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This study explores the seasonal variations in grapevine growth and sap flow, with a

particular focus on how environmental factors influence key growth indicators.

Grapevines are highly sensitive to seasonal changes, and understanding these

variations is essential for optimizing vineyard management practices. Given the

increasing importance of precision agriculture, high-precision sensors were

employed to monitor sap flow, leaf temperatures, and ambient temperature over

the course of a year. By collecting data on these physiological indicators, we aim to

identify patterns that can improve our understanding of grapevine responses to

environmental changes. Our findings reveal significant seasonal fluctuations in

grapevine growth, with the most growth occurring during the warmer months

(spring and summer) and slower growth in winter. The comparison of predictive

models, including Prophet, LightGBM, and XGBoost, demonstrated that machine

learning models were more accurate in predicting grapevine growth compared to

traditional methods. These results offer important insights into the relationship

between grapevine physiology and environmental conditions, providing a

foundation for improving vineyard management practices. The grape variety

utilized in this study is Sunshine Rose (Shine Muscat), known for its distinctive

sweet flavor and high economic value, making it a popular cultivar in

vineyards worldwide.
KEYWORDS

plant growth, water transport, temperature, transpiration, data-driven analysis,
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1 Introduction

Grape cultivation plays a vital role in global agriculture,

particularly in the wine and table grape industries. With the

escalating challenges of climate change and water resource

shortages, effective water management has become a crucial

aspect of sustainable grape cultivation. The interactions between

temperature, water transport, and grapevine growth are central to

grape physiology research. Variations in temperature directly

impact transpiration, water transport, and nutrient absorption,

which, in turn, influence growth and fruit quality. Although the

adoption of precision irrigation and digital agriculture technologies

offers promising solutions, there remains a gap in current research,

particularly in developing precision irrigation strategies that are

driven by multi-parameter sensor data. This study aims to address

this gap by exploring the seasonal variations in grapevine growth

and sap flow and examining how environmental factors, monitored

through high-precision sensors, influence water management

strategies and grapevine development.

Recent studies confirm that soil water availability strongly

regulates grapevine transpiration and water-use efficiency, as

shown by multi-sensor assessments combining sap flow, leaf gas

exchange and chlorophyll fluorescence (Benyahia et al., 2023).

Furthermore, the impact of temperature on grapevine

transpiration cannot be overlooked. Under drought conditions,

the nitrate absorption rate decreases and is closely linked to

changes in water status (Gloser et al., 2020). Leaf temperature

monitoring has also been widely adopted as a direct proxy of

canopy transpiration and stress responses (Zhou et al., 2022).

These environmental interactions collectively determine the

efficiency of grapevine growth and water transport. Improved

transpiration models offer more accurate predictions of crop

transpiration rates (Choi and Shin, 2020).

The relationship between transpiration and nutrient absorption

is a major focus of plant physiology research. Vineyard studies in

the last decade demonstrated that canopy conductance and

transpiration 40 under water stress strongly regulate nutrient

uptake efficiency, with hysteresis patterns highlighting the

dynamic coupling of physiology and environment (Bai et al.,

2015). Nitrogen affects water flow and nutrient absorption by

regulating stomatal conductance and root hydraulic conductivity

(Matimati et al., 2014). Nighttime transpiration may promote leaf

nutrient absorption, especially under phosphorus-deficient

conditions (Vega et al., 2023), and earlier work suggested that

transpiration-driven mass flow can enhance nutrient transport to

the roots (Cramer et al., 2008). Sensor-fusion approaches further

indicate that grapevines dynamically adjust water and nutrient

uptake pathways under stress, which can be captured by real-time

monitoring of stem water potential (Ohana-Levi et al., 2022).

Emerging approaches highlight the potential of integrating multi-

sensor data streams, such as thermal, VNIR and RGB imagery, to

refine vineyard water-stress detection and irrigation decision-

making (Burchard-Levine et al., 2024).

With the development of data-driven and machine-learning

methods, researchers are now able to more accurately predict plant
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growth dynamics and vineyard water requirements. Machine-

learning approaches that integrate environmental and

physiological data have emphasized the interaction between

water availability and nutrient uptake, offering flexible

alternatives to traditional mechanistic models (Fuentes et al.,

2024). Multi-sensor and proximal-sensing frameworks that

combine thermal and VNIR/multispectral imagery with weather

inputs have demonstrated strong potential for detecting vine water

stress and improving prediction accuracy (Tang et al., 2022). At

regional scales, remote sensing combined with machine learning

has been applied to map irrigated vineyard areas and support

large-scale irrigation planning (López-Pérez et al., 2024). In

addition, sap-flow-based modeling continues to capture

grapevine transpiration responses to environmental drivers,

providing a physiological foundation for precision irrigation

strategies (Wei et al., 2020).

Improving water-use efficiency (WUE) in precision viticulture

is closely tied to phenology-aware management of canopy

transpiration. At the plot scale, the dual crop-coefficient (dual-Kc)

approach has increased water productivity in Vitis vinifera cv.

Alvarinho, indicating more efficient allocation of irrigation across

growth stages (Silva et al., 2024). In a three-season field study with

Cabernet Sauvignon, data-driven irrigation scheduling based on

ETcand plant/soil water-status thresholds reduced applied water by

up to 65% while increasing crop-level WUE by as much as 41% on

lighter soils, without clear yield penalties (Schlank et al., 2024).

Complementarily, decision-support systems for precision regulated

deficit irrigation that predict soil moisture and recommend

schedules have demonstrated practical feasibility in vineyard

settings (Kang et al., 2023). In line with this perspective, the

present study focuses on the temperature–water-transport–growth

axis, with nutrient-uptake aspects referenced only as background.

Mineral nutrition interacts with plant water transport but is not

the focus here. Long-distance nutrient delivery emerges from

transpiration-driven mass flow (e.g., nitrate) and diffusion (e.g.,

phosphate), with their contributions depending on nutrient form

and soil supply (Plett et al., 2020; Holz et al., 2024). In grapevine,

nutrient status can feed back on water fluxes—for example,

potassium deficiency reduces transpiration via decreases in leaf

area and stomatal conductance (Sperling et al., 2024). In this study,

nutrient aspects are referenced only as contextual background to the

temperature–water-transport–growth axis.

Precision irrigation in vineyards has shifted from rule-based

fertigation toward sensing- and model-driven scheduling.

