addressing key challenges

such as occlusions, scale variability, and complex environmental

backgrounds. Despite its slightly larger size (16.6 MB) and moderate

FPS, its exceptional detection accuracy and robust design make it an

ideal solution for UAV-based rose monitoring (Awais et al., 2021;

Telli et al., 2023). These findings validate the effectiveness of its

advanced modules in tackling real-world challenges, positioning

ROSE-MAMBA-YOLO as a state-of-the-art solution for precision

agriculture and floriculture applications.
4.3 Robustness against degraded input
data

In real-world applications, object detection models frequently

encounter image degradation caused by factors such as blurring,
TABLE 3 Performance comparison of object detection models on the test set.

Model Precision (%) Recall (%) mAP@50(%) Size(MB) FPS

YOLO-Worldv2 45.1 73.4 62.0 6.5 385

YOLO-Ghost-p6 63.1 65.2 65.3 4.9 333

RT-DETR 69.5 69.9 70.7 53.5 385

YOLOv6n 69.9 71.0 73.2 8.6 303

YOLOv5n 77.2 71.6 74.9 3.9 323

YOLOv10n 72.9 71.7 76.3 5.8 303

SSD 78.4 76.7 78.0 95.5 269

YOLOX-tiny 79.2 77.8 78.6 20.4 155

Faster-RCNN 80.8 74.7 79.1 113.5 44

YOLOv8n 78.2 79.4 81.2 5.6 238

YOLOv9 78.7 77.3 81.7 13.3 303

YOLOv11n 81.8 80.5 83.3 6.1 250

Ours 90.4 83.1 87.5 16.6 139
Bold values indicate the best performance across all models for each metric.
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noise, and scale variations (Li Y, et al., 2025). These Lichallenges can

significantly affect model performance, particularly in scenarios like

UAV-based monitoring and industrial inspection (Silva et al.,

2024). To evaluate the robustness of Rose-Mamba-YOLO, we

conducted a series of experiments simulating these degradations

and compared its performance with multiple baseline models.

Figure 12 illustrate the effects of Gaussian blur, Gaussian noise,

and scale variations, respectively, on the detection accuracy

measured by mAP@50.

Gaussian blur is a form of distortion caused by defocusing,

motion blur, or image post-processing (Flusser et al., 2015). It

smooths the image by convolving it with a Gaussian kernel,

reducing high-frequency details that are crucial for detecting

object edges. The effect can be mathematically formulated as

shown in Equation 6:

G(x, y) =
1

2ps 2 e
−x2+y2

2s2 (6)

As shown in Figure 12a, increasing the blur intensity (s) leads to a
consistent decline in mAP@50 across all models. However, Rose-
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Mamba-YOLO demonstrates superior robustness, maintaining the

highest detection accuracy even under severe blurring conditions. This

resilience can be attributed to the Mamba architecture’s long-range

dependency modeling, which allows the model to extract essential

features even when edge information is significantly degraded (Ma B,

et al., 2024). Specifically, when s=2, Rose-Mamba-YOLO retains over

75% of its original detection performance, whereas traditional CNN-

based models like SSD and Faster RCNN suffer a drop of more than

35%. Transformer-based models, such as RT-DETR, also exhibit

significant performance declines, indicating their reliance on sharp

edge features for object recognition. In contrast, Rose-Mamba-

YOLO’s global feature aggregation ability mitigates the loss of fine-

grained details, enabling it to maintain stable performance even under

extreme blurring conditions.

Gaussian noise is another common degradation factor, often

arising from sensor noise or image compression artifacts (Rahimi-

Ajdadi and Mollazade, 2023). The process of adding Gaussian noise

is expressed in Equation 7:

Inoisy(x, y) = Ioriginal(x, y) + N(0,s 2) (7)
FIGURE 12

Robustness of different object detection models under degraded conditions. (a) Gaussian blur. (b) Gaussian noise. (c) Scaling.
FIGURE 11

Comparison of detection results across different models.
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where N(0,s 2) represents Gaussian-distributed noise with zero

mean and variance s2. Figure 12b depicts the effect of increasing

noise intensity, where all models experience performance

degradation. However, Rose-Mamba-YOLO exhibits exceptional

robustness, maintaining a significantly slower decline in mAP@50

compared to other models. This can be attributed to its adaptive

global feature aggregation, which effectively reduces reliance on local

high-frequency details that are more susceptible to noise (Liu Q, et al.,

2024). In contrast, models such as YOLO-Worldv2, YOLO-Ghost-

p6, and Faster RCNN struggle with distinguishing objects from the

noisy background, resulting in substantial accuracy degradation.

Scale variation poses another major challenge in object

detection, as objects appear at different sizes due to perspective

shifts, distance changes, or variations in sensor resolution (Yang

et al., 2024). Robust models must generalize across scales without

requiring retraining for each scenario. Figure 12c presents model

performance across scaling factors ranging from 0.5× to 1.5×. While

most models perform optimally at the original scale, detection

accuracy declines as objects shrink or enlarge. Rose-Mamba-

YOLO demonstrates the strongest adaptability, maintaining stable

mAP@50 among all the models, particularly at 1.5× magnification,

where competing models suffer severe performance drops. This

advantage stems from its Mamba-based feature extraction

mechanism, which encodes multi-scale representations while

preserving localization accuracy (Rahman et al., 2024).

