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Plant growth-promoting bacteria (PGPB) possessing 1-aminocyclopropane-1-

carboxylate (ACC) deaminase activity have the potential to enhance plant growth

and development, particularly under adverse environmental conditions. This

study aimed to identify bacterial strains with ACC deaminase activity able of

mitigating the effects of water deficit stress and promoting the growth of

Brachiaria genotypes. Bacterial strains isolated from Brachiaria genotypes were

screened in vitro for ACC deaminase activity, and the presence of the acdS gene

was confirmed via polymerase chain reaction (PCR) analysis. The bacterial

isolates were screened for in vitro tolerance to water deficit stress, using 10%

polyethylene glycol 8000 (PEG 8000) in association with B. ruziziensis and the

effects of bacterial inoculation were assessed based on plant height and fresh

biomass accumulation. Additionally, the association between endophytic

bacterial strains and Brachiaria genotypes was evaluated using confocal laser

microscope. The results showed that among the 213 strains tested, 32

demonstrate the ability to degrade ACC into a-ketobutyrate. ACC deaminase

activity was detected in 17 strains, with values ranging from 1.98 to 102.52 mmol

a-ketobutyrate mg-1 protein h-1. The presence of the acdS gene was confirmed

in nine strains. The strains NRB142 (Paraburkholderia silvatlantica), NRB223

(Azospirillum melinis), and BR11790 (Herbaspirillum frisingense GSF30T)

exhibited the most significant promotion of plant development in B. ruziziensis

under water deficit stress mediated by 10% PEG 8000. Confocal microscopy

analysis revealed the rhizospheric and inner root colonization of B. ruziziensis

and B. brizantha cv. Paiaguás by the NRB142 mCherry-labeled strain. This study

showed no predominance of a specific group of bacterial strains in terms of ACC

deaminase activity. However, a subset of strains demonstrated the ability to

colonize Brachiaria plants andmitigate the negative effects of water deficit stress.

This study highlights the potential of ACC deaminase-producing bacteria in

alleviating water deficit stress in Brachiaria plants supporting their use as a

promising strategy for improving plant resilience under drought conditions.
KEYWORDS

plant growth promoting bacteria, pasture, 1-Aminocyclopropane-1-carboxylic acid,
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1 Introduction

The Brazilian cattle herd is estimated to be the second largest in

the world, with approximately 186.8 million head in 2025 (USDA,

2025). The herd is predominantly fed through free grazing on

pastures, which remains the most economical and practical method

of providing nutrition for livestock (Jank et al., 2014; Duarte et al.,

2020). Among the pasture areas in Brazil, it is estimated that

approximately 85% are occupied by plants of the Brachiaria

genus (Jank et al., 2014).

Abiotic stresses are recognized as a primary influence impacting

agricultural production globally (Shahid et al., 2023). Among abiotic

stresses, water stress is the one that most frequently affects pasture

productivity (Moore et al., 2020). Water is vital for plant development

(Shao et al., 2008), and its scarcity can disrupt growth cycles, leading to

yield reductions exceeding 50% (Boyer, 1982; Lisar et al., 2012). Water

stress impacts various levels of plant organization (Yordanov et al.,

2000), altering water potential, turgor pressure, nutrient transport, and

gas exchange. Increased abscisic acid levels cause stomatal closure,

inhibiting photosynthesis. This leads to the accumulation of Reactive

Oxygen Species (ROS), causing cellular damage such as DNA lesions,

protein synthesis inhibition, pigment oxidation, and membrane

deterioration. The decline in chlorophyll content, often linked to

oxidative stress, further hampers photosynthetic efficiency (Anjum

et al., 2011; Taiz and Zeiger, 2017; Vurukonda et al., 2016).

Additionally, water deficit compromises cell wall and membrane

integrity, leading to cell death (Ali et al., 2025). These effects reduce

plant growth, accelerate senescence, decrease dry matter production,

and heighten susceptibility to diseases and pests, ultimately

diminishing crop quality and yield (Li et al., 2009; Seleiman

et al., 2021).

The application of microbial inoculants containing plant

growth-promoting bacteria (PGPB) presents a cost-effective and

environmentally sustainable solution to mitigate water deficit stress

in crops (Poudel et al., 2021; Armanhi et al., 2021). PGPB enhance

plant growth while offering protection against diseases and abiotic

stresses, including drought, salinity, and nutrient imbalances

(Dimkpa et al., 2009; Grover et al., 2011; Glick, 2012, 2015). In

this context, the use of microorganisms is important due to their

low cost and eco-friendly nature make them an attractive option for

sustainable agriculture. Additionally, PGPB contribute to overall

plant health, increase productivity and quality, and help maintain

soil integrity (Zhang et al., 2019). Harnessing their potential can

lead to more resilient crop systems, reducing the adverse impacts of

water deficit stress while supporting sustainable farming practices.

Plant growth-promoting bacteria enhance plant tolerance to

water stress through several key mechanisms. They improve

nutrient availability via biological nitrogen fixation, phosphate

solubilization, and siderophore production which aids iron uptake

(Ali and Khan, 2021; Sati et al., 2023). Additionally, PGPB produce

exopolysaccharides, which enhance soil structure, water retention,

and root stability (Ali and Khan, 2021; Sati et al., 2023). They also

regulate osmotic balance and activate antioxidant defenses,

mitigating reactive oxygen species (ROS) damage and protecting

biomolecules from oxidative stress (Grover et al., 2011; Sati et al.,
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2023). Furthermore, PGPB facilitates the synthesis of heat shock

proteins (HSPs), dehydrins, and volatile organic compounds

(VOCs), which assist in drought tolerance and adaptation

(Kaushal and Wani, 2016). Their influence on phytohormone

production, including auxins, gibberellins, cytokinins, abscisic

acid, and ethylene, helps regulate plant growth under water deficit

conditions (Kaushal and Wani, 2016).