Contemporary reviews and field implementations show that

decision-support systems fuse plant/soil/atmospheric sensing with

meteorological inputs to recommend irrigation timing and

amounts, improving operational efficiency and water savings

(Tardaguila et al., 2021). In commercial settings, both a CWSI-

based IoT DSS and a soil-moisture-driven DSS have been deployed

over multiple seasons, maintaining yield and quality while reducing

applied water (e.g., 10–17%) (King and Shellie, 2023; Garofalo

et al., 2023).

This study integrates multi-parameter sensing with high-

frequency modeling to translate physiological dynamics into
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phenology-aware irrigation guidance. Vines were instrumented

with high-precision sensors to continuously monitor fruiting cane

diameter (DC1), one-sided cordon diameter (DC2), trunk sap flow,

leaf temperature (Leaf1–Leaf3), and ambient temperature. Seasonal

forecasting pipelines paired tree-based ensembles (LightGBM,

XGBoost) with an explicit seasonal component (Prophet).

Combined with vertical profiling (cane–cordon–trunk) and

vertical-gradient analysis, the models reveal spatiotemporal

patterns of water transport and radial growth and yield decision-

oriented thresholds for irrigation timing and amount. It was

hypothesized that seasonal fluctuations in environmental

temperature modulate grapevine water transport and radial

growth, and that machine-learning models can predict these

dynamics with actionable accuracy. Specifically, the aims were to:

(i) quantify cross-season relationships among environmental

temperature, sap flow, leaf temperature, and radial growth; (ii)

evaluate forecasting performance from high-frequency signals; and

(iii) propose phenology-aware, sensor-based irrigation guidelines.
2 Materials and methods

2.1 Experimental materials and site
overview

The grape variety used in this study was Sunshine Rose, a high-

value cultivar known for its distinctive sweet flavor. Vines were

trained to a single-trunk, double-arm V-shaped trellis to maximize

light interception, control canopy architecture, and promote

uniform ripening (Figure 1). Vines were 10 years old at the start

of monitoring. The experimental block comprised 96 vines

arranged in six north–south oriented rows (16 vines per row) at

2.5 m (row) × 1.2 m (vine) spacing; twelve representative vines were

instrumented, and the first and last rows were reserved as buffers.

Irrigation was supplied via a pressure-compensating drip system

(two laterals per row; emitters 2.0 Lh−1 at 0.5 m spacing; operating
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pressure 0.2 MPa) with Venturi-based fertigation every 10–14 days

during the growing season.

The study was conducted in a plastic greenhouse at the

Jinniushan Grape Experimental Base, Tai’an, Shandong, China

(temperate monsoon climate). Greenhouse climate was controlled

with automated shading and ventilation; relative humidity was

maintained at 60–70% through humidification and misting as

needed. The soil was sandy loam (pH 6.5–7.0) with good

drainage and aeration. Soil nutrient status was monitored

regularly, and fertigation was adjusted accordingly to ensure

balanced nutrition throughout the growth cycle.
2.2 Sensor configuration and data
collection

We used high-precision sensors (Dynamax Inc., Houston, TX,

USA) to continuously monitor the growth environment and

physiological status of Sunshine Rose grapevines. The

configuration comprised: (i) two DEX dendrometers for branch

diameter dynamics (DC1 on the fruiting cane; DC2 on the one-

sided cordon); (ii) three SapIP-IRT wireless infrared sensors for

leaf-surface temperature (Leaf1–Leaf3); (iii) one SapIP trunk sap-

flow probe (TDP1); and (iv) one ambient-temperature probe at

canopy height. All sensors were factory-calibrated; zero-offset and

drift checks were performed before deployment and during routine

maintenance. Data were logged hourly from 1 June 2020 to 1 June

2021 (UTC + 8), yielding 8,760 records per channel (61,320

channel-hours across the seven channels). Key phenological

stages (budburst, flowering, veraison, maturity) were recorded

and used to align physiological signals (e.g., sap flow, radial

variation) with vine development for stage-aware analyses.

Sensor locations were standardized to ensure both vertical and

organ-level coverage (Figure 2). DC1: fruiting cane, ∼15 cm from

the node with the cordon (avoiding junctional artifacts while

capturing typical cane growth). DC2: one-sided cordon, ∼35 cm

from the trunk node (minimizing trunk influence on cordon

diameter). TDP1: trunk, ∼60 cm above ground (integrative

measure of whole-plant water transport). Leaf1: mid-canopy on
FIGURE 2

Installation positions of the sensors.
FIGURE 1

Single-trunk double-arm V-shaped trellis grapevines at the
Jinniushan Grape Experimental Base.
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the fruiting cane; Leaf2: upper canopy on the one-sided cordon;

Leaf3: upper canopy on the fruiting cane. This layout captured

vertical gradients (mid vs. upper canopy) and organ differences

(cane–cordon–trunk) while maintaining representativeness across

the canopy.

Hourly monitoring across summer (June–August), autumn

(September–November), winter (December–February), and spring

(March–May) enabled the capture of short-term fluctuations and

cross season shifts in environmental drivers, providing high-

resolution inputs for subsequent modeling of growth and water-

transport dynamics.
2.3 Data preprocessing

During data collection, a comprehensive data cleaning process

was implemented to ensure high data quality and improve analysis

accuracy. The Z-score method was applied to remove invalid or

abnormal data points, such as extreme temperature values or

measurements affected by sensor malfunctions or external

disturbances, ensuring that outliers did not compromise the

dataset’s reliability. Missing values were addressed through linear

interpolation, where data points that were missing or unrecorded

were estimated based on the surrounding valid data, effectively

filling gaps and maintaining continuity in the time series. Time

synchronization was also performed to resolve discrepancies in

timing across sensors. All sensor data were aligned to a unified

timestamp, ensuring consistency across measurements taken at

different times. Furthermore, unit conversion and normalization

were applied to standardize the data from different sensors with

varying units or scales, allowing for direct comparison and analysis

on a uniform scale. These preprocessing steps ensured the accuracy,

consistency, and completeness of the dataset, providing a solid

foundation for reliable statistical analysis and modeling.
2.4 Data analysis methods

This study employed multiple data analysis methods to explore

the relationships between temperature, water, and physiological

indicators during grapevine growth and to construct predictive

models. Pearson correlation coefficients were calculated to quantify

the correlations between environmental temperature, sap flow,

trunk radial growth, and leaf temperature. The results were

visualized using heatmaps to intuitively reflect the positive and

negative correlations among the indicators. The trends of different

indicators across seasons were compared to reveal the mechanisms

by which environmental factors influence grapevine growth. The

results were presented in charts, reflecting the seasonal variation

patterns of the indicators.

