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Estimation of plant leaf water
content based on spectroscopy
Jiangtao Ji, Xinyi Lu, Hao Ma, Xin Jin, Shijie Jiang,
Hongwei Cui*, Xiaoxuan Lu and Yaqing Yang

College of Agricultural Equipment Engineering, Henan University of Science and Technology,
Luoyang, Henan, China
Introduction: Leaf water content is a key physiological indicator of plant growth

and health status. Constructing leaf water content estimation models based on

spectroscopy is an effective method for monitoring plant physiological conditions.

Methods: To improve the accuracy of leaf water content estimation and develop

models applicable to different plants, this study collected 1,680 groups of

hyperspectral and water content data from peach tree leaves. Estimation

models were established using two methods: “constructing vegetation indices”

and “selecting characteristic wavelengths.” The accuracy and number of

wavelengths used in each model were systematically evaluated. The optimal

model was used to predict the water content of each pixel in the hyperspectral

images, achieving visualization of leaf water distribution. Additionally, 244 groups

of hyperspectral and water content data from apple tree and lettuce leaves were

collected to validate the generalization ability of the optimal model.

Results: Results showed that the optimal models established using the two

methods were the linear regression model based on the vegetation index NISDI

(3 wavelengths, RP
2 = 0.9636, RMSEP=0.0356), and the CARS-RF model (12

wavelengths, RP
2 = 0.9861, RMSEP=0.0219). Although the accuracy of the two

models was similar, the latter used four times more wavelengths than the former,

so the former was chosen as the optimal model. Using the optimal model to

estimate the water content of apple tree leaves, the RP
2 and RMSEP were 0.9504

and 0.1226, respectively. For lettuce containing only leaf tissue, the RP
2 and

RMSEP were 0.8211 and 0.1771, respectively.

Discussion: These results indicate that the model has some generalization ability

and can accurately estimate the water content of leaves of woody plants in the

same family, with some performance degradation across different growth forms.

The study results achieved accurate estimation of leaf water content for three

types of plants and also provided a reference for establishing plant leaf water

content estimation models with generalization ability.
KEYWORDS

plants, leaf water content, hyperspectral technology, vegetation index, generalization
ability, cross-species validation
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1 Introduction

Leaves are the principal sites for photosynthesis, transpiration,

and other physiological processes in plants, and their condition is

directly linked to the overall health and productivity of the plant.

Research indicates that the water content in plant leaves typically

ranges from 40% to 80%, with varying optimal leaf water content

for different plant species and even within the same species at

different growth stages. Excessive or insufficient leaf water content

can impact photosynthesis, respiration, and overall plant growth

(Qu et al., 2018). Consequently, the scientific estimation of plant

leaf water content is of significant importance. Leaf water content is

influenced by a multitude of factors, including soil moisture,

climate, and light, which makes rapid and accurate measurement

challenging (Wang et al., 2022). Conventional methods for

measuring plant leaf water content, including the oven-dry weight

method (Peng et al., 2020), Karl Fischer titration (Horablaga et al.,

2023), and the capacitance method (Lu et al., 2022), provide

accurate results but are laborious and time-consuming, limiting

their widespread adoption. Therefore, how to rapidly and accurately

detect the water content of plant leaves, monitor the physiological

status of plants in real-time, and provide timely warnings of water

stress remains a current hot issue.

Hyperspectral technology has witnessed rapid development in

recent years, leveraging its advantages of efficiency, rapidness, non-

destructiveness, and environmental friendliness (Yang et al.,

2023b), and has become a key research direction in the field of

plant leaf water content detection. Current detection methods

mainly include physical model methods and empirical model

methods. Physical models based on radiative transfer

mechanisms, such as PROSPECT and PROSAIL, have clear

physical meanings and higher stability. However, they require

many precise leaf structural parameters as inputs (Wang and Li,

2012), and the model construction and parameter optimization

processes are complex. In contrast, empirical model methods

typically establish regression models based on the relationship

between spectral data and leaf water content. They do not require

an understanding of the leaf’s internal structure and biochemical

composition. The model construction process is relatively simple

and computationally efficient, making them more suitable for real-

time and rapid detection.

Scholars often use characteristic wavelength bands to construct

empirical models for estimating plant leaf water content. Dai et al.

(2022) utilized hyperspectral technology for the rapid and non-

destructive detection of water content in citrus leaves, employing

pseudo-color processing to visualize water content. A comparison

of various feature wavelength selection and modeling approaches

was undertaken, and it was determined that a CNN model built

with 29 feature wavelengths selected by CARS yielded the best

results, with R² and RMSE values of 0.9679 and 0.0163, respectively

(Liu et al., 2024). introduced an interval variable iterative spatial

shrinkage method (IVISSA) combined with interval partial least

squares (iPLS) for identifying feature wavelengths, selecting 30

feature wavelengths to establish a least squares support vector

regression (LSSVR) model for the rapid and non-destructive
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detection of water content in rapeseed leaves, achieving

prediction set results of RP
2 = 0.9555 and RMSEP=0.0065. Dong

et al. (2022) applied hyperspectral technology to detect water

content in withered black tea leaves and created moisture

distribution maps under varying degrees of withering. The

optimal model, SNV-Si-CARS-ELM, achieved R² and RMSE

values of 0.9940 and 0.0074, respectively, offering a theoretical

foundation for the rapid and non-destructive detection of water

content in withered black tea leaves. Lv et al. (2024) gathered

reflectance data from catalpa leaflets via hyperspectral technology

and developed several estimation models for catalpa leaf water

content using diverse variable selection and model construction

techniques. The MC-UVE-PLS model was found to be the most

effective, with an R² of 0.7903 and an RMSE of 1.7352. Zhang et al.