Ethylene stress, triggered by abiotic and biotic factors, adversely

affects plant growth, causing senescence, abscission, chlorophyll loss,

and developmental inhibition (Pei et al., 2017; Glick et al., 2007a;

Depaepe and van der Straeten, 2016; Kaushal and Wani, 2016). Plant

growth-promoting bacteria (PGPB) expressing 1-aminocyclopropane-

1-carboxylate (ACC) deaminase counteract excessive ethylene by

cleaving ACC (the immediate precursor of ethylene) into ammonia

and a-ketobutyrate (Glick et al., 1998). The acdS gene encoding ACC

deaminase has been identified in diverse organisms within the Eukarya,

Bacteria, and Archaea domains. However, it predominantly occurs in

various bacterial species and some fungi (Singh et al., 2015; Soni et al.,

2018). The products of enzymatic cleavage, ammonia and a-
ketobutyrate, serve as carbon and nitrogen sources for bacterial

metabolism (Glick and Nascimento, 2021). Additionally, a-
ketobutyrate influences the transcriptional regulation of acdS, a gene

involved in ethylene modulation, through its role in leucine biosynthesis

(Soni et al., 2018). The acdS gene is regulated by AcdR (Lrp), a leucine-

responsive protein, and co-regulated by AcdB, which forms a complex

with ACC and Lrp, enabling acdS transcription (Glick et al., 2007a; Li

and Glick, 2001; Cheng et al., 2008). Upon ACC deaminase synthesis,

ACC is cleaved, generating ammonia and a-ketobutyrate, which is then
used for leucine biosynthesis. As leucine accumulates, it binds to Lrp

octamer, causing its dissociation into inactive dimers, ultimately

blocking acdS transcription. This regulatory mechanism ensures that

ACC deaminase is produced only when required (Cheng et al., 2008;

Duan et al., 2013; Glick et al., 2007b; Grichko and Glick, 2000; Li and

Glick, 2001). Therefore, this enzymatic action may help mitigate the

stress effects of ethylene on plants colonized by these bacteria, enhancing

growth by reducing its inhibitory influence. The fate of these byproducts

seems to be important in microbial interactions with plants, supporting

healthier development in challenging environments.

The increasing frequency of droughts due to climate change has

intensified research on plant interactions with ACC deaminase-

producing bacteria. Chandra et al. (2019, 2020) found that

Variovorax paradoxus and a consortium of Ochrobactrum

anthropi, Pseudomonas palleroniana, and Pseudomonas fluorescens

improved millet and wheat growth under 35%water stress, increasing

leaf nutrient concentrations and antioxidant properties. Similarly,

Tahir et al. (2019) reported that corn inoculated with BN-5 and MD-

23 strains showed enhanced grain yield, relative water content, and

chlorophyll levels under 50% field capacity. Likewise, Tiwari et al.

(2018) analyzed drought and saline stress mitigation in Panicum

maximum inoculated with ACC deaminase-producing rhizobacteria,

and observed improving membrane stability, solute accumulation,

and photosynthetic pigments while Ojuederie and Babalola (2023)

found that Pseudomonas sp. MRBP4, MRBP13, and Bacillus sp.

MRBP10 strains enhanced maize drought tolerance by improving

water retention and biomass production. Similarly, Jasso-Arreola
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et al. (2025) demonstrated that Pantoea sp. RCa62, isolated from

Coffea arabica, increased leaf area, root development, and relative

water content while reducing proline accumulation. Other studies

have confirmed similar benefits in various crops, including tomato

(Muñoz-Carvajal et al., 2024), soybean (Dubey et al., 2024), black

gram (Chandwani and Amaresan, 2024), watermelon (Yavuz et al.,

2023), and cluster bean (Jain and Saraf, 2023). These findings

reinforce the potential of ACC deaminase-producing bacteria as a

biological strategy for mitigating drought stress and promoting

sustainable agriculture.

Therefore, this study aimed to identify diazotrophic bacteria

with ACC deaminase activity that can alleviate water deficit stress

and promote the growth of Brachiaria genotypes under stress

conditions induced by polyethylene glycol 8000 (PEG 8000).

Additionally, it assessed the ability of the selected bacterium to

colonize and establish in Brachiaria ruziziensis plants grown in vitro

under PEG 8000 treatment.
2 Materials and methods

2.1 Qualitative screening for bacterial
strains with ACC deaminase activity

The screening for ACC deaminase activity in the strains was

conducted following the approach described by Glick et al. (1995),

with minor modifications. The study involved the analysis of 213

diazotrophic strains isolated from various Brachiaria genotypes as

part of the Embrapa project (number 02.13.08.004.00.00). The

isolation, the taxonomic and partial functional characterization of

these 213 strains were previously reported by Ribeiro et al. (2020).

The strains were cultivated in 5 mL of DYGS medium

(Rodrigues Neto et al., 1986) and incubated at 30°C, 180 rpm, for

24 or 48 h, depending on the bacterial growth rate. Following

incubation, 100 μL of the culture was transferred to new tubes

containing 5 mL of LGI or NFb medium (Baldani et al., 2014)

supplemented with 1 g L⁻¹ of (NH4)2SO4 as a nitrogen source and

incubated under the same conditions. Afterward, 100 μL of the

second-round culture was transferred to fresh tubes containing 5

mL of LGI or NFB medium, but without the nitrogen source. The

culture medium was then supplemented with 3 mmol L⁻¹ ACC and

incubated under the previously described conditions.