LightGBM and XGBoost were selected due to their strong

performance on small tabular datasets and their robustness in

handling missing or noisy data. Prophet was chosen for its ability

to explicitly model seasonal trends. In this study, linear regression,
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LightGBM, XGBoost, and Prophet models were constructed using

leaf temperature, trunk sap flow, and environmental temperature as

input features, with grapevine diameter as the target variable. Model

performance was evaluated using metrics including MSE, RMSE,

MAE, MAPE, and R². The results demonstrated that LightGBM and

XGBoost outperformed linear regression in capturing nonlinear

relationships, while Prophet effectively modeled seasonal growth

patterns. Future studies will consider incorporating additional

environmental variables (e.g., soil moisture, light intensity,

meteorological data) and exploring deep learning approaches

such as LSTM or Bi-LSTM to further enhance prediction

accuracy and capture long-term temporal dependencies in

physiological signals.

Visualization methods such as heatmaps, line charts, and scatter

plots were used to clearly present the analysis results, facilitating the

understanding of complex relationships among indicators and their

seasonal variations.
3 Results

3.1 Overall dynamics of the temperature-
water-growth system

The spatiotemporal dynamics of environmental factors during

grape growth were revealed by analyzing the correlations between

environmental temperature, water status, and grapevine growth

across seasons. Pearson heatmaps quantified relationships among

ambient temperature, trunk sap flow rate, stem diameter, and leaf

temperature, visually illustrating the strength and direction of these

correlations across seasons. Specifically, the Pearson correlation

heatmaps for spring, summer, autumn, and winter are shown in

Figure 3. These heatmaps are descriptive screens to locate season-

and organ-specific coupling; mechanistic interpretation and

implications are addressed in the Discussion.

3.1.1 Seasonal analysis of the relationship
between canopy temperature and trunk sap flow
rate

The relationship between temperature and trunk sap flow rate

was observed to exhibit significant seasonal variations, reflecting the

physiological responses of grapevines to temperature changes. The

specific seasonal analyses are as follows:

Summer: A strong negative correlation was observed (r = –

0.71), consistent with stomatal regulation under sustained heat and

high atmospheric demand.

Autumn: The negative correlation (r = –0.76) persisted as

canopy activity declined, indicating demand–supply decoupling

during senescence.

Winter: The positive correlation (r = 0.38) likely reflects warmer

intervals reducing sap viscosity and thawing conductive pathways,

allowing modest increases from low baselines.

Spring: The negative correlation (r = –0.67) suggests transient

heat spells depress conductance during early growth.
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3.1.2 Seasonal characteristics of fruiting cane
diameter and one-sided cordon diameter

Significant seasonal variations were observed in the radial growth

synchronization between different parts of the grapevine, reflecting the

profound impact of environmental conditions on grapevine growth

activities. To provide a more intuitive understanding of the seasonal

interactions between temperature, transpiration, and water transport,

Figure 4 illustrates how these factors influence grapevine growth

dynamics across different seasons.

Summer: The correlation coefficient between DC1 and DC2 was

0.9, indicating a positive correlation. High temperatures and

abundant sunlight provided optimal growing conditions for the

grapevine, leading to significantly enhanced overall growth activity.

This high correlation reflected the highly synchronized radial

growth trends of the grapevine under warm conditions. With

favorable temperatures and ample light, the grapevine

experienced vigorous growth, resulting in a substantial increase in

growth synchronization between the two parts, manifested as a

strong positive correlation.
Frontiers in Plant Science 05
Autumn: As temperatures began to drop, the correlation

coefficient between DC1 and DC2 decreased to –0.59, showing a

negative correlation. The grapevine’s water use efficiency declined,

evaporation decreased, and growth activity began to slow. This

negative correlation suggested that, as the temperature decreased,

the growth trends of the two parts became divergent. This

divergence may be attributed to differences in how each part

responded to temperature changes, reflecting the gradual

weakening and inconsistency of grapevine growth activities

during autumn.

Winter: The correlation coefficient between DC1 and DC2

further decreased to –0.27, indicating a weak negative correlation.

Under low temperatures, the grapevine entered a nearly dormant

state, and overall growth activity significantly decreased. This weak

negative correlation reflected more noticeable growth differences

between the different parts of the trunk during dormancy. However,

as the temperature’s suppressive effect on growth was relatively

uniform, the negative correlation between the two parts

was weakened.
FIGURE 3

Pearson correlation heatmap of temperature and physiological indicators of grapevines. This figure presents a Pearson correlation heatmap
illustrating the relationships between ambient temperature, leaf temperatures (Leaf1, Leaf2, Leaf3), and physiological indicators of grapevines,
including sap flow (TDP1) and grapevine diameter (DC1, DC2). The heatmap highlights the strength and direction of the correlations, with warmer
colors indicating a strong positive correlation and cooler colors showing a negative correlation. This visual representation helps to identify key
environmental factors that influence grapevine growth and physiological processes across different seasons.
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Spring: The correlation coefficient between DC1 and DC2

further dropped to –0.89, indicating a significant negative

correlation. As temperatures rose, the grapevine gradually

resumed growth activity, but the growth differences between the

two parts became more pronounced. This strong negative

correlation suggested that as temperatures increased, faster water

evaporation intensified competition for water and nutrients among

the different parts, leading to greater asynchrony in growth between

the DC1 and. Consequently, the negative correlation between the

two parts significantly strengthened.

3.1.3 Spatiotemporal dynamics of water transport
vertical gradient (and upper-lower water
association

Significant seasonal variations in the correlations between diameter

and trunk sap flow rate were observed, reflecting differences in

physiological activities under varying environmental conditions.

Summer: Positive correlations were observed between DC2 and

TDP1, with a correlation coefficient of 0.33, and between DC1 and

TDP1, with a correlation coefficient of 0.34. These positive

correlations indicated that water demand and flow were

coordinated across different parts of the grapevine under high

temperatures. The vigorous growth activity during summer was

found to ensure strong synchronization in the vertical gradient of

water transport and the upper–lower water association.

Autumn: The correlation coefficient between DC2 and TDP1

was reduced to 0.24, indicating a weakened positive correlation,
Frontiers in Plant Science 06
while a weak negative correlation was observed between DC1 and

TDP1, with a correlation coefficient of –0.11. This suggests that

water transport became less synchronized as temperatures dropped

and grapevine growth slowed. The decrease in evaporation and

slower growth led to divergent water demand across different parts

of the grapevine, causing inconsistencies in the vertical gradient and

upper–lower water association.