(2023) collected spectral data within the 900-1700nm range from

rapeseed leaves using near-infrared hyperspectral imaging and

proposed employing convolutional neural networks (CNN) and

long short-term memory (LSTM) to predict water content in

rapeseed leaves, with test set RP² and RMSEP values of 0.8140

and 0.0050, respectively.

Some scholars have also established empirical models by

constructing vegetation indices to estimate leaf water content. To

predict the water content in citrus leaves, Dou et al. (2024) collected

hyperspectral data and discovered that utilizing Continuous

Wavelet Transform (CWT) decomposition with SPA for feature

wavelength selection, combined with the normalized difference

vegetation index (NDVI) (R800 − R680)=(R800 + R680) for model

construction, resulted in the best estimation performance, with R²

at 0.7491 and RMSE at 0.0284. Junttila et al. (2022) developed a

normalized vegetation index (R1390 − R1370)=(R1390 + R1370) to

estimate leaf water content, achieving an R² of 0.96 and RMSE of

0.0341. Yang et al. (2023a) computed three types of vegetation

indices: the empirical vegetation index, he random combination

dual-band vegetation index, and the ‘trilateral’parameter, and

correlated them with the leaf water content (LWC) and

equivalent water thickness (EWT) of camphor trees. Different

vegetation indices were used as inputs to build various models for

estimating the LWC and EWT of Cinnamomum camphora. The

results indicated that the RF model is the best model for estimating

LWC and EWT. For the LWC estimation model, the inputs include

R900=R970, (1 + 0:16)(R800 − R670)=(R800 + R670 + 0:16), R734 − R956,

FDR1009 − FDR774, and red-edge amplitude(Dr), with R² and RMSE

values of 0.848 and 0.0057, respectively; For the EWT estimation

model, the inputs are (R700 − R1167)=(R700 + R1167), R860=R1240, R700

−R1167, FDR1182 − FDR1514, and red-edge area (SDr), with R² and

RMSE values of 0.887 and 0.0006, respectively. In the

aforementioned studies, scholars have mostly focused on

constructing leaf water content estimation models for individual

species, with a lack of validation regarding the models’

generalization capabilities across different species.

Some scholars have established cross-species models for

estimating plant leaf water content across multiple plant species.

Champagne et al. (2003) acquired hyperspectral data for Bean,

Canola Corn, Pea and Wheat across the spectral range of 440–2500

nm. They applied a physical model incorporating spectral matching
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technology to the hyperspectral dataset and directly computed the

canopy equivalent water thickness (EWT) via the lookup table

method. When analyzing all crop types collectively, the model

demonstrated a relatively high predictive accuracy for water

content, achieving a consistency index (D) of 0.92 and a root -

mean - square error (RMSE) equivalent to 26.8% of the mean.

However, the predictive accuracy for wheat alone was notably

lower, with an RMSE of 69.9%. Upon excluding wheat from the

analysis, the RMSE decreased to 1.79%, while D increased to 0.87.

Jones et al. (2004) collected hyperspectral data from 300 to 2400 nm

for three crops, corn, spinach, and snap bean in a greenhouse and

calculated the average reflectance in specific bands (960 ± 10 nm,

1150–1260 nm, 1450 ± 10 nm, 1950 ± 10 nm, and 2250 ± 10nm)

and correlations between five common vegetation indices and water

content. The most accurate estimates of water content for corn and

snap bean had r2 values of 0.67 and 0.50, respectively, while spinach

had an r2 value of 0.94. It can be seen that these studies mostly focus

on herbaceous plants such as corn, wheat, and legumes, with fewer

studies on woody plants and across different growth forms.

In summary, most existing studies focus on single-species

research and cross-species research on herbaceous plants, with a

lack of models for estimating leaf water content in woody plants

across species and validation across different growth forms.

To address the above issues, this study selected the peach tree

(Prunus persica (L.) Batsch), a woody plant of the Rosaceae family

and Prunus genus, as the modeling material. For model validation,

apple tree (Malus pumila Mill.), a congeneric but different-genus

species within Rosaceae, and romaine lettuce (Lactuca sativa var.

asparagina L.H.Bailey ex Holub), a herbaceous plant, were chosen.

