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High-throughput phenotypic analysis usingmultispectral unmanned aerial vehicle

(UAV) technology is a critical approach for enhancing the efficiency and accuracy

of gene mining. This study aimed to evaluate the feasibility of UAV-based remote

sensing techniques in predicting chlorophyll content and conducting genome-

wide association studies (GWAS) for winter wheat under both normal and drought

stress conditions. The study was conducted in the fall of 2019 at the Zepu and

Manas experimental bases using winter wheat. Chlorophyll content was

measured manually during the heading, flowering, and grain filling stages and

compared with data obtained via UAV-mounted multispectral sensors. A

predictive model for chlorophyll content was developed using UAV data and

validated against manualmeasurements. The predicted andmeasured chlorophyll

values were then integrated into a GWAS to identify loci associated with

chlorophyll content.Chlorophyll content values differed across growth stages,

with both measured and predicted values increasing from the heading to grain

filling stages. Under normal conditions, manual measurements ranged from 43.96

to 65.85, while UAV-predicted values ranged from 47.59 to 62.29. Under drought

conditions, manual measurements ranged from 45.00 to 66.33, and UAV-

predicted values ranged from 47.83 to 65.89. Correlation coefficients between

measured and predicted values were high under normal conditions (0.90–0.93

during heading, 0.91–0.92 during flowering, and 0.88–0.90 during filling) and

moderate to high under drought stress (0.57–0.70, 0.89–0.91, and 0.94–0.96,

respectively). A neural network model demonstrated high accuracy in predicting

chlorophyll content. GWAS revealed 308 loci associated with chlorophyll content,

with UAV-predicted data identifying 206 loci across 21 chromosomes, explaining

7.58%–19.58% of the phenotypic variation. Measured values identified 102 loci

across 21 chromosomes, accounting for 9.31%–15.83% of the variation. Eighteen

overlapping loci were detected on chromosomes 1A, 1B, 2B, 3B, 4B, 5A, 5B, 5D,

6B, 6D, 7A, and 7B. This study confirms the reliability of UAV-based multispectral

data for chlorophyll content inversion and GWAS. Site-specific differences in
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prediction quality were observed, with site P showing stronger correlations and

higher prediction accuracy. Analysis of loci identified 21 candidate genes

potentially related to chlorophyll content, including those encoding chlorophyll

a/b-binding proteins, aquaporins, and chlorophyll kinases. These findings

demonstrate the potential of UAV technology for high-throughput, efficient,

and accurate phenotyping, facilitating better understanding of the genetic

mechanisms underlying chlorophyll content variation.
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1 Introduction

The chlorophyll content affects photosynthetic efficiency and crop

growth. One approach to improving wheat production is the timely

acquisition and analysis of the chlorophyll content of plants during the

pre-production stage (Peng and Gitelson, 2011; Li et al., 2021; Roy

et al., 2021). Currently, wheat chlorophyll contents are primarily

determined using a chlorophyll meter (Shu et al., 2021) and

spectrophotometer (Kyslychenko et al., 2019). Both methods are

expensive, inefficient, have large random errors, and are

inappropriate for collecting information for large-scale phenotyping.

The continual maturation of remote sensing technologies has enabled

the extensive use of drones for high-throughput phenotyping relevant

to agricultural production and research (Wang et al., 2021).

Spectroscopic information is gathered by drones and retrieved to

determine the chlorophyll content. Determining the chlorophyll

content using an inversion model has certain advantages (e.g., high

efficiency, low cost, considerable range of field information, and low

learning cost) (Zhang et al., 2021).

Various sensors have been used for the inverse modeling of plant

chlorophyll contents. For example, Qiao et al. (2019) used unmanned

aerial vehicles (UAVs) to obtain maize R, G, and B bands as well as the

back propagation (BP) neural network for an inversion model-based

analysis of the chlorophyll content. The coefficient of determination

(R2) value of the model was 0.72, with a root mean squared error

(RMSE) of 4.47. Wei et al. (2020) used UAVs to acquire various

spectral data for wheat and selected 16 spectral vegetation indices using

a stepwise regression method to improve the monitoring of wheat

chlorophyll contents (R2 = 0.81 and RMSE = 1.68). Additionally, Zhou

et al. (2020) used wheat canopy spectral data obtained from drones for

the inversion model-based estimation of wheat chlorophyll contents

using a stepwise regression method (R2 = 0.77). Wang et al. (2022a)

collected wheat canopy spectral data via UAV and applied nine

machine learning algorithms to estimate chlorophyll content. The

developed models achieved r=0.63, RMSE=3.28, and NRMSE=16.2%

under normal irrigation, and r=0.63, RMSE=3.47, and NRMSE=19.2%

under drought stress. Liu et al. (2021) collected multispectral images

and, using determination coefficients, developed multiple stepwise

regression, partial least squares regression, and artificial neural
02
network (ANN) models to estimate wheat canopy LAI and

chlorophyll content (SPAD) from UAV data at different flight

altitudes. The ANN model achieved the highest accuracy for

chlorophyll estimation, with an R² of 0.804 and RMSE of 0.135.

Wang et al. (2022b) used multispectral remote sensing images to

obtain leaf area index (LAI) and flag leaf chlorophyll content (CC)

under normal irrigation and drought stress. They applied classification

and regression trees (CART) combined with cross-validation to

estimate LAI and CC comprehensively. QTL mapping was

performed based on the analysis of predicted and measured values.

Results showed that the coefficient of determination (R²) ranged from

0.79 to 0.93, root mean square error (RMSE) ranged from 0.39 to 1.05,

relative error (RE) ranged from 0.19 to 0.18, and RMSE ranged from

0.16 to 1.16. Cheng et al. (2017) developed a univariate regression

model and a support vector machine regression model for apple tree

leaves using nine color parameters; the support vector machine

regression model was more accurate than the univariate regression

model (R2 = 0.83 and RMSE = 0.03).

The current use of UAVs during crop production is mainly focused

on monitoring and inverting the crop growth status. However, the

high-throughput mining for trait-related genes based on phenotypes

derived from an inversion model and high-throughput SNP array data

has rarely been reported for wheat. In the present study, we constructed

a wheat chlorophyll content model by predicting the artificial

chlorophyll contents of 119 wheat samples and combining the data

with multispectral UAV parameters to predict wheat chlorophyll

contents. A genome-wide association analysis of the predicted wheat

chlorophyll contents and the predicted artificial chlorophyll contents

was performed and the feasibility of using spectral information to

predict wheat chlorophyll contents was assessed.
2 Materials and methods

2.1 Plant material

A total of 119 wheat materials were analyzed. The experimental

group was divided into three subgroups(Contains 16 landraces

(lines),35 domestic and foreign imported varieties (lines) and 68
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self-bred varieties (lines)) (Schedule 1). Relevant representative

information was provided by the Xinjiang Agri-cultural

University Wheat Research Group. The experimental samples

included excellent wheat resources from Xinjiang as well as

domestic wheat and imported wheat germplasm. The Great

Frontier Elf 4 drone (Multispectral Edition) selected for this study

has red(650nm ± 16nm), red edge(730nm ±16nm), near-infrared

(840nm ± 26nm), blue(450nm ± 16nm), green(560nm ±16nm), and

visible light multispectral lenses.
2.2 Test methods

2.2.1 Experimental design
In fall 2019, test materials were grown in Zepu County (77.3° E,

38.24° N; E1), south of Tianshan, Xinjiang, and in Manas County

(86.25° E, 44.30° N; E2), north of Tianshan, Xin-jiang. The

following two treatment methods were implemented: standard

treatment (normal watering throughout the growth period);

drought stress treatment, during which a randomized group

design was used to expose experimental materials to drought

stress (watering was restricted during the Heading, Flowering,

and Grain Filling Stages). Both treatments were completed using

two replicates. Each cultivar was grown three rows apart (0.2 m).