Winter: A significant negative correlation was observed between

DC2 and TDP1, with a correlation coefficient of –0.51, while a very

weak negative correlation was found between DC1 and TDP1, with

a correlation coefficient of –0.04. Under low temperatures,

grapevines were observed to enter a near-dormant state, and

water evaporation was significantly reduced, leading to

asynchronous water transport. This negative correlation indicated

the near-complete cessation of growth in the grapevine during

dormancy, leading to stagnation in water transport. Significant

differences were observed in the vertical gradient and upper–

lower water association.

Spring: A positive correlation was observed between DC2 and

TDP1, with a correlation coefficient of 0.51, while a negative

correlation was found between DC1 and TDP1, with a correlation

coefficient of –0.42. This suggested that water transport in the

thicker one-sided cordon became more synchronized with trunk

sap flow, while the fruiting cane exhibited asynchronous water

demand. As temperatures rose, grapevines were observed to

gradually resume growth, and water transport became more

active. However, the competition for water and nutrients among
FIGURE 4

Hypothesized seasonal interactions between temperature, transpiration, and water transport in grapevines. The diagram illustrates how these
environmental factors influence grapevine growth dynamics across different seasons (spring, summer, autumn, and winter).
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different parts was found to intensify, leading to a divergence in

water transport synchronization. This reflected the dynamic

spatiotemporal changes in the vertical gradient and upper–lower

water association during the spring recovery period.
3.2 System association between
environmental temperature and leaf
temperature

The relationship between environmental temperature and leaf

temperature exhibited significant seasonal variations, reflecting the

response mechanism of grapevine leaves to temperature changes.

Summer: A positive correlation between environmental

temperature and leaf temperatures, with correlation coefficients

between environmental temperature and Leaf1, Leaf2, and Leaf3

of 0.88, 0.94, and 0.96, respectively. This high positive correlation

indicated that despite the generally high temperatures, the leaf

temperatures followed a similar trend to the environmental

temperature. However, as Leaf3 was more exposed to direct

sunlight, it experienced more fluctuation in temperature than did

Leaf1 and Leaf2, which were less exposed.

Autumn: The correlation between environmental temperature

and leaf temperature remained high, with correlation coefficients

between environmental temperature and Leaf1, Leaf2, and Leaf3 of

0.93, 0.98, and 0.98. This high positive correlation suggested that,

despite the temperature decrease, the leaf temperatures across

different parts of the grapevine still closely mirrored the

environmental temperature, reflecting a uniform cooling effect

across the plant.

Winter: The correlation between environmental temperature

and leaf temperature remained relatively high. The correlation

coefficients between environmental temperature and Leaf1, Leaf2,

and Leaf3 were 0.70, 0.96, and 0.96, respectively. This positive

correlation indicated that, under low temperatures, the leaf

temperatures across different parts of the vine became more

synchronized. However, Leaf1, positioned lower on the vine,

experienced less variation in temperature compared to the more

exposed leaves, which were more sensitive to the cold.

Spring: As temperatures began to rise in spring, a positive

correlation between environmental temperature and leaf

temperature, with correlation coefficients between environmental

temperature and Leaf1, Leaf2, and Leaf3 of 0.96, 0.98, and 0.99. This

high positive correlation suggested that as the temperature

increased, the leaf temperatures across different parts of the

grapevine became highly synchronized, reflecting a uniform

warming effect on the entire vine.
3.3 The complex relationship between leaf
temperature and trunk sap flow

Summer: Strong negative correlations were observed between

Leaf1, Leaf2, and Leaf3 and TDP1, with correlation coefficients of –
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0.51, –0.73, and –0.64, respectively. Under high temperatures,

transpiration in the grapevine peaked. This strong negative

correlation was attributed to the significant enhancement of leaf

transpiration under high temperature conditions, which led to a

substantial reduction in trunk sap flow. The strongest negative

correlation (–0.73) was found between the one-sided cordon Leaf2

and sap flow, likely due to its proximity to the trunk, where

transpiration had a more direct and significant impact. The top

fruiting cane Leaf3 also exhibited strong transpiration, with a

slightly weaker negative correlation (–0.64) compared to Leaf2.

The middle fruiting cane Leaf1, with relatively weaker transpiration,

showed the weakest negative correlation (–0.51).

Autumn: As temperatures gradually decreased in autumn, the

correlation coefficients between Leaf1, Leaf2, and Leaf3 and TDP1

were –0.68, –0.71, and -0.78, respectively, indicating negative

correlations. Although grapevine growth slowed and transpiration

weakened as temperatures dropped, the negative correlation persisted,

suggesting that transpiration still contributed to a reduction in trunk

sap flow. The top fruiting cane Leaf3 continued to exhibit significant

transpiration, with the strongest negative correlation (–0.78). The one-

sided cordon Leaf2, being closer to the trunk, still had a significant

effect on sap flow, showing a strong negative correlation (–0.71). The

middle fruiting cane Leaf1, with weaker transpiration, displayed the

weakest negative correlation (–0.68).

Winter: The correlation coefficients between Leaf1, Leaf2, and

Leaf3 and TDP1 were 0.55, 0.37, and 0.31, respectively, indicating

positive correlations. At low temperatures, grapevines almost

entered dormancy, and transpiration significantly decreased. This

positive correlation was attributed to the reduction in leaf

transpiration under low temperature conditions, leading to an

increase in trunk sap flow. The middle fruiting cane Leaf1, found

lower on the plant, was less affected by the cold and showed a

stronger positive correlation (0.55) with sap flow. Both the one-

sided cordon Leaf2 and the top fruiting cane Leaf3, being more

exposed to the cold, showed relatively weaker positive correlations

with sap flow (0.37 and 0.31, respectively).

Spring: As temperatures began to rise in spring, negative

correlations were observed between Leaf1, Leaf2, and Leaf3 and

TDP1, with correlation coefficients of –0.61, –0.69, and –0.71,

respectively. With the rise in temperature and the resumption of

growth activities, transpiration gradually intensified, leading to a

reduction in trunk sap flow. The top fruiting cane Leaf3, exposed to

stronger sunlight, exhibited more significant transpiration, resulting

in a stronger negative correlation with sap flow (–0.71). Due to its

proximity to the trunk, the one-sided cordon Leaf2 had a more

direct impact on sap flow, showing a stronger negative correlation

(–0.69). The middle fruiting cane Leaf1, with relatively weaker

transpiration, displayed the weakest negative correlation (–0.61).

