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Introduction: Aphids are significant agricultural pests and vectors of plant 
viruses. Their Honeydew Excretion(HE) behavior holds critical importance for 
investigating feeding activities and evaluating plant resistance levels. Addressing 
the challenges of suboptimal efficiency, inadequate real-time capability, and 
cumbersome operational procedures inherent in conventional manual and 
chemical detection methodologies, this research introduces an end-to-end 
multi-target behavior detection framework. This framework integrates 
spatiotemporal motion features with deep learning architectures to enhance 
detection accuracy and operational efficacy. 

Methods: This study established the first fine-grained dataset encompassing 
aphid Crawling Locomotion(CL), Leg Flicking(LF), and HE behaviors, offering 
standardized samples for algorithm training. A rapid adaptive motion feature 
fusion algorithm was developed to accurately extract high-granularity 
spatiotemporal motion features. Simultaneously, the RT-DETR detection 
model underwent deep optimization: a spline-based adaptive nonlinear 
activation function was introduced, and the Kolmogorov-Arnold network was 
integrated into the deep feature stage of the ResNet50 backbone network to 
form the RK50 module. These modifications enhanced the model’s capability to 
capture complex spatial relationships and subtle features. 

Results and discussion: Experimental results demonstrated that the proposed 
framework achieved an average precision of 85.9%. Compared with the model 
excluding the RK50 module, the mAP50 improved by 2.9%, and its performance 
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in detecting small-target honeydew significantly surpassed mainstream 
algorithms. This study presents an innovative solution for automated 
monitoring of aphids’ fine-grained behaviors and provides a reference for 
insect behavior recognition research. The datasets, codes, and model weights 
were made available on GitHub (https://github.com/kuieless/RAMF-Aphid

Honeydew-Excretion-Behavior-Recognition). 
KEYWORDS 

honeydew excretion detection, aphid behavior recognition, rapid adaptive motion 
feature fusion, Kolmogorov-Arnold networks, RT-DETR-RK50 
1 Introduction 

Aphids were globally recognized as significant phytophagous 
piercing-sucking pests that caused multiple forms of damage to 
agricultural and ecological systems. Their harmful effects were 
manifested through three primary mechanisms: direct feeding on 
phloem sap that impeded plant growth and development, secretion 
of honeydew rich in sugars and amino acids that induced sooty 
mold disease, and efficient transmission of plant viruses (Guerrieri 
and Digilio, 2008; Singh and Singh, 2016). In sorghum-growing 
regions across the United States, Mexico, and South America, aphid 
infestations resulted in 50%-100% crop losses (Thudi et al., 2024). 
Due to their exceptionally high reproductive capacity, polyphagy, 
and multiple adaptive traits, aphids emerged as one of the most 
destructive pest categories in global agricultural production. 

The significant threat aphids posed to agriculture rendered in-
depth research into their behavior of substantial scientific significance 
and practical value. Aphid feeding behavior not only reflected insect 
adaptation to host plants but also served as a critical indicator for 
evaluating plant resistance mechanisms (Zhang et al., 2024). Accurate 
monitoring of aphid feeding behavior was found to provide 
important guidance for pest management, resistance breeding, and 
crop protection. In particular, HE is directly related to feeding 
behavior, and HE has a very prominent visual feature. Detecting 
HE behavior is considered to be an ideal way to indirectly monitor 
aphid feeding status and assess plant resistance levels. Breeding 
aphid-resistant crop varieties is considered to be one of the more 
sustainable strategies for controlling these pests (Thudi et al., 2024; 
Zhang et al., 2024), and accurate monitoring and analysis of aphid-
resistant behavior can provide critical technical support for the 
process of breeding aphid-resistant crop varieties, thus creating 
good conditions for sustainable agricultural development. 

At present, to accurately monitor aphids’ feeding behavior, the 
main method is to rely on electropenetrogram technology, which 
records the electric potential changes of insect stigma in plant 
tissues, so as to distinguish different behavior states of aphids 
(Tjallingii, 1978). EPG technology has been successfully used to 
reveal a variety of aphids’ behavior patterns. For example, the 
specific piercing behavior of phloem cells related to virus 
02 
transmission (Jiménez et al., 2020), and the changes in aphids’ 
behavior after pathogen infection (Chen et al., 2018). Although the 
machine learning method has improved the efficiency of EPG data 
analysis (Willett et al., 2016), this technology still has some 
prominent shortcomings. Connecting insects to the wire on the 
instrument will restrict the natural behavior of insects, making them 
unable to move freely. Waveform analysis also requires experts to 
do tedious manual annotation. This is a process that takes time and 
is difficult to scale up (Tayyab et al., 2024). Traditional methods of 
monitoring aphids’ HE behavior, such as manual visual counting or 
chemical analysis, also have problems of low efficiency and poor 
real-time performance, and cannot accurately capture this key 
behavior of aphids’ activity characteristics. These technical 
limitations make researchers want to explore new monitoring 
methods based on machine vision. These methods are touch-free 
and do not have invasive effects on the subjects. 

Behavior recognition is an important area within machine 
vision, requiring not only the localization of target individuals but 
also a deep understanding and analysis of their behavioral patterns 
(Manoukis and Collier, 2019). In recent years, the rapid 
development of deep learning technology has significantly driven 
advances in behavior recognition research. Architectures such as 
two-stream convolutional networks (Simonyan and Zisserman, 
2014) and spatiotemporal fusion models (Feichtenhofer et al., 
2016) have provided powerful technical support for behavior 
recognition in videos by effectively integrating appearance and 
motion information. These methods have been successfully 
applied across multiple domains, particularly in behavioral 
analysis of large targets such as cattle (Yang et al., 2025; Zhang 
et al., 2024), pigs (Zhang et al., 2024), sheep (Gu et al., 2023; Zhang 
et al., 2024b), poultry (Ahmed et al., 2024; Zhao et al., 2024), and 
fish (Yu et al., 2025; Hu et al., 2025; Zhao et al., 2024; Du et al., 
2023), all achieving recognition accuracies exceeding 90%. 

In the field of insect behavior recognition, several pioneering 
studies have made progress. Qiao et al. (2018) created a system for 
automatic detection of fruit fly grooming behavior, using K-nearest 
neighbor algorithms to achieve high-precision classification of three 
behaviors: grooming, movement, and rest. Professor Zhan’s team 
conducted in-depth research on grooming behavior recognition in 
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Bactrocera minax, with Zhang et al (2024a) proposing a grooming 
behavior detection method based on spatiotemporal context and 
CNN, and Zhan et al. (2021) implementing tephritid key point 
tracking and grooming behavior recognition using DeepLabCut. 
Xiong et al. (2024) applied computer vision technology to identify 
and track the regurgitation behavior of fruit flies, achieving 96.3% 
recognition accuracy using the I3D model. 

However, research on behavior recognition of small insects, 
especially piercing-sucking pests like aphids, remains in its early 
stages and faces a series of unique challenges. Compared to large 
animals, aphids are minuscule (minute targets) with rapid 
movements, concealed behaviors, and indistinct features (Noldus 
et al., 2002), making conventional visual monitoring methods 
inadequate for precisely capturing their behavioral details. In 
particular, the feeding behavior of aphids is almost completely 
invisible as their stylets penetrate plant tissues, requiring indirect 
characterization through observable behaviors such as HE. 
Additionally, aphids’ semi-transparent nature and similarity to 
plant background colors make target segmentation exceptionally 
difficult, while their aggregation characteristics and adhesion 
between individuals further increase the complexity of behavior 
recognition. Existing insect behavior recognition research is difficult 
to directly apply to agricultural pests such as aphids, mainly facing 
the following challenges: First, differences in research subjects and 
environments exist. Existing research (Qiao et al. (2018); Zhang 
et al. (2020); Zhan et al. (2021); Xiong et al. (2024)) focuses on high-
contrast laboratory model organisms like fruit flies, while aphids are 
smaller and have semi-transparent characteristics that make them 
difficult to distinguish from plant backgrounds. Second, the 
complexity of analysis scenarios is an issue. Traditional research 
typically analyzes individual insect behavior under ideal conditions 
such as petri dishes (Zhang et al. (2020)), while aphids in actual 
agricultural scenarios often exist in dense colonies on tobacco, 
cotton, or wheat leaves, with complex backgrounds and frequent 
overlap between individuals. Third, the specificity of behavior 
recognition targets poses a challenge. Existing research often 
focuses on behaviors that affect the insects themselves, such as 
grooming behavior, and rarely focuses on behaviors with ecological 
and agricultural significance, especially HE behavior that directly 
characterizes the feeding status of aphids, which is not only subtle 
and transient but also lacks specialized recognition methods. 
Additionally, existing technical methods themselves have serious 
limitations. Frame difference-based motion feature extraction 
research suffers from slow processing speed, high motion feature 
noise (Zhang et al. (2020)). 