Petri dishes containing Noble Agar (low nitrogen content) were

supplemented with 3 mmol L⁻¹ ACC from a filtered sterilized stock

solution (0.5 mol L⁻¹), which was evenly spread over the surface of

the culture medium. Cultures were inoculated using a sterile cotton

swab and incubated at 30°C for 48 or 60 h, depending on growth

conditions. For the negative control, cultures were plated on LGI or

NFb media without the addition of inorganic nitrogen or ACC

substrate. A diazotrophic Herbaspirillum frisingense strain GSF30T,

recognized for its ACC deaminase activity, was used as a positive

control (Rothballer et al., 2008).
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2.2 Quantification of ACC deaminase
activity produced by the pre-selected
strains

The activity of ACC deaminase was assessed using the method

described by Penrose and Glick (2003), which quantifies the a-
ketobutyrate produced through the cleaved by the enzyme ACC

deaminase. The quantification process involved measuring the

absorbance of bacterial sample at 540 nm and comparing the

results to a standard a-ketobutyrate curve ranging from 10 to

1000 μmol. To determine the specific activity of the cultures,

protein concentration was measured using the Bradford method

(Bradford, 1976).

The pre-selected strains (qualitative assays) were cultured

overnight in 5 mL of DYGS medium at 30°C, 180 rpm, for 24 h.

After incubation, the cells were harvested by centrifugation at 5,000

xg for 10 min at 4°C, followed by washing with NFb or LGI medium

(without a nitrogen source). The bacterial pellet was then

resuspended in 5 mL of NFb or LGI medium supplemented with 3

mmol L⁻¹ ACC as the sole nitrogen source. The culture was incubated

for 24 h with shaking at 180 rpm at 30°C. Subsequently, the bacterial

cells were harvested again by centrifugation at 5,000 xg, 4°C, for 10

min. The cells were washed twice with 5 mL of 0.1 mol L⁻¹ Tris-HCl

buffer (pH 7.6). Finally, the cell suspension was transferred to a

microcentrifuge tube and centrifuged at 10,000 g for 1 min.

All the supernatant was carefully removed, and the cell pellet was

utilized for the enzymatic assay. The pellets were resuspended in 400

mL of 0.1 mol L⁻¹ Tris-HCl buffer (pH 8.0), followed by the addition

of 20 mL of toluene and vortexing for 30 s. Subsequently, 50 mL of the
toluene-treated cells were incubated with 5 mL of 0.5 M ACC at 30°C

for 30 min. After incubation, 500 μL of 0.56 M HCl was added, and

the mixture was vortexed and centrifuged at 10,000 xg for 5 min at

room temperature. The resulting supernatant (500 mL) was vortexed
with 400 mL of 0.56 MHCl and 150 mL of 2,4-dinitrophenylhydrazine
reagent (0.2% 2,4-dinitrophenylhydrazine in 2 M HCl). The mixture

was incubated at 30°C for 30 min, followed by the addition of 1 mL of

2 M NaOH and thorough mixing. Absorbance at 540 nm was then

measured using a spectrophotometer. The cell suspension without

ACC served as the negative control. Specific activity of the cultures

was determined by protein quantification following the Bradford

method (Bradford, 1976). ACC deaminase activity was expressed as

mmol of a-ketobutyrate per mg of protein per hour.
2.3 Detection of the acdS sequence in the
bacterial strains

The positive strains in the qualitative screening and those that

showed results in the quantification of ACC deaminase enzyme

activity were used in the detection of the acdS sequence. Genomic

DNA was extracted using the commercial Wizard® Genomic DNA

Purification Kit (Promega, Madison, USA) following the
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manufacturer’s instructions. The concentration of genomic DNAwas

evaluated using a Nanodrop® 3300 spectrophotometer (Thermo

Fisher Scientific Inc., Waltham, USA). PCR reactions were

performed using two pairs of primers described by Li et al. (2015):

acdSf3 (5′ – ATCGGCGGCATCCAGWSNAAYCANAC – 3′),
acdSr3 (5′ – GTGCATCGACTTGCCCTCRTANACNGGRT – 3′),
and acdSr4 (5′ – GGCACGCCGCCCARRTGNRCRTA – 3′). Each
amplification reaction was conducted in a final volume of 25 mL,
consisting of 20 ng μL⁻¹ genomic DNA, 1× Taq DNA polymerase

buffer (1 mM Tris-HCl, pH 9.0, and 5 mM KCl), 0.5 mM of each

dNTP, 3 mM MgCl2, 0.4 mM of each primer, and 0.1 U μL⁻¹ Taq
DNA polymerase (Promega, Madison, USA). Negative control

samples were prepared by replacing bacterial DNA with ultrapure

water. Amplification reactions were carried out in a SureCycler 8800

thermocycler (Agilent Technologies, Santa Clara, USA) programmed

for initial denaturation at 94°C for 4 min; 35 cycles at 94°C for 45 s,

53°C for 45 s, and 72°C for 1 min; followed by a final extension at 72°

C for 10 min. After amplification, 2 mL of PCR product was analyzed

through electrophoresis on a 1.5% (w/v) agarose gel at 90 volts (~5 V/

cm) for 1 h and 30 min in 1× TAE buffer (40 mM Tris-acetate, pH

8.0, and 1 mM EDTA, pH 8.0). The gel was stained with ethidium

bromide solution (0.5 mg mL⁻¹) and visualized under ultraviolet light

using a KODAK® Gel Logic Cabinet 100 photoceller (Eastman

Kodak Company, Rochester, USA).
2.4 In vitro response of B. ruziziensis to
inoculation with diazotrophic ACC
deaminase-producing strains under stress
conditions

A preliminary experiment was conducted to determine the

optimal PEG 8000 concentration for in vitro studies. The

application of 20% PEG 8000 was highly detrimental, leading to

the death of nearly all plants (data not shown). Based on these

results, a subsequent experiment was performed using a reduced

concentration of 10% PEG 8000.