The seasonal variation in correlations highlights the profound

impact of temperature-driven transpiration on water transport in

grapevines, reflecting differences in the response of leaves to

temperature changes at various locations on the vine and

illustrating the grapevine’s physiological adaptation mechanisms

under different environmental conditions.
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3.4 Granger causality test

A Granger Causality Test was performed to analyze the

temporal relationships, and the visualization results illustrating

these causal dynamics are presented in Figures 5, 6, 7, and 8.

Summer: Sap flow (TDP1) had a significantly stronger causal

effect on DC2 compared to other seasons. The Granger Causality

test indicated a strong cause-effect relationship between sap flow

and grapevine growth. The time series in Figure 2 (Summer) clearly

shows that the increases in sap flow precede the growth of DC2. The

ADF test for DC1 and DC2 in the summer season (p-values < 0.05)

confirmed the presence of significant stationarity after differencing,

indicating that the seasonal effects were stronger and more

consistent during this time. This aligns with the visual patterns in

Figure 3, where sap flow and DC2 follow a similar trend, with sap

flow leading growth in the grapevine.

Autumn: The causal relationship between sap flow (TDP1) and

DC2 remained significant, but the effect was less pronounced

compared to summer. The ADF test for DC2 (p-value = 0.5084)

indicated that it was initially non-stationary, but after differencing,

it became stationary (p-value = 0.0000). The time series in Figure 4

(Autumn) shows moderate fluctuations in both sap flow and DC2,

with sap flow continuing to lead DC2. However, the amplitude of

fluctuations was smaller in the autumn, reflecting a reduction in the

rate of growth compared to the summer. This seasonal shift is also

captured by the ADF results, indicating less variability and a more

stable relationship between sap flow and DC2 during this period.

Winter: The causal relationship between sap flow (TDP1) and

DC2 was weakest, with sap flow showing minimal effect on DC2.

The ADF test for DC2 (p-value = 0.6506) indicated that DC2 was

non-stationary, but after differencing, it became stationary (p-value

= 0.0000). The time series in Figure 5 (Winter) shows that both sap

flow and DC2 exhibit low variability and smaller fluctuations,

reflecting the dormant phase of grapevine growth. The lack of

significant fluctuations in sap flow during winter explains the

weaker causal relationship observed. This is consistent with the

general slowdown in physiological processes during the

winter months.

Spring: During the spring season, sap flow (TDP1) and grapevine

diameter (DC2) exhibited a noticeable temporal relationship, where

increases in sap flow were followed by changes in DC2. The Granger

Causality test showed that sap flow (TDP1) Granger caused changes

in DC2, although the causal effect was weaker compared to other

seasons. This is reflected in the lower amplitude of fluctuations in

both variables during spring, as seen in Figure 1 (Spring). The ADF

test results for DC2 in spring (p-value = 0.6506) also indicated that

DC2 was non-stationary, requiring differencing to make it stationary

before the causality analysis. Once differenced, DC2 showed a

significant p-value (0.0000), confirming the stationarity and further

supporting the causal analysis.

The Granger Causality test revealed that sap flow (TDP1)

consistently Granger caused changes in grapevine diameter (DC2)

throughout the year. However, the strength of this causal
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relationship varied seasonally. The summer season exhibited the

strongest causal effect, while the spring and autumn seasons showed

moderate relationships. Winter, as expected, had the weakest

relationship, reflecting the slower metabolic activity of the

grapevine during dormancy. The ADF test results further

confirmed the seasonal differences in stationarity, with the

strongest variability observed in the summer and weaker

fluctuations in the winter.
3.5 Comparison of predictive model
performance

In grapevine growth prediction, the tree-based ensemble

models LightGBM and XGBoost effectively captured nonlinear

relationships in the data and providing high-precision

predictions. To evaluate the performance of these two models,

this study uses a linear regression model as a benchmark for

comparative analysis, aiming to identify the most suitable model

for predicting grapevine diameter. The dataset was divided into

training and validation sets in an 80:20 ratio. The hyperparameters

for the LightGBM and XGBoost models are shown in Tables 1 and

2, respectively. The input features for the models include Leaf1,

Leaf2, Leaf3, TDP1, and T, with the output variables being the

diameters DC1 and DC2. Through this comparative analysis, the

study aims to provide more accurate predictions and decision

support for grapevine management. The correlation analysis

results for linear regression, LightGBM, and XGBoost are

visualized in Figures 9, 10, and 11, respectively, while the detailed

analysis for each model is presented in Table 3.

The linear regression model performed poorly in predicting

both DC1 and DC2, especially in the prediction of DC2, where the

R² value was only 0.670, significantly lower than those of the

LightGBM and XGBoost models (0.930 and 0.933, respectively).

This indicates substantial limitations in the ability of the linear

regression model to capture complex relationships in the data.

Furthermore, the Mean Squared Error (MSE) and Root Mean

Squared Error (RMSE) for DC1 and DC2 were both relatively

high for the linear regression model, at 66439.081 and 257.765

(DC1) and 440140.594 and 663.436 (DC2), indicating large

prediction errors. Particularly in the prediction of DC2, the linear

regression model’s Mean Absolute Error (MAE) and Mean

Absolute Percentage Error (MAPE) were 535.191 and 8.463%,

further demonstrating the low prediction accuracy of this model

on this dataset. In contrast, both the LightGBM and XGBoost

models exhibited significantly lower MSE, RMSE, MAE, and

MAPE for both DC1 and DC2, indicating higher prediction

accuracy and better fitting performance. These results suggest that

tree-based ensemble learning methods outperform traditional linear

regression models when handling complex datasets. These results

support a plant-based, WUE-oriented scheduling approach in

which sap flow and leaf/diameter signals provide the primary

predictors, consistent with prior sap-flow–WUE analyses.
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3.6 Seasonal forecasting of DC1 and DC2
using the prophet model

The performance evaluation of the LightGBM and XGBoost

models demonstrated that these tree-based ensemble learning

methods performed very well in capturing the nonlinear
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relationships in grapevine diameter predictions. However, these

models did not account for seasonal information. The Prophet

model has shown significant advantages in capturing the seasonal

fluctuations of grapevine growth. Therefore, to conduct seasonal

predictions, this model was used in the psresnet study to further

analyze the prediction capabilities for DC1 and DC2. The
FIGURE 5

Summer seasonal variations in ambient temperature, leaf temperature, sap flow, and stem radial growth. This figure depicts the seasonal fluctuations
in ambient temperature, leaf temperatures (Leaf1, Leaf2, Leaf3), sap flow (TDP1), and stem radial growth (DC1, DC2) during the summer season. The
Granger Causality analysis shows a strong causal relationship between sap flow and stem radial growth, with sap flow leading growth in DC2. The
figure highlights the synchronized growth patterns driven by high temperatures and abundant sunlight during this active growing season.
FIGURE 6

Autumn seasonal variations in ambient temperature, leaf temperature, sap flow, and stem radial growth. This figure presents the seasonal variations
in ambient temperature, leaf temperatures (Leaf1, Leaf2, Leaf3), sap flow (TDP1), and stem radial growth (DC1, DC2) during autumn. Granger
Causality analysis reveals that the causal relationship between sap flow and stem radial growth weakens as temperatures decline and grapevine
growth slows. The reduction in sap flow and leaf temperature reflects the transition towards dormancy.
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hyperparameters for the Prophet model are listed in Table 4. The

correlation analysis results are shown in the Figures 12, and the

detailed analysis results are presented in the Table 5.