Furthermore, significant differences between feature maps and 
original RGB video frames captured by the camera leading to loss of 
key spatial information. Consequently, two-stage detection 
processes have poor real-time performance, unable to meet high-
throughput detection requirements. Therefore, there is currently no 
specialized multi-object high-throughput end-to-end behavior 
detection platform for aphid populations. These special challenges 
necessitate the development of entirely new technical solutions for 
aphid behavior monitoring to adapt to the practical needs of 
agricultural pest monitoring. 
Frontiers in Plant Science 03 
Based on the research status and technical challenges outlined 
above, this study proposed an innovative solution for aphid 
behavior recognition. Key innovations included: (1) Establishment 
of the first aphid behavior dataset encompassing three characteristic 
behavioral patterns CL, LF, and HE, laying the data foundation for 
automated aphid behavior analysis; (2) Development of a Rapid 
Adaptive Motion Feature fusion (RAMF) method that achieved 
real-time processing of high-resolution videos through innovative 
temporal weighting mechanisms, adaptive threshold design, and 
parallel computing optimization, effectively extracting motion 
features of minute targets; (3) Design of an enhanced object 
detection architecture, RT-DETR-RK50, which integrated KAN 
modules into deep stages of the ResNet-50 backbone network, 
introducing spline-based adaptive nonlinear activation functions 
to enhance the network’s capacity to capture complex spatial 
relationships; (4) The proposed high-throughput end-to-end 
behavior recognition platform is not only applicable to aphids but 
can also be extended to the behavior recognition of similar insects 
such as whiteflies, providing a novel technical pathway for real-time 
pest behavior monitoring. 

The high-throughput end-to-end real-time visual recognition 
framework established in this study not only solved the technical 
challenges of aphid behavior monitoring but also innovatively 
characterized aphid feeding status and intensity indirectly 
through HE behavior recognition, providing a new observational 
window for pest-plant interaction research. By automatically 
recognizing key aphid behaviors including CL, LF, and HE, 
particularly using HE as an indicative behavior of feeding activity, 
researchers can precisely evaluate plant resistance levels and predict 
pest damage, thereby optimizing control strategies. This 
technological advancement contributes to promoting integrated 
pest management practices, reducing pesticide dependence, and 
achieving more environmentally friendly agricultural production. 
As an efficient phenotypic analysis tool, this method can accelerate 
resistant variety breeding processes, shortening breeding cycles. 
2 Materials and methods 

2.1 Original materials 

Current aphid research primarily relies on field collection, 
counting, and detection methods, with relatively limited focus on 
behavioral studies. Greenhouse cultivation and recording of aphids 
present significant challenges. This study has established the first 
comprehensive aphid behavior dataset to address this gap. The 
dataset encompasses various population densities and different light 
intensities, as illustrated in Figure 1. 

For the experiments, Myzus persicae were maintained in 
isolation on healthy tobacco plants under greenhouse conditions. 
The rearing environment was strictly controlled at 25°C, 70% 
relative humidity, and a 14:10 (L:D) photoperiod. Only wingless 
adult aphids were selected for the experiments. Tobacco plants 
(Zhongyan No. 1) were cultivated in pots within an artificial climate 
chamber. Plants were watered with distilled water once every half-
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week and nutrient solution once every three weeks, with no 
pesticide applications. Plants at a uniform growth state (6–7 leaf 
stage) were selected for experimentation. 

The experimental dataset was obtained at the modern 
greenhouse facility of Henan Agricultural University’s College of 
Plant Protection, spanning from August to December 2024. 
Standardized data acquisition was conducted using a high-
resolution microscopic imaging system (Sony ILCE-7RM2 camera 
with Laowa 25mm f/2.8 ULTRA MACRO 2.5-5X lens, 1920×1080 
pixel resolution, 30 fps sampling rate) under the same controlled 
conditions. All recordings were saved in color JPEG format to 
maintain visual detail while optimizing storage efficiency. All 
observation fields were carefully designed to encompass complete 
aphid activity zones while systematically including specimens at 
different developmental stages (nymphs and adults). The finalized 
time-series dataset comprises 32 independent experimental video 
groups, each corresponding to specific light intensity conditions, 
with individual group duration of 30 minutes and cumulative valid 
observation time reaching 16 hours. 
2.2 RAMF: rapid adaptive motion-feature 
fusion 

To effectively extract motion feature information from aphids 
using frame differencing methods, which facilitates learning and 
classification by deep neural networks, a Rapid Adaptive Motion-

Feature Fusion (RAMF) framework for moving object detection is 
proposed  in  this  paper.  This  framework  incorporates  
spatiotemporal feature adaptive fusion, as depicted in the 
schematic diagram in Figure 2. 

The RAMF framework consists of six modules. The 
initialization (Module 1) sets up the video processing 
environment. Frame Acquisition (Module 2) reads and buffers 
frames. Batch Processing (Module 3) handles frames in batches. 
Motion Feature Extraction (Module 4), the core of the framework, 
generates motion maps and computes frame differences. Denoising 
Frontiers in Plant Science 04
and Visualization (Module 5) denoises the motion map and 
overlays it on the RGB frame. Output and Cleanup (Module 6) 
writes the processed video and releases resources. The framework 
iteratively processes video frames, using adaptive motion feature 
extraction to capture aphid motion characteristics for analysis. 

This fusion strategy preserves the morphological structure 
characteristics of the targets and enhances the temporal motion 
features through temporal weighting, effectively combining static 
and dynamic information. Compared to traditional frame difference 
methods, the proposed RAMF approach significantly suppresses 
noise interference and provides a more comprehensive feature 
description for object detection through three core technical 
innovations. First, adaptive temporal weighting is used for feature 
importance allocation (Equation 3). Second, statistical thresholding 
quantifies motion saliency (Equations 5, 6). Third, a self-adaptive 
adjustment mechanism is used for feature fusion coefficient 
adjustment (Equations 8, 9). The synergistic integration of static 
morphological features and dynamic motion characteristics 
significantly improves feature discrimination while maintaining 
information completeness. The processing pipeline and its 
corresponding heatmap visualization are presented in Figure 3. 

2.2.1 Temporal motion feature processing 
Motion features can be detected using frame differencing 

(analyzing pixel value changes within a time window), which aids 
in behavior recognition (Ravbar et al., 2019). To accurately capture 
target motion characteristics, the RAMF method uses a sliding time 
window based on frame differencing to process consecutive video 
frames. The time window length impacts motion feature extraction 
quality larger windows are better for capturing low-frequency 
motion but may miss instantaneous changes, while smaller 
windows capture detailed features but are more noise-sensitive. 
Therefore, the window size must match the target motion’s 
frequency characteristics. 

To determine the optimal time window length, this study 
conducted a systematic evaluation of a set of time window 
lengths T = 5, 7, 9, 11, 13, 15, 17 (with 2-frame intervals). The 
FIGURE 1 

Dataset images of different population densities and light intensities. 
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frame difference of continuous video sequence F is analyzed, and its 
motion features are presented in a visual way. From the 
experimental results, the window length between 9 and 11 has 
reached the best balance state. This balance is reflected in that it can 
avoid the prominent motion tailing effect while ensuring the 
features have relatively high clarity. This paper selects their 
average TT = 10 frames and takes it as the final window length. 

Within the time window, the difference between adjacent 
frames is calculated using the following weighted approach, as 
shown in Equation 1: 

Dt ½F] = Y (F(t + 1), F(t)) · w(t) (1) 

In this formula, Dt ½F] represents the weighted difference image 
of the video sequence F at time t, where F(t) refers to the image of 
the video sequence F at time t, Y (·, ·) represents the difference 
operator, and w(t) represents the time-weighted coefficient. Here, 
the difference operator is defined as the absolute difference of pixel 
Frontiers in Plant Science 05 
intensities, as shown in Equation 2: 

Y (F(t + 1), F(t)) = jF(t + 1)  − F(t)j (2) 

In order to highlight the contribution of the most recent frame to 
the current motion state, the RAMF framework specifically designed 
an exponentially increasing weight allocation scheme to reflect the 
criticality of the most recent frame as shown in Equation 3. 

texp( T ) − 1T−1w(t) =  , t ∈ ½1, TT − 1] (3)
exp(1) − 1 

In this case, t represents the frame index within the time 
window, while TT represents the size of the time window. This 
weight design has some advantages. First of all, exponential growth 
can ensure that the weight of the most recent frame in the time 
window will be higher, which is consistent with the biological visual 
system’s relatively high sensitivity to recent information. Secondly, 
FIGURE 2 

Flowchart of the RAMF framework. 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1609222
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Song et al. 10.3389/fpls.2025.1609222 
the normalization process can ensure the stability of the feature 
scale, which improves the robustness of the algorithm. 

2.2.2 Motion saliency computation 
To express the larger motion of the target region, the RAMF 

method will start by summing the weighted frame difference in the 
time window, and then build the initial motion map M, as shown 
in Equation 4. 

TT−1 
M(x) =  oDt½F](x) (4) 

t=1 

Here, M(x) refers to the motion map value at the place where pixel 
x = (x, y). Dt ½F] refers to the weighted difference value of the video 
sequence F at pixel x at time t. Because in the real scene, the background 
noise will cause interference, the RAMF framework proposed an 
adaptive threshold mechanism based on statistical characteristics to 
set, as shown in Equation 5. 
Frontiers in Plant Science 06
 

   

  

q = mM + k · sM (5) 

where mM and sM respectively represent the mean and 
standard deviation of the motion map M, k is an adjustable 
parameter, its role is to control the sensitivity of the threshold. In 
this study, k is set to 3, which corresponds to the 3 s criterion, and 
according to this threshold, the generation of a motility graph S can 
be expressed in the following formula. 