Each row measured 3 meters (m) in length and had a seeding

capacity of 240 grains per row. The total cultivated area was 7 mu,

which is equivalent to approximately 0.4667 hectares (ha).

2.2.2 Collection of multispectral data
The Great Frontier Genie 4 drone (Multispectral Edition) was

used for multi-spectral image data acquisition (12:00–16:00) on a

clear and cloudless day during the wheat Heading Stage, Flowering

Stage, and Grain Filling Stage. The first drone mission took place on

a sunny day. The drone was fixed at an altitude of 12 m, with a

heading overlap of 75% and a lateral overlap of 70%. Spatial

resolution of approximately 0.926 (cm/pixel).The Photo Interval

mode was used at 2 s intervals, with the main dish set parallel to the

solar incidence angle.

2.2.3 Determination of chlorophyll contents
Field measurements were conducted using a portable SPAD-502

Plus chlorophyll meter to analyze wheat flag leaf chlorophyll contents.

For each of the cultivars (lines), five normally growing plants were

examined. The mean leaf chlorophyll content of the five plants per

cultivar (line) was calculated as one replicate. All phenotype data were

collected within 3 days of the UAV mission. The mean chlorophyll

content for two replicates was recorded (Table 1).

2.2.4 Phenotypic analysis
Drone images were combined using the PIX 4D software package,

with the five major bands (red, red edge, near-infrared, blue, and

green light) combined one at a time using the Agricultural

Multispectral model (Li and Shi, 2020). Images were generated

using the 4D exponential PIX calculator in the single band

emissivity range. The regional pixel reflectance of the five main
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bands in wheat images was extracted using ENVI 4.1 and spectral

information was obtained for all five main bands. Excel 2007 and QTL

IciMapping v4.1 were used to process and calculate the data for the

entire experimental period. The chlorophyll content was manipulated

using extreme values, mean values and standard deviations, variance

factors, and generalized genetic strengths: hB
2 = sg2/(sg2 + se2)

(Mosleth et al., 2020), with sg
2 and se

2 representing genetic

variance and environmental variance, respectively.

2.2.5 Selection of vegetation indices
Vegetation indices, derived from the combined reflectance of

different spectral bands, can mitigate the influence of background

soil factors on plant spectra and increase the accuracy of estimated

chlorophyll contents. In this study, Within the Python environment

utilizing NumPy, Pandas, Matplotlib, and Seaborn packages, the

importance of 18 vegetation in-dices was evaluated using the

random forest algorithm, after which the most relevant in-dices

were selected on the basis of their correlation with SPAD values.

The selected vegetation indices were then used to model and predict

SPAD values. Formulas for calculating vegetation indices are

provided in Table 2.

2.2.6 Development of a chlorophyll content
model

The BP neural network is a supervised learning algorithm. Its

core concept involves analyzing the error between the results

obtained from training and the expected outcomes. Weights and

thresholds are subsequently adjusted to gradually decrease the

error, ultimately resulting in a model where the output is closely

aligned with the desired results.

A deeper architecture typically includes: 1 input layer (number of

input features), 1 hidden layers (to capture complex relationships),

and 1 output layer (for predicting chlorophyll content), 18 neurons

per layer, Learning rate 0.001, number of 50 epochs. The ratio for

dividing the training and validation data is 70%:30%.

Chlorophyll contents determined manually were used in two

environments under two treatment conditions (normal irrigation

and drought) for a total of eight replicates. For the manually

calculated chlorophyll contents, eight iterations were computed at

the 70% level of the test set. The validation set was modeled and

validated using data for 84 randomly selected samples (Zhou et al.,

2020) as a training dataset and data for 35 samples as a validation

dataset. The R2, RMSE, and relative error (RE) values were used to

determine the correlation between the predicted values of the

model. Generally, if R2 is close to 1, the RMSE and RE values are

relatively low, reflecting the accuracy of model predictions. Using
TABLE 1 Manas UAV multispectral imagery and SPAD data
acquisition program.

Collection time Fertility period Collection data

2021.5.8 Heading Stage SPAD+UAV

2021.5.21 Flowering SPAD+UAV

2021.5.28 Grain Filling SPAD+UAV
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Python’s NumPy, Pandas, and scikit-learn packages to construct a

BP neural network. Extracted spectral information was distributed

using a neural network. A deep learning model predicted

chlorophyll content using UAV-derived spectral indices This

model was implemented by the Xinjiang Agricultural University

Engineering Research Center for High-quality Special

Wheat Crops.

2.2.7 Genome-wide association analysis
We used the Tassel v5.0 software package to analyze the

association between the predicted and actual chlorophyll contents

under normal irrigation and drought treatment conditions and SNP

markers using the mixed linear model (MLM) Q + K (Yang et al.,

2017). After the chipset was introduced, the Q value (calculated

using Software 2.3), phenotype data (chlorophyll content), and

genetic relationship were analyzed. Calculation results were

obtained and exported to screen for genes. The threshold for

determining significant correlations between markers and traits

was set at P< 0.001 (Arif and Brner, 2021). In terms of the LD

decay distance, markers that were significantly close to each other

(less than the LD decay distance) were ultimately merged at a

particular locus. The physical location of a marker was entered
Frontiers in Plant Science 04
online (https://urgi.versailles.inrae.fr/blast_iwgsc/blast.php)

(Gebrewahid et al., 2020) for the subsequent search and

comparison of chlorophyll contents.
3 Results

3.1 Spectroscopic drone data

A combined image was produced using PIX 4D to capture 36

multispectral reflections of two environments and three time

periods, each with an RGB (visible light) image and red, red edge,

near-infrared, blue, and green reflectance images. Pixel reflectance

in 30 single-band images was extracted using ENVI 4.1 software,

and 16,960 DN values were obtained. Under normal irrigation

conditions, the average red, red edge, near-infrared, green, and blue

light reflectance rates were 7.68%, 34.03%, 56.84%, 15.93%, and

6.74%, respectively (Heading Stage); 7.65%, 33.11%, 55.14%,

15.06%, and 6.38%, respectively (Flowering Stage); and 5.85%,

27.22%, 37.47%, 7.70%, and 4.54%, respectively (Grain Filling

Stage). Under drought conditions, the average red, red edge, near-

infrared, green, and blue light reflectance rates were 7.88%, 33.74%,
TABLE 2 Vegetation index and its calculation formula.

Vegetation Index Formula To Calculate Reference

NDVI NDVI = (RNir − RRe d)=(RNir + RRe d) (Schnell, 1974)

GNDVI GNDVI = (RNir − RGreen)=(RNir + RGreen) (Wagner, 1996)

NGBDI NGBDI = (RGreen − RBlue)=(RGreen + RBlue) (Hunt et al., 2005)

NGRDI NGRDI = (RGreen − RRe d)=(RGreen + RRe d) (Hunt et al., 2005)

RERDVI RERDVI = (RNir − RRed _ edge)=(RNir + RRed _ edge) (Kim et al., 1994)

SAVI SAVI = 2:5*(RNir − RRed)=(RNir + RRed + 0:5) (Huete, 1988)

GOSAVI GOSAVI = 1:16*½(RNir − RGreen)=(RNir + RGreen + 0:16)� (Gilabert et al., 2002)

REOSAVI REOSAVI = 1:16*½(RNir − RRed)=(RNir + RRed + 0:16)� (Kim et al., 1994)

OSAVI OSAVI = (RNir − RRed)=(RNir + RRed + 0:16) (Rondeaux et al., 1996)

RVI RVI = RNir=RRed (Pearson and Miller, 1972)

DVI DVI = RNir − RRed (Tucker, 1979)

GRVI GRVI = RNir=RGreen (Tucker, 1979)

EXG EXG = 2RGreen − RRed − RBlue (Torres-Sánchez et al., 2014)

