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performance of two cultivars in
response to ozone exposure
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Wenhui Huo1, Kai Yang1 and Hengfeng Zhang1

1Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu, China, 2Jiangsu Key Laboratory
of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu
Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of
Yangzhou University, Yangzhou, China
Introduction: High surface ozone (O3) concentration presents a significant

threat to the growth and development of plants. This research aimed to

evaluate the impact of O3 on peony (Paeonia lactiflora), focusing on the

physiological mechanisms involved, mainly as peony is widely grown in O3

polluted regions such as Sichuan, Jiangsu, and Shandong.

Methods: Two cultivars of peony Dafugui (DFG) and Heihaibotao (HHBT) were

exposed to either non-filtered air (NF, ambient O3 concentration) or elevated O3

(NF60, NF + 60 ppb) for fifty days (April 11 to May 30) in open-top chambers. Key

physiological parameters, including gas exchange, pigment levels, leaf mass per

area (LMA), stomatal structure, lipid oxidation, and the antioxidant defense

system, were measured across three replicate chambers.

Results: The exposure to NF60 resulted in significant reductions in light-saturated

photosynthesis rate (Asat), stomatal conductance (gs), and electron transfer rate (ETR),

but no changes were observed in intercellular CO2 concentration (Ci). Increased O3

levels accelerated leaf senescence, as indicated by higher malondialdehyde (MDA)

and hydrogen peroxide (H2O2) levels, along with a decline in chlorophyll content.

Ozone-induced led to a reduction in LMA, but the stomatal area and density were

not significantly affected. The total ascorbate (AsA) content was decreased but total

antioxidant capacity (TAC), phenolics, and antioxidant enzyme activity showed an

increasing trend due to O3. Statistical analysis using ANOVA revealed no significant

differences in the responses of leaf indices between the two peony cultivars to O3

stress, as indicated by the absence of significant interaction effects between O3

treatment and cultivar.

Discussion: The above results indicate that under O3 stress, peony leaves exhibit

chlorosis and aggravated membrane lipid peroxidation, leading to a decline in

Asat and inhibited leaf growth. The findings underscore the necessity of

cultivating and promoting ozone-tolerant peony cultivars in heavily O3

polluted areas to improve the production efficiency and quality of the peony.
KEYWORDS

peony (Paeonia lactiflora), air pollution, abiotic stress, leaf photosynthetic capacity,
antioxidant system
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1 Introduction

Surface ozone (O3) is predominantly produced through

photochemical reactions involving primary pollutants, such as

nitrogen oxides (NOX) and volatile organic compounds (Monks

et al., 2015; Li K, et al., 2018). The increasing levels of NOX, driven

by industrial development and the rapid expansion of vehicle

ownership, have led to higher concentrations of O3 in the

atmosphere (Jiang et al., 2012; Feng et al., 2015). Environmental

monitoring data reveal that between 2013 and 2019, the daily

maximum 8-hour average O3 concentration in the surface layers

of many Chinese cities consistently exceeded 50 ppb, with peak O3

levels increasing at an annual rate of 3 ppb (Lu et al., 2020). In some

areas, such as Jiangsu province, the maximum hourly average

concentration has exceeded 100 ppb (Hu et al., 2023; Shao et al.,

2023). These increased concentrations of surface O3 present

significant threats to human health (Sicard et al., 2021; Marco

et al., 2022), agricultural production (Feng et al., 2022; Ramya et al.,

2023), and biodiversity (Ainsworth, 2017).

The herbaceous peony (Paeonia lactiflora) is a well-known

traditional flower in China, valued for its ornamental, medicinal,

and health-promoting properties. It has emerged as a commercially

significant cut flower in both domestic and international markets

due to its substantial economic benefits (Ning et al., 2015; Qi et al.,

2020). China has become one of the world’s major producers of cut

peonies (Yang et al., 2020), with production concentrated in the

Beijing, Sichuan, Jiangsu, and Shandong provinces (Du et al., 2018).