On the basis of this threshold, the generation process of the 
motility graph S can be expressed in Equation 6. (

M(x), if M(x) > q 
S(x) =  (6) 

0, otherwise 

Through this thresholding mechanism, background noise can 
be effectively suppressed while highlighting regions containing 
genuine motion targets. 
FIGURE 3 

RAMF processing workflow and visualization diagram. 
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2.2.3 Adaptive feature fusion based on motion 
intensity 

To enhance the continuity of feature representation and reduce 
local noise, the RAMF approach applies Gaussian filtering to the 
saliency map S as shown in Equation 7: 

Z 
S0(x) = (S ∗ GS)(x) =  S(u) · GS(x − u)du (7) 

W 

where G represents the Gaussian kernel with covariance matrix 
S, ∗ represents the convolution operation, and W represents the 
image domain. In this study, the size of G is 7×7, and S = s 2I , where 
s = 1:5, and I is the identity matrix. 

To effectively highlight motion regions while preserving original 
image details, the RAMF method designs an adaptive feature fusion 
scheme based on weighted mixing as shown in Equation 8. 

O(x) = (1  − a(x)) · I(x) +  a(x) · C(x) (8) 

where I represents the original image, C represents the color 
visualization of motion saliency (using the yellow channel in this 
study), and a(x) is the adaptive mixing coefficient. 

The mixing coefficient a(x) is calculated through a motion 
intensity-based adaptive mechanism as shown in Equation 9. 

S0(x)
a(x) =  min(b · , amax) (9)

Jmax 

where b is a scaling factor used to adjust the influence of motion 
saliency on the fusion coefficient, Jmax is the maximum value of 
image pixel intensity (e.g., 255), and a max is the upper limit of the 
mixing coefficient to maintain the visibility of the original image 
information. In this study, b is set to 1.2, and amax is set to 0.8. 

This adaptive strategy achieves reasonable enhancement of 
motion features while ensuring the original image information is 
not excessively occluded by dynamically adjusting the mixing ratio. 
Specifically, regions with higher motion intensity receive higher 
mixing coefficients, with an upper limit of 0.8 to maintain the 
visibility of the original image information. 

2.2.4 Accelerated processing design 
The time difference method is effective in motion detection, but 

its computational complexity increases exponentially with the 
increase in pixel resolution and the size of the time analysis 
window, which limits its applicability in real-time, large-scale 
scenarios, such as panoramic multi-object recognition scenarios 
that require full frame processing. In the past, the region of interest 
technique has been used to alleviate the problem by tailoring input 
frames into local areas and then performing calculations (Zhang 
et al., 2020; Ravbar et al., 2019), but the ROI-based approach is 
inherently less suitable for panoramic systems, where global scene 
analysis and multi-target tracking are critical parts. 

Recent advances in computing hardware and parallel processing 
have addressed the limitations of traditional time differentials with 
the help of system acceleration strategies that enable Gpus 
acceleration, efficient memory management, and algorithm-level 
optimization on NVIDIA RTX 4090 Gpus. Under the condition of 
1080p resolution and 10 frame time analysis window, RAMF 
Frontiers in Plant Science 07 
method can achieve 45 frames per second motion feature 
extraction, which proves that real-time high-resolution motion 
analysis is feasible. Critical design principles enabling this 
performance include parallel execution of intensive image 
processing tasks using GPU tensor operations, efficient CPU-GPU 
data transfer via pinned memory technology, overlapping 
operations through asynchronous CUDA streams, minimized 
overhead through batch processing and pre-allocated GPU 
resources, and acceleration of critical tasks using specialized 
libraries for GPU parallel math operations. 
2.3 Construction of aphid behavioral 
classification dataset 

Following the motion feature extraction process described in 
Section 2.2, key frames were extracted from the original video at 
fixed intervals of 15 or 30 frames. The labeling annotation tool was 
utilized to annotate typical aphid behaviors in these key frames, 
including both position bounding boxes and behavior type labels. 
Three characteristic behavioral patterns were specifically 
documented: CL, LF, and HE. The visual features were associated 
with behavior labels based on the characteristics of the motion 
features extracted using the RAMF algorithm (based on frame 
differencing). Specifically, for the CL category, aphids exhibit 
whole-body movement, resulting in changes in overall pixel 
values and presenting as Whole-body contour optical flow. For 
LF, a periodic action involving only leg movement, only localized 
optical flow is observed. Finally, HE, the excretion of honeydew, is 
characterized by the optical feature of white, semi-transparent 
spheres. The distribution of valid behavioral samples is presented 
in Figure 4; Table 1. 

A comprehensive aphid behavior analysis dataset was 
established through this process. This dataset encompasses 
various typical behavioral patterns of aphids under natural 
conditions, providing a robust data foundation for subsequent 
research on behavior recognition algorithms. 
2.4 Research on object detection 
technology RT-DETR-RK50 

2.4.1 Overview of object detection techniques 
Based on motion feature videos processed in Section 2.2, 

recognition algorithms must be applied for automated behavior 
identification. Traditional approaches include 3D convolutional 
neural networks (Xiong et al., 2024) and regions of interest (ROI) 
extraction for classification (Zhang et al., 2020; Ravbar et al., 2019). 
However, 3D CNNs are time-consuming with high annotation 
costs, while image classification involves complex processing with 
limited real time performance neither optimal for multi object 
aphid detection in natural environments. 

Object detection techniques primarily divide into CNN and 
Transformer architectures. CNN detectors evolved from two-stage 
to single-stage models with both anchor-based and anchor-free 
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paradigms (Alzubaidi et al., 2021), while Transformer detectors 
(DETRs) eliminate manually designed components for true end-to
end detection (Carion et al., 2020). 

The YOLO series uses a single-stage design to achieve real-time 
performance (Redmon and Farhadi, 2018; Jocher et al., 2022, Jocher 
et al., 2023, Jocher and Qiu, 2024; Wang et al., 2024; Tian et al., 
2025), however, most YOLO series methods rely on non-maximum 
suppression, which increases the computation latency, and 
YOLOv10 uses a dual allocation method to eliminate NMS 
(Wang et al., 2024), but there are still some challenges to achieve 
real end-to-end real-time performance with guaranteed accuracy. In 
contrast, DETR builds a very clean end-to-end pipeline, which has 
no anchor points and no NMS, but its convergence is slow and the 
computational complexity is quite high, which is a challenge for 
real-time applications, and improvements such as deformable detr 
(Zhu et al., 2020) and conditional DETR (Meng et al., 2021), while 
improving performance, can improve the performance of real-time 
applications. But the computing costs are still high. 

RT-DETR represents a breakthrough real-time end-to-end 
detector (Zhao et al., 2024) that combines a backbone, hybrid 
encoder and transformer decoder with an auxiliary prediction 
head. Its hybrid encoder handles multi-scale features separately, 
applies self-attention at each scale, and uses an efficient pyramid 
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structure for cross-scale fusion. The calculation cost is significantly 
reduced. RT-DETR’s IOU-aware query selection mechanism 
combines IoU constraints to select high-quality features as initial 
queries, which speeds up convergence and improves accuracy. It 
allows for flexible adjustment of reasoning speed with different 
decoder layers, without retraining. Compared to conventional 
detectors, RT-DETR eliminates the delays associated with NMS, 
while simplifying the pipeline and presenting an excellent speed-
precision balance; it achieves faster reasoning at the same accuracy 
and higher accuracy at the same speed. 

2.4.2 RT-DETR-RK50: enhancing backbone 
architecture with KAN 

Initially, RT-DETR uses the standard ResNet-50 (R50) 
backbone for feature extraction. This backbone uses a hierarchical 
structure that stacks bottleneck blocks at several stages. The 
traditional R50 backbone works well, but because it has a fixed 
core and a rigid activation function, RT-DETR is able to perform 
feature extraction.  There are  some  inherent  limitations in

representational power. Such architectures have particularly 
significant limitations on the ability of models to capture complex 
spatial relationships and subtle feature representations, which are 
critical for accurate object detection tasks. 
TABLE 1 Aphid behavior dataset: behaviors and visual traits. 

Behavior name Number of labels Visual features Frame type 

Train Val 

CL 2572 397 Whole-body contour optical flow. Motion frames 

LF 2078 866 Local optical flow of mid and hind legs. Motion frames 

HE 459 159 Translucent spherical microdroplets. Original frames 
 

FIGURE 4
 

Aphid behavior classification: (a) crawling locomotion; (b) Leg Flicking; (c) Aphid Honeydew Excretion.
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FIGURE 6 

Network architecture diagrams of normal blocks and RK50 blocks. 
FIGURE 5 

Architecture diagram of RT-DETR-RK50 network. 
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To address these limitations, RT-DETR-RK50 is proposed as a 
new backbone network architecture that strategically uses the 
Kolmogorov-Arnold network, also known as KAN module. 
Integration into the key deeper stages of the ResNet-50 backbone 
(Liu et al., 2024). The approach is to replace the standard bottleneck 
blocks with KAN enhanced bottleneck modules, while maintaining 
the original architecture of the earlier stages while doing this 
replacement, thus specifically improving stages 4 and 5. This 
targeted enhancement is to focus computing resources on those 
areas that will bring the greatest benefit to feature representation. As 
shown in Figure 5. The concrete architecture of the Blocks and 
Bottleneck models is shown in Figure 6. 

