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This study explores the seasonal variations in grapevine growth and sap flow, with a
particular focus on how environmental factors influence key growth indicators.
Grapevines are highly sensitive to seasonal changes, and understanding these
variations is essential for optimizing vineyard management practices. Given the
increasing importance of precision agriculture, high-precision sensors were
employed to monitor sap flow, leaf temperatures, and ambient temperature over
the course of a year. By collecting data on these physiological indicators, we aim to
identify patterns that can improve our understanding of grapevine responses to
environmental changes. Our findings reveal significant seasonal fluctuations in
grapevine growth, with the most growth occurring during the warmer months
(spring and summer) and slower growth in winter. The comparison of predictive
models, including Prophet, LightGBM, and XGBoost, demonstrated that machine
learning models were more accurate in predicting grapevine growth compared to
traditional methods. These results offer important insights into the relationship
between grapevine physiology and environmental conditions, providing a
foundation for improving vineyard management practices. The grape variety
utilized in this study is Sunshine Rose (Shine Muscat), known for its distinctive
sweet flavor and high economic value, making it a popular cultivar in
vineyards worldwide.
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1 Introduction

Grape cultivation plays a vital role in global agriculture,
particularly in the wine and table grape industries. With the
escalating challenges of climate change and water resource
shortages, effective water management has become a crucial
aspect of sustainable grape cultivation. The interactions between
temperature, water transport, and grapevine growth are central to
grape physiology research. Variations in temperature directly
impact transpiration, water transport, and nutrient absorption,
which, in turn, influence growth and fruit quality. Although the
adoption of precision irrigation and digital agriculture technologies
offers promising solutions, there remains a gap in current research,
particularly in developing precision irrigation strategies that are
driven by multi-parameter sensor data. This study aims to address
this gap by exploring the seasonal variations in grapevine growth
and sap flow and examining how environmental factors, monitored
through high-precision sensors, influence water management
strategies and grapevine development.

Recent studies confirm that soil water availability strongly
regulates grapevine transpiration and water-use efficiency, as
shown by multi-sensor assessments combining sap flow, leaf gas
exchange and chlorophyll fluorescence (Benyahia et al., 2023).
Furthermore, the impact of temperature on grapevine
transpiration cannot be overlooked. Under drought conditions,
the nitrate absorption rate decreases and is closely linked to
changes in water status (Gloser et al, 2020). Leaf temperature
monitoring has also been widely adopted as a direct proxy of
canopy transpiration and stress responses (Zhou et al,, 2022).
These environmental interactions collectively determine the
efficiency of grapevine growth and water transport. Improved
transpiration models offer more accurate predictions of crop
transpiration rates (Choi and Shin, 2020).

The relationship between transpiration and nutrient absorption
is a major focus of plant physiology research. Vineyard studies in
the last decade demonstrated that canopy conductance and
transpiration 40 under water stress strongly regulate nutrient
uptake efficiency, with hysteresis patterns highlighting the
dynamic coupling of physiology and environment (Bai et al,
2015). Nitrogen affects water flow and nutrient absorption by
regulating stomatal conductance and root hydraulic conductivity
(Matimati et al., 2014). Nighttime transpiration may promote leaf
nutrient absorption, especially under phosphorus-deficient
conditions (Vega et al., 2023), and earlier work suggested that
transpiration-driven mass flow can enhance nutrient transport to
the roots (Cramer et al., 2008). Sensor-fusion approaches further
indicate that grapevines dynamically adjust water and nutrient
uptake pathways under stress, which can be captured by real-time
monitoring of stem water potential (Ohana-Levi et al., 2022).
Emerging approaches highlight the potential of integrating multi-
sensor data streams, such as thermal, VNIR and RGB imagery, to
refine vineyard water-stress detection and irrigation decision-
making (Burchard-Levine et al., 2024).

With the development of data-driven and machine-learning
methods, researchers are now able to more accurately predict plant
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growth dynamics and vineyard water requirements. Machine-
learning approaches that integrate environmental and
physiological data have emphasized the interaction between
water availability and nutrient uptake, offering flexible
alternatives to traditional mechanistic models (Fuentes et al,
2024). Multi-sensor and proximal-sensing frameworks that
combine thermal and VNIR/multispectral imagery with weather
inputs have demonstrated strong potential for detecting vine water
stress and improving prediction accuracy (Tang et al.,, 2022). At
regional scales, remote sensing combined with machine learning
has been applied to map irrigated vineyard areas and support
large-scale irrigation planning (Lopez-Pérez et al,, 2024). In
addition, sap-flow-based modeling continues to capture
grapevine transpiration responses to environmental drivers,
providing a physiological foundation for precision irrigation
strategies (Wei et al., 2020).

Improving water-use efficiency (WUE) in precision viticulture
is closely tied to phenology-aware management of canopy
transpiration. At the plot scale, the dual crop-coefficient (dual-Kc)
approach has increased water productivity in Vitis vinifera cv.
Alvarinho, indicating more efficient allocation of irrigation across
growth stages (Silva et al., 2024). In a three-season field study with
Cabernet Sauvignon, data-driven irrigation scheduling based on
ET.and plant/soil water-status thresholds reduced applied water by
up to 65% while increasing crop-level WUE by as much as 41% on
lighter soils, without clear yield penalties (Schlank et al., 2024).
Complementarily, decision-support systems for precision regulated
deficit irrigation that predict soil moisture and recommend
schedules have demonstrated practical feasibility in vineyard
settings (Kang et al, 2023). In line with this perspective, the
present study focuses on the temperature-water-transport-growth
axis, with nutrient-uptake aspects referenced only as background.

Mineral nutrition interacts with plant water transport but is not
the focus here. Long-distance nutrient delivery emerges from
transpiration-driven mass flow (e.g., nitrate) and diffusion (e.g.,
phosphate), with their contributions depending on nutrient form
and soil supply (Plett et al., 2020; Holz et al., 2024). In grapevine,
nutrient status can feed back on water fluxes—for example,
potassium deficiency reduces transpiration via decreases in leaf
area and stomatal conductance (Sperling et al., 2024). In this study,
nutrient aspects are referenced only as contextual background to the
temperature-water-transport-growth axis.

Precision irrigation in vineyards has shifted from rule-based
fertigation toward sensing- and model-driven scheduling.
Contemporary reviews and field implementations show that
decision-support systems fuse plant/soil/atmospheric sensing with
meteorological inputs to recommend irrigation timing and
amounts, improving operational efficiency and water savings
(Tardaguila et al,, 2021). In commercial settings, both a CWSI-
based IoT DSS and a soil-moisture-driven DSS have been deployed
over multiple seasons, maintaining yield and quality while reducing
applied water (e.g., 10-17%) (King and Shellie, 2023; Garofalo
et al., 2023).