The Prophet model demonstrated significant seasonal

fluctuations in the predictions for DC1 and DC2. For DC1, the

model showed higher prediction accuracy in summer, with an MAE

of 57.009 and an R² of 0.928, while the prediction error was larger in
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spring, with an MAE of 161.690 and an R² of 0.629. In contrast, the

prediction for DC2 was more stable, particularly during spring and

summer, with MAEs of 119.491 and 44.460 and R² values of 0.965

and 0.950, respectively. In comparison, the LSTM and Bi-LSTM

models, as shown in the Table 6, performed worse than the Prophet

model. For DC1, the LSTM model achieved an R² of 0.818 and the

Bi-LSTM model achieved an R² of 0.805, indicating weaker
FIGURE 7

Winter seasonal variations in ambient temperature, leaf temperature, sap flow, and stem radial growth. This figure illustrates the fluctuations in
ambient temperature, leaf temperatures (Leaf1, Leaf2, Leaf3), sap flow (TDP1), and stem radial growth (DC1, DC2) during the winter season. Granger
Causality analysis shows minimal causal effect between sap flow and stem radial growth, reflecting the grapevine’s dormancy phase. The figure
demonstrates how environmental conditions during winter lead to reduced physiological activity in the plant, with weakened correlations between
growth and sap flow.
FIGURE 8

Spring seasonal variations in ambient temperature, leaf temperature, sap flow, and stem radial growth. This figure shows the fluctuations in ambient
temperature, leaf temperatures (Leaf1, Leaf2, Leaf3), sap flow (TDP1), and stem radial growth (DC1, DC2) during the spring season. The results of
Granger Causality analysis are presented, demonstrating that sap flow leads to changes in stem radial growth (DC2) as temperatures begin to rise.
This interaction reflects the grapevine’s recovery from dormancy and the increasing influence of temperature on physiological responses.
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performance in capturing seasonal growth compared to Prophet.

Similarly, for DC2, the LSTMmodel reached an R² of 0.919, and the

Bi-LSTM model achieved an R² of 0.910, still falling short of the

exceptional R² of 0.991 from the Prophet model. This discrepancy

highlights the lack of explicit seasonality handling in the LSTM and

Bi-LSTM structures, which contributed to their weaker

performance in predicting seasonal growth.

The Prophet model showed significant seasonal fluctuations in

the predictions for both DC1 and DC2. The results for DC1, with a

model R² of 0.847 overall, and for DC2, with an exceptional R² of

0.991, suggest that while the Prophet model effectively captured

seasonal growth patterns, DC1 was more influenced by

environmental changes, particularly during the spring and winter

months. In comparison, the LSTM and Bi-LSTM models, which

performed worse than the Prophet model, showed weaker

performance in predicting seasonal growth due to the lack of

explicit seasonality handling in their structure.

While this study primarily focused on capturing seasonal

fluctuations in grapevine growth through the Prophet model, it is

important to acknowledge that there are other potential

explanations for variations in grapevine growth dynamics that

were not explicitly explored in this analysis. For example, inverse

sap flow could play a role in altering the growth patterns,

particularly during night-time when transpiration is low but the

grapevine may still experience water transport through reverse flow.

Additionally, night-time fluxes, which are influenced by the plant’s

internal water balance during non-transpirational periods, could

contribute to the overall water transport system in ways not fully

captured in this study.

Furthermore, cold-stress induced xylem refilling is another

potential factor that may affect water transport, particularly

during the winter months when the grapevine is in dormancy.

This phenomenon could introduce fluctuations in sap flow that are

not solely driven by environmental temperature but by internal

physiological mechanisms in response to freezing temperatures.

Future studies could consider incorporating these alternative

explanations to provide a more comprehensive understanding of

the factors influencing grapevine growth and water transport across

different seasons.
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4 Discussion

4.1 Model performance

The comparison of the prediction results from LightGBM,

XGBoost, and linear regression models demonstrated that tree-

based ensemble learning methods (LightGBM and XGBoost) had

significant advantages in addressing the problem of grapevine

diameter prediction. The linear regression model, due to its

limitations in linear assumptions, was unable to effectively capture

the nonlinear relationships within the data, leading to poorer

performance in predicting both DC1 and DC2. Particularly in the

prediction of DC2, the R² value of the linear regression model was

only 0.670, which was far lower than the R² values of LightGBM and

XGBoost (0.933 and 0.930, respectively). This indicates that the linear

regression model has evident limitations when handling complex

datasets. This interpretation is consistent with prior solar-greenhouse

evidence that links sap-flow dynamics to physio-environmental

drivers and water-use efficiency (WUE), and treats diurnal

hysteresis as a decision-relevant diagnostic (Wei et al., 2020).

In contrast, LightGBM and XGBoost models, by integrating

multiple decision trees, were able to better capture the nonlinear

relationships within the data, resulting in higher prediction

accuracy for both DC1 and DC2. Specifically, the XGBoost model

achieved an R² value of 0.933 for DC2, showcasing its robust

capability in handling complex data. Furthermore, the MSE,

RMSE, MAE, and MAPE values for both LightGBM and

XGBoost were significantly lower than those of the linear

regression model, further validating their superiority in grapevine

diameter prediction. In practice, ensemble predictions of DC1/DC2

from plant signals can be coupled to season-specific thresholds to

drive irrigation timing and amounts in a decision-oriented manner.
4.2 Seasonal discussion based on the
prophet model

The Prophet model demonstrated excellent performance in

capturing the seasonal variations in grapevine diameter. Through
TABLE 1 LightGBM model hyperparameters.

Hyperparameter Value

Objective Regression

Metric MSE, RMSE, MAE, MAPE, R²

Boosting Type Gradient Boosting Decision Tree

Num Leaves 31

Learning Rate 0.1

Feature Fraction 0.9

Seed 42

Number of Rounds 200
TABLE 2 XGBoost model hyperparameters.