The key innovation in this structure lies in the implementation of 
kernel adaptivity through B-spline basis functions, enabling networks 
to learn more complex non-linear feature transformations beyond the 
traditional linear combinations typical of conventional convolutions 
(Drokin, 2024). As demonstrated in Drokin’s work, the deeper blocks 
in network architectures can be enhanced by utilizing 
BottleNeck_KAN (containing KAGNConv2DLayer) instead of 
standard BottleNeck modules. These KAN-enhanced bottleneck 
modules integrate spline-based activation functions capable of 
modeling arbitrary continuous functions, thus expanding the 
network’s representational capacity beyond traditional ReLU-based 
convolutions. This study implement adaptive nonlinearity that 
dynamically adjusts the data distribution. This adaptive nonlinearity 
promotes more flexible feature transformation, which is particularly 
useful in complex target boundaries and multiple detection scenarios. 
Due  to the  feature maps  at stages P4 and  P5  being  reduced  to  1/16  and  
1/32 of the original image size, respectively, they exhibit a degree of 
abstraction and contain high-level semantic information. 
Consequently, the RK50 module is more appropriate for processing 
and enhancing these high-level features. Furthermore, the smaller 
feature map size at stage P5, coupled with a larger receptive field, 
provides richer global contextual information, which the RK50 
module can effectively leverage to improve feature representation. 
Replacing the module at earlier stages may result in the loss of crucial 
detailed information or the introduction of excessive noise, potentially 
degrading performance. By selectively applying this enhancement only 
to the deep network layer responsible for high-level semantic features, 
rather than replacing all blocks, this study demonstrates an optimal 
balance between computational efficiency and detection accuracy, 
while significantly improving the effectiveness of feature extraction, 
a critical factor in detection performance. 

This implementation uses a KAN-based convolution layer that 
combines traditional linear transformations with spline activation paths 
to create a more expressive feature modeling system. This design allows 
gradients to propagate through the network. It also improves the 
model’s ability to capture complex spatial patterns by integrating 
these advanced modules into the deep stages of the backbone. The rt
der-rk50 strategically improves characterization capabilities, which have 
the greatest impact on detection performance, and may result in a more 
efficient feature extraction pipeline without a significant increase in 
overall computational requirements. 

The RT-DETR-RK50 backbone combines the structural 
efficiency of ResNet with the potential benefits of KAN 
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technology in object detection applications, and it represents a 
very promising approach to real-time object detection architecture. 
2.5 KAN Conv 

2.5.1 Kolmogorov-Arnold networks 
Inspired by the Kolmogorov-Arnold representation theorem, 

Kolmogorov-Arnold networks represent a new architectural 
paradigm in deep learning. Unlike traditional multilayer 
perceptrons, which use fixed activation functions on nodes, KANs 
uses the learnable activation function on the edge, and replaces the 
traditional weight parameter with a single variable function 
parameterized to a spline. 

The Kolmogorov-Arnold representation theorem states that 
any multivariate continuous function can be decomposed as 
shown in Equation 10: 

! 
2n+1 n 

f (x) =  f (x1, …, xn) =  o (xp) (10)Fq ofq,p
q=1 p=1 

where fq,p :½0, 1] → R and Fq : R → R are univariate functions. 
KANs generalize this theorem by implementing network 

architectures of arbitrary widths and depths. A KAN layer with 
nin-dimensional inputs and nout -dimensional outputs is defined as a 
matrix of 1D functions, as shown in Equation 11: 

{ }
F = fq,p , p = 1,  2,  …, nin, q = 1,  2,  …, nout (11) 

For a KAN with l layers, the forward computation proceeds as 
shown in Equation 12: 

xl+1 = Fl(xl ) (12) 

where each component of xl+1 is computed as shown in 
Equation 13: 

nl 
xl+1,j = ofl,j,i(xl,i) (13) 

i=1 

The activation functions fl,j,i are parametrized as B-splines, as 
shown in Equation 14: 

f(x) =  wbb(x) +  wsociBi(x) (14) 
i 

In this formula, b(x) is the basis function, under normal 
circumstances this basis function is the sigmoid linear unit, Bi(x) 
is the B-spline basis function, ci is the coefficient that can be trained, 
this formula allows KANs to effectively learn the composition 
structure, but also can learn the function of one variable, This 
makes the model better than MLP in terms of accuracy and 
interpretability, especially for tasks that require complex 
functional approximations. 

2.5.2 KAN convolutional layers 
In fact, the principle of KAN can be extended to convolutional 

neural networks to form KAN convolutional layer, also known as 
KANConv. As can be seen from Figure 7, the architecture of 
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KANConv2D layer is different from that of standard convolutional 
layer, which first applies fixed kernel operations and then performs 
nonlinear activation. KANConv integrates learnable activation 
functions directly into convolution operations. The KANConv 
layer operates by breaking the  convolution into two  parallel
paths, one is the basic path, which applies the normal 
convolution operation to the input transformed by the basic 
activation function, and the other is the spline path, which 
applies the B-spline basis transformation to the input before 
convolution. The output of the KANConv layer of a single group 
can be expressed as shown in Equation 15: 

y = PreLU(Norm(Convbase(g(x)) + Convspline(B(x)))) (15) 

In this formula, g( · ) represents the basis activation function, 
B(x) refers to the spline basis transformation, Norm is the 
normalization function, KANConv relies on the combination of 
learnable activation functions, improve the ability to approximate 
the function, compared with the fixed activation function. 
KANConv can more effectively model complex patterns present 
in the data. Spline-based approaches can adapt and learn feature 
transformations for specific data distributions on their own, rather 
than  relying  on  pre-defined activation functions. This 
implementation also supports group convolution, which allows 
learning different activation functions for different feature sets, 
thus improving the representation of the model. dropout 
specifically designed for convolution dimensions provides 
efficient regularization during training. In essence, KANConv 
leverages the mathematical foundations of KANs to enhance the 
expressive power of convolutional operations while maintaining 
computational efficiency. This approach particularly benefits 
applications requiring complex function approximation in spatial 
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or temporal domains, such as image processing, video analysis, and 
signal processing tasks. 
2.6 Cross-frame processing for aphid 
honeydew excretion detection 

Aphid honeydew excretion behavior serves as a key indicator of 
population vitality, characterized by small-amplitude movements 
that are difficult to capture. Although frame differencing 
successfully extracts excellent motion features, the optical 
characteristics of aphid honeydew are often obscured by overlaid 
optical flow, leading to difficulties in accurate identification under 
composite features. A simple solution strategy is to adopt multi-

model training, specifically training RGB mode to identify 
honeydew and motion feature mode to recognize other behaviors, 
then merging the results. While this ensures high detection rates, it 
increases model complexity and reduces real-time performance. 

2.6.1 Cross-frame detection method 
To address these issues, this study proposes a motion-original 

video cross-frame detection method. This approach processes only 
odd-numbered frames during the motion feature extraction phase, 
enabling detection of motion-based behaviors in odd frames while 
identifying key excretion targets (honeydew) in even frames. This 
method offers the following advantages: first, it ensures detection 
accuracy without requiring multiple models; second, it reduces 
computational resource consumption, as motion information 
differences between adjacent frames are minimal, allowing 
selective processing to decrease computational overhead by 
approximately 50% while maintaining information integrity. 
FIGURE 7 

Network model diagram of KAN conv. 
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2.6.2 Post-processing algorithm and behavioral 
analysis strategy 

Cross-frame processing causes detection results to exhibit a 
“flickering” phenomenon. To address this issue, based on temporal 
continuity assumptions, this study proposes a delayed interpolation 
improved post-processing algorithm: if the same behavior is 
detected in consecutive motion frames (such as the first and third 
frames), it is reasonable to infer that the intermediate original video 
frame (second frame) also contains this behavior. By extending 
single-frame detection results by one frame, the flickering problem 
is effectively eliminated. 

Furthermore, aphid excretion behavior presents as multimodal 
features, divisible into static honeydew excreting (high-reflectivity 
droplets) and dynamic kicking actions (periodic motion 
trajectories).  This  study  addresses  the  spatiotemporal  
heterogeneity by proposing a hierarchical three-phase analysis 
strategy. This strategy breaks down excretion behavior into three 
distinct phases: the first phase involves LF detection to identify 
high-frequency pre-excretion movement; the second phase involves 
honeydew identification to detect physical evidence of metabolic 
product generation in the form of single droplets; and the third 
phase involves composite motion assessment to determine 
honeydew excretion through coordinated observation. In practical 
detection, if both LF and honeydew appear in adjacent frames 
within a time window, they are identified as composite motion and 
labeled as “honeydew excreting,” thereby establishing a more 
precise vitality assessment model. 
2.7 Real-time end-to-end behavior 
detection platform 

Frame differencing methods play a vital role in behavior 
recognition and video analysis research. Traditional approaches 
typically followed a two-stage process: first extracting features to 
obtain feature videos or images, then feeding these features into 
algorithms for recognition or classification (Zhang et al., 2020). 
However, this approach faced two major challenges: insufficient 
real-time processing speed for feature extraction and substantial 
storage resources required for feature images, which significantly 
limited the practical application of frame differencing methods. 

The improved frame differencing method RAMF proposed in 
this research achieved a processing speed of 45fps, enabling real-
time processing of high-resolution (1080p) videos. Combined with 
the enhanced RT-DETR-RK50 detector, the input stage was 
optimized through streamlined processing, directly feeding 
extracted motion features into the detector seamlessly. This 
implementation realized a complete real-time end-to-end 
processing pipeline from video input to behavior detection 
output, effectively eliminating the need for intermediate data 
storage and improving overall system efficiency (with real-time 
processing speeds of 23.7fps on RTX3090 and 31fps on RTX4090 at 
1080p resolution). 