This study integrates multi-parameter sensing with high-
frequency modeling to translate physiological dynamics into
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phenology-aware irrigation guidance. Vines were instrumented
with high-precision sensors to continuously monitor fruiting cane
diameter (DC1), one-sided cordon diameter (DC2), trunk sap flow,
leaf temperature (Leafl-Leaf3), and ambient temperature. Seasonal
forecasting pipelines paired tree-based ensembles (LightGBM,
XGBoost) with an explicit seasonal component (Prophet).
Combined with vertical profiling (cane-cordon-trunk) and
vertical-gradient analysis, the models reveal spatiotemporal
patterns of water transport and radial growth and yield decision-
oriented thresholds for irrigation timing and amount. It was
hypothesized that seasonal fluctuations in environmental
temperature modulate grapevine water transport and radial
growth, and that machine-learning models can predict these
dynamics with actionable accuracy. Specifically, the aims were to:
(i) quantify cross-season relationships among environmental
temperature, sap flow, leaf temperature, and radial growth; (ii)
evaluate forecasting performance from high-frequency signals; and
(iii) propose phenology-aware, sensor-based irrigation guidelines.

2 Materials and methods

2.1 Experimental materials and site
overview

The grape variety used in this study was Sunshine Rose, a high-
value cultivar known for its distinctive sweet flavor. Vines were
trained to a single-trunk, double-arm V-shaped trellis to maximize
light interception, control canopy architecture, and promote
uniform ripening (Figure 1). Vines were 10 years old at the start
of monitoring. The experimental block comprised 96 vines
arranged in six north-south oriented rows (16 vines per row) at
2.5 m (row) x 1.2 m (vine) spacing; twelve representative vines were
instrumented, and the first and last rows were reserved as buffers.
Irrigation was supplied via a pressure-compensating drip system
(two laterals per row; emitters 2.0 Lh™" at 0.5 m spacing; operating

10.3389/fpls.2025.1607731

pressure 0.2 MPa) with Venturi-based fertigation every 10-14 days
during the growing season.

The study was conducted in a plastic greenhouse at the
Jinniushan Grape Experimental Base, Tai’an, Shandong, China
(temperate monsoon climate). Greenhouse climate was controlled
with automated shading and ventilation; relative humidity was
maintained at 60-70% through humidification and misting as
needed. The soil was sandy loam (pH 6.5-7.0) with good
drainage and aeration. Soil nutrient status was monitored
regularly, and fertigation was adjusted accordingly to ensure
balanced nutrition throughout the growth cycle.

2.2 Sensor configuration and data
collection

We used high-precision sensors (Dynamax Inc., Houston, TX,
USA) to continuously monitor the growth environment and
physiological status of Sunshine Rose grapevines. The
configuration comprised: (i) two DEX dendrometers for branch
diameter dynamics (DC1 on the fruiting cane; DC2 on the one-
sided cordon); (ii) three SapIP-IRT wireless infrared sensors for
leaf-surface temperature (Leafl-Leaf3); (iii) one SapIP trunk sap-
flow probe (TDP1); and (iv) one ambient-temperature probe at
canopy height. All sensors were factory-calibrated; zero-offset and
drift checks were performed before deployment and during routine
maintenance. Data were logged hourly from 1 June 2020 to 1 June
2021 (UTC + 8), yielding 8,760 records per channel (61,320
channel-hours across the seven channels). Key phenological
stages (budburst, flowering, veraison, maturity) were recorded
and used to align physiological signals (e.g., sap flow, radial
variation) with vine development for stage-aware analyses.

Sensor locations were standardized to ensure both vertical and
organ-level coverage (Figure 2). DC1: fruiting cane, ~15 cm from
the node with the cordon (avoiding junctional artifacts while
capturing typical cane growth). DC2: one-sided cordon, ~35 cm
from the trunk node (minimizing trunk influence on cordon
diameter). TDPI: trunk, ~60 cm above ground (integrative
measure of whole-plant water transport). Leafl: mid-canopy on

FIGURE 1
Single-trunk double-arm V-shaped trellis grapevines at the
Jinniushan Grape Experimental Base.
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FIGURE 2
Installation positions of the sensors.
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the fruiting cane; Leaf2: upper canopy on the one-sided cordon;
Leaf3: upper canopy on the fruiting cane. This layout captured
vertical gradients (mid vs. upper canopy) and organ differences
(cane-cordon-trunk) while maintaining representativeness across
the canopy.

Hourly monitoring across summer (June-August), autumn
(September-November), winter (December-February), and spring
(March-May) enabled the capture of short-term fluctuations and
cross season shifts in environmental drivers, providing high-
resolution inputs for subsequent modeling of growth and water-
transport dynamics.

2.3 Data preprocessing

During data collection, a comprehensive data cleaning process
was implemented to ensure high data quality and improve analysis
accuracy. The Z-score method was applied to remove invalid or
abnormal data points, such as extreme temperature values or
measurements affected by sensor malfunctions or external
disturbances, ensuring that outliers did not compromise the
dataset’s reliability. Missing values were addressed through linear
interpolation, where data points that were missing or unrecorded
were estimated based on the surrounding valid data, effectively
filling gaps and maintaining continuity in the time series. Time
synchronization was also performed to resolve discrepancies in
timing across sensors. All sensor data were aligned to a unified
timestamp, ensuring consistency across measurements taken at
different times. Furthermore, unit conversion and normalization
were applied to standardize the data from different sensors with
varying units or scales, allowing for direct comparison and analysis
on a uniform scale. These preprocessing steps ensured the accuracy,
consistency, and completeness of the dataset, providing a solid
foundation for reliable statistical analysis and modeling.

2.4 Data analysis methods

This study employed multiple data analysis methods to explore
the relationships between temperature, water, and physiological
indicators during grapevine growth and to construct predictive
models. Pearson correlation coefficients were calculated to quantify
the correlations between environmental temperature, sap flow,
trunk radial growth, and leaf temperature. The results were
visualized using heatmaps to intuitively reflect the positive and
negative correlations among the indicators. The trends of different
indicators across seasons were compared to reveal the mechanisms
by which environmental factors influence grapevine growth. The
results were presented in charts, reflecting the seasonal variation
patterns of the indicators.