Extensive research has been conducted on the effects of various

abiotic stressors on peony growth, including heavy metals, saline-

alkali conditions, drought, waterlogging, temperature extremes, and

insufficient light. Lu et al. (2022) reviewed these stressors and their

impacts on peony morphology, internal physiological processes,

and secondary metabolites. These findings provided valuable

insights into the mechanisms by which peonies adapt to stress

and improve their tolerance. However, unlike other environmental

stressors, O3 pollution has seasonal variations that make certain

crops, including peony, particularly vulnerable during their critical

growth phases. Moreover, China’s major peony-producing regions

also experience frequent high O3 concentrations (Feng et al., 2022),

particularly during the crucial growth and flowering period in May,

which coincides with regional O3 pollution peaks (Wang et al.,

2001; Li et al., 2007; Xu et al., 2008a; Ding et al., 2013; Wang et al.,

2017). Despite numerous studies highlighting the harmful effects of

O3 on crops (Feng and Kobayashi, 2009; Peng et al., 2019; Shao

et al., 2020; Shang et al., 2024) and woody species (Li et al., 2016;

Shang et al., 2018; Dai et al., 2017), minimal research has been

conducted on the impacts of O3 on horticultural plants (Mills et al.,

2007; Zhang et al., 2015), particularly on peony, to date.

Furthermore, leaves serve as the primary interface for material

and energy exchange between the surface atmosphere and the

terrestrial biosphere, and they are also the main organs

responsible for sensing O3 stress responses (Krupa and Manning,

1988). Ozone predominantly enters plants through the stomata.

Prolonged exposure to O3 induces visible leaf injury symptoms in

sensitive plants species (Mills et al., 2011; Feng et al., 2014), activates
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various defense mechanisms, and subsequently leads to progressive

chlorophyll degradation, accompanied by a reduction in

photosynthetic efficiency (Wittig et al., 2009). These physiological

disruptions interfere with carbon assimilation and the distribution

of essential mineral nutrients (Shang et al., 2018), ultimately causing

growth retardation and premature aging (Matyssek and

Sandermann, 2003). Therefore, the plant’s resilience to

environmental stress, its ecological fitness, its capacity for carbon

sequestration are all compromised (Feng et al., 2022). Significant

variability in O3 tolerance has been observed both among crops

(Mills et al., 2007; Paoletti et al., 2009) and within species (Biswas

et al., 2008; Krupa et al., 1998; Maggs and Ashmore, 1998; Shi

et al., 2009).

In crops, susceptibility to O3 is typically measured by reductions

in yield and biomass. Whereas, the evaluation of O3 sensitivity in

woody and ornamental plants often involves monitoring leaf traits

such as specific leaf weight, photosynthetic performance,

malondialdehyde (MDA) levels, and antioxidant enzyme activity.

Furthermore, high-concentration, short-term O3 exposure often

induces oxidative damage in the form of leaf necrosis,

accompanied by increased antioxidant metabolism, as a result of

programmed cell death. However, the plant’s antioxidant response

to chronic exposure to lower O3 concentrations is less well

understood and remains a subject of debate. Some studies suggest

that chronic O3 stress leads to increased antioxidant activity, as

observed in soybeans (Gillespie et al., 2011), while others have

observed a reduction in antioxidant pools and key enzymes in

wheat leaf tissues under elevated O3 concentrations (Feng et al.,

2010; Wang et al., 2014a). No studies have examined how O3 affects

peony’s antioxidant system or photosynthetic efficiency. Therefore,

a systematic study on the effects of O3 elevation on peony leaf

performance is essential to determine its sensitivity to O3 stress. In

this study, O3 fumigation experiments were conducted under two

distinct concentrations, non-filtered ambient O3 concentration

(NF) and NF supplemented with an additional 60 ppb of O3

(NF60), to evaluate the physiological responses of two widely

cultivated cultivars of Paeonia lactiflora. The primary objective

was to elucidate how O3 exposure influences leaf morphological

traits, photosynthetic physiology, and oxidative stress responses in

the two peony cultivars and to provide an initial evaluation of

cultivar sensitivity to O3 exposure, offering foundational insights for

optimizing peony cultivation practices in O3-polluted regions.
2 Materials and methods