To achieve this goal, a comprehensive acceleration framework 
was implemented that employed a multi-threaded parallel pipeline 
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architecture, decoupling the traditionally sequential stages of video 
processing. By implementing concurrent frame acquisition, feature 
extraction, and result rendering threads, the system effectively 
masked I/O latency and maximized computational resource 
utilization. GPU memory management was optimized through 
strategic  pre-al location  techniques,  reducing  runtime  
fragmentation and minimizing the overhead of frequent memory 
operations. Through maintained persistent CUDA streams for 
parallel execution, the system achieved asynchronous computing 
where motion feature extraction proceeded simultaneously with 
object detection inference. The implementation leveraged batch 
processing optimizations, processing multiple frames concurrently 
rather than sequentially, with batch sizes up to 24 frames. 
Vectorized operations replaced traditional pixel-wise processing, 
further exploiting GPU parallelism for critical image processing 
operations. Model computation was enhanced through just-in-time 
compilation, converting the detection network into an optimized 
intermediate representation that substantially reduced interpreter 
overhead. This compilation was combined with mixed precision 
computation strategies while maintaining detection accuracy. The 
detailed pseudocode describing the comprehensive framework 
algorithm has been included in Appendix A. 

Through the comprehensive application of these techniques, 
this research successfully constructed an efficient end-to-end real-
time behavior recognition system, overcoming the limitations of 
traditional frame differencing methods with their cumbersome 
processing and poor real-time performance, providing a more 
practical solution for aphid HE video behavior analysis. 
2.8 Experimental platform 

The hardware configuration utilized an NVIDIA RTX 4090 
GPU (24GB GDDR6X memory, AD102 architecture) for its 
powerful processing capabilities ideal for deep learning model 
training, supported by an Intel Xeon Gold 6430 (16-core) CPU 
for efficient data preprocessing and real-time augmentation. The 
software environment consisted of Python 3.12.3 with PyTorch 
2.3.0 and Torchvision 0.18.0 (CUDA 12.1) to ensure framework-

GPU architecture compatibility and optimized hardware utilization. 
RT-DETR training configurations were systematically 

optimized: 200 training epochs without early stopping to fully 
realize model potential; AdamW optimizer balancing convergence 
speed and stability; 0.0001 initial learning rate suitable for stable 
Transformer training with 1.0 final learning rate factor maintaining 
learning capability; batch size 4 accommodating RT-DETR’s 
Transformer architecture memory requirements; and 0.0001 
weight decay providing moderate regularization while preserving 
model expressivity. Loss balancing employed higher box loss weight 
(7.5) to enhance positional accuracy, lower classification loss weight 
(0.5) and moderate distribution focal loss weight (1.5) optimized for 
detection tasks. Training utilized 2000 warmup epochs with 0.8 
momentum and 0.1 bias learning rate for early gradient stability. 
Cache mode was enabled to accelerate training, with 0.7 IoU 
evaluation threshold balancing precision and recall, and 18 
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parallel data loading threads optimizing data throughput. These 
parameters combined insights from YOLO implementations, DETR 
best practices, and hyperparameter optimization to precisely 
balance detection accuracy, training efficiency, and inference speed. 
   

   

2.9 Evaluation metrics 

2.9.1 Object detection evaluation metrics 
This study employs a multi-dimensional standardized metric 

system to quantitatively evaluate the performance of object 
detection algorithms. The core evaluation metrics include 
detection accuracy metrics, localization precision metrics, and 
real-time performance metrics. 

For detection accuracy, the primary measurements are 
Precision and Recall. Precision reflects the accuracy of detection 
results, calculated as shown in Equation 16: 

TP 
P = (16)

(TP + FP) 

where TP (True Positive) represents the number of correctly 
detected objects, and FP (False Positive) represents the number of 
falsely detected objects. 

Recall reflects the completeness of detection results, calculated 
as shown in Equation 17: 

TP 
R = (17)

(TP + FN) 

where FN (False Negative) represents the number of 
missed detections. 

Localization precision is evaluated using IoU (Intersection over 
Union), calculated as shown in Equation 18: 

Area of Intersection 
IoU = (18)

Area of Union 

The overall detection performance is evaluated using mean 
Average Precision (mAP), specifically adopting mAP @0:5 as the 
primary performance metric, which represents the average 
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precision across categories at an IoU threshold of 0.5, as shown 
in Equation 19: 

noi=1AP 
mAP = (19)

n 

where n represents the total number of object categories. 
In this paper, several key indicators are adopted to evaluate the 

complexity and real-time performance of the model. Among them, 
parameter counting quantifies trainable parameters in millions, 
which can reflect the storage demand and size of the model, and 
the computing burden is measured by GFLOPs. GFLOPs refers to 
billions of floating-point operations during forward propagation. 
Operational latency is calculated as the sum of pre-processing time 
(tpre), inference time (tinf ), and post-processing time (tpost), as 
shown in Equation 20: 

Latency = tpre + tinf + tpost (20) 

This comprehensive evaluation framework balances the 
efficiency of the evaluation model to better balance the accuracy 
of the inspection with the utilization of computing resources and 
the feasibility of actual deployment. 
3 Result and discussion 

3.1 RAMF: comparison of different 
resolutions and time windows 

Resolution and time window size were identified as critical 
parameters in frame differencing methods that directly impacted 
the effectiveness of motion features and consequently influenced the 
accuracy of behavior recognition. In this study, a fixed 1080p 
resolution was maintained while the effects of various time 
window sizes were investigated. Results were shown in Figure 8. 

The findings demonstrate that time window selection involves 
an important trade-off. Insufficient window sizes fail to capture 
complete motion patterns, while excessive window sizes accumulate 
multi-frame  noise  and  cause  motion  features  to  blur,  
FIGURE 8 

Visual representation of motion feature extraction across different temporal windows. 
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simultaneously increasing computational load. An optimal window 
size achieves balance between effectively capturing key behavioral 
characteristics and suppressing noise, ensuring motion feature 
distinctiveness and recognizability. 

Through comparative analysis, it was determined that a time 
window size of 10 frames produced the best results, yielding motion 
feature images with superior highlight clarity and minimal 
trailing artifacts. 

Regarding resolution considerations, higher resolutions involve 
more pixels in computation, resulting in increased computational 
complexity and reduced processing speed. However, before input to 
the object detection algorithm and resizing to 640 pixels, extraction 
of features at higher resolutions preserves more detailed 
characteristics. This preservation of fine-grained motion 
information ultimately contributes to improved detection 
performance despite the computational trade-offs. 

As shown in Table 2, experimental results revealed a complex, 
non-linear relationship between time window size and processing 
speed (FPS) in video motion detection. At lower resolutions (480p, 
720p), a moderate time window size (7–11 frames) initially 
improved performance, but larger windows led to performance 
degradation, potentially due to GPU parallelism efficiency and 
memory bandwidth saturation. Higher resolutions (1080p) 
exhibited more pronounced performance fluctuations, indicating 
that the algorithm was more susceptible to memory access patterns 
and cache utilization. Therefore, in optimizing video processing 
pipelines, the optimal time window size should be selected based on 
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resolution, considering dynamic window adjustment and hardware 
characteristics. Future optimization directions include adaptive 
time window selection, optimizing memory access patterns, 
balancing workload, and conducting detailed performance 
analysis to fully leverage the benefits of GPU acceleration. 
3.2 RT-DETR-RK50: ablation study on KAN 
module integration 

To strike a balance between computational efficiency and 
detection performance, this study optimizes the deployment 
strategy of KAN modules within the rt-der-rk50 architecture. 
While KAN’s powerful adaptive activation and nonlinear modeling 
capabilities can significantly boost the performance of the ResNet-50 
backbone, an excessive number of KAN modules may lead to a series 
of issues, including a sharp increase in computational complexity, 
increased optimization difficulty, overfitting risks, representational 
redundancy, chaotic feature levels, unstable gradient flow, and 
imbalanced resource utilization. To address these challenges, 
ablation experiments were systematically conducted to evaluate the 
impact of integrating varying numbers of KAN modules into the rt
der-rk50 architecture on detection performance. By comparing 
configurations such as RK50–1 and RK50-3, the aim is to 
determine the optimal number and distribution of KAN modules, 
thereby maximizing detection performance while ensuring 
computational efficiency. 
TABLE 2 RAMF processing speed at different resolutions and time windows. 