The research objectives are as follows:
Fron
1. Acquire hyperspectral data and water content measurements

of peach tree leaves. Develop leaf water content retrieval

models using two approaches, namely “vegetation index

construction” and “feature wavelength selection,” and

determine the optimal model through comparative analysis;

2. Apply the optimal model to the reflectance values of each

pixel in the leaf hyperspectral images to obtain predicted

water content values, thereby enabling the visualization of

leaf water distribution;

3. Collect hyperspectral data and water content measurements

from apple tree leaves (a woody plant) and romaine lettuce

leaves (a herbaceous plant) to validate the generalizability of

the developed model both within the same growth type and

across different growth types.
2 Materials and methods

2.1 Technical route

The technical route of this study is illustrated in Figure 1. It

follows the framework of “data collection and preprocessing -

modeling methods - model evaluation - visualization application -
tiers in Plant Science 03
generalization ability validation.” Initially, the water content and

hyperspectral data of peach tree leaves were collected, and the

reflectance data were extracted and preprocessed. Subsequently, leaf

water content regression models were established through the

construction of vegetation indices, empirical vegetation indices,

and selection of characteristic wavelengths. The models were

evaluated comprehensively based on the evaluation indicators R2,

RMSE, and the number of wavelengths used in modeling, and the

optimal model was selected. The reflectance of each pixel in the

hyperspectral image was imported into the optimal model to predict

the water content of each pixel, thereby achieving the visualization

of leaf water content. Finally, the water content and hyperspectral

data of apple tree leaves and lettuce leaves were utilized to validate

the generalization ability of the optimal model.
2.2 Data collection

2.2.1 Leaf collection
2.2.1.1 Peach tree leaves collection

The collection of peach tree leaves took place at the orchard of

Nongfeng Agricultural Technology Co., Ltd., located in the

Luoyang High-Tech Zone, Henan Province, with geographical

coordinates at 112°31′E, 34°58′N. The region experiences a warm

temperate continental monsoon climate. The probability of still

wind occurrence is 0.6%. The annual average wind speed, excluding

still winds, is 3.3 m/s, while the annual average wind speed without

excluding still winds is 3.2 m/s. The dominant wind direction is

westerly. During spring and summer, the prevailing wind is

northeasterly with an average wind speed of 3.1 m/s. In autumn,

the prevailing wind is northeasterly with an average wind speed of

3.2 m/s. In winter, the prevailing wind is westerly with an average

wind speed of 3.1 m/s. The average annual temperature ranges from

12.2 to 24.6°C, and the frost-free period exceeds 210 days. Annual

precipitation varies between 528 and 800 mm. The annual sunshine

duration is between 2200 and 2300 hours, and the average annual

humidity is 60 - 70%. The management of irrigation and

fertilization follows the local average standards, and the cultivar

used in the experiment is “Yan Zhi “ crisp peaches. The peach trees

have an approximate height of 2.6 m and a trunk diameter of about

7.5 cm. The row spacing is roughly 3.5 m, while the spacing between

individual plants is around 3 m. The data was collected on April 24,

2024 (during the new shoot growth stage) andMay 27, 2024 (during

the fruit enlargement stage). Seventy peach trees with intact

canopies and vigorous growth were chosen for sampling. To

improve the study’s generalizability and to obtain leaves with

diverse water contents, the canopies of the peach trees were

divided into upper, middle, and lower sections. In each section,

one healthy and intact leaf was randomly collected from each of the

four cardinal directions (east, south, west, and north), with the four

leaves forming a single group. A total of 420 sets of peach tree leaves

were collected across the two sampling events. The collected leaves

were sealed, labeled (e.g., the upper leaves from the 36th peach tree

in the first collection were labeled 1-36u; the middle leaves from the

40th peach tree in the first collection were labeled 1-40m; the lower
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leaves from the 52nd peach tree in the second collection were

labeled 2-52l), placed into an insulated box containing ice packs and

stored in a dark environment to preserve them for subsequent

hyperspectral and water content data collection.

2.2.1.2 Cross-species leaves collection

To evaluate the generalization ability of the model and confirm

its accuracy and reliability across different species, this study

collected two types of cross-species leaves: apple tree leaves and

lettuce leaves, to validate the optimal model.

Apple tree leaves were collected from the high-standard water-

saving irrigation experimental field at the Xiyuan Campus of Henan

University of Science and Technology in Luoyang City, Henan

Province. The geographical location is 112°21′E, 34°39′N,

characterized by a warm temperate continental monsoon climate,

with an average annual temperature of 15.8°C and an average

annual precipitation of 578.2 mm. The prevailing wind direction

in the experimental area is consistent with the prevailing wind

direction in the peach tree picking area. The test material consisted

of 5-year-old Yanfu No. 8 apple trees, grafted onto Pingle Sweet Tea

rootstock. The apple trees have an average height of approximately
Frontiers in Plant Science 04
1.7 m and a stem diameter of about 3.5 cm. The spacing between

rows is roughly 2.5 m, while the spacing between individual plants is

around 2 m. The collection date was October 17, 2024 (during fruit

maturity). A total of 61 healthy and intact leaves were randomly

collected, numbered, and stored in an insulated box with ice packs.

The methods for collecting water content and hyperspectral data

were identical to those used for peach tree leaves. A total of 244

apple tree sample datasets were obtained.

Lettuce was purchased from DaZhang Supermarket in JianXi

District, Luoyang City, Henan Province, on November 20, 2024.

The lettuce leaf is composed of a large leaf vein and surrounding leaf

tissue. Given the large size of lettuce leaves, intact leaves are

susceptible to damage during the experimental process. In this

experiment, a region of approximately 5 cm × 10 cm, which is

relatively flat, was randomly selected as the sample. A total of 61

samples were collected, of which 38 samples contained only leaf

tissue, while the remaining 23 samples included both leaf veins and

leaf tissue. The samples were numbered and stored in an insulated

box with ice packs. The methods for collecting water content and

hyperspectral data were the same as those used for peach tree leaves.