TVI TVI = 0:5½120(RNir �RGreen) − 200(RRed − RGreen)� (Broge and Leblanc, 2001)

CARI CARI = (RRed _ edge − RRed)=0:2*(RRed _ edge + RRed) (Rondeaux et al., 1996)

VARIgreen VARIgreen = (RGreen − RRed)=(RGreen + RRed − RBlue) (Gitelson et al., 2002)

VARIred
VARIred = (RRed _ edge − 1:7*RRed + 0:7*RBlue)=

(RRed _ edge + 2:3*RRed − 1:3*RBlue)

(Gitelson et al., 2002)

EVI
EVI = 2:5*(RNir − RRed)=

(RNir + 6*RRed − 7:5*RBlue + 1)

(Bolton and Friedl, 2013)
RBlue .、 RGreen、 RRed、 RRed _ edge、 RNir respectively represent the reflectance of blue wave band, green band, red band, red edge band and near infrared band.
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55.40%, 15.82%, and 6.70%, respectively (Heading Stage); 7.70%,

31.42%, 52.33%, 14.81%, and 6.38%, respectively (Flowering Stage);

and 6.95%, 27.88%, 34.93%, 8.31%, and 4.94%, respectively (Grain

Filling Stage) (Table 3). The whiteboard DN value was 65,000 with

99.8% reflectivity. The reflectivity of the five bands varied between

4.54% and 56.84%. Drought stress results in decreases in biomass

and leaf area index, which in turn increase the overall reflectivity of

band images associated with vegetation in arid regions.
Frontiers in Plant Science 05
For the five principal bands, the rank order for the light

reflectance of wheat exposed to two treatment conditions was as

follows: near-infrared light > red edge light > green light > red light

> blue light. Under two different treatment conditions, there was a

de-creasing trend in light reflectance during the Heading,

Flowering, and Grain Filling Stages. The rank order of reflectance

among stages was as follows: Heading > Flowering > Grain Filling

(Figure 1). Under normal irrigation conditions, red, red edge, near-

infrared, green, and blue light reflectance decreased by 0.37%,

2.72%, 2.99%, 5.51%, and 5.3%, respectively, during the Flowering

Stage (relative to the levels in the Heading Stage). red, red edge,

near-infrared, green, and blue light reflectance decreased by 23.54%,

17.76%, 32.05%, 48.87%, and 28.88%, respectively, during the Grain

Filling Stage (relative to the levels in the Flowering Stage). Under

drought conditions, red, red edge, near-infrared, green, and blue

light reflectance decreased by 2.31%, 6.89%, 5.54%, 6.38%, and

4.80%, respectively, during the Flowering Stage (relative to the levels

in the Heading Stage). red, red edge, near-infrared, green, and blue

light reflectance decreased by 9.72%, 11.27%, 33.25%, 43.87%, and

22.75%, respectively, during the Grain Filling Stage (relative to the

levels in the Flowering Stage). The decrease in reflectance across the

five spectral bands ranged from 17.78% to 48.87%. In wheat, the

reflectance in the red band during the heading, flowering, and grain

filling stages was lower under normal irrigation conditions than

under drought conditions. The reflectance in the blue band during

the heading and Flowering Stages did not differ significantly

between the two treatment conditions; however, the reflectance in

the blue band during the Grain Filling Stage was lower under

normal irrigation conditions than under drought conditions. By
TABLE 3 Reflectance of spectral bands in wheat under normal irrigation
(W) and drought (D) across growth stages.

Treatment Band HS (%) FL (%) GF (%)

Water

Red 7.68 7.65 5.85

R-E 34.03 33.11 27.22

Nir 56.84 55.14 37.47

Green 15.93 15.06 7.7

Blue 6.74 6.38 4.54

Drought

Red 7.88 7.7 6.95

R-E 33.74 31.42 27.88

Nir 55.4 52.33 34.93

Green 15.82 14.81 8.31

Blue 6.7 6.38 4.94
HS, Heading Stage; FL, Flowering; GF, Grain filling; Red, Red light; Red-Edge, The red edge
light; Nir, near-infrared; Green, Green light; Blue, Blue light.
FIGURE 1

Dynamic changes of reflectance of spectral information. HS, Heading Stage; FL, Flowering; GF, Grain filling; Red, Red light. Water: normal irrigation;
Drought: drought stress. R-E: The red edge light; Nir: near-infrared; Green: Green light; Blue: Blue light.
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contrast, the reflectance in the near-infrared band was higher un-

der normal irrigation conditions than under drought conditions

across all growth stages. Reflectance was lowest for the blue and red

bands, implying that wheat plants primarily absorb blue and red

light during the heading, flowering, and grain filling stages.
3.2 Optimal vegetation index

Vegetation indices are often selected on the basis of empirical

values, with limited visualization of the selection process. In this

study, a random forest algorithm was used to as-sess the

contribution of vegetation indices to SPAD values during the

heading, flowering, and grain filling stages of wheat plants that

underwent normal irrigation and drought treatments. Additionally,

correlations between spectral parameters in three growth stages and

winter wheat SPAD values were analyzed. The optimal vegetation

index, which was identified by integrating the results of both

analyses, was then included in a BP neural network for model

inversion and prediction.

During the Heading Stage, most spectral vegetation indices

selected under normal irrigation and drought conditions reached a

highly significant level. The contributions of vegetation indices to

SPAD values during this stage under different treatment conditions

indicated NGBDI, RERDVI, and VARIRED were among the top

five indices. Additionally, the correlation heatmap revealed that the

correlations were strongest for CARI under normal irrigation

conditions (R2 = -0.3) and VARIRED under drought conditions

(R2 = −0.33). Hence, the vegetation indices contributing to the E1

environmental model inversion were NGBDI, RERDVI, VARIRED

and CARI. Similarly, the vegetation indices for the E2

environmental model inversion included NGBDI, NGRDI, and

VARIRED (Figure 2).

During the Flowering Stage, most of the selected spectral

vegetation indices under both normal irrigation and drought

conditions reached a highly significant level. According to their

contributions to SPAD values, NGBDI and VARIRED were among

the top five vegetation indices under different treatment conditions.

The correlation heatmap showed that the correlations were

strongest for NGRDI and VARIGREEN under normal irrigation

conditions (R2 = −0.43) and VARIRED under drought conditions

(R2 = −0.39). Therefore, the vegetation indices contributing to the

E1 environmental model inversion were NGBDI, VARIRED,

NGRDI and VARIGREEN. Similarly, the vegetation indices for

the E2 environmental model inversion included NGBDI, NGRDI,

and VARIRED (Figure 3).

During the grain filling stage, most of the selected spectral

vegetation indices under both normal irrigation and drought

conditions reached a highly significant level. On the basis of the

contributions of these vegetation indices to SPAD values, EXG,

NGBDI, VARIRED was among the top five indices under different

treatment conditions. The correlation heatmap indicated that the

correlations were strongest for VARIGREEN and NGRDI under

normal irrigation conditions (R2 = −0.19) and VARIRED under

drought conditions (R2 = −0.33). Consequently, the vegetation
Frontiers in Plant Science 06
indices contributing to the E1 environmental model inversion

were VARIRED, EXG, NGBDI, CARI, VARIGREEN and NGRDI.