Time window size (frame) 
Processing speed (Fps) GPU model GPU power consumption GPU memory usage 

1080p 720p 480p 

5 26.74 72.19 134.19 RTX3090 095.6W/350.0W 3911/24253MiB 

7 31.84 53.33 162.85 RTX3090 113.1W/350.0W 11147/24253MiB 

9 32.72 68.74 143.42 RTX3090 116.9W/350.0W 11147/24253MiB 

10 21.54 78.16 137.85 RTX3090 117.1W/350.0W 11147/24253MiB 

11 29.20 87.01 138.71 RTX3090 123.8W/350.0W 11147/24253MiB 

13 25.19 84.02 131.69 RTX3090 125.0W/350.0W 11147/24253MiB 

15 30.46 84.79 123.42 RTX3090 127.6W/350.0W 11147/24253MiB 

17 29.76 81.18 118.48 RTX3090 131.5W/350.0W 11147/24253MiB 

5 48.22 100.87 177.33 RTX4090 45.3W/450.0W 03643/24111MiB 

7 44.91 103.06 216.84 RTX4090 51.7W/450.0W 11147/24111MiB 

9 46.83 97.51 198.08 RTX4090 57.4W/450.0W 11147/24111MiB 

10 45.33 102.22 195.79 RTX4090 58.4W/450.0W 11147/24111MiB 

11 44.73 101.00 190.75 RTX4090 57.7W/450.0W 11147/24111MiB 

13 43.43 95.48 187.96 RTX4090 57.7W/450.0W 11147/24111MiB 

15 43.28 94.77 186.86 RTX4090 56.4W/450.0W 11147/24111MiB 

17 46.77 92.96 183.76 RTX4090 63.2W/450.0W 11147/24111MiB 
The final version presented in this article is in bold. 
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3.2.1 Feature representation optimization for RT
DETR-RK50 based on heatmaps 

In order to verify the effectiveness of feature extraction in 
ablation research, this paper uses Grad-Cam ++ to carry out heat 
map visualization (Chattopadhay et al., 2018). There are specific 
parameters for heat map visualization here. The parameters are as 
follows: method is set to GradCAMPlusPlus, and layer 19 is set to 
15th, 22nd and 25th respectively. Backward_type is null, confidence 
threshold is set to 0.2, and ratio is set to 1.0. It is clear from Figure 9 
that different RT-DETR backbone variants have different activation 
patterns, which also shows that there are significant differences in 
their feature representation capabilities. 

The heatmap visualization in Figure 8 reveals distinct activation 
characteristics across RT-DETR backbone variants. The baseline 
R50 model exhibits isolated hotspots with minimal inter-region 
connectivity, indicating effective but contextually limited feature 
identification. With progressive KAN block integration, significant 
transformations in feature representation emerge. RK50–1 
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demonstrates expanded activation fields with initial bridging 
between hotspots, suggesting enhanced spatial relationship 
modeling, albeit with suboptimal activation distribution. RK50–2 
presents the most balanced activation topology, characterized by 
well-distributed hotspots with comprehensive connectivity and 
gradual transitions between high and medium activation regions. 
This pattern indicates sophisticated feature hierarchy development 
and optimal contextual integration. In contrast, RK50–3 exhibits 
more constrained activation patterns despite maintaining strong 
primary hotspots, suggesting potential representational redundancy 
and excessive specialization. 

The quantitative metrics in Table 3 corroborate these visual 
observations. RK50–2 achieves superior overall detection 
performance (0.849 mAP0.5) with remarkable consistency across 
behavioral categories, particularly excelling on the challenging 
Honeydew category (0.859 mAP0.5 versus 0.798 for R50). While 
RK50–3 shows marginal improvement on the CL dataset (0.862), it 
exhibits significant performance degradation on LF (0.693). 
FIGURE 9 

Feature activation heatmap comparison across RT-DETR-RK50 variants: (a) R50, (b) RK50-1, (c) RK50-2 (Ours), (d) RK50-3. 
TABLE 3 Results of ablation study on KAN module integration. 

Model mAP0.5 

(CL) 
mAP0.5 

(LF) 
mAP0.5 

(HE) 
F1 

score (HE) 
mAP0.5 

(All) 
Params 
(M) 

GFLOPs 
(G) 

Latency 
(Ms, bs=1) 

R50 0.844 0.818 0.798 0.765 0.820 41.9 128.6 24.6 ± 0.2 

RK50-1 0.854 0.809 0.715 0.734 0.793 70.2 129.6 28.4 ± 0.5 

RK50-2 0.855 0.832 0.859 0.847 0.849 84.4 129.6 27.2 ± 0.7 

RK50-3 0.862 0.820 0.769 0.810 0.817 86.7 129.6 32.6 ± 0.1 
The best performers in each group are highlighted in bold. 
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Notably, RK50–2 maintains computational efficiency with only a 
10.6% latency increase over the baseline (27.2ms versus 24.6ms), 
while delivering substantially improved detection capabilities. 

Considering the limited number of training samples in the 
Honeydew class (only 459), relying solely on the mAP metric may 
not fully reflect the performance of the models on minority classes. 
This study employs the F1 Score metric, aiming to comprehensively 
consider Precision and Recall, thereby more comprehensively 
evaluating the performance of the models on imbalanced datasets. 
The F1 Score is the harmonic mean of Precision and Recall, 
effectively measuring the accuracy and completeness of the 
models in identifying minority classes. As can be seen from 
Table 3, the trend of F1 Scores for each model in the Honeydew 
class is generally consistent with mAP0.5 (Honeydew), indicating 
that the F1 Score and mAP metrics are correlated to some extent. 
Among them, the RK50–2 model achieved the highest F1 Score 
(0.847) in the Honeydew class, indicating that it has achieved a good 
balance between Precision and Recall, and can effectively identify 
the Honeydew class, reducing false negatives and false positives. In 
contrast, the R50 model has a lower F1 Score (0.765) in the 
Honeydew class, which may be more affected by class imbalance, 
resulting in some bias in its identification of the Honeydew class. 

3.2.2 Behavior classification accuracy analysis 
Based on confusion matrices 

The confusion matrices in Figure 10 provide important insights 
into the classification performance of various detection models 
across three key aphid behaviors (CL, LF, and HE). The RT
DETR-R50–2 model demonstrates superior classification 
accuracy, with diagonal values significantly higher than other 
variants. Particularly in the Honeydew category, it achieves 86% 
accuracy, notably outperforming other RT-DETR backbone 
variants (R18: 72%; R50: 74%; R50-1: 69%; R50-3: 81%). The 
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progressive improvement from R18 through various RK50 
variants  reveals  systematic  enhancement  in  behavior  
differentiation capabilities, with RK50–2 achieving  optimal

balance in reducing misclassification errors across all three 
behaviors, such as Honeydew being frequently misclassified as 
Background or LF being misidentified as CL in other models. 

3.2.3 Analysis of KAN module integration impact 
on model convergence 

The loss curves in Figure 11A revealed RK50–2 as the optimal 
RT-DETR-RK50 variant, achieving the lowest steady-state loss 
(0.05) and fastest convergence, particularly in the first 50 epochs, 
while the baseline RK50 stabilized higher (0.07). RK50–1 showed 
limited improvement with its single KAN module, and notably, 
RK50–3 performed inferior to RK50–2 despite additional KAN 
modules, exhibiting oscillations in later training stages that 
validated the hypothesis of excessive nonlinearity causing 
optimization difficulties. RK50-2’s smooth curve indicated a more 
regular loss landscape and stable optimization process, with 
continuous improvement during the 75–150 epoch interval when 
other variants plateaued, confirming that two KAN modules in RT
DETR backbones represents an ideal balance between expressivity 
and training stability. 

These findings validated the hypothesis regarding optimal KAN 
module deployment. The strategic integration of two KAN blocks 
achieved an ideal balance between enhanced representational 
capacity, effective spatial context modeling, and computational 
efficiency. The diminishing returns observed with additional KAN 
blocks confirmed concerns about excessive nonlinearity 
introducing optimization instabilities and function overfitting. 
The RT-DETR-RK50–2 configuration thus strategically leveraged 
adaptive nonlinearity to enhance detection performance without 
compromising inference efficiency. 
FIGURE 10 

Confusion matrix comparison of detection models across different Aphid behavior categories. 
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3.3 RT-DETR-RK50: comparison of state-
of-the-art methods 

To ensure fair evaluation, all experiments were conducted in the 
same hardware environment equipped with an NVIDIA RTX 4090 
GPU (SSD and Faster-RCNN were trained on RTX 3090 due to 
framework compatibility constraints) (Girshick, 2015; Liu et al., 
2016). Representative state-of-the-art detection methods were 
selected for comparison, including YOLO series, DETRs family, 
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Faster R-CNN, and SSD. As shown in Table 3, while the YOLO 
series excelled in detection speed and model efficiency, its detection 
accuracy was relatively limited. The proposed method achieved a 
significant improvement of 2.9% mAP over the baseline (RT
DETR-R50), attaining the best overall performance and validating 
its effectiveness. For practical deployment scenarios, a balance 
between accuracy and efficiency is crucial. RT-DETR-R18 
emerged as the optimal choice within the DETRs family with 
82.8% mAP and 15.9ms latency, while YOLOv12-M and 
FIGURE 11 

Comparison of training loss curves across different model architectures. 
FIGURE 12 

Detection results based on the model with the highest mAP50 metric. 
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YOLOv11-L demonstrated excellent accuracy-speed trade-offs in 
the YOLO series, with YOLOv12-M being particularly suitable for 
lightweight deployment scenarios. 

Figure 12 presented a visual comparison of detection results 
from five leading models on aphid behavior detection tasks. From 
left to right, the models were YOLOv11L, YOLOv12M, RT-DETR
R18, RT-DETR-R50, and the proposed RT-DETR-RK50–2 model. 
Through systematic comparison, it was clearly observable that the 
RT-DETR-RK50–2 model  significantly outperformed other 
comparative models across various complex scenarios. 