A total of 244 lettuce sample datasets were obtained.
FIGURE 1

Technical route.
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2.2.2 Leaf water content measurement
After data collection was completed, the collected samples were

brought back within 30 minutes. The mass of each group of leaves

was measured using an electronic scale (accuracy 0.01g), denoted as

G1, and hyperspectral images were taken. Then, the leaves were

dried in an electric thermostatic incubator at 50°C for 55 minutes.

After drying, the leaves were taken out, cooled to room temperature

(approximately 20 to 25 minutes), and weighed again, denoted as

G2, and hyperspectral images were taken again. This process was

repeated 3 times, and the masses of the leaves were denoted as G3

and G4, with hyperspectral images taken each time. Finally, the

leaves were dried at 85°C until a constant weight was reached,

denoted as G0. The water content calculation formula is shown in

Equation 1.

Mn =
Gn − G0

Gn
� 100% (1)

Where, Mn is the water content of the leaves measured at the

nth time, Gn is the mass measured at the nth time (g), and G0 is the

dry mass of the leaves (g), with n ranging from 1 to 4. The statistical

conditions of leaf water content for each type of sample are

presented in Table 1.

2.2.3 Hyperspectral image acquisition and
processing

The hyperspectral data acquisition system is depicted in

Figure 2, which includes a hyperspectral imager (SPECIM FX17e,

Specim, Finland); a self-stabilizing scanning platform (SPECIM Lab

Scanner 40×20cm); two sets of 150W halogen lamp array light

sources, optical fibers, and a computer. The hyperspectral imager

has a wavelength range of 900–1700 nm, with 224 wavelengths, a

sampling interval of 3.5 nm, and an optical resolution of 8 nm. Prior

to hyperspectral image acquisition, the leaf surface was cleaned with

lens paper to remove dust, and the hyperspectral imager was

preheated for 30 minutes to enhance image stability. During

acquisition, to avoid the influence of dark current and unstable

light sources, the curtains should be drawn, and the lights should be

turned off to ensure that the acquisition process takes place in a dark

environment. The camera exposure time was set to 6.5 ms, the

frame rate to 50 Hz, and the platform moving speed to 20 mm/s.

The hyperspectral data were collected using the Lumo Scanner

software (Specim, Finland).
Frontiers in Plant Science 05
To mitigate the effects of illumination and detector sensitivity

on the image quality, the hyperspectral images obtained were

subjected to black and white calibration. A standard calibration

plate with 99% reflectance served as the white reference, while the

dark current was captured with the lens cap on to serve as the black

reference. The black and white calibration was carried out based on

Equation 2:

R =
I − B
W − B

(2)

Where, R represents the corrected spectral reflectance, I

represents the original spectral reflectance, W is the white

reference, and B is the black reference. The corrected

hyperspectral data includes two categories: peach tree leaves and

background. Thus, Support Vector Machine Classification in

ENVI5.6 (Harris Geospatial Solutions, USA) was employed for

supervised classification of leaves and background to eliminate the

irrelevant background data. The average reflectance of all pixels in

the leaf region was computed as the reflectance data for that sample

group, which will be utilized for subsequent data analysis and

modeling. The spectral reflectance curve of the peach tree leaf

samples is illustrated in Figure 3.
2.3 Estimation of leaf water content based
on vegetation indices

Vegetation indices are dimensionless constants derived from

mathematical operations on the reflectance of objects in two or

more different wavelength ranges. These indices can enhance

certain characteristics or details of vegetation (Gao, 1995), and

provide information on the coverage and growth status of

vegetation on the ground. In this study, we constructed vegetation

indices and three empirical vegetation indices were used as inputs.

Their abilities to estimate leaf water content were evaluated through

linear regression models.

2.3.1 Vegetation indices construction
Water molecules (chemical formula H2O) contain two O-H

covalent bonds. The different forms of O-H bond stretching

vibrations produce multiple vibrational energy levels. The energy

differences between these levels can absorb photons in the near-
TABLE 1 The statistical conditions of leaf water content for each type of sample.

Sample type Dataset Sample size Maximum Minimum Mean Variance

Peach tree all 1597 0.7661 0.1429 0.4767 0.0347

Modeling Set 1118 0.7661 0.1429 0.4774 0.0348

Testing Set 479 0.7500 0.0200 0.4751 0.0346

Apple tree all 244 0.6498 0.0374 0.3942 0.0303

Lettuce

all 244 0.9610 0.0976 0.8395 0.0145

Without Veins 152 0.9468 0.0976 0.8152 0.0186

With Veins 92 0.9610 0.5811 0.8796 0.0052
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infrared spectral region, especially in the first overtone region from

1300nm to 1600nm, where there are multiple water absorption

peaks (Wang and Yang, 2017; Xu et al., 2011). Among them, the

absorption peak around 1440nm is particularly strong. Based on the

position of the absorption peak and its derived near-infrared water

vegetation index, the water content in vegetation leaves can be

reflected. Through the quantitative relationship between them, a

vegetation leaf water content estimation model based on the near-

infrared vegetation index can be constructed, thereby enabling

rapid and accurate estimation of leaf water content. Based on the

absorption characteristics of water molecules in the near-infrared

region, this study proposes a new vegetation index: Near-Infrared

Slope Difference Index (NISDI). The specific calculation equation is

shown in Equation 3.