LightGBM and XGBoost were selected due to their strong
performance on small tabular datasets and their robustness in
handling missing or noisy data. Prophet was chosen for its ability
to explicitly model seasonal trends. In this study, linear regression,
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LightGBM, XGBoost, and Prophet models were constructed using
leaf temperature, trunk sap flow, and environmental temperature as
input features, with grapevine diameter as the target variable. Model
performance was evaluated using metrics including MSE, RMSE,
MAE, MAPE, and R?. The results demonstrated that LightGBM and
XGBoost outperformed linear regression in capturing nonlinear
relationships, while Prophet effectively modeled seasonal growth
patterns. Future studies will consider incorporating additional
environmental variables (e.g., soil moisture, light intensity,
meteorological data) and exploring deep learning approaches
such as LSTM or Bi-LSTM to further enhance prediction
accuracy and capture long-term temporal dependencies in
physiological signals.

Visualization methods such as heatmaps, line charts, and scatter
plots were used to clearly present the analysis results, facilitating the
understanding of complex relationships among indicators and their
seasonal variations.

3 Results

3.1 Overall dynamics of the temperature-
water-growth system

The spatiotemporal dynamics of environmental factors during
grape growth were revealed by analyzing the correlations between
environmental temperature, water status, and grapevine growth
across seasons. Pearson heatmaps quantified relationships among
ambient temperature, trunk sap flow rate, stem diameter, and leaf
temperature, visually illustrating the strength and direction of these
correlations across seasons. Specifically, the Pearson correlation
heatmaps for spring, summer, autumn, and winter are shown in
Figure 3. These heatmaps are descriptive screens to locate season-
and organ-specific coupling; mechanistic interpretation and
implications are addressed in the Discussion.

3.1.1 Seasonal analysis of the relationship
between canopy temperature and trunk sap flow
rate

The relationship between temperature and trunk sap flow rate
was observed to exhibit significant seasonal variations, reflecting the
physiological responses of grapevines to temperature changes. The
specific seasonal analyses are as follows:

Summer: A strong negative correlation was observed (r = -
0.71), consistent with stomatal regulation under sustained heat and
high atmospheric demand.

Autumn: The negative correlation (r = -0.76) persisted as
canopy activity declined, indicating demand-supply decoupling
during senescence.

Winter: The positive correlation (r = 0.38) likely reflects warmer
intervals reducing sap viscosity and thawing conductive pathways,
allowing modest increases from low baselines.

Spring: The negative correlation (r = -0.67) suggests transient
heat spells depress conductance during early growth.
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FIGURE 3

Pearson correlation heatmap of temperature and physiological indicators of grapevines. This figure presents a Pearson correlation heatmap
illustrating the relationships between ambient temperature, leaf temperatures (Leafl, Leaf2, Leaf3), and physiological indicators of grapevines,
including sap flow (TDP1) and grapevine diameter (DC1, DC2). The heatmap highlights the strength and direction of the correlations, with warmer
colors indicating a strong positive correlation and cooler colors showing a negative correlation. This visual representation helps to identify key
environmental factors that influence grapevine growth and physiological processes across different seasons.

3.1.2 Seasonal characteristics of fruiting cane
diameter and one-sided cordon diameter

Significant seasonal variations were observed in the radial growth
synchronization between different parts of the grapevine, reflecting the
profound impact of environmental conditions on grapevine growth
activities. To provide a more intuitive understanding of the seasonal
interactions between temperature, transpiration, and water transport,
Figure 4 illustrates how these factors influence grapevine growth
dynamics across different seasons.

Summer: The correlation coefficient between DC1 and DC2 was
0.9, indicating a positive correlation. High temperatures and
abundant sunlight provided optimal growing conditions for the
grapevine, leading to significantly enhanced overall growth activity.
This high correlation reflected the highly synchronized radial
growth trends of the grapevine under warm conditions. With
favorable temperatures and ample light, the grapevine
experienced vigorous growth, resulting in a substantial increase in
growth synchronization between the two parts, manifested as a
strong positive correlation.

Frontiers in Plant Science

Autumn: As temperatures began to drop, the correlation
coefficient between DC1 and DC2 decreased to -0.59, showing a
negative correlation. The grapevine’s water use efficiency declined,
evaporation decreased, and growth activity began to slow. This
negative correlation suggested that, as the temperature decreased,
the growth trends of the two parts became divergent. This
divergence may be attributed to differences in how each part
responded to temperature changes, reflecting the gradual
weakening and inconsistency of grapevine growth activities
during autumn.

Winter: The correlation coefficient between DCI and DC2
further decreased to -0.27, indicating a weak negative correlation.
Under low temperatures, the grapevine entered a nearly dormant
state, and overall growth activity significantly decreased. This weak
negative correlation reflected more noticeable growth differences
between the different parts of the trunk during dormancy. However,
as the temperature’s suppressive effect on growth was relatively
uniform, the negative correlation between the two parts
was weakened.
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FIGURE 4

Hypothesized seasonal interactions between temperature, transpiration, and water transport in grapevines. The diagram illustrates how these
environmental factors influence grapevine growth dynamics across different seasons (spring, summer, autumn, and winter).

Spring: The correlation coefficient between DC1 and DC2
further dropped to -0.89, indicating a significant negative
correlation. As temperatures rose, the grapevine gradually
resumed growth activity, but the growth differences between the
two parts became more pronounced. This strong negative
correlation suggested that as temperatures increased, faster water
evaporation intensified competition for water and nutrients among
the different parts, leading to greater asynchrony in growth between
the DC1 and. Consequently, the negative correlation between the
two parts significantly strengthened.

3.1.3 Spatiotemporal dynamics of water transport
vertical gradient (and upper-lower water
association

Significant seasonal variations in the correlations between diameter
and trunk sap flow rate were observed, reflecting differences in
physiological activities under varying environmental conditions.

Summer: Positive correlations were observed between DC2 and
TDP1, with a correlation coefficient of 0.33, and between DC1 and
TDPI1, with a correlation coefficient of 0.34. These positive
correlations indicated that water demand and flow were
coordinated across different parts of the grapevine under high
temperatures. The vigorous growth activity during summer was
found to ensure strong synchronization in the vertical gradient of
water transport and the upper—-lower water association.

Autumn: The correlation coefficient between DC2 and TDP1
was reduced to 0.24, indicating a weakened positive correlation,
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while a weak negative correlation was observed between DC1 and
TDP1, with a correlation coefficient of -0.11. This suggests that
water transport became less synchronized as temperatures dropped
and grapevine growth slowed. The decrease in evaporation and
slower growth led to divergent water demand across different parts
of the grapevine, causing inconsistencies in the vertical gradient and
upper—lower water association.