In high aphid density scenes, RT-DETR-RK50–2 demonstrated 
superior detection and classification capabilities compared to other 
models. While YOLO series models exhibited classification errors 
and detection omissions, the RT-DETRs series presented more 
precise results and higher confidence scores, consistent with their 
excellent mAP metrics. This precision advantage stems from RT-
DETRs’ architecture prioritizing detection accuracy over speed. 
Although RT-DETR-R50 performed adequately in specific 
scenarios, it showed significantly reduced stability in complex 
backgrounds and dense aphid regions, missing numerous targets 
as evidenced in row 2 of the figure. Quantitatively, RT-DETR
RK50–2 maintained consistently high confidence scores (mostly 
above 0.85) while comparative models showed lower or unstable 
confidence under similar conditions, directly validating the KAN 
module’s effectiveness in enhancing feature extraction depth and 
representational capabilities. 

Figure 10 confusion matrices revealed significant model 
performance differences in aphid behavior recognition. YOLO 
series models exhibited high Honeydew misclassification rates 
(YOLOv10x: 52.0%, YOLOv11-L: 57.0%, YOLOv12-M: 43.0%), 
indicating fundamental limitations with small targets despite their 
speed advantages. In contrast, RT-DETR-R50–2 achieved 86.0% 
Honeydew detection accuracy, far surpassing YOLO’s best

performance. This critical advantage in detecting Honeydew, a 
key indicator of aphid damage severity, demonstrated important 
practical value. 

Figure 11 subplots further confirmed these differences through 
training dynamics. In (b), RK50–2 demonstrated optimal 
convergence with the lowest final loss values (~0.05) and faster 
convergence than R18 and R50 baselines. In (c), YOLO models 
stabilized at significantly higher loss levels (0.9-1.7) despite rapid 
initial descent. These patterns validated RT-DETR’s inherent 
advantages in fine-grained detection tasks, with the KAN module 
further enhancing performance. 

Integrating the visual results from Figure 12 with the 
quantitative analysis data from Table 4, it was concluded that RT
DETR-RK50–2 achieved optimal performance balance in aphid 
behavior detection tasks, not only reaching the highest mAP50 
metric of 0.88 in Honeydew detection, but also maintaining 
consistent excellent performance across other behavioral 
categories. This comprehensive and robust detection capability 
made it particularly suitable for deployment in aphid behavior 
monitoring systems in real agricultural environments, providing 
reliable and precise phenotypic analysis technical support to 
accelerate the breeding process of resistant crop varieties. 
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3.4 Model robustness analysis with aphid 
density and brightness conditions 

To further evaluate the model’s performance in this study, we 
conducted additional visualization experiments using Grad-CAM+ 
+ to generate heatmaps, analyzing the model’s behavior under 
different lighting conditions and aphid densities (Figure 13). 
Specifically, experiment group (a) simulated the impact of varying 
brightness levels, employing brightness gains of -80, -40, 0, and 40 
i n  t h i s  s tudy .  Expe r imen t  g roup  ( b )  a s s e s s ed  th e  
model’s performance across different aphid densities in this study. 
Experiment group (c) focused on the HE category, testing it under 
various combinations of brightness and density in this study. 

The experimental results are shown in the figure. In group (a), the 
heatmap activation region was largest and most concentrated under 
normal brightness (brightness gain of 0), indicating the best detection 
performance in this study. As brightness increased or decreased, the 
detection performance slightly declined, but the overall difference was 
small, demonstrating that the RT-DETR-RK50 model exhibits good 
robustness to brightness variations in this study. In group (b), the 
model could normally detect most targets when the aphid density was 
low in this study. However, in high-density scenarios, one instance of 
missed detection occurred, indicating a limitation of the model in 
high-density detection in this study. In group (c), although the model 
could still detect targets under high density and low brightness 
conditions in this study, the heatmap activation region was smaller. 
This may be because, in high-density states, the proportion of HE 
target categories in the total image pixels is further reduced, making it 
more difficult for the model to recognize them in this study. 
3.5 Multi-phase analysis of aphid 
honeydew excreting behavior detection 
results 

As illustrated in Figure 14, the cross-frame detection method 
described in Section 2.6 successfully decomposed aphid excretion 
behavior into three distinct detection phases. The experimental 
results demonstrated the system’s capability to identify complex 
behavioral patterns through sequential analysis. 

In Phase 1, the system detected periodic LF movements with 
confidence scores of 0.61 in Case 1 and 0.89-0.92 in Case 2. Blue 
bounding boxes effectively localized these characteristic aphid leg 
movements during excretion. Phase 2 focused on identifying small 
honeydew droplets, achieving confidence scores of 0.78 in Case 1 and 
0.88 in Case 2. The blue bounding boxes in the center column 
precisely marked these high-reflectivity droplets on the plant 
substrate. In Phase 3, the system integrated temporal correlations 
between LF and honeydew presence, yielding honeydew excreting 
detection with 0.83-0.86 confidence (purple boxes), while 
maintaining discrete LF detection (0.64 confidence in Case 2). The 
right column images demonstrate the system’s ability to differentiate 
between combined behavioral patterns and individual components 
within the same frame, showcasing the advantages of object detection 
in high-resolution multi-target behavior recognition. 
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The  sequential  detect ion  results  confirm  that  the  
proposed methodology successfully addresses the challenges 
associated with detecting aphid excretion behavior. By 
decomposing this complex behavior into constituent components 
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and leveraging their temporal correlation, the system achieved 
precise identification of both the physical actions (LF) and the 
physical evidence (honeydew  droplets) associated with 
excretion events. 
TABLE 4 Detection results compared with state-of-the-art models. 

Model Backbone mAP0.5 

(CL) 
mAP0.5 

(LF) 
mAP0.5 

(HE) 
mAP0.5 

(All) 
Params 
(M) 

GFLOPs 
(G) 

Latency 
(Ms, bs=1) 

SSD VGG 0.914 0.765 0.453 0.711 26.2 62.7 – 

Faster-R CNN Resnet50 0.876 0.681 0.131 0.563 137.0 370.210 – 

YOLOv5-N CSPDarknet-53 0.883 0.826 0.436 0.715 1.76 4.1 4.2 ± 0.4 

YOLOv5-S CSPDarknet-53 0.874 0.835 0.415 0.708 7.0 15.8 4.5 ± 0.8 

YOLOv5-M CSPDarknet-53 0.864 0.806 0.505 0.725 20.8 47.9 5.1 ± 0.3 

YOLOv5-L CSPDarknet-53 0.849 0.803 0.493 0.715 46.1 107.7 5.8 ± 0.6 

YOLOv5-X CSPDarknet-53 0.879 0.825 0.575 0.760 86.2 203.8 8.8 ± 0.9 

YOLOv8-N Darknet-53 0.846 0.792 0.113 0.584 3.0 8.1 6.0 ± 0.2 

YOLOv8-S Darknet-53 0.853 0.813 0.257 0.641 11.1 28.4 5.9 ± 0.5 

YOLOv8-M Darknet-53 0.864 0.831 0.232 0.642 25.8 78.7 6.9 ± 0.7 

YOLOv8-L Darknet-53 0.859 0.833 0.185 0.626 43.6 164.8 7.9 ± 0.1 

YOLOv8-X Darknet-53 0.847 0.816 0.253 0.639 68.1 257.4 7.8 ± 0.4 

YOLOv10-N En-CSPNet 0.844 0.672 0.344 0.672 2.7 8.2 6.7 ± 0.8 

YOLOv10-S En-CSPNet 0.870 0.838 0.558 0.755 8.0 24.5 7.3 ± 0.3 

YOLOv10-M En-CSPNet 0.857 0.849 0.467 0.724 16.4 63.4 9.4 ± 0.6 

YOLOv10-L En-CSPNet 0.847 0.825 0.650 0.774 25.7 126.4 9.9 ± 0.9 

YOLOv10-X En-CSPNet 0.853 0.839 0.728 0.807 31.5 169.8 9.4 ± 0.5 

YOLOv11-N – 0.871 0.855 0.422 0.716 2.5 6.3 7.0 ± 0.7 

YOLOv11-S – 0.867 0.843 0.654 0.788 9.4 21.3 7.3 ± 0.1 

YOLOv11-M – 0.836 0.765 0.765 0.814 20.0 67.7 7.6 ± 0.4 

YOLOv11-L – 0.851 0.830 0.771 0.817 25.3 86.6 12.5 ± 0.8 

YOLOv11-X – 0.841 0.825 0.771 0.812 56.8 194.4 12.4 ± 0.3 

YOLOv12-N – 0.856 0.826 0.526 0.736 2.5 6.3 4.3 ± 0.6 

YOLOv12-S – 0.875 0.832 0.554 0.754 9.2 21.2 3.8 ± 0.9 

YOLOv12-M – 0.856 0.845 0.739 0.813 20.1 67.1 3.5 ± 0.2 

YOLOv12-L – 0.853 0.839 0.716 0.803 26.3 88.6 5.1 ± 0.5 

YOLOv12-X – 0.849 0.838 0.740 0.809 59.0 198.5 7.8 ± 0.7 

RT-DETR-L HGNetv2 0.842 0.833 0.718 0.798 31.9 103.5 25.0 ± 0.1 

RT-DETR-X HGNetv2 0.825 0.819 0.808 0.817 65.4 222.5 28.0 ± 0.4 

RT-DETR
R18 [7] 

R18 0.852 0.834 0.799 0.828 19.8 57.0 15.9 ± 0.8 

RT-DETR-P2 R18 0.854 0.822 0.765 0.814 18.6 78.2 17.1 ± 0.3 

RT-DETR
R50 [7] 