NISDI = 1:3� 103D1559 − 1:9R1439 (3)
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Where, D denotes the slope, which is the rate of change in

reflectance between adjacent wavelengths; R denotes reflectance.

2.3.2 Empirical vegetation indices
Combinations of wavelengths within the 900–1700 nm range

were used to create various difference vegetation indices (Difference

Vegetation Index, DVI), ratio vegetation indices (Ratio Vegetation

Index, RVI), and normalized difference vegetation indices

(Normalized Difference Vegetation Index, NDVI) (Sun et al.,

2019). The equations are shown in Equations 4–6. The

correlation coefficient r between these vegetation indices and

water content was computed, and the wavelength combination

yielding the highest absolute value of r was chosen as the new

vegetation index.

DVI = NIR − Red (4)

RVI = NIR=Red (5)

NDVI = (NIR − Red)=(NIR + Red) (6)

Where, NIR and Red denote the reflectance in the near-infrared

and red bands, respectively.

2.3.3 Modeling methods
The Pearson correlation coefficient measures the strength of the

linear relationship between two variables. The closer its absolute

value|r| is to 1, the stronger the relationship between the variables. A

two-tailed significance test (p-value) is performed on the calculated

correlation coefficient to determine whether the correlation is

significant. The smaller the p-value, the more significant the

correlation. A p-value less than 0.01 indicates that the correlation

is significant at the 0.01 level, while a p - value less than 0.05

indicates that the correlation is significant at the 0.05 level. In this

study, IBM SPSS Statistics 27 was used to calculate the Pearson

correlation coefficients between NISDI, DVI, RVI, NDVI, and leaf

water content. If a significant linear correlation exists between

vegetation indices and water content, linear regression models are

established using vegetation indices as inputs.
2.4 Estimation of leaf water content based
on characteristic wavelengths

2.4.1 Reflectance data preprocessing
Hyperspectral data collection is prone to interference from

environmental and instrumental factors, resulting in noise,

baseline drift, and spectral variability. To mitigate the impact of

these issues on data quality and accuracy, this research utilized

Standard Normal Variate (SNV) (Barnes et al., 1989) for the

preprocessing of hyperspectral data. By performing Gaussian

normalization on the data, spectral discrepancies due to sample

particle size, uneven distribution, or lighting conditions are

mitigated, ensuring the comparability of reflectance across

different samples at equivalent wavelengths. Furthermore,
FIGURE 2

Hyperspectral imaging system. 1:hyperspectral imager, 2:light
source, 3:self-stabilizing scanning platform, 4:computer.
FIGURE 3

Spectral reflectance curve of peach tree leaves.
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Savitzky-Golay smoothing (SG) (Savitzky and Golay, 1964),

normalization (Nor) (Chu et al., 2004), multiplicative scatter

correction (MSC) (Geladi et al., 1985), and first derivative (FD)

(Norris and Hart, 1996)were employed as comparative

preprocessing techniques. To evaluate the efficacy of various

preprocessing approaches, the original spectral data and the data

post 9 distinct preprocessing methods (SG, Nor, SNV, MSC, FD, SG

+Nor, SG+SNV, SG+MSC, SG+FD) were inputted into Partial Least

Squares Regression (PLSR) models, with leaf water content as the

dependent variable. The optimal number of principal components

was ascertained through 10-fold cross-validation, and model

performance was evaluated using a validation set. This process

ultimately identified the most effective spectral preprocessing

technique. The aforementioned data preprocessing methods were

all implemented using The Unscrambler X 10.4 (CAMO Software

AS, Norway).

2.4.2 Characteristic wavelength selection
Given the vast amount of hyperspectral data and the

pronounced multicollinearity among the data, to mitigate

redundant information in hyperspectral data and avert model

overfitting, the Competitive Adaptive Reweighted Sampling

(CARS) algorithm (Li et al., 2009) was utilized. This approach

incrementally eliminates irrelevant variables to preserve

informative ones, thereby reducing redundancy in hyperspectral

data and accomplishing dimensionality reduction. Concurrently,

the Successive Projections Algorithm (SPA) (Araújo et al., 2001)

and Uninformative Variable Elimination (UVE) (Centner et al.,

1996) were implemented as comparative methods for feature

wavelength selection from the preprocessed full-spectrum data.

The CARS algorithm ascertained the quantity of feature

wavelengths to retain based on the minimum root mean square

error cross-validation (RMSECV) throughout the iterative process,

whereas the SPA and UVE algorithms identified the feature

wavelength count by calculating the minimum root mean square

error across varying numbers of variables. The CARS algorithm was

conFigured with 50 Monte Carlo sampling iterations and employed

a 10-fold cross-validation approach for feature wavelength

selection, with the SPA algorithm capping the maximum number

of wavelengths at 30.The aforementioned characteristic wavelength

selection methods were implemented using VS Code (Microsoft,

USA) and Python 3.8.