The gnotobiotic inoculation experiment was conducted using

disinfested seeds of Brachiaria ruziziensis, a genotype with low

tolerance to water deficit stress. The seeds were peeled and sterilized

by washing in 70% (v/v) ethanol for 3 min, followed by immersion

in sodium hypochlorite (4–6% v/v free chlorine) with agitation for

10 min. After that, the seeds were rinsed three times with sterile

distilled water and placed in Petri dishes containing an agar/water

medium (0.5% agar supplemented with 500 mg L⁻¹ of yeast extract).
The plates were initially incubated in the dark at 30°C for 24 h.

Subsequently, they were transferred to a BOD incubator (model

LB41, LABTEC, Londrina, Paraná, Brazil) and maintained at 30°C

with a 12-h photoperiod for 4 days to ensure complete germination.

Meanwhile, the bacterial strains were inoculated in 50 mL of liquid

DYGS medium and incubated under agitation at 180 rpm and 30°C,

for 24 or 48 h, depending on the bacterial growth rate. Bacterial growth

was quantified using the micro drop technique (Romeiro, 2007). The

inoculum concentrations obtained were 104 CFU mL⁻¹ for strain

BR11790 and 105 CFU mL⁻¹ for the other target diazotrophic
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bacteria. Non-contaminated seedlings were carefully removed from

the agar/water medium and immersed for 1 h in the bacterial culture

suspension of their respective strains: NRB032 (Stenotrophomonas

maltophilia), NRB039 (Nitrospirillum amazonense), NRB058

(Pseudomonas cremoricolorata), NRB096 (Bacillus safensis), NRB123

(N. amazonense), NRB124 (Paraburkholderia silvatlantica), NRB127

(Herbaspirillum seropedicae), NRB138 (Gluconacetobacter

diazotrophicus), NRB142 (P. silvatlantica), NRB223 (Azospirillum

melinis) and BR11790 (H. frisingense GSF30T). These strains were

employed as they showed positive results in the qualitative screening

and demonstrated activity in the quantification of the ACC deaminase

enzyme. A Herbaspirillum frisingense strain GSF30T was used as a

positive control. The seedlings assigned to the control treatment were

immersed in flasks containing the same volume of DYGS liquid

medium for the same duration. Afterward, the inoculated seedlings

were transferred to glass tubes containing 25 mL of MS medium

(Murashige and Skoog, 1962) supplemented with 30 g L⁻¹ of sucrose,
with the pH adjusted to 5.8. The medium was prepared both with and

without 10% PEG 8000. The plants were then placed in a growth room

and maintained for 30 days under a photoperiod of 16 h of light and 8

h of darkness, at a constant temperature of 25°C.

One experiment was conducted in a completely randomized

design with four replications. The factors included stress induction

mediated by PEG 8000 (present or absent), two seed treatments

(inoculation with 11 diazotrophic strains exhibiting ACC

deaminase activity and a control), and one Brachiaria genotype

(B. ruziziensis). Each experimental unit consisted of a 100 mL glass

tube containing 25 mL of MS medium. Analyses were performed 30

days post-inoculation by measuring plant height and the fresh

biomass accumulation of leaves and roots. To compare treatment

means, the Scott-Knott test was applied at a significant level of 0.05.

All statistical analyses were conducted using the software ‘Sisvar’

version 5.3 (Ferreira, 2011).
2.5 Assessment of bacterial colonization in
B. brizantha cv. Paiaguás and B. ruziziensis

To assess the Brachiaria plant colonization, a red-fluorescent

derivative of NRB142 (P. silvatlantica) was constructed via

transformation with plasmid pLMB426 applying the electroporation

method. The transformed strain, designated NRB142 (mCherry), was

cultivated in liquid or solid DYGS medium supplemented with

gentamycin (80 mg mL⁻¹). Plants of B. brizantha cv. Paiaguás and B.

ruziziensis with 5 days after germination were inoculated with

NRB142 (mCherry). This strain was selected because it exhibited

the highest performance in ACC deaminase activity quantification

and showed beneficial effects in the in vitro test with PEG 8000. The

gnotobiotic inoculation experiment utilized disinfected seeds of B.

brizantha cv. Paiaguás and B. ruziziensis, as described in the

previous section.

After germination, microorganism-free plants were removed

from agar/water medium plates and transferred to glass tubes

containing 25 mL of MS medium (Murashige and Skoog, 1962)

supplemented with 30 g L⁻¹ sucrose and adjusted to pH 5.8 for
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rooting. Plants were maintained in MS medium for 30 days to

promote root formation before being transferred to flasks

containing 25 mL of Hoagland’s solution. Prior to transfer,

inoculation with NRB142 (mCherry) was conducted in tubes

designed for the inoculated treatment, using bacterial suspensions

prepared at a concentration of 105 CFU mL⁻¹. Bacterial growth was

quantified using a Neubauer chamber.

Control treatment tubes were inoculated with PBS buffer in

volumes equal to the bacterial solution. The experiment followed a

completely randomized design with four replications, considering

two experimental factors: inoculation with or without NRB142

(mCherry) and two Brachiaria cultivars (B. brizantha cv.

Paiaguás and B. ruziziensis). Each experimental unit consisted of

a 100 mL glass tube containing 25 mL of MS medium (Murashige

and Skoog, 1962).

Plants were maintained in a growth chamber for 30 days under

a controlled photoperiod of 16 h of light and 8 h of darkness at 25°

C. Harvests were performed at 3, 7, and 14 days after inoculation

(dai). Endophytic and rhizospheric bacterial populations were

quantified using the micro-drop technique (Romeiro, 2007).