Winter: A significant negative correlation was observed between
DC2 and TDP1, with a correlation coefficient of -0.51, while a very
weak negative correlation was found between DC1 and TDP1, with
a correlation coefficient of -0.04. Under low temperatures,
grapevines were observed to enter a near-dormant state, and
water evaporation was significantly reduced, leading to
asynchronous water transport. This negative correlation indicated
the near-complete cessation of growth in the grapevine during
dormancy, leading to stagnation in water transport. Significant
differences were observed in the vertical gradient and upper-
lower water association.

Spring: A positive correlation was observed between DC2 and
TDP1, with a correlation coefficient of 0.51, while a negative
correlation was found between DC1 and TDP1, with a correlation
coefficient of -0.42. This suggested that water transport in the
thicker one-sided cordon became more synchronized with trunk
sap flow, while the fruiting cane exhibited asynchronous water
demand. As temperatures rose, grapevines were observed to
gradually resume growth, and water transport became more
active. However, the competition for water and nutrients among
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different parts was found to intensify, leading to a divergence in
water transport synchronization. This reflected the dynamic
spatiotemporal changes in the vertical gradient and upper-lower
water association during the spring recovery period.

3.2 System association between
environmental temperature and leaf
temperature

The relationship between environmental temperature and leaf
temperature exhibited significant seasonal variations, reflecting the
response mechanism of grapevine leaves to temperature changes.

Summer: A positive correlation between environmental
temperature and leaf temperatures, with correlation coefficients
between environmental temperature and Leafl, Leaf2, and Leaf3
of 0.88, 0.94, and 0.96, respectively. This high positive correlation
indicated that despite the generally high temperatures, the leaf
temperatures followed a similar trend to the environmental
temperature. However, as Leaf3 was more exposed to direct
sunlight, it experienced more fluctuation in temperature than did
Leafl and Leaf2, which were less exposed.

Autumn: The correlation between environmental temperature
and leaf temperature remained high, with correlation coefficients
between environmental temperature and Leafl, Leaf2, and Leaf3 of
0.93, 0.98, and 0.98. This high positive correlation suggested that,
despite the temperature decrease, the leaf temperatures across
different parts of the grapevine still closely mirrored the
environmental temperature, reflecting a uniform cooling effect
across the plant.

Winter: The correlation between environmental temperature
and leaf temperature remained relatively high. The correlation
coefficients between environmental temperature and Leafl, Leaf2,
and Leaf3 were 0.70, 0.96, and 0.96, respectively. This positive
correlation indicated that, under low temperatures, the leaf
temperatures across different parts of the vine became more
synchronized. However, Leafl, positioned lower on the vine,
experienced less variation in temperature compared to the more
exposed leaves, which were more sensitive to the cold.

Spring: As temperatures began to rise in spring, a positive
correlation between environmental temperature and leaf
temperature, with correlation coefficients between environmental
temperature and Leafl, Leaf2, and Leaf3 of 0.96, 0.98, and 0.99. This
high positive correlation suggested that as the temperature
increased, the leaf temperatures across different parts of the
grapevine became highly synchronized, reflecting a uniform

warming effect on the entire vine.

3.3 The complex relationship between leaf
temperature and trunk sap flow

Summer: Strong negative correlations were observed between
Leafl, Leaf2, and Leaf3 and TDP1, with correlation coefficients of -
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0.51, -0.73, and -0.64, respectively. Under high temperatures,
transpiration in the grapevine peaked. This strong negative
correlation was attributed to the significant enhancement of leaf
transpiration under high temperature conditions, which led to a
substantial reduction in trunk sap flow. The strongest negative
correlation (-0.73) was found between the one-sided cordon Leaf2
and sap flow, likely due to its proximity to the trunk, where
transpiration had a more direct and significant impact. The top
fruiting cane Leaf3 also exhibited strong transpiration, with a
slightly weaker negative correlation (-0.64) compared to Leaf2.
The middle fruiting cane Leafl, with relatively weaker transpiration,
showed the weakest negative correlation (-0.51).

Autumn: As temperatures gradually decreased in autumn, the
correlation coefficients between Leafl, Leaf2, and Leaf3 and TDP1
were -0.68, -0.71, and -0.78, respectively, indicating negative
correlations. Although grapevine growth slowed and transpiration
weakened as temperatures dropped, the negative correlation persisted,
suggesting that transpiration still contributed to a reduction in trunk
sap flow. The top fruiting cane Leaf3 continued to exhibit significant
transpiration, with the strongest negative correlation (-0.78). The one-
sided cordon Leaf2, being closer to the trunk, still had a significant
effect on sap flow, showing a strong negative correlation (-0.71). The
middle fruiting cane Leafl, with weaker transpiration, displayed the
weakest negative correlation (-0.68).

Winter: The correlation coefficients between Leafl, Leaf2, and
Leaf3 and TDP1 were 0.55, 0.37, and 0.31, respectively, indicating
positive correlations. At low temperatures, grapevines almost
entered dormancy, and transpiration significantly decreased. This
positive correlation was attributed to the reduction in leaf
transpiration under low temperature conditions, leading to an
increase in trunk sap flow. The middle fruiting cane Leafl, found
lower on the plant, was less affected by the cold and showed a
stronger positive correlation (0.55) with sap flow. Both the one-
sided cordon Leaf2 and the top fruiting cane Leaf3, being more
exposed to the cold, showed relatively weaker positive correlations
with sap flow (0.37 and 0.31, respectively).

Spring: As temperatures began to rise in spring, negative
correlations were observed between Leafl, Leaf2, and Leaf3 and
TDP1, with correlation coefficients of -0.61, -0.69, and -0.71,
respectively. With the rise in temperature and the resumption of
growth activities, transpiration gradually intensified, leading to a
reduction in trunk sap flow. The top fruiting cane Leaf3, exposed to
stronger sunlight, exhibited more significant transpiration, resulting
in a stronger negative correlation with sap flow (-0.71). Due to its
proximity to the trunk, the one-sided cordon Leaf2 had a more
direct impact on sap flow, showing a stronger negative correlation
(-0.69). The middle fruiting cane Leafl, with relatively weaker
transpiration, displayed the weakest negative correlation (-0.61).