2.4.3 Modeling methods
In this research, three feature wavelength selection results and

full-spectrum data were used as inputs to construct a Random

Forest (RF) model (Breiman, 2001). Comparative methods included

Partial Least Squares Regression (PLSR) (Geladi and Kowalski,

1986), Multiple Linear Regression (MLR) (Jobson and Jobson,

1991), and Artificial Neural Network (ANN) (McCulloch and

Pitts, 1943). Experimentation determined that the RF model

should have 100 decision trees with a random seed set to 42. The

PLSR model was conFigured with 7 principal components, while

the ANN model featured 4 hidden layers, employed the ReLU

activation function, and underwent training for 1000 iterations. The
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modeling processes for RF and ANN were carried out using VS

Code and Python 3.8, whereas the modeling processes for PLSR and

MLR were conducted using The Unscrambler X 10.4.
2.5 Model evaluation methods

In this study, the precision of the models was evaluated using

two metrics: the Coefficient of Determination (R2) and the Root

Mean Square Error (RMSE). R2 reflects the degree of fit between the

predicted and actual values; the closer R2 is to 1, the better the

model fit and the higher the precision. RMSE indicates the deviation

between the predicted and actual values, representing the model’s

accuracy; the smaller the RMSE, the higher the model’s estimation

precision and stability (Bai et al., 2024). Furthermore, in selecting

the optimal model, this study also assessed the comprehensive

performance of the models by taking into account the number of

wavelengths used in model building.
2.6 Peach tree leaf water content
visualization

The leaf background was removed using ENVI5.6 software, and

the reflectance of each pixel in the selected wavelengths was

extracted using VS Code and Python 3.8. These reflectance values

were input into the optimal model to obtain the predicted water

content for each pixel, enabling the visualization of leaf water

content distribution.
2.7 Validation of model generalization

To validate the cross-species generalization ability of the optimal

model, the hyperspectral reflectance data of apple tree and lettuce

leaves were input into the optimal water content estimation model

trained on peach tree data to obtain the predicted water content

values. The model’s applicability to woody plants (apple trees) and

herbaceous plants (lettuce) was evaluated using R² and RMSE.
3 Results

3.1 Correlation between leaf water content
and spectra

Figures 4a, b display the spectral reflectance curves for two

distinct leaf samples at different stages of dehydration. Figure 4a

illustrates the curves for the upper leaves (labeled 1-36u) from the

36th tree during the initial collection, and Figure 4b shows the

curves for the lower leaves (labeled 2-52l) from the 52nd tree during

the subsequent collection.

Observations from Figure 4 reveal that as the water content in

leaves diminishes throughout the drying process, there is a general

upward trend in reflectance, demonstrating an inverse relationship.
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Figures 5a, b depict the spectral reflectance curves for different

s e t s o f l e ave s w i th wa te r con ten t s o f 33 .00% and

50.00%, respectively.

As can be seen from Figure 5, spectral reflectance varies even

when the water content is the same. Consequently, the relationship

between different water contents and spectral reflectance is not a

straightforward linear one but is subject to the collective influence

of multiple variables. To accomplish precise estimation of water

content, it is essential to develop and compare a variety of models

for analysis.
3.2 Estimation results of leaf water content
based on vegetation indices

3.2.1 Estimation of leaf water content based on
NISDI

The Pearson correlation coefficient between the water content

of peach tree leaves and NISDI was computed, followed by a

significance test. The results indicated a significant correlation

between the two variables (r = 0.981, p = 0.000). A linear

regression model was developed using the constructed vegetation

index NISDI as the input, with the results presented in Figure 6.

The model’s R2 and RMSE for the calibration set were 0.9623

and 0.0362, respectively, while the RP
2 and RMSEP for the

prediction set were 0.9636 and 0.0356, respectively.

3.2.2 Estimation of leaf water content based on
empirical vegetation indices

The original spectral reflectance data were used to readjust the

three empirical vegetation indices shown in equations (4) to (6).

The correlations between leaf water content and the difference

index (DVI), ratio index (RVI), and normalized difference
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vegetation index (NDVI) calculated from all possible

combinations of the 224 wavelengths in the original data were

analyzed, with the results shown in Figure 7.

The maximum correlation coefficients and corresponding

wavelength locations for each vegetation index are presented

in Table 2.

The results show that the vegetation indices DVI (R1695, R1407),

RVI (R1425, R1691), and NDVI (R1691, R1425) all exhibit significant

linear correlations with leaf water content. Linear regression models

were developed using the vegetation indices at the band positions

corresponding to the maximum correlation coefficients as inputs.

The results are shown in Figure 8.

Among the three empirical vegetation indices, RVI (R1425,

R1691) performed the best, with an RP
2 of 0.9630 and an RMSEP

of 0.0359. DVI (R1695, R1407) followed closely, with an RP
2 of 0.9561

and an RMSEP of 0.0376. NDVI (R1691, R1425) had the least

favorable results, with an RP
2 of 0.9468 and an RMSEP of 0.0431.

Overall, the linear regression models constructed using the four

vegetation indices all effectively estimated the leaf water content of

peach tree leaves. The linear regression model based on NISDI

performed the best, with an RP
2 of 0.9636 and an RMSEP of 0.0356.
3.3 Leaf water content estimation model
based on characteristic wavelengths

3.3.1 Preprocessing of peach tree leaf reflectance
data

In this study, nine preprocessing methods were applied to the

spectral data: Savitzky-Golay (SG), normalization, Standard Normal

Variate (SNV), Multiplicative Scatter Correction (MSC), first derivative

(FD), SG + normalization, SG + SNV, SG + MSC, and SG + FD. The

spectral curves after each preprocessing method are shown in Figure 9.
FIGURE 4

Spectral curves of the same group of leaves under varying water content conditions. (a) Spectral curves of leaves labeled 1-36u under four different
water content conditions, (b) Spectral curves of leaves labeled 2-52l under four different water content conditions.
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The original spectral data, along with the spectral data following

nine distinct preprocessing techniques, were employed as inputs to

construct a Partial Least Squares Regression (PLSR) model. The

results of the modeling are presented in Table 3.