Conversely, SSD and Faster RCNN struggle significantly at 0.5×,

reflecting their limitations in detecting small objects. YOLO-

Worldv2 and YOLO-Ghost-p6 also exhibit sharp declines when

objects deviate from the training distribution, further highlighting

the importance of robust scale-invariant feature extraction (Zhang

S, et al., 2023).

Beyond general robustness, Rose-Mamba-YOLO’s ability to

maintain high detection accuracy under scale variations directly

enhances its small-object detection capabilities. In UAV-based

monitoring, objects appear smaller at higher altitudes or in wide-

area views, making small-object detection inherently linked to scale

variation (Heidari et al., 2023). Conventional models often fail in

these scenarios due to their reliance on high-resolution details,

limiting detection to later growth stages (Mulla, 2013). Rose-

Mamba-YOLO’s scale-invariant detection enables the precise

identification of early-stage rose buds despite their small size,

occlusions, and minimal contrast against foliage. By detecting

buds earlier than competing models, Rose-Mamba-YOLO extends

the effective monitoring period from approximately 80% to 95% of

the full flowering cycle. This improved coverage allows for more

accurate tracking of growth transitions, optimizing harvesting

schedules, pest control, and greenhouse climate adjustments

(Balyan et al., 2024). Such advancements make Rose-Mamba-

YOLO particularly valuable for large-scale commercial rose

cultivation, where early and precise monitoring is critical for yield

optimization and quality assurance.

These results highlight Rose-Mamba-YOLO’s potential as a

state-of-the-art solution for real-world agricultural monitoring. Its
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robust feature extraction, small-object detection efficiency, and

scalability make it well-suited for large-scale greenhouse

cultivation, UAV-based precision agriculture, and automated crop

monitoring. The integration of Mamba’s state-space modeling

within YOLO’s efficient detection framework ensures reliable

performance under diverse environmental conditions, paving the

way for more advanced and data-driven agricultural applications.
5 Conclusions

This study introduces ROSE-MAMBA-YOLO, a detection model

specifically designed to address the challenges of UAV-based rose

detection in greenhouse environments. By integrating Mamba-

inspired state-space modules into the YOLOv11 framework, the

model achieves notable improvements in feature extraction, multi-

scale fusion, and contextual understanding, enabling accurate

detection of roses across different growth stages. These

advancements effectively address key issues such as occlusions,

scale variability, and complex environmental conditions.

Experimental results highlight ROSE-MAMBA-YOLO’s

superior performance, achieving a mAP@50 of 87.5% with

precision and recall values of 90.4% and 83.1%. Its lightweight

design (16.6 MB) and computational efficiency establish it as a

scalable solution for UAV-based agricultural applications. The

inclusion of modules such as C3k2_RFCBAM, MDFPC, and

CMFPN enhances its capability to detect small objects and

navigate challenging scenarios, ensuring reliability in real-world

settings. Robustness evaluation under Gaussian blur, Gaussian

noise, and scale variations demonstrated its resilience compared

to CNN-based and Transformer-based models. Despite increased

blur intensity, ROSE-MAMBA-YOLO retained essential edge

details, mitigating high-frequency feature loss. Extensive testing

confirmed its adaptability to diverse datasets and robustness against

degraded input data, demonstrating its potential for broader

agricultural monitoring tasks.

This research provides a practical and efficient solution for

UAV-based rose monitoring, paving the way for intelligent and

data-driven precision agriculture. While this study adopts a binary

classification scheme for simplicity and real-time deployment,

future work will explore extending the model to support finer-

grained growth stage distinctions and additional flower species to

better meet practical agricultural needs. ROSE-MAMBA-YOLO’s

integration into UAVs, agricultural robots, or mobile systems

promises to revolutionize crop monitoring and advance the

development of precision floriculture practices.
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Xu, J., Ramos, S., Vázquez, D., and López, A. M. (2014). Domain adaptation of
deformable part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2367–2380.
doi: 10.1109/TPAMI.2014.2327973

Yang, J. W., and Kim, H. I. (2023). An overview of recent advances in greenhouse
strawberry cultivation using deep learning techniques: a review for strawberry
practitioners. Agronomy 14, 34. doi: 10.3390/agronomy14010034

Yang, S., Li, L., Fei, S., Yang, M., Tao, Z., Meng, Y., et al. (2024). Wheat yield
prediction using machine learning method based on UAV remote sensing data. Drones
8, 284. doi: 10.1016/j.atech.2024.100543

Yaseen, M. (2024). What is yolov9: An in-depth exploration of the internal features
of the next-generation object detector. arXiv. arXiv, 2409.07813. doi: 10.48550/
arXiv.2409.07813

Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., Asghar, M., and Lee, B. (2022). A
survey of modern deep learning based object detection models. Digit. Signal Process.
126, 103514. doi: 10.1016/j.dsp.2022.103514

Zhang, Q., Guo, W., and Lin, M. (2025). LLD-YOLO: a multi-module network for
robust vehicle detection in low-light conditions. Sign. Image Video Process. 19, 1–11.
doi: 10.1007/s11760-025-03858-6

Zhang, M., Saab, K. K., Poli, M., Dao, T., Goel, K., and Ré, C. (2023). Effectively
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