2.1 Plant material and cultivation

Using Dafugui (DFG) and Heihaibotao (HHBT) as

experimental materials, both cultivars were transplanted by

division in 2023. This experiment used pot cultivation

management with a soil mixture comprising a 1:1:1 ratio of soil,

peat, and coarse sand. The cultivation pot is a plastic container with

a lower base diameter of 18 cm, an upper opening diameter of 25

cm, and a height of 27.5 cm. The soil in the pot with the following
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properties: soil organic matter 14.1 ± 0.8%, total nitrogen (N) 1.48 ±

0.01 g kg-1, available phosphorus (P) 17.2 ± 4.8 mg kg-1, available

potassium (K) 40.4 ± 2.1 mg kg-1, and pH6.6. The fertilizer and

water management for the potted plants were consistent with

standard field-level practices. In brief, throughout the trial period,

water the plants when the top 2–3 cm of soil becomes dry, while

avoiding waterlogging. In late April, apply 20 g of monopotassium

phosphate per pot and then water thoroughly.
2.2 Fumigation treatment

The O3 fumigation experiment was initiated in April 2024 at the

Yangzhou Green Agriculture Research and Demonstration Base.

The experimental design utilized open-top chambers (OTCs) of

regular octagonal geometry (4.8 m diameter, 2.3 m height, and a 3

m diameter top opening). Two O3 treatments were applied: ambient

O3 concentration (NF) and ambient air supplemented with 60 ppb

O3 (NF60), with each treatment replicated across three OTCs under

comparable environmental conditions (temperature, humidity,

illumination). Ozone was produced from high-purity oxygen

using an electrical discharge O3 generator (HY003, Jinan

Chuangcheng Technology Co., Ltd.) and delivered to the

chambers by blowers (CX-125, Shanghai Quanfeng Industrial Co.,

Ltd.). Canopy-level O3 concentrations was continuously monitored

in real-time (at 1-minute intervals) using Thermo Scientific Model

49i analyzers. Ozone delivery was fine-tuned via mass flow

controllers to match set-point concentrations. Ozone levels were

regulated by adjusting oxygen flow rates through mass flow

controllers based on deviations between measured and target

concentrations. Three uniformly growing Paeonia lactiflora pots

per cultivar were randomly placed in each OTC starting April 11.

Fumigation was carried out for 10 hours daily (08:00–18:00) over 50

days ending May 30. The average O3 concentrations during this

period were 43.7 ± 1.1 ppb (NF) and 98.2 ± 1.4 ppb (NF60).
2.3 Parameter measurements

Leaf samples were collected from three plants per cultivar in

each chamber. The uppermost three leaves from a single stem of

each plant were pooled to create a composite sample. Leaves were

punched, immediately frozen in liquid nitrogen, and milled to a fine

powder using a miller (MM400, Retsch, Arzberg, Germany). These

samples were analyzed for chlorophyll content, MDA, total

ascorbate (AsA), total antioxidant capacity (TAC), hydrogen

peroxide accumulation (H2O2), phenolic, and antioxidant

enzyme activities.

Chlorophyll content in leaf samples was determined following

the method described by Wang et al. (2014b), with minor

modifications. Approximately 30 mg of fresh leaf tissue was

extracted using 1 mL of 95% ethanol and incubated for 4 hours at

30°C in a shaker incubator (QYC 2102C, FuMa Experimental

Equipment Co., Ltd., Shanghai, China). After centrifugation, the
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absorbance of the supernatant was measured at 645, 663, and 470

nm using a microplate reader (Lambda 35, PerkinElmer, Norwalk,

CT, USA). Based on these values and according to established

protocols (Wang et al., 2014b), the concentrations of chlorophyll a,

chlorophyll b, total chlorophyll (a + b), and carotenoids

were calculated.

Leaf mass per area (LMA): The top three leaves from each of the

three single stems of each plant were first collected. The leaf length

and surface area were measured using Image J software. The leaves

were then combined and placed into paper bags, dried at 105°C for

30 minutes, followed by 72 hours at 80°C, to obtain dry weight. The

leaf mass per area of each peony cultivar was estimated using the

area and dry weight of the upper three leave.