Hyperparameter Value

Objective Regression

Metric MSE, RMSE, MAE, MAPE, R²

Max Depth 6

Learning Rate 0.1

Subsample 0.8

Colsample Bytree 0.8

Seed 42

Number of Rounds 200
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the seasonal forecasting of DC1 and DC2, it was found that the

Prophet model could effectively reflect the seasonal fluctuations in

grapevine diameter. Notably, for DC2, the prediction accuracy was

high, with an R² value close to 1 (0.991), indicating that the model

was able to predict grapevine diameter changes with high precision.

In contrast, the prediction accuracy for DC1 was slightly lower, with

an R² value of 0.847, which could be attributed to the greater

sensitivity of DC1 to environmental factors.

As the DC1 is more complex in terms of growth changes,

especially in the spring and autumn, fluctuations in external

environmental factors tend to cause significant variations in

growth, making the prediction more challenging. In contrast, the

DC2 exhibits relatively stable growth, less affected by environmental

fluctuations, thus allowing for more accurate predictions using the

Prophet model. The relative stability of DC2 suggests that the

cordon better represents a whole-axis transport baseline, whereas
Frontiers in Plant Science 12
DC1 (fruiting cane) is more sensitive to short-term microclimate

and growth transitions.

The lower performance in spring and winter likely reflects

dormancy and transition stages, where physiological noise and

low signal variance challenge Prophet’s seasonality assumptions.

During winter, the grapevine enters a dormant phase, with minimal

metabolic activity and negligible changes in DC1, leading to low

variance in the data. This lack of growth variability makes it difficult

for the Prophet model to detect meaningful patterns and accurately

forecast DC1. Similarly, in spring, the rapid transition from

dormancy to act ive growth creates more fluctuat ing

environmental conditions, including temperature and moisture

changes, which further complicate the growth dynamics of DC1.

These periods of physiological noise and reduced predictability

make it harder for Prophet’s model to maintain high accuracy, as it

relies on seasonal patterns and stable trends to make predictions.
FIGURE 9

The comparison of actual and predicted values for both fruiting cane diameter (DC1) and one-sided cordon diameter (DC2) is shown using a linear
regression model. This figure presents the performance of the model in predicting the growth of grapevine diameters, highlighting the correlation
between observed and predicted values.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1607731
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1607731
4.3 Model application and decision-making

Using five variables (Leaf1, Leaf2, Leaf3, TDP1, and T), the

LightGBM and XGBoost models were able to predict grapevine

diameter changes with good accuracy. These models considered the

multifaceted impact of environmental factors on grapevine growth,

providing valuable decision support for vineyard management. For

example, based on input data such as leaf temperature, trunk sap

flow, and environmental temperature, the models can predict

grapevine diameter trends under varying temperature conditions,

allowing for adjustments in irrigation, fertilization, and water

transport strategies to ensure adequate water and nutrient supply

during growth, thus mitigating growth suppression caused by

extreme environmental changes. For warm seasons and spring, an

actionable composite trigger is: (i) an upper-canopy leaf-

temperature rise (Leaf2 or Leaf3) relative to air, together with (ii)

a same-day drop of TDP1 below its morning baseline (e.g., within-
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day 30th percentile). This joint plant-based cue targets physiological

stress beyond meteorological warming and aligns with a WUE-

oriented perspective.

Moreover, these models can predict changes in grapevine

diameter during different growth stages and provide precise

guidance for pruning and support management. During the rapid

growth phase, the models can help adjust pruning timing and

support measures to promote healthy grapevine growth. In extreme

temperature conditions, the models can forecast diameter trends,

enabling timely protective measures to minimize environmental

stress on the grapevines. Thresholds are phenology-specific: cane-

based dynamics (DC1) provide early warning during spring

recovery, whereas cordon-based confirmation (DC2) stabilizes

decisions in summer.

Future work will integrate additional environmental variables

including soil moisture, humidity, photosynthetically active

radiation (PAR), and light intensity. These additions will enhance
FIGURE 10

The comparison between actual and predicted values for both fruiting cane diameter (dc1) and one-sided cordon diameter (DC2) is shown using the
LightGBM model. This figure illustrates the model’s performance in predicting grapevine diameter, emphasizing the accuracy and correlation
between observed and predicted values for both DC1 and DC2.
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FIGURE 11

The comparison between actual and predicted values for both fruiting cane diameter (DC1) and one-sided cordon diameter (DC2) is shown using
the XGBoost model. This figure highlights the model’s effectiveness in predicting grapevine diameters, showcasing the accuracy and correlation
between the observed and predicted values for DC1 and DC2.
TABLE 3 Comparison of model (Linear regression, LightGBM, and XGBoost) results (MSE, RMSE, MAE, MAPE, R²).

Model MSE RMSE MAE MAPE R²

Linear Regression Forecast for DC1 66439.081 257.765 179.822 3.483 0.422

Linear Regression Forecast for DC2 440140.594 663.436 535.191 8.463 0.670

LightGBM Forecast for DC1 28579.034 169.053 92.714 1.785 0.751

LightGBM Forecast for DC2 93265.304 305.393 169.834 2.827 0.930

XGBoost Forecast for DC1 28303.740 168.237 91.772 1.769 0.753

XGBoost Forecast for DC2 90117.818 300.196 163.289 2.745 0.933
F
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model robustness and ecological relevance. Future deployment

should benchmark decision thresholds against WUE metrics to

enable unified evaluation across cultivars and training systems.
Frontiers in Plant Science 15
4.4 Comparative discussion with existing
models and studies

This study’s approach using physiological sensors (e.g., sap flow

sensors, branch diameter sensors) for monitoring grapevine growth

shows promising results. However, it can be further contextualized by

comparing it to studies using other advanced sensing technologies,

such as SIF (Solar-Induced Fluorescence), NDVI (Normalized

Difference Vegetation Index), and SWC (Soil Water Content)

sensors, which are also used to monitor vineyard conditions.

For example, studies utilizing SIF sensors have demonstrated

their ability to assess grapevine photosynthesis and provide insights

into plant stress and growth dynamics (Zhao et al., 2022). Similarly,

the NDVI index, a widely used vegetation index, has been employed

to assess vine vigor and health, offering a more comprehensive
TABLE 4 Prophet model hyperparameter.