Confocal microscopy images were obtained using the LSM 700

microscope, AxioObserver (Carl Zeiss, Jena, Germany), and

processed with Zen 2.3 software (Carl Zeiss, Jena, Germany).
3 Results

3.1 Screening for bacterial strains with ACC
deaminase activity

The methodology adapted from Glick et al. (1995) was initially

used to assess the presence of ACC deaminase activity in bacterial

strains. Some strains exhibited growth in LGI or NFb agar plates

with ACC as the sole nitrogen source, indicating positive ACC

deaminase activity. The results indicated that bacterial growth relied

on ACC as its sole nitrogen source, consistent with the methodology

described by Glick et al. (1995). Screening of the 213 bacterial

strains isolated from Brachiaria genotypes revealed that

approximately 15% possessed ACC deaminase activity. Among

these, 25% were isolated from rhizospheric soil, 25% from

disinfected roots, and 50% from non-disinfected roots (Table 1).
3.2 Quantification of ACC deaminase
activity

The activity of the enzyme ACC deaminase was determined by

quantifying the a-ketobutyrate produced during the deamination of

ACC by the enzyme. In this work, 32 strains that showed growth

capacity in ACC culture medium as the sole nitrogen source were

selected to quantify the activity of the ACC deaminase enzyme. The

results indicate that 17 out of the 32 strains exhibited ACC

deaminase activity in vitro (Table 1), while the remaining 15

strains tested negative for ACC deaminase activity. These findings

suggest that growth in a medium with ACC as the sole nitrogen
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source is not sufficient to confirm that a bacterial strain possesses

ACC deaminase activity. Therefore, it is essential to quantify ACC

enzyme activity to verify its presence.

As expected, the positive control,H. frisingenseGSF30T, exhibited

ACC deaminase activity of 9.28 mmol a-ketobutyrate mg-1 protein h-

1 in the present assay. Another species of the same genus, H.

seropedicae (NRB127), showed higher activity than H. frisingense

GSF30T, with a value of 44.83 mmol a-ketobutyrate mg-1 protein h-1.

The species P. silvatlantica (NRB142) and G. diazotrophicus

(NRB138) showed the highest ACC deaminase activities in vitro,

with values of 102.52 and 89.49 mmol a-ketobutyrate mg-1 protein h-

1, respectively. Among the results obtained, a group of bacteria

presented intermediate ACC deaminase activity values, ranging

from 49.0 to 16.0 mmol a-ketobutyrate mg-1 protein h-1. For

instance, strain NRB058 (P. cremoricolorata) exhibited an activity

of 49.30 mmol a-ketobutyrate mg-1 protein h-1 whereas the strain

NRB087 (A. oryzae) showed a lower value of 16.44 mmol a-
ketobutyrate mg-1 protein h-1. Regarding the lowest enzymatic

activity values, results ranged from 8.90 to 1.98 mmol a-
ketobutyrate mg⁻¹ protein h⁻¹. The lowest observed enzymatic

activity was recorded for strain NRB086, with a value of 1.98 mmol

a-ketobutyrate mg⁻¹ protein h⁻¹.
3.3 Detection of the acdS sequence in the
genome of these bacterial strains

The predicted amplified PCR products (~ 680 bp with acdSf3/

acdSr3 or ~ 760 bp with acdSf3/acdSr4) were successfully obtained

for 9 bacterial strains exhibiting ACC deaminase: NRB032 (S.

maltophilia), NRB058 (P. cremoricolorata), NRB086 (A. lipoferum),

NRB087 (A. oryzae), NRB096 (B. safensis), NRB127 (H. seropedicae),

NRB138 (G. diazotrophicus), NRB142 (P. silvatlantica) and NRB223

(A. melinis). Additionally, amplification was observed for the positive

controlH. frisigenseGSF30T (BR11790). In contrast, no amplification

of the acdS gene was detected in the negative control (blank sample).

An agarose gel electrophoresis illustrating the respective amplified

product is shown in Figure 1.
3.4 ACC deaminase-producing bacteria
mitigating water deficit stress in Brachiaria
ruziziensis grown in vitro

The growth of B. ruziziensis in the presence of 10% PEG8000 was

considerably decreased compared to control treatment (no PEG8000),

which exhibited higher values for the analyzed variables (Table 2).

There was a statistically significant difference (p <0.05) was observed

in plant size between the control treatment and those subjected to

water deficit stress. However, under water deficit stress, inoculation

with strains NRB223 (A. melinis), BR11790 (H. frisigense GSF30T),

NRB142 (P. silvatlantica), NRB032 (S. maltophilia) and NRB127 (H.

seropedicae) lead to an increase in plant size, statistically differing from

the other strains and the uninoculated plants. Among these plants

inoculated with strain NRB223 (A. melinis) exhibited the greatest
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TABLE 1 Quantification of ACC deaminase activity produced by different strains originally isolated from Brachiaria genotypes.