The seasonal variation in correlations highlights the profound
impact of temperature-driven transpiration on water transport in
grapevines, reflecting differences in the response of leaves to
temperature changes at various locations on the vine and
illustrating the grapevine’s physiological adaptation mechanisms
under different environmental conditions.
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3.4 Granger causality test

A Granger Causality Test was performed to analyze the
temporal relationships, and the visualization results illustrating
these causal dynamics are presented in Figures 5, 6, 7, and 8.

Summer: Sap flow (TDP1) had a significantly stronger causal
effect on DC2 compared to other seasons. The Granger Causality
test indicated a strong cause-effect relationship between sap flow
and grapevine growth. The time series in Figure 2 (Summer) clearly
shows that the increases in sap flow precede the growth of DC2. The
ADF test for DC1 and DC2 in the summer season (p-values < 0.05)
confirmed the presence of significant stationarity after differencing,
indicating that the seasonal effects were stronger and more
consistent during this time. This aligns with the visual patterns in
Figure 3, where sap flow and DC2 follow a similar trend, with sap
flow leading growth in the grapevine.

Autumn: The causal relationship between sap flow (TDP1) and
DC2 remained significant, but the effect was less pronounced
compared to summer. The ADF test for DC2 (p-value = 0.5084)
indicated that it was initially non-stationary, but after differencing,
it became stationary (p-value = 0.0000). The time series in Figure 4
(Autumn) shows moderate fluctuations in both sap flow and DC2,
with sap flow continuing to lead DC2. However, the amplitude of
fluctuations was smaller in the autumn, reflecting a reduction in the
rate of growth compared to the summer. This seasonal shift is also
captured by the ADF results, indicating less variability and a more
stable relationship between sap flow and DC2 during this period.

Winter: The causal relationship between sap flow (TDP1) and
DC2 was weakest, with sap flow showing minimal effect on DC2.
The ADF test for DC2 (p-value = 0.6506) indicated that DC2 was
non-stationary, but after differencing, it became stationary (p-value
=0.0000). The time series in Figure 5 (Winter) shows that both sap
flow and DC2 exhibit low variability and smaller fluctuations,
reflecting the dormant phase of grapevine growth. The lack of
significant fluctuations in sap flow during winter explains the
weaker causal relationship observed. This is consistent with the
general slowdown in physiological processes during the
winter months.

Spring: During the spring season, sap flow (TDP1) and grapevine
diameter (DC2) exhibited a noticeable temporal relationship, where
increases in sap flow were followed by changes in DC2. The Granger
Causality test showed that sap flow (TDP1) Granger caused changes
in DC2, although the causal effect was weaker compared to other
seasons. This is reflected in the lower amplitude of fluctuations in
both variables during spring, as seen in Figure 1 (Spring). The ADF
test results for DC2 in spring (p-value = 0.6506) also indicated that
DC2 was non-stationary, requiring differencing to make it stationary
before the causality analysis. Once differenced, DC2 showed a
significant p-value (0.0000), confirming the stationarity and further
supporting the causal analysis.

The Granger Causality test revealed that sap flow (TDP1)
consistently Granger caused changes in grapevine diameter (DC2)
throughout the year. However, the strength of this causal
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relationship varied seasonally. The summer season exhibited the
strongest causal effect, while the spring and autumn seasons showed
moderate relationships. Winter, as expected, had the weakest
relationship, reflecting the slower metabolic activity of the
grapevine during dormancy. The ADF test results further
confirmed the seasonal differences in stationarity, with the
strongest variability observed in the summer and weaker
fluctuations in the winter.

3.5 Comparison of predictive model
performance

In grapevine growth prediction, the tree-based ensemble
models LightGBM and XGBoost effectively captured nonlinear
relationships in the data and providing high-precision
predictions. To evaluate the performance of these two models,
this study uses a linear regression model as a benchmark for
comparative analysis, aiming to identify the most suitable model
for predicting grapevine diameter. The dataset was divided into
training and validation sets in an 80:20 ratio. The hyperparameters
for the LightGBM and XGBoost models are shown in Tables 1 and
2, respectively. The input features for the models include Leafl,
Leaf2, Leaf3, TDPI1, and T, with the output variables being the
diameters DC1 and DC2. Through this comparative analysis, the
study aims to provide more accurate predictions and decision
support for grapevine management. The correlation analysis
results for linear regression, LightGBM, and XGBoost are
visualized in Figures 9, 10, and 11, respectively, while the detailed
analysis for each model is presented in Table 3.

The linear regression model performed poorly in predicting
both DC1 and DC2, especially in the prediction of DC2, where the
R* value was only 0.670, significantly lower than those of the
LightGBM and XGBoost models (0.930 and 0.933, respectively).
This indicates substantial limitations in the ability of the linear
regression model to capture complex relationships in the data.
Furthermore, the Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE) for DC1 and DC2 were both relatively
high for the linear regression model, at 66439.081 and 257.765
(DC1) and 440140.594 and 663.436 (DC2), indicating large
prediction errors. Particularly in the prediction of DC2, the linear
regression model’s Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) were 535.191 and 8.463%,
further demonstrating the low prediction accuracy of this model
on this dataset. In contrast, both the LightGBM and XGBoost
models exhibited significantly lower MSE, RMSE, MAE, and
MAPE for both DC1 and DC2, indicating higher prediction
accuracy and better fitting performance. These results suggest that
tree-based ensemble learning methods outperform traditional linear
regression models when handling complex datasets. These results
support a plant-based, WUE-oriented scheduling approach in
which sap flow and leaf/diameter signals provide the primary
predictors, consistent with prior sap-flow—WUE analyses.
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FIGURE 5

Summer seasonal variations in ambient temperature, leaf temperature, sap flow, and stem radial growth. This figure depicts the seasonal fluctuations
in ambient temperature, leaf temperatures (Leafl, Leaf2, Leaf3), sap flow (TDP1), and stem radial growth (DC1, DC2) during the summer season. The
Granger Causality analysis shows a strong causal relationship between sap flow and stem radial growth, with sap flow leading growth in DC2. The
figure highlights the synchronized growth patterns driven by high temperatures and abundant sunlight during this active growing season.