To evaluate stomatal characteristics, three plants from each

cultivar were selected, and the uppermost fully expanded leaves

were sampled. After gently removing the dust, a layer of transparent

nail polish was applied to a 1 cm × 1 cm area of the abaxial leaf

surface. Once dried, the film was lifted with adhesive transparent

tape and mounted onto a microscope slide with the impression side

facing up. Observations were performed using a Leica DM 2500

microscope, and stomatal density was calculated by counting

stomata within a defined area (Laza et al., 2010). The lengths and

widths of 10 randomly selected stomata were measured per sample,

and the stomatal area was calculated as length × width.

Gas exchange parameters were recorded using a portable

photosynthesis system (LI-6800, LI-COR Inc., Lincoln, NE, USA).

Measurements included the light-saturated net photosynthetic rate

(Asat), stomatal conductance (gs), intercellular CO2 concentration

(Ci), and electron transfer rate (ETR) of three fully expanded upper

leaves from a single plant, randomly selected in each chamber. All

measurements were conducted between 8:30 and 11:30 a.m. on

sunny days, with saturation-level photosynthetic active radiation

(1200 mmol m-2·s-1), 400 ppm of CO2, leaf temperatures of 28°C,

and relative humidity readings of 50-60%.

The concentration of MDA in leaf tissues was measured using

microplate-based spectrophotometric analysis as described by Wang

et al. (2014b). The TAC was assessed using the ferric reducing

antioxidant power (FRAP) assay, which reflects the collective action

of non-enzymatic antioxidants and provides an indicative measure of

the leaf’s resistance to oxidative stress (Benzie and Strain, 1996). The

AsA concentration was determined spectrophotometrically by

measuring absorbance at 265 nm after ascorbate oxidase addition,

using an extinction coefficient of 14–14 mM-1 cm-1 (Luwe and Heber,

1995). Phenolic content in the leaf supernatant was analyzed using

the Folin–Ciocalteu reagent following the protocol of Gillespie and

Ainsworth (2007), with results expressed in gallic acid equivalents.

Leaf hydrogen peroxide (H2O2) levels were determined using the

method described by Mukherjee and Choudhuri (1983).

The activities of the antioxidant enzymes, including superoxide

dismutase (SOD), peroxidase (POD), and hydrogen peroxidase

(CAT), were analyzed using specific commercial kits from

Jiancheng Bioengineering Institute (kit codes A123-1-1, A084-1,

A007-1, and A001-4), with spectrophotometric detection. Leaf

samples (~20 mg) were homogenized in 2 mL of pH 7.8
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extraction buffer and centrifuged at 10,000 × g at 4 °C for 15

minutes. The enzyme activities were determined in the clarified

supernatant, following the manufacturer’s protocol.
2.4 Statistical analysis

The statistical analysis was performed using SAS 9.2 software

(SAS Institute Inc., Cary, NC). A mixed-effects model was used,

following the approach described by Frei et al. (2011), where the

fixed effects included O3, cultivar, and their interactions, and the

random effect was the chambers. This mixed model did not

consider multiple plants within one treatment chamber as

replicates on the treatment level. All the data were presented as

the mean ± standard error from three chamber replicates.
3 Results

3.1 Leaf gas exchange parameters

As presented in Table 1, exposure to NF60 significantly reduced

the Asat and gs of peony leaves by an average of 23.0% and 25.6%,

respectively. The reduction in DFG leaves was greater than that in

HHBT, although no significant interaction was detected between O3

treatment and cultivar. A 12.7% significant reduction in Ci was

observed in DFG leaves under NF60, while no significant changes

were observed in HHBT, as indicated by the significant interaction

between O3 exposure and cultivar. Moreover, NF60 exposure

resulted in a significant 16.1% decrease in ETR, with similar

reductions observed in both cultivars.
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3.2 Leaf pigments

As shown in Table 2, the NF60 exposure resulted in an average

12.7% decrease in chlorophyll a+b content in peony leaves

compared to NF (P < 0.1), with reductions of 7.1% in DFG and

18.4% in HHBT. The contents of chlorophyll a and b were also

significantly decreased by 13.7% and 9.9%, respectively, under

NF60. The reduction in chlorophyll content was less marked in

DFG than in HHBT. However, no significant interaction was

observed between O3 exposure and cultivar (Table 2).
3.3 Leaf mass per area and stomata
structure