Strain Taxonomic identification* Origin of the strain Tissue
ACC deaminase activity (mmol

a-ketobutyrate mg-1 protein h-1)
acdS
gene

NRB142 Paraburkholderia silvatlantica B. brizantha (Marandu) SR 102,52 +

NRB138 Gluconacetobacter diazotrophicus B. decumbens (D24/27) SR 89,49 +

NRB053 Nitrospirillum amazonense B. decumbens RD 77,49 –

NRB123 Nitrospirillum amazonense B. decumbens (Basilisk) RD 63,57 –

NRB039 Nitrospirillum amazonense B. decumbens RND 59,41 –

NRB058 Pseudomonas cremoricolorata B. decumbens (D24/27) RD 49,30 +

NRB124 Paraburkholderia silvatlantica B. brizantha (B140) RND 47,53 –

NRB121 Nitrospirillum amazonense B. decumbens (Basilisk) SR 45,63 –

NRB127 Herbaspirillum seropedicae B. decumbens (D24/27) RND 44,83 +

NRB059 Bacillus aerius B. decumbens SR 30,74 –

NRB087 Azospirillum oryzae
Hybrid Mulato

(B. ruziziensis x B. brizantha
cv. Marandu)

RD 16,44 +

NRB223 Azospirillum melinis B. decumbens SR 8,90 +

NRB135 Nitrospirillum amazonense B. decumbens RD 6,20 –

NRB096 Bacillus safensis B. humidicola (Tupi) RND 4,73 +

NRB032 Stenotrophomonas maltophilia B. decumbens (D24/25) RND 3,14 +

NRB093 Pseudomonas geniculata B. humidicola (Tupi) RND 2,55 –

NRB086 Azospirillum lipoferum B. spp. (H331 – Ipyporam) SR 1,98 +

NRB024 Azospirillum lipoferum B. decumbens (D24/27) RND n.d. –

NRB030 Bacillus aerius B. decumbens SR n.d. –

NRB082 Azospirillum formosense B. decumbens RND n.d. –

NRB102 Stenotrophomonas maltophilia B. decumbens (D24/27) RND n.d. –

NRB111 Paraburkholderia silvatlantica B. spp. (H331 – Ipyporam) RND n.d. –

NRB128 Nitrospirillum amazonense B. decumbens (D24/27) RD n.d. –

NRB153 Nitrospirillum amazonense B. brizantha (Xaraés) RD n.d. –

NRB157 Nitrospirillum amazonense B. brizantha (Xaraés) RND n.d. –

NRB190 Burkholderia tropica B. decumbens (D24/2) RND n.d. –

NRB208 Azospirillum brasilense B. decumbens RND n.d. –

NRB211 Pseudomonas kuykendallii B. brizantha (Xaraés) SR n.d. –

NRB214 Flavobacterium anhuiense B. decumbens (D24/27) RND n.d. –

NRB218 Stenotrophomonas maltophilia B. brizantha (Xaraés) RND n.d. –

NRB225 Stenotrophomonas maltophilia B. brizantha (Piatã) RND n.d. –

NRB227 Bacillus subtilis B. brizantha (Paiaguás) RD n.d. –

GSF30** Herbaspirillum frisingense Miscanthus sacchariflorus F 9,28 +
F
rontiers in
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 fron
NDR, non-disinfested root; DR, Disinfested root; RS, Rhizospheric soil; L, Leaf; n.d., not detected.
*Ribeiro et al. (2020)
**Rothballer et al. (2008)
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FIGURE 1

Amplification of the acdS gene from the chromosomal DNA of bacterial strains with ACC deaminase activity. M: Marker 1 kb Plus DNA ladder; Line 1:
Water for PCR; Line 2: Negative control; Line 3: BR11790; Line 4: NRB032; Line 5: NRB039; Line 6: NRB053; Line 7: NRB058; Line 8: NRB059; Line
9: NRB086; Line 10: NRB087; Line 11: NRB096; Line 12: NRB121; Line 13: NRB123; Line 14: NRB124; Line 15: NRB127; Line 16: NRB135; Line 17:
NRB138; Line 18: NRB142; Line 19: NRB223. The upper part of the gel shows the amplified product using the acdSf3/acdSr3 primers, while the
bottom gel shows the combination of primers acdSf3/acdSr4.
TABLE 2 Effect of ACC deaminase-producing bacteria inoculated in B. ruziziensis plants subjected to stress induced by polyethylene glycol 8000 -
in vitro assay.

Strains
Length (cm) Fresh Weight (g)

Control Stress Control Stress

Uninoculated 55.60 Aa 9.00 Db 3.50 Ca 0.03 Bb

NRB032 55.70 Aa 32.80 Bb 4.70 Ba 0.30 Bb

NRB039 53.60 Aa 12.20 Db 6.20 Aa 0.08 Bb

NRB058 51.30 Aa 10.80 Db 2.60 Da 0.04 Bb

NRB096 52.40 Aa 15.00 Db 4.60 Ba 0.18 Bb

NRB123 42.60 Ba 9.90 Db 2.00 Ea 0.04 Bb

NRB124 56.30 Aa 11.20 Db 2.90 Ca 0.83 Ab

NRB127 46.70 Ba 23.20 Cb 1.70 Ea 0.14 Bb

NRB138 55.30 Aa 12.80 Db 5.30 Ba 0.06 Bb

NRB142 52.70 Aa 36.40 Bb 3.90 Ca 1.40 Ab

NRB223 55.00 Aa 45.00 Ab 3.70 Ca 1.50 Ab

BR11790 59.40 Aa 43.00 Ab 3.40 Ca 1.30 Ab

VC (%) 10.66 21.11
F
rontiers in Plant Science
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Different uppercase letters indicate a statistical difference between strains. Different lowercase letters indicate differences between stress levels. Scott-Knott (p <0.05).
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height (45.00 cm), while the shortest height (9.00 cm) was recorded in

the uninoculated plants.

In the absence of PEG8000, no statistically significant

differences were observed among the inoculated treatments and

the control, except for strains NRB123 (N. amazonense) and

NRB127 (H. seropedicae), which showed smaller plant sizes

(Table 2). Plants inoculated with strains NRB223 (A. melinis),

NRB124 (P. silvatlantica), NRB032 (S. maltophilia) showed a

higher increase in plant size, reaching up to 59.40 cm. In

contrast, plants inoculated with strains NRB127 (H. seropedicae)

and NRB123 (N. amazonense) displayed comparatively smaller

sizes, measuring 46.70 and 42.60 cm, respectively.