The modeling results show that the outcomes of different

preprocessing methods are quite similar, with all R² values above

0.96. The SNV preprocessing method performs relatively well. For

the modeling set, the R² and RMSE are 0.9699 and 0.0323,

respectively. For the validation set, the Rcv² and RMSECV are

0.9696 and 0.0325, respectively. Although the results of SNV
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preprocessing are only marginally better than those of other

methods, SNV is still chosen for subsequent data analysis

3.3.2 Results of characteristic wavelength
selection

Three characteristic wavelength selection methods—SPA,

CARS, and UVE—were employed to select characteristic

wavelengths from the reflectance data preprocessed by SNV, with

the operation processes of each method depicted in Figure 10.

As depicted in Figure 10, the RMSECV value for the CARS

method exhibits a pattern of decreasing and then increasing with

the number of iterations, achieving its minimum value of 0.0270 at

the 31st iteration,.at which point the CARS method has selected 12

bands. In the case of the SPA method, the RMSE value plummets

rapidly and then levels off around 0.030 as the number of variables

in the model increases, with the lowest RMSE value recorded at

0.0273, corresponding to 18 selected bands by the SPA method. For

the UVE method, the RMSE demonstrates a sharp initial decrease

followed by a gradual decline during the selection process, with the

smallest RMSE value reaching 0.0372, at which 23 bands are

selected by the UVE method. The results of these three feature

band selection methods are presented in Table 4.
FIGURE 5

Spectral curves of different groups of leaves under identical water content conditions. (a) Spectral curves of leaves with a water content of 33.00%,
(b) Spectral curves of leaves with a water content of 50.00%.
FIGURE 6

The relationship between the measured and predicted values of
peach tree leaves water content based on NISDI.
TABLE 2 The maximum correlation coefficients, p-value and
corresponding band positions for the three empirical vegetation indices.

VI |r|max p-value Wavelength Position/nm

DVI 0.9796 0.000 (1695,1407)

RVI 0.9806 0.000 (1424,1691)

NDVI 0.9725 0.000 (1691,1425)
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After applying the CARS method, the number of wavelengths

was reduced from 224 to 12, constituting 5.36% of the total

wavelengths; with the SPA method, the number of wavelengths

decreased from 224 to 18, which is 8.04% of the total wavelengths;

and with the UVE method, the number of wavelengths was reduced

from 224 to 23, representing 10.27% of the total wavelengths. The

CARS method selected the fewest wavelengths and had the lowest

RMSE, followed by SPA, while UVE selected the most wavelengths

and had the highest RMSE.

3.3.3 Leaf water content estimation model based
on different characteristic wavelengths and
modeling methods

Four sets of variables, including the full spectrum and the results

from the three feature band selection methods, were used as inputs to

construct four regression models: Random Forest (RF), Partial Least

Squares Regression (PLSR), Multiple Linear Regression (MLR), and

Artificial Neural Network (ANN), in order to identify the most

effective method for estimating leaf water content. The modeling

results for these different methods are presented in Table 5.

Comparative analysis of different modeling methods reveals

that the R2 of the ANN and RF models established by each selection

method has increased compared with full-spectrum modeling,

while the R2 of the PLSR and MLR models has decreased.

Overall, the RP
2 of each model is greater than 0.90, indicating

that each model can effectively estimate the leaf water content of

peach trees. There is little difference in stability, accuracy, and

predictive ability between the models established using the selected

characteristic wavelengths and those established using the full

spectrum, but the number of variables is greatly reduced. All

three characteristic selection methods effectively removed

redundant wavelengths and improved model efficiency, among

which the CARS-RF model (Figure 11) performed the best, with

an RP
2 of 0.9861 and an RMSEP of 0.0219.

Compared with the CARS-RF model, which performed best in

characteristic wavelength modeling, the linear regression model

established using NISDI exhibited a slight decrease in precision (RP
2
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decreased by 0.0225, RMSEP increased by 0.0131). However, the

number of wavelengths used in the modeling process was

significantly reduced, from 12 to 3, representing a 75% reduction.

This greatly enhanced the model’s computational efficiency and

stability. Although there was a trade-off in precision, the linear

regression model established using NISDI showed clear advantages

in wavelength selection, computational efficiency, and model

stability. Therefore, this model was determined to be the

optimal model.
3.4 Visualization of peach tree leaf water
content

The linear regression model established using NISDI was used

to estimate the water content of each pixel in the hyperspectral

images of peach tree leaves, achieving visualization of water content.

Figures 12a–d show the visualization images of peach tree leaf water

content with water contents of 76.61%, 64.46%, 41.41%, and

24.43%, respectively.