3.6 Seasonal forecasting of DC1 and DC2 relationships in grapevine diameter predictions. However, these
using the prophet model models did not account for seasonal information. The Prophet

model has shown significant advantages in capturing the seasonal

The performance evaluation of the LightGBM and XGBoost  fluctuations of grapevine growth. Therefore, to conduct seasonal
models demonstrated that these tree-based ensemble learning  predictions, this model was used in the psresnet study to further
methods performed very well in capturing the nonlinear  analyze the prediction capabilities for DC1 and DC2. The
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FIGURE 6

Autumn seasonal variations in ambient temperature, leaf temperature, sap flow, and stem radial growth. This figure presents the seasonal variations
in ambient temperature, leaf temperatures (Leafl, Leaf2, Leaf3), sap flow (TDP1), and stem radial growth (DC1, DC2) during autumn. Granger
Causality analysis reveals that the causal relationship between sap flow and stem radial growth weakens as temperatures decline and grapevine

growth slows. The reduction in sap flow and leaf temperature reflects the transition towards dormancy.
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Winter seasonal variations in ambient temperature, leaf temperature, sap

flow, and stem radial growth. This figure illustrates the fluctuations in

ambient temperature, leaf temperatures (Leafl, Leaf2, Leaf3), sap flow (TDP1), and stem radial growth (DC1, DC2) during the winter season. Granger
Causality analysis shows minimal causal effect between sap flow and stem radial growth, reflecting the grapevine's dormancy phase. The figure
demonstrates how environmental conditions during winter lead to reduced physiological activity in the plant, with weakened correlations between

growth and sap flow.

hyperparameters for the Prophet model are listed in Table 4. The
correlation analysis results are shown in the Figures 12, and the
detailed analysis results are presented in the Table 5.

The Prophet model demonstrated significant seasonal
fluctuations in the predictions for DC1 and DC2. For DCI, the
model showed higher prediction accuracy in summer, with an MAE
of 57.009 and an R? of 0.928, while the prediction error was larger in

spring, with an MAE of 161.690 and an R” of 0.629. In contrast, the
prediction for DC2 was more stable, particularly during spring and
summer, with MAEs of 119.491 and 44.460 and R? values of 0.965
and 0.950, respectively. In comparison, the LSTM and Bi-LSTM
models, as shown in the Table 6, performed worse than the Prophet
model. For DC1, the LSTM model achieved an R* of 0.818 and the
Bi-LSTM model achieved an R> of 0.805, indicating weaker
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FIGURE 8
Spring seasonal variations in ambient temperature, leaf temperature, sap

Date

flow, and stem radial growth. This figure shows the fluctuations in ambient

temperature, leaf temperatures (Leafl, Leaf2, Leaf3), sap flow (TDP1), and stem radial growth (DC1, DC2) during the spring season. The results of
Granger Causality analysis are presented, demonstrating that sap flow leads to changes in stem radial growth (DC2) as temperatures begin to rise.
This interaction reflects the grapevine's recovery from dormancy and the increasing influence of temperature on physiological responses.
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TABLE 1 LightGBM model hyperparameters.

Hyperparameter Value

10.3389/fpls.2025.1607731

TABLE 2 XGBoost model hyperparameters.

Hyperparameter Value

Objective Regression Objective Regression
Metric MSE, RMSE, MAE, MAPE, R? Metric MSE, RMSE, MAE, MAPE, R?

Boosting Type Gradient Boosting Decision Tree Max Depth 6

Num Leaves 31 Learning Rate 0.1

Learning Rate 0.1 Subsample 0.8

Feature Fraction 0.9 Colsample Bytree 0.8

Seed 42 Seed 42

Number of Rounds 200 Number of Rounds 200

performance in capturing seasonal growth compared to Prophet.
Similarly, for DC2, the LSTM model reached an R* 0f 0.919, and the
Bi-LSTM model achieved an R? of 0.910, still falling short of the
exceptional R? of 0.991 from the Prophet model. This discrepancy
highlights the lack of explicit seasonality handling in the LSTM and
Bi-LSTM structures, which contributed to their weaker
performance in predicting seasonal growth.

The Prophet model showed significant seasonal fluctuations in
the predictions for both DC1 and DC2. The results for DC1, with a
model R of 0.847 overall, and for DC2, with an exceptional R* of
0.991, suggest that while the Prophet model effectively captured
seasonal growth patterns, DC1 was more influenced by
environmental changes, particularly during the spring and winter
months. In comparison, the LSTM and Bi-LSTM models, which
performed worse than the Prophet model, showed weaker
performance in predicting seasonal growth due to the lack of
explicit seasonality handling in their structure.

While this study primarily focused on capturing seasonal
fluctuations in grapevine growth through the Prophet model, it is
important to acknowledge that there are other potential
explanations for variations in grapevine growth dynamics that
were not explicitly explored in this analysis. For example, inverse
sap flow could play a role in altering the growth patterns,
particularly during night-time when transpiration is low but the
grapevine may still experience water transport through reverse flow.
Additionally, night-time fluxes, which are influenced by the plant’s
internal water balance during non-transpirational periods, could
contribute to the overall water transport system in ways not fully
captured in this study.

Furthermore, cold-stress induced xylem refilling is another
potential factor that may affect water transport, particularly
during the winter months when the grapevine is in dormancy.
This phenomenon could introduce fluctuations in sap flow that are
not solely driven by environmental temperature but by internal
physiological mechanisms in response to freezing temperatures.

Future studies could consider incorporating these alternative
explanations to provide a more comprehensive understanding of
the factors influencing grapevine growth and water transport across
different seasons.
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4 Discussion
4.1 Model performance

The comparison of the prediction results from LightGBM,
XGBoost, and linear regression models demonstrated that tree-
based ensemble learning methods (LightGBM and XGBoost) had
significant advantages in addressing the problem of grapevine
diameter prediction. The linear regression model, due to its
limitations in linear assumptions, was unable to effectively capture
the nonlinear relationships within the data, leading to poorer
performance in predicting both DCI and DC2. Particularly in the
prediction of DC2, the R* value of the linear regression model was
only 0.670, which was far lower than the R values of Light GBM and
XGBoost (0.933 and 0.930, respectively). This indicates that the linear
regression model has evident limitations when handling complex
datasets. This interpretation is consistent with prior solar-greenhouse
evidence that links sap-flow dynamics to physio-environmental
drivers and water-use efficiency (WUE), and treats diurnal
hysteresis as a decision-relevant diagnostic (Wei et al., 2020).

In contrast, LightGBM and XGBoost models, by integrating
multiple decision trees, were able to better capture the nonlinear
relationships within the data, resulting in higher prediction
accuracy for both DC1 and DC2. Specifically, the XGBoost model
achieved an R* value of 0.933 for DC2, showcasing its robust
capability in handling complex data. Furthermore, the MSE,
RMSE, MAE, and MAPE values for both LightGBM and
XGBoost were significantly lower than those of the linear
regression model, further validating their superiority in grapevine
diameter prediction. In practice, ensemble predictions of DC1/DC2
from plant signals can be coupled to season-specific thresholds to
drive irrigation timing and amounts in a decision-oriented manner.