Similarly, the vegetation indices for the E2 environmental model

inversion included NGBDI, VARIRED, and CARI (Figure 4).
3.3 Artificially measured values and
predicted phenotypes

According to the measured values under both treatment

conditions, the chlorophyll content of the analyzed wheat plants

varied during the heading, flowering, and grain filling stages

(Figure 5a), although the variations were not substantial. The

measured SPAD values were analyzed in terms of the following:

mean (m), median, coefficient of variation (CV), standard deviation

(s), heritability (hB
2), maximum (max), and minimum (min). As

shown in sections A, B, and C of Figure 5a, at the Zepu study site,

under normal irrigation conditions, m was 54.38–56.36, with

median values between 54.63 and 56.40, CV ranging from 6.2%

to 6.6%, s between 3.42 and 3.58, hB
2 from 0.66 to 0.69, max

between 62.87 and 64.90, and min from 43.96 to 48.20. Under

drought conditions, m was 54.46–58.24, with median values

between 54.22 and 58.30, CV ranging from 5.5% to 6.8%, s
between 3.12 and 3.7, hB

2 from 0.65 to 0.71, max between 64.09

and 65.05, and min from 45.00 to 49.50. Similarly, sections D, E,

and F of Figure 5a indicate that at the Manas study site, m, median,

CV, s, hB2, max, and min varied across three growth stages and

under two treatment conditions, but these differences do not need

be elaborated further.

A model was developed using neural networks to predict

chlorophyll contents through distributed computation. Under

both normal irrigation and drought conditions, the predicted

chlorophyll content of wheat differed among the heading,

flowering, and grain filling stages (Figure 5b). The predicted

SPAD values were analyzed in terms of m, median, CV, s, hB2,
max, and min. As demonstrated in sections A, B, and C of

Figure 5b, at the Manas study site, under normal irrigation

conditions, m was 55.35–56.22, with median values between 55.56

and 56.29, CV ranging from 3.4% to 4.4%, s from 1.94 to 2.46, hB
2

from 0.69 to 0.72, max between 60.31 and 61.92, and min from

48.80 to 49.89. Under drought conditions, m was 54.35–57.84, with

median values between 54.47 and 57.94, CV from 4.3% to 4.5%, s
between 2.36 and 2.48, hB

2 from 0.69 to 0.70, max between 60.36

and 63.35, and min from 47.83 to 50.86. Similarly, sections D, E,

and F of Figure 5b indicate that at the Manas study site, m, median,

CV, s, hB2, max, and min varied across three growth stages and

under two treatment conditions, but this diversity does not need be

elaborated further.

Overall, the data were widely distributed and highly variable,

reflecting significant variations in SPAD values during the heading,

flowering, and grain filling stages as well as the rich genetic diversity

within the population. The predicted values were more conservative

than the measured values. More specifically, the maximum and

minimum predicted values were lower and higher, respectively,

than the measured values.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1607862
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cheng et al. 10.3389/fpls.2025.1607862
For both the normal irrigation and drought treatments at the

two study sites, the variation range of the measured values showed

that during the Heading Stage, the drought treatment varied from

the normal irrigation treatment by 0.1% and −0.8%, while in the

Flowering Stage, the drought treatment varied from the normal

irrigation treatment by 0.2% and 0.5%. In the grain filling stage,

variations of −0.8% and 1% were revealed for the drought treatment

(compared with the normal irrigation treatment).

In terms of the variation range of the predicted values, during

the Heading Stage, the drought treatment varied from the normal

irrigation treatment by 1.1% and −0.1%. In the Flowering Stage,

variations of −0.1% and 0% were revealed for the drought treatment

(compared with the normal irrigation treatment). In the grain filling

stage, the drought treatment varied from the normal irrigation
Frontiers in Plant Science 07
treatment by 0.3% in both instances. The variation range increased

from the Heading Stage to the Flowering Stage, but gradually

decreased as the growth period was extended.
3.4 Analysis of the correlation between
measured and predicted values

An analysis of the chlorophyll contents predicted via manual

measurement and the in-version model showed that the correlation

between the predicted and measured values was between 0.90 and

0.93 at the Heading Stage, with an R2 value of 0.80–0.87, under

normal irrigation conditions. The correlation between the predicted

and measured values in the Flowering Stage ranged from 0.91 to
FIGURE 2

Distribution of contribution rate of vegetation index to SPAD under flood and drought treatment at Heading Stage of winter wheat and correlation
between different vegetation indexes and SPAD of winter wheat under flood and drought treatment at Heading Stage of winter wheat On the
correlation heat map, it is normal irrigation treatment, and the next is drought stress treatment. E1: Southern Xinjiang; E2: Northern Xinjiang. Note:
All vegetation indices that appear in the figure are explained in Table 2.
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0.92 (R2 = 0.83–0.84). During the grain filling stage, the correlation

between the predicted and measured values was 0.88–0.90 (R2 =

0.77–0.81). For the drought-treated samples, the correlation

between the predicted and measured values was 0.57–0.70 (R2 =

0.32–0.49). In the Flowering Stage, the correlation between the

predicted and measured values ranged from 0.89 to 0.91 (R2 = 0.79–

0.83). The correlation between the predicted and measured values

in the Grain Filling Stage was be-tween 0.94 and 0.96 (R2 = 0.88–

0.91). The correlations in the overall data reached 0.87, with a

coefficient of determination of 0.75. Thus, the artificial neural

network-based chlorophyll content model can reliably predict

chlorophyll contents in the two environments analyzed in this

study. The correlation between the predicted and measured values

of the model in the Heading Stage under drought conditions was

lower than that in the other stages and under normal irrigation

conditions (Table 4).
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3.5 Marker–trait correlation analysis

A total of 36,873 SNP markers selected from a 50K chip were

combined with the predicted chlorophyll contents of 119

experimental materials for a genome-wide association analysis.

We controlled false positives due to the population structure and

kinship and used the MLM Q + K mixed model. Applying a

threshold of<0.001, we identified 308 loci across 21 chromosomes

that explained 7.58%–19.58% of the phenotypic variation.

Specifically, the association analysis performed on the basis of the

predicted chlorophyll contents revealed 206 loci that explained

7.58%–19.58% of the phenotypic variation. By contrast, the

analysis conducted on the basis of measured values identified 102

loci that explained 9.31%–15.83% of the phenotypic variation. The

detailed distribution of the 308 loci under different treatment

conditions and at different time points is presented in Table 5.
FIGURE 3

The distribution of the contribution rate of vegetation index to SPAD under flood and drought treatment at the Flowering Stage of winter wheat and
the correlation between different vegetation indexes and SPAD of winter wheat under flood and drought treatment at the Flowering Stage of winter
wheat. On the correlation heat map, it is normal irrigation treatment, and the next is drought stress treatment. E1: Southern Xinjiang; E2: Northern
Xinjiang. Note: All vegetation indices that appear in the figure are explained in Table 2.
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An association analysis of the real and predicted data detected

18 loci distributed on chromosomes 1A, 1B, 2B, 3B, 4B, 5A, 5B, 5D,

6B, 6D, 7A, and 7B, which explained 7.58%–19.58% of the

phenotypic variation(Table 6). The P-value was 9.91 × 10−5–9.90

× 10−4 for chloro-phyll-related loci (mean of 6.71 × 10−4), which

accounted for 9.31%–15.83% of the phenotypic variation (mean of

10.82%). The P-value was 5.77 × 10−6–1.00 × 10−3 (mean of 4.25 ×

10−4) for the chlorophyll content of the solution. The proportion of

the phenotypic variation explained ranged from 7.58% to 19.58%

(mean of 11.50%).