As presented in Table 3, the dry weight per unit area of herbaceous

peony leaves was determined based on leaf area and corresponding dry

weight. Compared to NF, NF60 resulted in a 12.8% reduction in dry

weight per unit area on average (P = 0.094), with DFG and HHBT

showing reductions of 12.1% and 13.4%, respectively. Analysis using

ANOVA indicated no significant effects of cultivar or the interaction

between cultivar and O3 treatment on this parameter.
3.4 Leaf stomata structure

The effect of O3 stress on leaf stomatal structure was shown in

Table 3. Evaluation of stomatal structure revealed no significant

differences in stomatal density between the cultivars; however,

HHBT had significantly larger stomata than DFG. Neither O3

treatment nor its interaction with the cultivar significantly

affected stomatal size or density (Table 3).
TABLE 1 Leaf photosynthesis parameters (light-saturated photosynthesis rate (Asat), stomatal conductance (gs), intercellular CO2 concentration (Ci)
and electron transfer rate (ETR)) of two cultivars of peony seedlings growing in nonfiltered ambient air (NF) and NF with a targeted O3 addition of 60
ppb (NF60).

Parameters O3 treatment DFG HHBT O3 Cultivar O3 × Cultivar

Asat

(umol m−2 s−1)

NF 15.2 ± 0.60 12.51 ± 0.58

0.007 0.051 0.491NF60 11.4 ± 1.42 9.94 ± 0.75

% -25.4 -20.6

gs
(mmol m−2 s−1)

NF 0.16 ± 0.01 0.14 ± 0.01

0.065 0.708 0.079NF60 0.11 ± 0.03 0.12 ± 0.02

% -32.9 -18.3

Ci

(umol mol-1)

NF 228.3 ± 8.8 236.6 ± 7.5

0.467 0.148 0.037NF60 199.3 ± 17.7 241.8 ± 12.1

% -12.7 2.2

ETR
(umol m−2 s−1)

NF 161.7 ± 8.1 143.7 ± 14.2

0.021 0.113 0.698NF60 133.8 ± 6.5 122.2 ± 4.3

% -17.3 -15.0
Data are shown as Mean ± standard error (n = 3).
Statistically significant effects (P < 0.05) are marked in bold.
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3.5 Leaf lipid peroxidation and antioxidant
system

As shown in Table 4, O3 exposure resulted in significant

increases in MDA (6.9%) and H2O2 (8.4%) contents in peony

leaves, while carotenoid content decreased by 10.0%. No

significant effects were observed on AsA, TAC, or phenolic

contents. Under NF60 treatment, TAC content in HHBT leaves

increased by 13.3%, whereas DFG showed a slight decrease,

highlighting a significant interaction between O3 treatment

and cultivar.

Moreover, the activities of SOD and CAT enzymes were not

significantly altered by O3 exposure, but POD activity increased by

12.3% (Table 4), this increase was greater in HHBT (21.7%) than in

DFG (2.9%). The statistical analysis revealed that the O3-cultivar

interaction significantly influenced POD activity alone.
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4 Discussion

The Herbaceous peony (Paeonia lactiflora Pall.), renowned for

its majestic beauty, is often compared to its tree (Paeonia

suffruticosa Andr.) and is regarded as the “monarch of

herbaceous flowers”. Its large, vibrant, and fragrant flowers have

made it a popular choice for urban landscaping, garden cultivation,

potted displays, and the premium cut flower market (Holloway and

Buchholz, 2013). However, during the introduction and cultivation

of the peony, the plant faces numerous abiotic stresses, including

fluctuations in temperature, light exposure, water availability,

saline-alkali conditions, and heavy metal contamination (Haak

et al., 2017). While moderate stress can stimulate growth,

excessive stress inhibits development. It causes morphological

abnormalities in roots, stems, and leaves, altering internal organic

compounds, inorganic ions, and enzymatic activities, which may
TABLE 2 Leaf chlorophyll a+b, chlorophyll a and chlorophyll b of two cultivars of peony seedlings growing in nonfiltered ambient air (NF) and NF
with a targeted O3 addition of 60 ppb (NF60).