A statistically significant difference (p <0.05) was observed in fresh

biomass accumulation both under control (without PEG8000) and in

treatments subjected to water deficit stress (with PEG 8000). Under

control conditions, plants inoculated with strain NRB039 (N.

amazonense) showed the highest fresh biomass accumulation (6.20

g), differing statistically from the other inoculated strains. In contrast,

plants inoculated with the strain NRB127 (H. seropedicae) accumulated

the lower fresh biomass accumulation (1.70 g). Under water deficit

stress, plants inoculated with strain NRB223 (A. melinis) accumulated

the highest fresh biomass (1.50 g), followed by those inoculated with

strains NRB142 (P. silvatlantica), BR11790 (H. frisigense GSF30T), and

NRB124 (P. silvatlantica). These inoculated plants differed statistically

from plants inoculated with other strains and the uninoculated plants,

which accumulated only 0.03g of biomass.
3.5 Colonization of Brachiaria genotypes
by ACC-producing strain NRB142

The ability of strain NRB142 (P. silvatlantica) to colonize

seedlings of B. brizantha cv. Paiaguás and B. ruziziensis was

investigated under in vitro conditions. The NRB142 strain was

selected for this experiment as it demonstrated the highest activity

in the quantification of ACC deaminase enzyme activity.

Additionally, this strain also contributed to plant tolerance

against water deficit stress, induced by PEG in vitro. The strain

was successfully labeled with the plasmid harboring the mCherry

gene, which remained stable throughout the colonization study, as

confirmed by bacterial counting and microscopy analysis conducted

at 3, 7, and 14 days after inoculation (dai).
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Bacterial counts showed that non-disinfected roots (NDR)

presented a higher bacterial colonizing the root system compared to

disinfested roots (DR) in both Brachiaria genotypes (Table 3).

Differences in bacterial colonization were observed between both

genotypes. At 3 dai, the Paiaguás genotype showed a greater bacterial

population in both NDR or DR root system. By day 7, this pattern

persisted for NDR, while that disinfected roots (DR) of the Ruziziensis

genotype showed a higher bacterial population (4 × 104 cells g-1 fresh

tissues). By 14 dai, a highest colony forming unit (CFU) g-1 fresh tissue

was observed for NDR of the Ruziziensis genotype, whereas DR of the

Paiaguás genotype exhibited the highest bacterial count. Despite these

differences, results confirmed that strain NRB142 (P. silvatlantica)

effectively colonizes both Brachiaria genotypes in numbers relatively

high, including the root interior. Despite these differences, results

confirm that strain NRB142 effectively colonizes both Brachiaria

genotypes, including root interior colonization.

Microscopy analyses further validated these findings, showing

significant bacterial aggregations attached to Brachiaria roots. Red

fluorescent NRB142 (mCherry) cells were observed colonizing roots of

B. brizantha cv. Paiaguás and B. ruziziensis (Figures 2B, D, F, H, J, L).

In contrast, no fluorescent bacteria were detected in non-inoculated

control plants (Figures 2A, C, E, G, I, K). The bacterial counting (CFU)

analysis corroborated these observations, as no bacterial colonies

developed on plates containing DYGS culture medium inoculated

with dilutions from macerated roots of control plants.
4 Discussion

The screening for ACC deaminase-producing bacteria revealed

a lower number of strains exhibiting positive activity in isolates

from rhizospheric soil and disinfected roots compared to those

from non-disinfected roots. These findings align with the study by

Timmusk et al. (2011) that showed abundance of bacteria

producing ACC deaminase in the rhizosphere of Hordeum

spontaneum plants and almost null in soil samples. Despite the

relatively low percentage of isolates displaying ACC deaminase

activity, the results presented here are consistent with other studies.

For example, Jalili et al. (2009) using a similar methodology to

characterize Pseudomonads species, found that 14% of isolates

exhibited ACC deaminase activity - 16% in Pseudomonas putida

and 12% in Pseudomonas fluorescens. Likewise, Duraivadivel et al.
TABLE 3 Bacterial counting in roots of Brachiaria brizantha cv. Paiaguás and B. ruziziensis inoculated with NRB142(mCherry).

Treat-
ment
applied

to
the root

Brachiaria brizantha cv. Paiaguás Brachiaria ruziziensis

3 dai 7 dai 14 dai 3 dai 7 dai 14 dai

× 106 cells g-1 fresh tissues × 106 cells g-1 fresh tissues

C I C I C I C I C I C I

NDR n.d. 6.75 n.d. 4.69 n.d. 3.28 n.d. 2.12 n.d. 2.78 n.d. 4.08

DR n.d. 0.07 n.d. 0.008 n.d. 0.06 n.d. 0.03 n.d. 0.04 n.d. 0.002
fron
C, control; I, inoculated; NDR, non-disinfested root; DR, disinfested roots; n.d., not detected.
Values are expressed as CFU g-1 obtained at 3, 7 and 14 days after inoculation (dai).
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(2020) observed a low percentage (22.4%) of ACC deaminase-

producing bacteria within the total bacterial community

associated with Eichhornia crassipes. Gupta and Pandey (2019)

reported that approximately 30% of bacterial isolates from the

rhizospheric soil of garlic (Allium sativum) exhibited ACC

deaminase activity. Similarly, Zhang et al. (2020) identified a

small fraction (9%) of bacterial isolates with ACC deaminase

activity in the rhizosphere soil of jujube trees.

All tested strains exhibited ACC deaminase activity greater than 20

nmol a-ketobutyrate mg-1 protein h-1, a threshold identified by Penrose

and Glick (2003) as sufficient for a bacterium to growth in medium

ACC-containing media and potential plant growth-promotion. The

highest detected activities ranged between 80 and 100 mmol a-
ketobutyrate mg-1 protein h-1. However, Penrose and Glick (2003)

also noted that bacteria with elevated ACC deaminase activity (300 to

400 nmol a-ketobutyrate mg-1 protein h-1) do not necessarily stimulate

greater root elongation than those bacteria with lower enzyme activity.