For the loci identified using both measured and predicted

values, the average P-value for predicted chlorophyll contents was

relatively small, indicating a strong association. Additionally, the

average phenotypic variation explained (%) was relatively high,

reflecting the high quality of the loci detected for the predicted

chlorophyll contents (Figure 6).
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3.6 Candidate loci for predicting wheat flag
leaf chlorophyll contents

We analyzedmicroarray data for 90Kwheat SNPs by combining 308

loci based on predicted and measured values, with a genome-wide

association analysis conducted to identify loci significantly associated

with the chlorophyll content. The common wheat Chinese Spring

Genome Database was searched for the detected loci. Candidate genes

were selected if they were related to chlorophyll synthesis, stabilization,

and decomposition and matched sequences in the NCBI database

according to a BLASTx search. Of the 21 candidate genes potentially

associated with the chlorophyll content (Table 7), TraesCS1B02G066200,

TraesCS5D02G559400, TraesCS5D02G559500, TraesCS5D02G559700,

TraesCS6B02G126500, and TraesCS6B02G128000 encode chlorophyll

protein/fat channels, while TraesCS5D02G559400, TraesCS5D02G5G2,

and TraesCS5G5G5G2 are widely associated with PII. There were six
FIGURE 4

The distribution map of the contribution rate of vegetation index relative to SPAD under paddy and drought treatment during the filling stage of
winter wheat and the correlation map of different vegetation indexes and winter wheat SPAD under paddy and drought treatment during the
Flowering Stage of winter wheat. On the correlation heat map, it is normal irrigation treatment, and the next is drought stress treatment. E1:
Southern Xinjiang; E2: Northern Xinjiang. Note: All vegetation indices that appear in the figure are explained in Table 2.
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genes involved in chlorophyll biosynthesis (TraesCS3B02G517200,

TraesCS4B02G386100, TraesCS4B02G393600, TraesCS5D02G558200,

TraesCS5D02G561700, and TraesCS6B02G527000). Some of the genes

were related to the regulation of chlorophyll motility, chlorophyll a/b-
Frontiers in Plant Science 10
binding protein, and water channel stability, whereas other genes were

associated with chlorophyll stability, including the chlorophyll

kinase-encoding gene TraesCS2B02G577700, which affects

chlorophyll breakdown.
FIGURE 5

SPAD distribution map of Zepu and Manas winter wheat at different growth stages (a) The measured SPAD values of Zepu and Manas winter wheat;
(b) SPAD prediction value of Zepu and Manas winter wheat. (A–C) represent the statistical analysis chart of SPAD content at Heading Stage,
Flowering Stage and filling stage of Zepu environment under normal irrigation and limited water treatment. (D–F) represent the statistical analysis
map of SPAD content at Heading Stage, Flowering Stage and filling stage in Manas environment under normal irrigation and limited water treatment.
FIGURE 6

Manhattan plot of 18 overlapping loci/sites.
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4 Discussion

4.1 Spectroscopic dynamics in wheat

Because chlorophyll is a major pigment in wheat, the reflectivity

of light at various wavelengths is primarily influenced by the

chlorophyll content of wheat. In this study on wheat, light

reflectivity was high in all five major bands: near-infrared light >

red edge light > green light > red light > blue light; the relatively low

reflectivity of blue and red light was because chlorophyll

predominantly absorbs both red and blue light (Zucchelli et al.,

2012). When exposed to normal solar radiation, both red and blue

light are absorbed by chlorophyll significantly more than other light

(near-infrared and red and green edges). Thus, the rank order for

reflectivity is as follows: near-infrared light > red edge light > green

light > red light > blue light. After normal irrigation and drought

treatments, the light reflectivity of each band gradually decreased as

the duration of the reproductive period increased (i.e., from the

Heading Stage to the Flowering Stage to the grain filling stage),

reflecting gradual increases in the light absorption capacity of

chlorophyll during wheat growth and development. These results

were in accordance with chlorophyll content trends in growing
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wheat plants (i.e., Heading Stage< Flowering Stage< grain filling

stage) (Jin-Peng et al., 2021).

In plants, energy is mainly derived from photosynthesis. The

decreased light reflectivity in all five bands suggests that for wheat

leaves, photosynthesis is associated with an increase in light

absorption and efficiency. The energy capacity of wheat gradually

increased during the heading, flowering, and grain filling stages. Red

edge light refers to a region of the electromagnetic spectrum near

the near-infrared band that induces rapid changes to vegetation

reflectivity; it also intersects with red light (Horler et al., 1983) at

wavelengths in the 670–760 nm range, in which light reflectivity

increases substantially. Chlorophyll in wheat leaves absorbs most of

the visible light, but the absorption of wavelengths longer than 700

nm is challenging. In wheat, single cell structures are the most

important determinants of light reflectivity. The mechanism

mediating reflection is similar to that of angular reflectors; the

reflectivity of light at wavelengths between 680 and 730 nm can

change rapidly from 5% to 50% (Filella and Penuelas, 1994). For

this reason, wheat leaves were relatively bright and more reflective

(in the infrared band) during the drone mission. For remote

sensing, red edge light is often used for variables in the inversion

model of the crop canopy index (Walsh et al., 2018).
TABLE 4 Correlation analysis between predicted values and measured values.

Environment Phase Control R R2 RMSE RE

E1

HS
W 0.90** 0.80 0.18 0.03

D 0.70** 0.49 0.24 0.04

FL
W 0.92** 0.84 0.14 0.02

D 0.89** 0.79 0.18 0.03

GF
W 0.90** 0.81 0.15 0.02

D 0.94** 0.88 0.16 0.03

E2

HS
W 0.93** 0.87 0.16 0.03

D 0.57** 0.32 0.28 0.04

FL
W 0.91** 0.83 0.14 0.02

D 0.91** 0.83 0.17 0.03

GF
W 0.88** 0.77 0.16 0.02

D 0.96** 0.91 0.24 0.03
W, Water; D, Drought; HS, Heading Stage; FL, Flowering; GF, Grain filling; E1, Southern xinjiang; E2, Northern xinjiang.
The symbol ** indicates "significant correlation at the 1% significance level," implying highly reliable results.
TABLE 5 Correlation analysis site comparison between predicted values and measured values.

Treatment Source

HS FL GF

Site
number

P-value R2 (%)
Site
number

P-value R2 (%)
Site
number

P-value R2 (%)

W measured 12 9.91E-05 9.42~14.56 46 1.96E-04 9.61~13.01 14 1.87E-04 10.04~13.56

predicted 12 1.26E-04 9.65~13.42 52 7.63E-06 9.22~18.98 45 1.05E-05 9.44~18.24

D measured 10 2.87E-04 9.31~11.98 8 1.51E-04 10.12~15.83 12 2.96E-04 9.83~13.02

predicted 32 1.08E-04 9.14~12.68 42 6.77E-05 7.58~14.03 23 5.77E-06 10.04~19.58
fr
W, Water; D, Drought; HS, Heading Stage; FL, Flowering; GF, Grain filling.
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TABLE 6 Correlation analysis of measured and predicted values and statistics of overlap sites.

Source Marker Chr Pos p MarkerR2 Candidate genes Gene annotation

Measured AX-94849392 1A 6155249 4.78E-04 10.91% TraesCS1A01G009900
Disease resistance protein (NBS-
LRR class) family

Predict AX-94492529 1A 3118443 7.13E-04 9.65% TraesCS1A01G005400 APOLLO

Measured AX-94620350 1B 50183860 8.79E-04 10.13% TraesCS1B01G065900
Arginine/serine-rich splicing
factor, putative

Predict AX-95175396 1B 48568925 6.77E-04 9.88% TraesCS1B01G064000 serine hydroxymethyltransferase 2

Measured AX-179557826 2B 765138788 5.79E-04 11.01% null null

Predict AX-179557826 2B 765138788 8.28E-04 10.03% null null

Measured AX-89366787 3B 8859867 8.02E-04 9.72% null null

Predict AX-111019347 3B 11947067 7.69E-04 10.20% TraesCS3B01G027600 SKP1-like protein

Measured AX-95661558 3B 737861984 8.02E-04 9.72% null null

Predict AX-94494956 3B 730345453 5.02E-04 8.52% TraesCS3B01G484000 Beta-glucosidase, putative

Measured AX-179560086 3B 759703505 5.18E-04 10.46% null null

Predict AX-112287513 3B 757299512 1.08E-04 12.68% null null

Measured AX-111595357 4B 665552447 6.34E-04 10.26% TraesCS4B01G388900
DNA (Cytosine-
5-)-methyltransferase