Cultivar O3 treatment Chlorophyll a+b (mg g-1 FW) Chlorophyll a (mg g-1 FW) Chlorophyll b (mg g-1 FW)

DFG NF 1.30 ± 0.08 0.97 ± 0.06 0.33 ± 0.02

NF60 1.21 ± 0.12 0.90 ± 0.09 0.31 ± 0.03

% -7.1 -7.9 -4.6

HHBT NF 1.02 ± 0.05 0.76 ± 0.03 0.26 ± 0.01

NF60 0.83 ± 0.08 0.62 ± 0.06 0.22 ± 0.02

% -18.4 -19.4 -15.2

O3 0.087 0.067 0.185

Cultivar 0.003 0.003 0.005

O3 × Cultivar 0.513 0.508 0.530
Data are shown as Means ± standard error (n = 3).
FW, fresh weight
Statistically significant effects (P < 0.05) are marked in bold.
TABLE 3 Leaf mass per area (LMA), stomatal area and density of two cultivars of peony seedlings growing in nonfiltered ambient air (NF) and NF with
a targeted O3 addition of 60 ppb (NF60).

Cultivar O3 treatment LMA (g m-2 DW) Stomatal area (×10-2 mm2) Stomatal density (mm-2)

DFG NF 54.6 ± 3.39 14.0 ± 0.44 260.1 ± 15.4

NF60 47.9 ± 4.67 13.6 ± 0.09 289.8 ± 10.7

% -12.1 -2.4 11.4

HHBT NF 57.0 ± 3.98 14.4 ± 0.35 247.5 ± 13.7

NF60 49.4 ± 2.78 14.3 ± 0.41 256.8 ± 20.3

% -13.4 -0.4 3.8

O3 0.094 0.398 0.225

Cultivar 0.608 0.403 0.164

O3 × Cultivar 0.895 0.534 0.506
Data are shown as Mean ± standard error (n = 3).
DW, dry weight.
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ultimately lead to plant mortality (Zhang et al., 2018). Among the

various abiotic stresses, elevated ground-level O3 concentrations

have emerged as a key stress factor for plant health (Ashmore,

2005). Despite this, research on the impact of O3 stress in peony

remains limited.

The leaf photosynthesis is an essential physiological process that

sustains plant life. There are few reports on the effects of O3 stress

on ornamental plants. Qin et al. (2020) conducted a study on O3

stress in Cleome spinosa, but unfortunately, the study did not

measure the response of leaf photosynthetic parameters. The

impact of O3 stress on leaf photosynthesis has been the subject of

substantial research, revealing that O3 exposure significantly
Frontiers in Plant Science 06
reduces photosynthetic rates in various crops and tree species.

Studies on wheat (Feng and Kobayashi, 2009; Xu et al., 2025),

rice (Ainsworth, 2008; Shang et al., 2024), maize (Yendrek et al.,

2017), and trees (Li et al., 2016; Shang et al., 2019) demonstrate that

O3 impairs photosynthetic capacity. The present study showed that

NF60 treatment resulted in a 23.0% significant decrease in the

photosynthetic rate in peony leaves compared to NF (Table 1), with

similar reductions in both cultivars, indicating significant O3-

induced damage. Moreover, the reduction in photosynthetic rate

in peony leaves under NF60 treatment was lower compared to the

reductions observed in rice (Ainsworth, 2008; Shao et al., 2023),

wheat (Feng et al., 2016), maize (Yendrek et al., 2017), and soybeans
TABLE 4 Leaf lipid peroxidation and antioxidant system of two cultivars of peony seedlings growing in nonfiltered ambient air (NF) and NF with a
targeted O3 addition of 60 ppb (NF60).