4.2 Seasonal discussion based on the
prophet model

The Prophet model demonstrated excellent performance in
capturing the seasonal variations in grapevine diameter. Through
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The comparison of actual and predicted values for both fruiting cane diameter (DC1) and one-sided cordon diameter (DC2) is shown using a linear
regression model. This figure presents the performance of the model in predicting the growth of grapevine diameters, highlighting the correlation

between observed and predicted values.

the seasonal forecasting of DC1 and DC2, it was found that the
Prophet model could effectively reflect the seasonal fluctuations in
grapevine diameter. Notably, for DC2, the prediction accuracy was
high, with an R* value close to 1 (0.991), indicating that the model
was able to predict grapevine diameter changes with high precision.
In contrast, the prediction accuracy for DC1 was slightly lower, with
an R® value of 0.847, which could be attributed to the greater
sensitivity of DCI to environmental factors.

As the DCI is more complex in terms of growth changes,
especially in the spring and autumn, fluctuations in external
environmental factors tend to cause significant variations in
growth, making the prediction more challenging. In contrast, the
DC2 exhibits relatively stable growth, less affected by environmental
fluctuations, thus allowing for more accurate predictions using the
Prophet model. The relative stability of DC2 suggests that the
cordon better represents a whole-axis transport baseline, whereas
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DCI1 (fruiting cane) is more sensitive to short-term microclimate
and growth transitions.

The lower performance in spring and winter likely reflects
dormancy and transition stages, where physiological noise and
low signal variance challenge Prophet’s seasonality assumptions.
During winter, the grapevine enters a dormant phase, with minimal
metabolic activity and negligible changes in DCI, leading to low
variance in the data. This lack of growth variability makes it difficult
for the Prophet model to detect meaningful patterns and accurately
forecast DCI. Similarly, in spring, the rapid transition from
dormancy to active growth creates more fluctuating
environmental conditions, including temperature and moisture
changes, which further complicate the growth dynamics of DCI.
These periods of physiological noise and reduced predictability
make it harder for Prophet’s model to maintain high accuracy, as it
relies on seasonal patterns and stable trends to make predictions.
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The comparison between actual and predicted values for both fruiting cane diameter (dcl) and one-sided cordon diameter (DC2) is shown using the
LightGBM model. This figure illustrates the model's performance in predicting grapevine diameter, emphasizing the accuracy and correlation

between observed and predicted values for both DC1 and DC2.

4.3 Model application and decision-making

Using five variables (Leafl, Leaf2, Leaf3, TDP1, and T), the
LightGBM and XGBoost models were able to predict grapevine
diameter changes with good accuracy. These models considered the
multifaceted impact of environmental factors on grapevine growth,
providing valuable decision support for vineyard management. For
example, based on input data such as leaf temperature, trunk sap
flow, and environmental temperature, the models can predict
grapevine diameter trends under varying temperature conditions,
allowing for adjustments in irrigation, fertilization, and water
transport strategies to ensure adequate water and nutrient supply
during growth, thus mitigating growth suppression caused by
extreme environmental changes. For warm seasons and spring, an
actionable composite trigger is: (i) an upper-canopy leaf-
temperature rise (Leaf2 or Leaf3) relative to air, together with (ii)
a same-day drop of TDP1 below its morning baseline (e.g., within-
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day 30th percentile). This joint plant-based cue targets physiological
stress beyond meteorological warming and aligns with a WUE-
oriented perspective.

Moreover, these models can predict changes in grapevine
diameter during different growth stages and provide precise
guidance for pruning and support management. During the rapid
growth phase, the models can help adjust pruning timing and
support measures to promote healthy grapevine growth. In extreme
temperature conditions, the models can forecast diameter trends,
enabling timely protective measures to minimize environmental
stress on the grapevines. Thresholds are phenology-specific: cane-
based dynamics (DC1) provide early warning during spring
recovery, whereas cordon-based confirmation (DC2) stabilizes
decisions in summer.

Future work will integrate additional environmental variables
including soil moisture, humidity, photosynthetically active
radiation (PAR), and light intensity. These additions will enhance
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The comparison between actual and predicted values for both fruiting cane diameter (DC1) and one-sided cordon diameter (DC2) is shown using
the XGBoost model. This figure highlights the model's effectiveness in predicting grapevine diameters, showcasing the accuracy and correlation

between the observed and predicted values for DC1 and DC2.

TABLE 3 Comparison of model (Linear regression, LightGBM, and XGBoost) results (MSE, RMSE, MAE, MAPE, R?).

Model MSE RMSE MAE MAPE R?
Linear Regression Forecast for DC1 66439.081 257.765 179.822 3.483 0.422
Linear Regression Forecast for DC2 440140.594 663.436 535.191 8.463 0.670
LightGBM Forecast for DC1 28579.034 169.053 92.714 1.785 0.751
LightGBM Forecast for DC2 93265.304 305.393 169.834 2.827 0.930
XGBoost Forecast for DC1 28303.740 168.237 91.772 1.769 0.753
XGBoost Forecast for DC2 90117.818 300.196 163.289 2.745 0.933
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TABLE 4 Prophet model hyperparameter.

Hyperparameter Value

Seasonality additive
Metric MSE, RMSE, MAE, MAPE, R*
Seasonality Prior Scale 10
Holidays Prior Scale 10
Changepoint Prior Scale 0.05
Periodicity 365

model robustness and ecological relevance. Future deployment
should benchmark decision thresholds against WUE metrics to
enable unified evaluation across cultivars and training systems.

10.3389/fpls.2025.1607731

4.4 Comparative discussion with existing
models and studies

This study’s approach using physiological sensors (e.g., sap flow
sensors, branch diameter sensors) for monitoring grapevine growth
shows promising results. However, it can be further contextualized by
comparing it to studies using other advanced sensing technologies,
such as SIF (Solar-Induced Fluorescence), NDVI (Normalized
Difference Vegetation Index), and SWC (Soil Water Content)
sensors, which are also used to monitor vineyard conditions.