Predict AX-94552601 4B 666571859 1.29E-04 12.61% TraesCS4B01G602100LC
DNA (Cytosine-
5-)-methyltransferase

Measured AX-95659156 5A 422741070 3.55E-04 11.41% TraesCS5A01G323800LC
Protein FAR1-RELATED
SEQUENCE 5

Predict AX-95659156 5A 422741070 1.73E-04 11.81% TraesCS5A01G323800LC
Protein FAR1-RELATED
SEQUENCE 5

Measured AX-110598576 5A 576774974 3.52E-04 11.97% TraesCS5A01G379400 Chalcone synthase

Predict AX-110618351 5A 577711097 3.00E-04 12.09% TraesCS5A01G527900LC
Eukaryotic translation initiation
factor 3 subunit C-like protein

Measured AX-109475699 5B 644853755 9.45E-04 11.24% TraesCS5B01G471300 Beta purothionin

Predict AX-111522577 5B 643465238 2.77E-04 10.95% TraesCS5B01G679600LC Nipped-B-like protein A

Measured AX-110916065 5D 560023418 7.72E-04 9.48% TraesCS5D01G557800 Receptor-like protein kinase

Predict AX-89322127 5D 560460920 4.18E-04 10.92% TraesCS5D01G655500LC Flavin-containing monooxygenase

Measured AX-110126169 6B 121717558 8.55E-04 10.48% TraesCS6B01G185900LC
Endonuclease/exonuclease/
phosphatase family protein

Predict AX-109815710 6B 122944348 7.63E-06 18.98% TraesCS6B01G187200LC
Endonuclease/exonuclease/
phosphatase family protein

Measured AX-109866357 6D 467023050 9.90E-04 9.83% TraesCS6D01G508400LC Serine/threonine-protein kinase

Predict AX-110434749 6D 470942157 4.16E-05 14.94% TraesCS6D01G402600 Receptor-like kinase

Measured AX-111530810 7A 198197404 9.79E-04 9.70% TraesCS7A01G227800
Ribonucleoside-
diphosphate reductase

Predict AX-109283182 7A 198787726 7.20E-04 8.16% TraesCS7A01G228300
Carboxyl-terminal-
processing protease

Measured AX-95630787 7A 669185532 8.49E-04 10.48% null null

Predict AX-94567102 7A 666606185 9.67E-04 9.68% TraesCS7D01G457700
Aspartyl/glutamyl-tRNA(Asn/Gln)
amidotransferase
subunit B, putative isoform 2

Measured AX-111627821 7B 333420288 6.49E-04 12.33% TraesCS7B01G194000 Epoxide hydrolase 2

(Continued)
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In the present study, the leaf area index of wheat decreased and

plant cover decreased under drought conditions. Hence, normal

watering is necessary for heading and flowering under red edge

light. Moreover, this explains why reflectivity was higher under

normal irrigation conditions than under drought conditions.

However, during the grain filling stage, reflectivity was higher

under drought conditions than under normal irrigation

conditions. Although drought stress can decrease the leaf area
Frontiers in Plant Science 13
index and increase reflectivity, an increase in the chlorophyll

content decreases red edge light reflectivity. In addition, red edge

light reflectivity was lower under normal irrigation conditions

than under drought conditions. At relatively high elevations,

multispectral information reflects crop growth. Thus, drones may

be used to accurately assess crop growth. At the same time, this

approach enables scalable field phenotyping for screening drought-

resilient wheat germplasm.
TABLE 6 Continued

Source Marker Chr Pos p MarkerR2 Candidate genes Gene annotation

Predict AX-111569286 7B 331619956 6.65E-05 15.21% TraesCS7B01G341100LC 28S ribosomal S34

Measured AX-111472616 7B 337472880 4.92E-04 10.70% TraesCS7B01G196400 Serine/threonine-protein kinase

Predict AX-111668293 7B 337173355 4.61E-04 9.35% TraesCS7B01G344800LC
Protein FAR1-RELATED
SEQUENCE 5

Measured AX-111629552 7B 601004348 1.51E-04 14.96% TraesCS7B01G576100LC
calcium-dependent lipid-binding
family protein

Predict AX-110928740 7B 600838345 5.00E-04 11.35% TraesCS7B01G344900 Transmembrane protein, putative
TABLE 7 Candidate gene information.

Chr Pos (MB) Gene Gene annotation or coding protein

1B 50.302948-50.303445 TraesCS1B02G066200 Protein FATTY ACID EXPORT 4, chloroplastic

2B 765.919066-765.920939 TraesCS2B02G577700 Phytol kinase 1

3B 760.334333-760.335358 TraesCS3B02G517200 F-box family protein

4B 664.77777850-664.780377 TraesCS4B02G386100 Protein WEAK CHLOROPLAST MOVEMENT UNDER BLUE LIGHT 1

4B 667.884245-667.885739 TraesCS4B02G393600 Heavy metal transport/detoxification superfamily protein

5D 560.186102-560.187499 TraesCS5D02G558200 Anthocyanin 5-aromatic acyltransferase

5D 560.872747-560.873199 TraesCS5D02G559400 Photosystem II CP47 reaction center protein

5D 560.873363-560.873479 TraesCS5D02G559500 Photosystem II reaction center protein T

5D 560.873763-560.873984 TraesCS5D02G559700 Photosystem II reaction center protein H

5D 562.028866-562.030167 TraesCS5D02G561700 Aquaporin

6B 121.820761-121.821111 TraesCS6B02G126500 Photosystem II reaction center protein H

6B 122.679445-122.682945 TraesCS6B02G127000 Heat Stress Transcription Factor family protein

6B 123.738176-123.746779 TraesCS6B02G128000 Zinc transporter, putative

6D 466.999116-466.999490 TraesCS6D02G392400 F-box domain containing protein, expressed

6D 469.310371-469.311897 TraesCS6D02G397400 Anthocyanin 3’-O-beta-glucosyltransferase

7A 197.300200-197.301901 TraesCS7A02G227100 Chlorophyll a-b binding protein, chloroplastic

7A 200.035948-200.039407 TraesCS7A02G229700 F-box family protein

7A 669.727531-669.729352 TraesCS7A02G474200 Peroxidase

7B 330.998271-330.998771 TraesCS7B02G192800 Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic

7B 339.208337-339.238733 TraesCS7B02G196800 envelope membrane protein, chloroplastic

7B 602.111303-602.112246 TraesCS7B02G346300 weak chloroplast movement under blue light protein (DUF827)
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4.2 Expected and actual chlorophyll
contents

The model used in this study, which was based on a BP neural

network, indicated the predicted and measured values of the model

were correlated (0.90–0.93; R2 = 0.80–0.87) in the Heading Stage

under normal irrigation conditions. Similarly, the predicted and

measured values were also correlated in the Flowering Stage (0.91–

0.92; R2 = 0.83–0.84). The correlation between the predicted and

measured values was also determined in the Grain Filling Stage

(0.88–0.90; R2 = 0.77–0.81). Following the drought stress treatment,

the correlation between the predicted values obtained from the

model and the measured values at the Heading Stage ranged from

0.57 to 0.70 (R2 = 0.32–0.49). The correlations between predicted

and measured values were 0.89–0.91 (R2 = 0.79–0.83) and 0.94–0.96

(R2 = 0.88–0.91) in the flowering and grain filling stages,

respectively (Table 4). The correlation in the overall data reached

0.84, with a coefficient of determination of 0.71. The study findings

suggest chlorophyll contents for two environments can be predicted

using a model based on an artificial neural network.