Parameters O3 treatment DFG HHBT O3 Cultivar O3 × Cultivar

MDA
(nmol g-1 FW)

NF 36.7 ± 1.10 36.3 ± 1.25

0.042 0.818 1.000NF60 39.2 ± 1.82 38.8 ± 2.50

% 6.8 6.9

Carotenoid
(mg g-1 FW)

NF 0.39 ± 0.02 0.31 ± 0.01

0.085 0.002 0.447NF60 0.37 ± 0.03 0.27 ± 0.01

% -5.2 -14.8

AsA
(umol g-1 FW)

NF 1.73 ± 0.02 1.68 ± 0.05

0.459 0.159 0.830NF60 1.71 ± 0.03 1.65 ± 0.04

% -1.2 -2.2

TAC
(umol g-1 FW)

NF 258.5 ± 12.3 239.1 ± 10.5

0.499 0.913 0.041NF60 256.3 ± 35.1 270.9 ± 16.2

% -0.8 13.3

H2O2

(mmol g-1 FW)

NF 4.70 ± 0.23 4.63 ± 0.24

0.038 0.909 0.801NF60 4.96 ± 0.83 5.15 ± 0.45

% 5.5 11.2

Phenolics
(umol g-1 FW)

NF 106.5 ± 6.2 113.1 ± 3.6

0.218 0.116 0.404NF60 109.9 ± 10.8 129.1 ± 18.4

% 3.4 14.1

SOD
(U g-1 FW)

NF 680.1 ± 34.3 679.5 ± 14.9

0.514 0.909 0.927NF60 701.6 ± 37.0 695.8 ± 19.8

% 3.2 2.4

POD
(U g-1 FW)

NF 66.4 ± 16.5 43.7 ± 5.0

0.073 0.020 0.016NF60 68.3 ± 8.7 53.1 ± 10.0

% 2.9 21.7

CAT
(U g-1 FW)

NF 104.7 ± 6.9 96.9 ± 10.5

0.635 0.092 0.635NF60 110.0 ± 9.1 96.9 ± 9.4

% 5.0 0.0
Data are shown as Mean ± standard error (n = 3).
MDA, malondialdehyde; AsA, reduced ascorbic acid; TAC, total antioxidant capacity; H2O2, hydrogen peroxide accumulation; SOD, superoxide dismutase enzyme; POD, peroxidase enzyme;
CAT, hydrogen peroxidase enzyme, FW, fresh weight.
Statistically significant effects (P < 0.05) are marked in bold.
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(Morgan et al., 2003). The observed decrease in photosynthesis can

be attributed to both stomatal and non-stomatal limitations (Dai

et al., 2017; Shang et al., 2024). Furthermore, under NF60, stomatal

conductance was significantly reduced, with DFG showing a greater

reduction than HHBT. However, O3 exposure also reduced

intercellular CO2 concentration by 12.7% on average in DFG, but

no significant effect or a slight increase was observed in HHBT, as

indicated by a significant O3 × cultivar interaction (Table 1). This

suggests that stomatal limitations play a key role in the decline of

photosynthesis in DFG, while both stomatal and non-stomatal

factors contribute to the decrease in HHBT. Moreover, significant

O3-induced decreases in leaf ETR were identified, which may

represent another non-stomatal mechanism of photosynthetic

inhibition (Feng et al., 2016; Schcidegger and Schroeter, 1995).

Chlorophyll, a crucial component in leaf photosynthesis, plays a

vital role in absorbing light, transferring energy, and converting it

into chemical forms. Fluctuations in chlorophyll levels significantly

influence nitrogen fixation and are indicative of leaf senescence

(Singh et al., 2015). Consistent with the observed photosynthetic

rate patterns, NF60 treatment led to reductions in chlorophyll a+b

and its components in peony leaves, with chlorophyll a showing a

more considerable decrease than chlorophyll b. While the high O3

concentration affected DFG’s chlorophyll content to a lesser extent

than HHBT, no significant interaction was found between cultivar

and O3 exposure. The changes in chlorophyll content under O3

stress likely reflect an imbalance in the production and scavenging

of reactive oxygen species (ROS). Specifically, O3 exposure

intensified lipid peroxidation in membranes, increasing MDA and

H2O2 concentrations (Table 4), and allowing excess ROS to

infiltrate chloroplasts, where they contributed to the degradation

of chlorophyll. This is primarily due to the fact that these excess

ROS exacerbate the peroxidation of chloroplast membranes,

impairing the synthesis of chlorophyll-protein complexes

(Langebartels et al., 2002). This process accelerates chlorophyll

depletion and leaf yellowing, as extensively documented in crops

such as rice (He et al., 2024) and wheat (Feng et al., 2016).