Hyperparameter Value

Seasonality additive

Metric MSE, RMSE, MAE, MAPE, R²

Seasonality Prior Scale 10

Holidays Prior Scale 10

Changepoint Prior Scale 0.05

Periodicity 365
FIGURE 12

Seasonal comparison of DC1 and DC2 predictions. This composite figure compares the predicted values of fruiting cane diameter (DC1) and one-
sided cordon diameter (DC2) with their respective actual seasonal data. The figure uses different colors to represent each season: spring (pink),
summer (green), autumn (orange), and winter (blue). The red dashed line indicates the predicted values for both DC1 and DC2, allowing for an easy
comparison between the model’s predictions and the observed seasonal growth patterns.
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understanding of canopy cover and growth patterns (Mazzetto

et al., 2010). Moreover, SWC sensors have been utilized to

monitor soil moisture content, which is critical for understanding

water availability and its impact on grapevine growth (Horel and

Zsigmond, 2023).

Comparing the performance of these sensors with those used in

this study, such as sap flow sensors and diameter sensors, could

offer valuable insights into the strengths and limitations of each

technology. For example, while NDVI and SIF sensors provide a

broader view of canopy health and photosynthetic activity, sap flow

sensors offer more direct measurements of physiological processes

such as water transport. Combining these different types of sensors

could provide a more integrated and accurate model for predicting

grapevine growth and health.
4.5 Long-term monitoring system and
future prospects

While current models such as LightGBM, XGBoost, and

Prophet capture environmental factors and seasonal fluctuations

well, they still have room for improvement. One limitation is the
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lack of additional sensor data, such as soil moisture and

meteorological information, which could improve model accuracy

by capturing complex nonlinear relationships between

environmental variables and grapevine growth.

Future studies should explore deep learning approaches, particularly

time-series architectures, for more precise predictions. Expanding the

research to multiple outdoor field sites with varying environmental

conditions would also enhance the generalizability of the results,

compared to the current single-site greenhouse experiment.

To strengthen the theoretical foundation, integrating the Soil–

Plant–Atmosphere Continuum (SPAC) model would allow explicit

coupling of soil moisture, plant water uptake, and atmospheric

demand. This holistic framework could deepen the understanding

of grapevine water transport and inform more effective irrigation

strategies. Moreover, deploying field validation trials outside the

plastic greenhouse would broaden applicability and provide insights

into model robustness under diverse real-world conditions.

Finally, future studies should link physiological responses to yield

and quality metrics, such as cluster weight, berry sugar content (Brix),

and phenolic composition. This integration would bridge

environmental responses with agronomic performance, providing

growers with actionable insights for optimizing vineyard management.
5 Conclusion

This study advances a plant–sensor view of grapevine water

relations by integrating trunk sap flow, organ-resolved radial

growth (DC1, DC2), and leaf temperature across a full annual

cycle. Three contributions emerge. First, a season-dependent sign

structure was identified for the temperature–sap-flow coupling:

negative in spring, summer and autumn and positive in winter,

revealing predictable shifts in driver–response coordination across

phenological stages. Second, organ-specific coordination was

resolved, with the cordon (DC2) acting as a stable transport

baseline and the fruiting cane (DC1) exhibiting higher short-term

sensitivity and asynchrony during transitions. Third, time-ordering

analyses showed that sap flow statistically leads diameter change in
TABLE 5 Prophet model seasonal training results comparison (MSE, RMSE, MAE, MAPE, R²).

Model Season MSE RMSE MAE MAPE R²

Prophet Forecast for DC1

Summer 7105.390 84.293 57.009 1.043 0.928

Autumn 815.682 28.560 20.494 0.420 0.623

Winter 11493.433 107.207 77.679 1.690 0.393

Spring 41883.498 204.655 161.690 3.182 0.629

Overall 15782.446 125.628 80.461 1.612 0.847

Prophet Forecast for DC2

Summer 4689.045 68.477 44.460 0.590 0.950

Autumn 2324.675 48.215 35.708 0.472 0.913

Winter 12237.328 110.622 74.878 1.005 0.861

Spring 23889.474 154.562 119.491 2.510 0.965

Overall 11093.525 105.326 69.853 1.174 0.991
TABLE 6 Model seasonal training results comparison (MSE, RMSE, MAE,
MAPE, R²).

Model MSE RMSE MAE MAPE R²

Prophet Forecast for
DC1

15782.446 125.628 80.461 1.612 0.847

Prophet Forecast for
DC2

11093.525 105.326 69.853 1.174 0.991

LSTM Forecast for DC1 16532.431 128.072 85.462 1.740 0.818

LSTM Forecast for DC2 11856.789 107.259 72.981 1.347 0.919

Bi-LSTM Forecast for
DC1

17987.562 130.384 88.672 1.790 0.805

Bi-LSTM Forecast for
DC2

12992.644 110.454 74.765 1.380 0.910
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active seasons, providing a physiological basis for plant-

based control.

Methodologically, the study operationalizes multi-sensor

physiology for decision support. A season-aware baseline

(Prophet) captured low-frequency growth rhythms, while tree-

based ensembles (LightGBM, XGBoost) reproduced high-

frequency nonlinear variation in DC1/DC2 with markedly lower

error than a linear benchmark. Together, these components form a

practical forecasting stack that converts continuous plant signals

into decision-ready indicators.

In terms of application, a composite, plant-based trigger is

proposed for warm seasons and spring: (i) an upper-canopy leaf-

temperature rise (Leaf2/Leaf3) relative to ambient air, together with

(ii) a same-day drop of trunk sap flow (TDP1) below its morning

baseline (e.g., within-day 30th percentile). This joint cue targets

physiological stress rather than meteorological heat alone and

supports phenology-aware irrigation, in which DC1 provides

early warning during spring recovery while DC2 stabilizes

decisions in summer. The framework yields clear actions: advance

irrigation timing under sustained trigger exceedance; relax or defer

irrigation during winter dormancy when positive temperature–sap-

flow coupling indicates low demand; and taper irrigation in late

season as triggers abate and growth slows.

Conceptually, the findings link season-dependent coupling and

organ-specific coordination to actionable management, bridging

descriptive sensor traces and irrigation scheduling. Practically, the

approach is compatible with existing vineyard operations and can

be extended to other perennial systems that benefit from

continuous monitoring.

Limitations include a single site and protected-environment

setting, limited edaphic sensing, and no direct linkage to yield and

quality outcomes. Future work should calibrate season-specific

thresholds across cultivars and training systems in open-field

conditions, incorporate soil moisture and radiation to tighten

attribution, and co-evaluate decisions against water productivity

and fruit quality metrics. Such extensions will generalize the

thresholds and quantify operational gains, completing the path

from multi-sensor physiology to scalable precision irrigation.
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