Wei et al. (2020) used GOSVI, GNDVI, CARI, and other

vegetation indices as well as stepwise regression to develop a set

of SPAD inversion models for the Heading Stage of winter wheat;

their R2 values were as high as 0.81. The results of this study are

presented in Table 4. During the Heading Stage, the R2 value peaked

at 0.87, which is higher than that in a conventional model. The

correlation and R2 values in this study are likely good because the

centralized regression equation for the traditional method of

modeling was abandoned and the method for building distributed

models, which are weighted by each of the nodes, was used to

predict the chlorophyll content. An advantage of this model is that,

when distributed, the results are modulated by multiple highly

precise calculations, which are accompanied by the accumulation of

data in the database. Self-healing and model fitting can lead to

increased accuracy (i.e., improvements via yearly fitting of new

data). A disadvantage of this model is that it involves a complex

calculation; this complexity will increase as data accumulates in the

database. Because of the difficulty of manual calculations using a

simple calculator, computational calculations are required for the

inversion model developed to determine the chlorophyll content. In

terms of predictions, the extreme values in two environments are

influenced by the weighted nodes. This results in overly

conservative data. Finally, the maximum predicted value was

lower than the maximum measured value, whereas the minimum

predicted value was higher than the minimum measured value.

The conservative nature of prediction results may be attributed to

four main factors. First, the Backpropagation (BP) neural network

utilizes mean squared error as the loss function and minimizes the

error between predicted and actual values through gradient descent,

which naturally causes predictions to gravitate towards the dataset’s

mean. Second, during training, the BP neural network continuously

adjusts weights and biases to minimize overall error, leading to a

tendency to underestimate extreme values and overestimate minimal

values, as extreme values occur less frequently in the training set,
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resulting in insufficient learning of these cases. Third, commonly used

activation functions in BP networks (such as Sigmoid and tanh)

exhibit compression properties, mapping inputs to a limited range

and causing outputs to naturally bias towards central values rather

than extremes. Finally, to prevent overfitting, BP networks often

employ regularization techniques that constrain weight magnitudes,

resulting in a tendency for more conservative predictions. While this

enhances the model’s generalization ability, it can also lead to more

cautious prediction outcomes.

The Heading Stage correlation coefficient was between 0.57 and

0.70 under drought stress conditions (R2 = 0.32–0.49) at the two

study sites. The R2 value was lower than that in the other stages, but

the predicted and measured values were significantly correlated.

These results may be related to differences among the heading,

flowering, and grain filling stages, among which the Heading Stage

reportedly has the lowest leaf area index (Gao et al., 2021), which

decreases further in response to drought stress. Considering drought

stress or other factors can cause the leaf area index to decrease, the

utility of the inversion model for extreme environments may need to

be enhanced via a multi-year study involving the artificial neural

network model. Natural populations were used as experimental

materials in this study. Accordingly, the neural network model

developed in the current study is likely versatile and useful for

precisely measuring plant chlorophyll contents.
4.3 Correlations between predicted and
measured chlorophyll contents

We used 36,873 SNP markers selected from a 50K chip as well

as predicted chlorophyll contents of 119 experimental materials for

a genome-wide association analysis conducted using the MLM Q +

K model to control false positives due to the population structure

and kinship. When a threshold of<0.001 was applied, 308 loci were

identified across 21 chromosomes, explaining 7.58%–19.58% of the

phenotypic variation (Table 5). This indicates that genes controlling

the chlorophyll content are widely distributed throughout the

genome. Moreover, the chlorophyll content is a quantitatively

regulated trait influenced by multiple genes. Specifically, the

association analysis of predicted chlorophyll values identified 206

loci (explaining 7.58%–19.58% of the phenotypic variation), while

the association analysis of measured values identified 102 loci

(explaining 9.31%–15.83% of the phenotypic variation). The

broader phenotypic variation explained (%) for the 206 loci as-

sociated with predicted values than for the 102 loci associated with

measured values suggests predicted values may be useful for

increasing loci coverage and number. This may be because the

neural network model can establish a correlation between measured

chlorophyll contents and spectral information for each material

(Zhe et al., 2021), whereas manual measurements may introduce

errors. Consequently, the model calibrates the measured data

according to the relationship with spectral information, indicating

that predicted values may more closely reflect the actual data than

measured values.
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Increases in the size of a neural network modeling ensemble

(multi-year data modeling) are conducive to the calibration of the

model. The number of loci identified for the predicted chlorophyll

contents was greater than or equal to the number of loci detected for

the measured chlorophyll contents (Table 5), indicating that the

predicted loci were not highly enriched for false positives at certain

times and under specific treatment conditions. Table 5 presents

details regarding the distribution of the 308 loci according to

treatments and periods. On the basis of the predicted and

measured chlorophyll contents, genes con-trolling chlorophyll

levels were distributed across the entire genome. Thus, an

inversion model based on a neural network can accurately predict

chlorophyll contents. A correlation analysis of the actual and

predicted chlorophyll content data detected 18 loci (ex-plaining

7.58%–19.58% of the phenotypic variation) on chromosomes 1A,

1B, 2B, 3B, 4B, 5A, 5B, 5D, 6B, 6D, 7A, and 7B (Table 6). There was

considerable consistency between the actual and predicted

chlorophyll contents, implying the data obtained from an

improved model based on multispectral UAVs can gradually

replace data obtained manually. Chlorophyll measured value-

based loci (P = 9.91 × 10−5–9.90 × 10−4; mean of 6.71 × 10−4)

explained 9.31%–15.83% of the phenotypic variation (mean of

10.82%). For the predicted chlorophyll contents, the P-value was

5.77 × 10−6–1.00 × 10−3 (mean of 4.25 × 10−4). The phenotypic

variation explained varied between 7.58% and 19.58% (mean of

11.50%). Correlations be-tween the loci detected according to

measured and predicted data were analyzed. The mean P-value of

the predicted chlorophyll content-related loci was low, reflecting a

strong correlation between predicted values and the loci identified

according to predicted values (Pal et al., 2021). The loci detected

using predicted chlorophyll contents also accounted for a relatively

large proportion of the phenotypic variation (on average). Hence, in

terms of quality, the loci identified according to predicted

chlorophyll contents were likely better than the loci detected on

the basis of measured chlorophyll contents.

Predicted chlorophyll contents were analyzed and compared

with the measured values. Compared with the loci identified using

measured values, the loci identified using predicted values were

more abundant, had stronger associations, and explained more of

the phenotypic variation. Multi-year data may improve the output

of the neural network model, but they may also be used instead of

artificially determined chlorophyll contents.
4.4 Prediction of functional genes
associated with the chlorophyll content

Genome-wide association analysis of predicted and measured values

revealed 308 loci significantly associated with the chlorophyll content.

These loci were used to search the Chinese Spring Genome Database to

detect similar sequences in common wheat. Twenty-one candidate genes

associated with the chlorophyll content (i.e., related to chlorophyll

synthesis, stabilization, or decomposition) were identified following a
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BLASTx-based screening of the NCBI database (Table 7). Notably,

TraesCS1B02G066200, TraesCS5D02G559400, TraesCS5D02G559500,

TraesCS5D02G559700, TraesCS6B02G126500, TraesCS6B02G128000

(encoding chlorophyll protein/fat channels), TraesCS5D02G559400,

TraesCS5D02G5G2, and TraesCS5G5G5G2 (related to PII) were

among the candidate genes. Furthermore, six genes are involved in

chlorophyll biosynthesis, including the gene encoding a photosystem II

reaction center protein associated with the chlorophyll a/b-binding

protein complex (Shen et al., 2021). The protein–lipid pathway

regulates chlorophyll synthesis in chloroplasts (Wang, 2020). Zinc

transport in plants is controlled by zinc transporters; it is possible that

either too little or too much zinc may affect chlorophyll synthesis

(Zhang et al., 2020). The following genes are associated with

chlorophyll stability: TraesCS3B02G517200, TraesCS4B02G386100,

TraesCS4B02G393600, TraesCS5D02G558200, TraesCS5D02G561700,

and TraesCS6B02G527000. Other genes are related to chlorophyll

motility, chlorophyll a/b-binding protein, water channel stability, and

chlorophyll stability. In previous studies, F box (Guérin et al., 2021) and

anthocyanin (Sharma et al., 2020) were revealed to increase plant

strength and maintain normal physiological and biochemical activities

during exposures to stress, while also stabilizing chlorophyll. Chloroplast

motility can be regulated by blue light as an adaptive response to

environmental changes (Qiao et al., 2014). Water channel proteins

regulate the ingress and egress of water molecules, thereby maintaining

water levels in plants exposed to drought stress (Li et al., 2022).