Leaf morphology and structure, shaped by the evolutionary

processes of natural selection, are closely associated with

physiological functions and represent key factors in determining a

plant’s ability to adapt to its environment (Liu and Liang, 2016).

The LMA is recognized as a reflection of plant adaptations and

acclimation to prevailing environmental conditions. Species with

low LMA display greater responsiveness to environmental stimuli

and higher stress sensitivity compared to high-LMA species, which

demonstrate enhanced stress tolerance (Bussotti, 2008; Li et al.,

2016). The findings of this study indicated that NF60 exposure

reduced leaf LMA by 12-13% (P < 0.1) in both peony cultivars,

without any significant interaction observed between O3 exposure

and cultivar, which aligns with similar reports in peach trees (Dai

et al., 2017), maize (Peng et al., 2019), and rice (Fu et al., 2021).

Stomatal traits, including density and size, are known to be highly

responsive to environmental variations (Zheng and Shangguan,

2005). Previous research has reported differing responses of

stomatal density to elevated O3, including increases (Wen et al.,

2014), decreases (Li P. et al., 2018), or no significant effects
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(Xu et al., 2008b), which may be attributed to differences in

exposure duration, O3 concentration, plant species, and the

developmental stage of leaves (Li P, et al., 2018). Furthermore, no

significant effects on stomatal density or size were found in peony

leaves under O3 exposure (Table 3). This may be because the leaves

were fully expanded before treatment, suggesting that the stomatal

structure and number had already been established, thus

minimizing the potential impact of the O3 exposure. Therefore,

further long-term studies are needed to determine the effects of

increased O3 on stomatal development throughout the lifespan of

peony leaves.

The leaf antioxidant system plays a crucial role in defending

against and repairing the oxidative damage caused by O3 stress.

However, when environmental stress exceeds a critical threshold, it

disrupts the plant’s protective defense mechanisms (Xu et al., 2020).

Several studies have shown that O3-resistant species or cultivars

typically display higher levels of antioxidant substances (Dai et al.,

2017). In this study, although most leaf antioxidant parameters

(such as AsA, TAC, total phenols, and the activities of enzymes like

SOD, POD, and CAT) did not show statistically significant

responses to O3 stress (Table 4), peony leaves treated with NF60

showed partial positive responses from their antioxidant system.

This was accompanied by an increase in H2O2 and MDA content,

with all antioxidant enzyme activities showing an upward trend.

The results were largely consistent with the findings reported by

Qin et al. (2020) regarding 80 ppb O3 stress on Cleome spinose.

Antioxidant indicators generally undergo dynamic changes, starting

with an initial increase followed by a decrease as stress intensity

increases (Wu et al., 2011). Therefore, measurements taken at a

single time point may not adequately reflect the complete dynamic

response. Future research should conduct multi-year experiments

to elucidate the temporal variations of antioxidants in the cellular

repair mechanisms of peony leaves.
5 Conclusions

Research on the effects of abiotic stress in peony has

predominantly focused on factors such as temperature, light,

water availability, salinity, and heavy metals. However, there have

been no studies on the impact of atmospheric O3 pollution on

peony growth. This study used open-top chambers to evaluate the

effects of O3 stress on the leaf morphology and physiology of

herbaceous peony. Compared with NF, the NF60 treatment led to

a significant reduction in leaf photosynthetic capacity, as reflected

by decreases in chlorophyll content and increases in MDA content,

which contributed to accelerated leaf senescence in both peony

cultivars tested. Under the same O3 exposure conditions, the two

peony cultivars showed relatively minor changes in leaf morphology

and physiology compared to crops such as soybean, rice, maize, and

wheat, classifying peony as a species moderately sensitive to O3.

Future research should focus on how elevated O3 concentrations

affect medicinal compounds and key quality traits in cut flowers,

such as stem length, flower color, and size. This knowledge will

improve the comprehension of the physiological adaptation of
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peony to O3 stress, which could inform agronomic practices that

optimize peony cultivation and commercialization and improve

stress tolerance.
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