The results presented here agreed with those found by Li et al. (2011),

where Pseudomonas and Herbaspirillum species exhibited ACC

deaminase activity comparable to the values observed here.

Furthermore, ACC deaminase activity has been increasingly reported
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in the genus Herbaspirillum (Blaha et al., 2006; Rothballer et al., 2008;

Islam et al., 2009; Onofre-Lemus et al., 2009; Sun et al., 2010). Similarly,

Niu et al. (2018) identified ACC deaminase activity in Pseudomonas

species isolated frommillet, though the activity levels (39.40 μmol) were

lower than those observed for Pseudomonas cremoricolorata (49.30

mmol a-ketobutyrate mg-1 protein h-1). According to Li et al. (2015),

bacterial growth in an ACC-containing medium and the detection of

low ACC deaminase activity do not guarantee the presence of ACC

deaminase-producing bacteria. Therefore, unambiguous detection of

the acdS gene is crucial for predicting enzyme activity and confirming

ACC deaminase-producing bacteria. In the present study, the acdS gene

was detected in nine bacterial strains. Chandra et al. (2018) employed

primers (acdSf3 and acdSr3), as described by Li et al. (2015) to

characterize bacterial strains isolated from soil samples collected in

India. They successfully amplified a ~680 bp fragment specific to the

acdS gene from the genomic DNA of Pseudomonas sp. DPB13, DPB15,

and DPB16.

Polyethylene glycol is widely used in assays to simulate water

stress in plants by lowering the water potential of the rooting

medium, subsequently affecting plant water potential (Lawlor,

1970). In this study, PEG 8000 was utilized to assess the effect of
FIGURE 2

Microscopy images of NRB142 (mCherry) colonizing Brachiaria roots. Photos: uninoculated B. ruziziensis (A, E, I); inoculated B. ruziziensis (B, F, J);
uninoculated B. brizantha cv. Paiaguás (C, G, K); inoculated B. brizantha cv. Paiaguás (D, H, L). At 3 [Line (A–D)]; 7 [Line (E–H)]; 14 [Line (I–L)] days
after inoculation. Scale bars represent 10 mm.
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ACC deaminase-producing bacterial inoculation on Brachiaria

ruziziensis under in vitro water stress conditions. The results

demonstrated that bacterial inoculation significantly enhanced

root and shoot development in plants treated with strains

NRB142 (P. silvatlantica), NRB223 (A. melinis), and BR11790 (H.

frisingense GSF30T). Similarly, Kang et al. (2014) reported the

successful colonization of cucumber plants by Burkholderia

cepacia SE4, Promicromonospora sp. SE188 and Acinetobacter

calcoaceticus SE370. These rhizobacteria conferred protection to

plants grown under PEG-mediated stress, promoting increased

fresh biomass accumulation in both shoots and roots biomass

compared to non-inoculated control plants. These findings agreed

with the results observed in the present study with Brachiaria

genotypes, reinforcing the potential of ACC deaminase-producing

bacteria in enhancing plant tolerance to water deficit stress.

Barnawal et al. (2017) reported that wheat plants inoculated

with Bacillus subtilis strain LDR2 produced significantly higher

biomass production compared to non-inoculated plants, both

subjected to PEG 10000-mediated stress. Similarly, Govindasamy

et al. (2020) observed that Sorghum bicolor plants inoculated with

plant growth-promoting bacteria displayed a notable increase in

shoot and root length under PEG 8000-mediated stress conditions.

An essential factor in mitigating of the water deficit stress is the

plant colonization by ACC deaminase-producing bacteria. In this

study, we demonstrated that strain NRB142 (P. silvatlantica)

successfully colonized Brachiaria plants endophytically, with

bacterial counts showing indicating substantial colonization the

inoculated Brachiaria roots. This finding corroborated with those of

Garcıá et al. (2019), who documented the colonization of barley

plants (Hordeum vulgare L.) by Paraburkholderia tropica MTo-293

through colony counting and confocal microscopy. Similarly,

Ramirez-Mata et al. (2018) employed the mCherry reporter gene

to monitor Azospirillum brasilense colonization in wheat plants

(Triticum aestivum), while Ferreira et al. (2020) evaluated

Rhizobium sp. BR 10268 colonization in sugarcane mini-setts.

These studies highlight the effectiveness of molecular and

microscopy-based techniques in assessing bacterial colonization.

In addition, it further supported the use of such methodologies to

confirm the colonization of Brachiaria genotypes by the ACC

deaminase-producing strain NRB142 (P. silvatlantica).

5 Conclusion

Plant growth-promoting bacteria with ACC deaminase activity

plays an important role in enhancing plant tolerance to water deficit

stress, thereby improving biomass production and yield. Our study

showed that some bacterial strains exhibited notable ACC

deaminase activity in vitro and demonstrated the ability to

protect Brachiaria plants under PEG 8000-mediated stress

conditions. The results indicated that ACC deaminase-producing

strains improved physiological and agronomic parameters of

Brachiaria plants, including shoot and root length as well as

enhanced biomass accumulation under water stress conditions.

These findings suggest that diazotrophic bacterial strains

containing ACC deaminase could serve as effective inoculants to
Frontiers in Plant Science 10
alleviate the negative impacts of water deficit stress on Brachiaria

genotypes. However, further validation through greenhouse and

field experiments is necessary to confirm the mitigation effects of

these bacteria across different Brachiaria genotypes exposed to

varying levels of water stress.
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