TraesCS2B02G577700 encodes a chlorophyll kinase associated with

chlorophyll degradation. The formation of branched chains of

chlorophylls influences the solubility of chlorophyll lipids. The

phosphorylation of chlorophyll by kinases adversely affects stability,

ultimately leading to chlorophyll degradation (Philipp et al., 2021). The

gene TraesCS7A02G474200, which encodes peroxidase, is associated

with lead tolerance, indicating its role in responding to abiotic stress (Zhi

et al., 2022). Phytol kinase 1 may be involved in regulating drought

resistance in plants Zhang (2023). Aquaporin in alfalfa (Medicago sativa)

might participate in the regulation of drought tolerance (Jiang

et al., 2025).
4.5 GO and KEGG enrichment analyses of
candidate genes

GO and KEGG enrichment analyses were performed using 21

candidate genes. The GO analysis revealed that the candidate genes

were primarily enriched in two biological processes (developmental

process and response to chemicals), indicating that they may con-

tribute to various environmental responses and developmental

activities. In terms of cellular components, the candidate genes

were significantly associated with membranes and plastid

membranes, suggesting that they encode proteins primarily

localized to cell membranes and related structures. The main

molecular functions associated with the candidate genes were

phosphate ion binding and chlorophyll binding, highlighting their

importance for photosynthesis and metabolic regulation (Figure 7).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1607862
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cheng et al. 10.3389/fpls.2025.1607862
The major enriched KEGG pathways among these candidate

genes were Drug metabolism – other enzymes, Phenylpropanoid

biosynthesis, Photosynthesis – antenna proteins, and Metabolic

pathways. Notably, Drug metabolism – other enzymes was the

most significantly enriched pathway. Although the Metabolic

pathways category included the most target genes, its significance

was relatively low. Drug metabolism – other enzymes,

Phenylpropanoid biosynthesis, and Photosynthesis – antenna

proteins had high enrichment factors and significance, suggestive of

a relatively high proportion of target genes; however, there were

relatively few specific genes associated with these pathways (Figure 8).
4.6 Novelty of the study and its
implications for wheat improvement

The innovation of this study lies in the combination of

multispectral unmanned aerial vehicle (UAV) technology with

manual measurements, achieving efficient and accurate prediction

of chlorophyll content, thus providing a new methodology for

wheat gene mining. By constructing an inversion model based on

remote sensing data, we were able to assess the dynamic changes of

chlorophyll content at different growth stages (heading, flowering,

and grain filling). This method not only increases the throughput of

phenotypic analysis but also offers a new perspective on the

association between genotype and phenotype, thereby advancing

the process of wheat improvement.
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The results indicate that changes in chlorophyll content are

closely related to the growth stages of wheat under both normal and

drought conditions. Drought and irrigation significantly impact the

process of chlorophyll content prediction. Specifically, under

drought conditions, the prediction accuracy of chlorophyll

content is relatively lower, but the correlation in the flowering

and grain filling stages is significantly enhanced, suggesting that

changes in chlorophyll may be closely related to the physiological

adaptation mechanisms of wheat in response to water stress.

Therefore, understanding the effects of different environmental

conditions (such as drought and irrigation) on chlorophyll

content and its prediction can provide important theoretical

foundations for wheat improvement.

Moreover, this study identified multiple loci associated with

chlorophyll content through genome-wide association analysis,

which exhibited varying phenotypic variations under different

stress conditions. This finding indicates the potential to identify

genomic regions through marker-trait association analysis,

providing a scientific basis for the genetic improvement of wheat.

Future research should further explore how these genetic markers

can be applied in breeding practices to achieve more efficient wheat

improvement strategies.

In summary, this study not only offers a new tool for rapid

assessment of chlorophyll phenotypes in wheat but also deepens the

understanding of wheat’s physiological responses under different

growth conditions at the genomic level, providing important

theoretical support for enhancing wheat resilience.
FIGURE 7

GO enrichment analysis of candidate genes (top 30).
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5 Conclusions

Chlorophyll contents can be accurately reflected by spectral

information. A neural network model and spectral information are

useful for an inversion model-based determination of the

chlorophyll content of plant samples. In this study, a correlation

analysis involving measured and predicted chlorophyll contents

showed that the correlation between the measured and predicted

chlorophyll contents was relatively high (correlation coefficient

reaching 0.87). Furthermore, using predicted chlorophyll contents

may be conducive to increasing the number and quality of identified

genomic loci related to the chlorophyll content. Therefore, the study

model may be applied to rapidly determine chlorophyll contents,

thereby enriching relevant databases.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Frontiers in Plant Science 17
Author contributions

YC: Writing – review & editing. WH: Conceptualization,

Formal Analysis, Investigation, Writing – original draft. FuZ:

Conceptualization, Formal Analysis, Investigation, Methodology,

Writing – original draft. FZa: Investigation, Writing – original draft.

BB: Supervision, Writing – original draft. NS: Supervision, Writing

– original draft. WW: Methodology, Writing – original draft. HG:

Conceptualization, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was funded by

Xinjiang Natural Science Funds for Distinguished Young Scholar

(2022D01E46), Autonomous Region Universities Fundamental

Research Funds for Scientific Research Projects (XJEDUJ042),

and Xinjiang Key Research and Development Program

(2022B02001-3).
FIGURE 8

KEGG enrichment analysis of candidate gene.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1607862
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cheng et al. 10.3389/fpls.2025.1607862
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Frontiers in Plant Science 18
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1607862/

full#supplementary-material
References
Arif, M. A. R., and Brner, A. (2021). Correction to: an SNP based GWAS analysis of
seed longevity in wheat (Berlin, Germany: Springer Science and Business Media LLC).

Bolton, D. K., and Friedl, M. A. (2013). Forecasting crop yield using remotely sensed
vegetation indices and crop phenology metrics. Agric. For. Meteorology 173, 74–84.
doi: 10.1016/j.agrformet.2013.01.007

Broge, N. H., and Leblanc, E. (2001). Comparing prediction power and stability of
broadband and hyperspectral vegetation indices for estimation of green leaf area index
and canopy chlorophyll density. Remote Sens. Environ. 76, 156–172. doi: 10.1016/
S0034-4257(00)00197-8

Cheng, L. Z., Zhu, X. C., Gao, L. L., Li, C., Wang, L., Zhao, G. X., et al. (2017).
Estimation of chlorophyll content in apple leaves based on RGB model. Acta Hortic.
Sin. 44, 381–390. doi: 10.16420/j.issn.0513-353x.2016-0529

Filella, I., and Penuelas, J. (1994). The red edge position and shape as indicators of
plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 15 (7), 1459–
70. doi: 10.1080/01431169408954177

Gao, X., Jia, Z. L., Lin, K. L., Hou, X. T., Zheng, F. X., and Geng, H. W. (2021). QTL
mapping of leaf area index and chlorophyll content in wheat under irrigated and
rainfed conditions. J. Plant Genet. Resour. 22, 1109–1119. doi: 10.3390/
agriculture12050595

Gebrewahid, T. W., Zhang, P., Zhou, Y., Yan, X., and Li, Z. (2020). QTL mapping of
adult plant resistance to stripe rust and leaf rust in a fuyu 3/zhengzhou 5389 wheat
population. Crop J. 8 (4), 655–65. doi: 10.1016/j.cj.2019.09.013
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