For example, studies utilizing SIF sensors have demonstrated
their ability to assess grapevine photosynthesis and provide insights
into plant stress and growth dynamics (Zhao et al., 2022). Similarly,
the NDVI index, a widely used vegetation index, has been employed
to assess vine vigor and health, offering a more comprehensive
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Seasonal comparison of DC1 and DC2 predictions. This composite figure compares the predicted values of fruiting cane diameter (DC1) and one-
sided cordon diameter (DC2) with their respective actual seasonal data. The figure uses different colors to represent each season: spring (pink),
summer (green), autumn (orange), and winter (blue). The red dashed line indicates the predicted values for both DC1 and DC2, allowing for an easy
comparison between the model's predictions and the observed seasonal growth patterns.
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TABLE 5 Prophet model seasonal training results comparison (MSE, RMSE, MAE, MAPE, R?).

Model Season MSE RMSE MAE MAPE R?
Summer 7105.390 84.293 57.009 1.043 0.928

Autumn 815.682 28.560 20.494 0.420 0.623

Prophet Forecast for DC1 Winter 11493.433 107.207 77.679 1.690 0.393
Spring 41883.498 204.655 161.690 3.182 0.629

Overall 15782.446 125.628 80.461 1.612 0.847

Summer 4689.045 68.477 44.460 0.590 0.950

Autumn 2324.675 48.215 35.708 0.472 0.913

Prophet Forecast for DC2 Winter 12237.328 110.622 74.878 1.005 0.861
Spring 23889.474 154.562 119.491 2.510 0.965

Overall 11093.525 105.326 69.853 1.174 0.991

understanding of canopy cover and growth patterns (Mazzetto  lack of additional sensor data, such as soil moisture and
et al, 2010). Moreover, SWC sensors have been utilized to  meteorological information, which could improve model accuracy
monitor soil moisture content, which is critical for understanding by capturing complex nonlinear relationships between
water availability and its impact on grapevine growth (Horel and  environmental variables and grapevine growth.
Zsigmond, 2023). Future studies should explore deep learning approaches, particularly
Comparing the performance of these sensors with those used in  time-series architectures, for more precise predictions. Expanding the
this study, such as sap flow sensors and diameter sensors, could  research to multiple outdoor field sites with varying environmental
offer valuable insights into the strengths and limitations of each  conditions would also enhance the generalizability of the results,
technology. For example, while NDVT and SIF sensors provide a  compared to the current single-site greenhouse experiment.
broader view of canopy health and photosynthetic activity, sap flow To strengthen the theoretical foundation, integrating the Soil-
sensors offer more direct measurements of physiological processes ~ Plant-Atmosphere Continuum (SPAC) model would allow explicit
such as water transport. Combining these different types of sensors  coupling of soil moisture, plant water uptake, and atmospheric
could provide a more integrated and accurate model for predicting ~ demand. This holistic framework could deepen the understanding
grapevine growth and health. of grapevine water transport and inform more effective irrigation
strategies. Moreover, deploying field validation trials outside the
plastic greenhouse would broaden applicability and provide insights
4.5 Long-term monitoring system and into model robustness under diverse real-world conditions.
future prospects Finally, future studies should link physiological responses to yield
and quality metrics, such as cluster weight, berry sugar content (Brix),
While current models such as LightGBM, XGBoost, and and phenolic composition. This integration would bridge
Prophet capture environmental factors and seasonal fluctuations  environmental responses with agronomic performance, providing
well, they still have room for improvement. One limitation is the  growers with actionable insights for optimizing vineyard management.

TABLE 6 Model seasonal training results comparison (MSE, RMSE, MAE,
MAPE, R?). 5 Conclusion

2
fodel MSE | RMSE | MAE | MAPE | R This study advances a plant-sensor view of grapevine water

Prophet Forecast for
DC1

15782.446 | 125628 | 80461 | 1612 | 0847 relations by integrating trunk sap flow, organ-resolved radial

growth (DC1, DC2), and leaf temperature across a full annual

Prophet Forecast for
DC2

11093525 | 105326 | €9.853 | 1174 | 091 cycle. Three contributions emerge. First, a season-dependent sign

structure was identified for the temperature-sap-flow coupling:
LSTM Forecast for DC1  16532.431 = 128.072 | 85462 1740  0.818 negative in spring, summer and autumn and positive in winter,

I ing predictable shifts in driver-r n; rdination acr
LSTM Forecast for DC2 | 11856789 =~ 107.259 = 72981 1347 0919 evealing predictable shifts in driver-response coordination across

phenological stages. Second, organ-specific coordination was

Bi-LSTM Forecast for

bl 17987562 | 130.384  88.672 = 1790  0.805 resolved, with the cordon (DC2) acting as a stable transport

baseline and the fruiting cane (DC1) exhibiting higher short-term

Bi-LSTM Forecast for

12992644 110454 74765 1380 0910 sensitivity and asynchrony during transitions. Third, time-ordering
DC2

analyses showed that sap flow statistically leads diameter change in
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active seasons, providing a physiological basis for plant-
based control.

Methodologically, the study operationalizes multi-sensor
physiology for decision support. A season-aware baseline
(Prophet) captured low-frequency growth rhythms, while tree-
based ensembles (LightGBM, XGBoost) reproduced high-
frequency nonlinear variation in DC1/DC2 with markedly lower
error than a linear benchmark. Together, these components form a
practical forecasting stack that converts continuous plant signals
into decision-ready indicators.

In terms of application, a composite, plant-based trigger is
proposed for warm seasons and spring: (i) an upper-canopy leaf-
temperature rise (Leaf2/Leaf3) relative to ambient air, together with
(ii) a same-day drop of trunk sap flow (TDP1) below its morning
baseline (e.g., within-day 30th percentile). This joint cue targets
physiological stress rather than meteorological heat alone and
supports phenology-aware irrigation, in which DCI provides
early warning during spring recovery while DC2 stabilizes
decisions in summer. The framework yields clear actions: advance
irrigation timing under sustained trigger exceedance; relax or defer
irrigation during winter dormancy when positive temperature-sap-
flow coupling indicates low demand; and taper irrigation in late
season as triggers abate and growth slows.

Conceptually, the findings link season-dependent coupling and
organ-specific coordination to actionable management, bridging
descriptive sensor traces and irrigation scheduling. Practically, the
approach is compatible with existing vineyard operations and can
be extended to other perennial systems that benefit from
continuous monitoring.

Limitations include a single site and protected-environment
setting, limited edaphic sensing, and no direct linkage to yield and
quality outcomes. Future work should calibrate season-specific
thresholds across cultivars and training systems in open-field
conditions, incorporate soil moisture and radiation to tighten
attribution, and co-evaluate decisions against water productivity
and fruit quality metrics. Such extensions will generalize the
thresholds and quantify operational gains, completing the path
from multi-sensor physiology to scalable precision irrigation.
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