R50 0.844 0.818 0.798 0.820 41.9 128.6 24.6 ± 0.2 

OurS RK50 0.855 0.832 0.859 0.849 84.4 129.6 27.2 ± 0.7 
The best performers in each group are highlighted in bold. 
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The high confidence scores across all phases and cases validate 
the effectiveness of the cross-frame processing approach in 
capturing these subtle behavioral indicators of aphid population 
vitality. The visual evidence presented in Figure 9 demonstrates that 
even small-amplitude movements and minute targets can be 
reliably detected and classified through the implemented 
hierarchical detection framework. 
3.6 Overall system real-time end-to-end 
detection performance 

In previous research using frame differencing methods for 
motion feature extraction, the motion feature extraction and deep 
learning algorithms were typically processed in two separate stages, 
resulting in poor real-time performance and cumbersome 
processing procedures. As introduced in Section 2.7, this research 
optimized the detection pipeline by implementing streaming 
inference that synchronizes feature extraction and detection 
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processes, achieving real-time end-to-end detection for RT-
DETRs. Performance evaluations were conducted on three top-
performing models based on ResNet18, ResNet50, and the 
improved RK50 backbone networks. As shown in the Table 5, 
these models were tested on three GPU platforms (RTX3090, 
RTX4090) across various resolutions (from 480p to 1080p), 
measuring both inference-only speed and real-time end-to-end 
processing speed. The time window size was set to 10 frames. The 
experimental results demonstrated that the proposed RK50 model, 
despite having slightly lower inference speeds compared to the 
baseline models, significantly improved detection accuracy with an 
mAP50 of 0.849, showing considerable performance advantages 
over the baseline approaches. 

The architectural optimizations delivered significant 
performance improvements across the model lineup. At 1080p 
resolution, RT-DETR-RK50 maintained 31.82 fps on RTX4090, 
exceeding the 30 fps real-time processing threshold. Notably, the 
data revealed that adding computational work paradoxically 
increased throughput, particularly at lower resolutions where RT-
FIGURE 13 

Grad-CAM++ visualization results under varying lighting conditions and Aphid densities: (a) Different lighting only, (b) Different density only, (c) HE 
target detection effect under different lighting and density. 
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DETR-RK50 on RTX4090 reached 50.49 fps for 480p and 41.99 fps 
for 720p. This enhancement stemmed from efficient resource 
utilization through workload distribution across multiple threads 
and CUDA streams while overlapping I/O with computation, 
minimizing idle GPU time and transforming sequential 
bottlenecks into concurrent operations. 

The optimization effects were particularly pronounced on more 
powerful hardware, with RTX4090 configurations consistently 
outperforming RTX3090 counterparts by approximately 10-25%, 
and at 1080p resolution, the RTX4090 implementation achieved a 
34% performance advantage over the RTX3090 for the same model 
(31.82 fps vs 23.73 fps). This demonstrated how the architecture 
efficiently scaled with available computational resources. These 
results showed that properly engineered parallel systems could 
enable real-time, end-to-end detection at resolutions previously 
considered impractical for simultaneous feature extraction and 
object detection, while maintaining high accuracy (RT-DETR
RK50 achieved 0.849 mAP50). Through comparative analysis of 
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accuracy-inference speed across different models, various models 
could be selected for inference based on different application 
scenarios within the high-throughput end-to-end RT-DETRs 
aphid behavior detection framework, substantially expanding 
practical applications in high-fidelity video analysis scenarios. 
3.7 Limitations and future works 

This study achieved promising results in aphid behavior 
recognition, though certain limitations indicate directions for 
future research. 

Dataset quality remains foundational for behavior recognition, 
with current limitations in collection constrained by breeding cycles 
and aphid activity patterns. The annotation quality requires 
enhancement as behavior categorization remains relatively broad, 
failing to capture the full spectrum of aphid behaviors including 
probing feeding, antennal movement, reproduction, and molting. 
TABLE 5 Real-time end-to-end detection performance. 

Model GPU Inference speed only Real-time end-to-end processing speed mAP50 (all) 

480p 720p 1080p 

RT-DETR-R18 RTX3090 58.47 60.61 46.98 33.63 0.828 

RT-DETR-R50 RTX3090 33.33 46.98 37.24 27.81 0.820 

RT-DETR-RK50 RTX3090 28.16 40.72 33.59 23.73 0.849 

RT-DETR-R18 RTX4090 62.80 68.71 50.69 36.45 0.828 

RT-DETR-R50 RTX4090 40.65 54.44 42.69 31.65 0.820 

RT-DETR-RK50 RTX4090 36.70 50.49 41.99 31.82 0.849 
FIGURE 14 

Stage-wise honeydew excreting detection pipeline and results. 
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Future work should develop more comprehensive behavioral 
datasets despite the high cost of annotation, which presents an 
ongoing challenge. 

This study aims to address the issues of computational efficiency 
and field deployment readiness. Despite implementing accelerated 
processing and achieving real-time detection, resource utilization on 
the 4090 GPU remained suboptimal (power consumption: 50W/ 
425W, memory usage: 1612MiB/24564MiB). Future research should 
employ more efficient acceleration techniques, reduce operational 
demands, and establish a systematic detection platform. To further 
enhance the system’s adaptability to resource-constrained 
environments, this study will explore several strategies. 

This study initially employs high-resolution original video for 
feature fusion to ensure finer details are available for the 640*640 
RT-DETR algorithm, thereby improving detection performance. To 
mitigate computational demands, frame skipping (e.g., processing 
only 1/4 or 1/8 of the frames) can be implemented, or time window 
parameters can be optimized based on target characteristics. 
Recognizing the trade-off between resolution and speed, utilizing 
lower-resolution inputs can significantly accelerate detection while 
reducing hardware requirements. As previously noted, the efficiency 
of the 4090 GPU can be further optimized through parallel 
computing techniques. Furthermore, the feature fusion method 
proposed in this study enables the flexible selection of alternative 
detection models based on the available hardware. For instance, 
lightweight algorithms such as YOLO or DINO can be employed, 
accepting a slight reduction in accuracy to achieve lower hardware 
costs and enable deployment in resource-limited settings. Future 
work will systematically evaluate these adaptations to ensure 
optimal performance across diverse deployment scenarios. 

While the current method performs well for short-term behavior 
recognition, integration with algorithms like Long Short-Term 
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or more

efficient DETR extensions could maintain real-time advantages. 
Implementation of tracking algorithms such as BoT-SORT 
(Aharon et al., 2022) and ByteTrack (Zhang et al., 2022) could

enhance the development of a reliable behavior recognition platform. 
Future research will focus on several key areas to enhance the 

generalization validation of the model. First, this  research plans  to
collaborate with multiple agricultural pest monitoring agencies to 
collect behavioral videos of species such as cotton aphids and wheat 
aphids on wheat and cotton crops. Domain adaptation techniques will 
then be employed to optimize the model’s robustness  across  different  
crop backgrounds and further verify its cross-scenario applicability. 
Second, while the current motion feature extraction method has 
proven effective for large-scale behaviors (CL, LF), its performance 
with fine-grained behaviors requires further investigation using more 
precisely categorized datasets. Finally, the applicability of this research 
methodology is not limited to aphids but can also be extended to 
similar insects such as whiteflies. A future research direction is to 
develop multi-category insect behavior recognition datasets to verify 
broader generalizability across different species. 
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4 Conclusion 

This study established the first aphid excretion behavior dataset 
comprising three behaviors: CL, LF, and HE. To address the 
challenge of detecting the subtle HE behavior, this study 
innovatively decomposed this fine-grained behavior into a three-
stage sequence: Flicking-Honeydew Formation-Honeydew 
Excreting. Through sequential detection, the system successfully 
captured the temporal correlation between physical actions (LF) 
and physical evidence (honeydew droplets) in excretion events, 
overcoming the limitations of traditional methods in identifying 
minute behaviors. To meet the demand for extracting refined 
motion features from 1080p high-resolution videos, this study 
developed a Rapid Adaptive Motion-Feature Fusion algorithm 
utilizing GPU multi-threading acceleration to achieve real-time 
processing (45fps), providing high-granularity spatiotemporal 
motion information for subsequent deep learning models. 

Based on this feature extraction framework, this study 
developed the RT-DETR-RK50 algorithm by integrating KAN 
networks into ResNet50 and introducing spline-based adaptive 
non-linear activation functions within Block structures, 
significantly enhancing feature extraction capabilities. Through 
comprehensive ablation studies, this study systematically 
investigated how improved RK50 Block components affected 
feature representation redundancy, hierarchy organization, and 
detection accuracy, determining the optimal deployment strategy. 
Results demonstrated that the method achieved 84.9% mAP50, a 
2.9% improvement over the original ResNet50, outperforming 
existing state-of-the-art algorithms. 

For deployment in practical application scenarios, this study 
thoroughly optimized the RT-DETR architecture with motion 
feature cross-frame streaming inference, detection result delay 
interpolation, and composite behavior merging logic, achieving 
end-to-end real-time detection from input video stream to 
detection results at 31.82fps with 1080p high-fidelity resolution. 
This significantly reduced the complexity and intermediate storage 
resource consumption from feature processing to detection 
processing stages, substantially enhancing the system’s application 
scalability. This aphid behavior detection solution can be extended 
to monitor similar insects such as whiteflies, providing high-
throughput non-contact monitoring support for pest control, 
resistance breeding, and crop protection. Future research could 
further expand behavior categories to include reproduction, 
molting, and sap-feeding, while seeking optimal balance between 
computational accuracy and detection speed. 
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