As can be seen from the figures, the higher the water content,

the closer the image is to red. Conversely, the lower the water

content, the closer the image is to blue. When the leaf water content

is low (as shown in Figures 12c, d), the leaf tips and edges appear

blue, while the veins appear orange. Overall, the water content in

the veins is consistently higher than that in the leaf tissues across

each group of leaves. The results indicate that the model is capable

of monitoring changes in the water content of peach tree leaves.
3.5 Model generalization performance
validation

The Pearson correlation coefficients between the water content

of apple tree leaves and lettuce leaves and the vegetation index

NISDI were calculated, and significance tests were conducted. The

results are presented in Table 6.
FIGURE 7

Heatmap of the correlation coefficients between three empirical vegetation indices and the peach tree leaves water content. (a) DVI, (b) RVI, and
(c) NDVI.
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It was found that the vegetation index NISDI and the

corresponding water content of apple leaf samples, all lettuce

samples, and lettuce leaf samples all have significant correlations.

The water content and reflectance data of apple tree leaves were

input into the linear regression model established using NISDI to

estimate their water content, with the results presented in Figure 13.

The RP
2 and RMSEP were 0.9504 and 0.1226, respectively.

Compared with the results for peach trees, the performance of this

model is somewhat lower. However, the model still possesses a

certain degree of quantitative prediction capability for apple tree

leaf water content.
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The reflectance and water content data of lettuce were input

into the linear regression model established using NISDI to estimate

their water content, with the results presented in Figure 14a.

Modeling was conducted separately for the leaves, with the results

presented in Figure 14b.

For the full dataset of lettuce samples, the modeling results

showed an RP
2 of 0.5001 and an RMSEP of 0.2694. When modeling

was conducted separately for the leaves, the RP
2 and RMSEP were

0.8211 and 0.1771, respectively. Compared with peach and apple

trees, the model performance decreased, indicating a decline in

performance when crossing growth forms.
FIGURE 8

The relationship between the measured and predicted values of peach tree leaves water content based on three empirical vegetation indices. (a) DVI
(R1695,R1407), (b) RVI(R1425,R1691), and (c) NDVI(R1691,R1425).
FIGURE 9

Spectral curves of peach tree leaves after different pre-treatments. (a) Original, (b) Nor, (c) SNV, (d) MSC, (e) FD, (f) SG, (g) SG+Nor, (h) SG+SNV, (i)
SG+MSC, and (j) SG+FD.
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4 Discussion

The peach tree (Rosaceae, Prunus) and apple tree (Rosaceae,

Malus) selected in this study represent the close-kin differences

within the Rosaceae woody plants, while the lettuce (Asteraceae)

represents the woody-herbaceous cross-growth form comparison.

Both peach and apple tree leaves have typical woody plant

characteristics such as a thick cuticle and multiple layers of

palisade tissue (Reynoud et al., 2021), but they show significant

differentiation in aspects like trichome density. As a herbaceous

plant, lettuce has only a single layer of palisade tissue (Luo et al.,

2024) and its cuticle thickness is less than half of that of woody

plants. These differences in leaf structure provide an ideal gradient

for verifying the model’s generalization ability across species. The

contributions of this study include: A new vegetation index, the

Near-Infrared Slope Difference Index (NISDI), was developed based

on the absorption characteristics of water molecules in the near-
FIGURE 10

The selection process of the three feature wavelength band screening algorithms. (a) the CARS selection process, (b) the SPA selection process, and
(c) the UVE selection process.
TABLE 3 The performance of different preprocessing methods.

Preprocessing Technique Principal Components
Modeling Set Validation Set

R2 RMSE Rcv
2 RMSECV

Original

Original 4 0.9673 0.0337 0.9672 0.0338

Nor 3 0.9668 0.0339 0.9666 0.0340

SNV 4 0.9699 0.0323 0.9696 0.0325

MSC 3 0.9625 0.0361 0.9616 0.0365

FD 3 0.9625 0.0365 0.9620 0.0363

SG

SG 3 0.9673 0.0339 0.9670 0.0339

Nor 3 0.9668 0.0339 0.9666 0.0341

SNV 4 0.9698 0.0325 0.9695 0.0326

MSC 3 0.9625 0.0361 0.9618 0.0364

FD 3 0.9625 0.0362 0.9621 0.0363
TABLE 4 Results of different feature band selection algorithms.

Feature
Selection
Method

The
number

of
selected
band

Characteristic wavelengths (nm)

SPA 18

935.61, 939.06, 945.98, 970.19, 1206.87,
1322.66, 1364.92, 1393.14, 1410.79, 1428.46,
1453.22, 1520.56, 1584.55, 1670.14, 1688.02,
1702.33. 1709.49, 1720.23

UVE 23

935.61, 939.06, 942.52, 945.98, 1375.50,
1379.02, 1382.55, 1386.08, 1389.61, 1393.14,
1428.46, 1431.99, 1435.53, 1439.07, 1442.60,
1446.14, 1513.46, 1517.01, 1520.56, 1524.11,
1527.66, 1670.14, 1673.72

CARS 12
945.98, 1238.39, 1308.59, 1357.87, 1364.92,
1393.14, 1421.39, 1499.27, 1577.43, 1652.29,
1688.02, 1716.65
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infrared region. Three types of plant leaves were used as

experimental materials to validate the model’s generalization

capability within closely related taxonomic units of woody plants

(Prunus vs. Malus) and to effectively evaluate the model’s

performance across different growth forms (woody vs. herbaceous).
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4.1 Correlation analysis between leaf water
content and spectral reflectance

Leaf reflectance rises as water content decreases (Figure 4). The

negative correlation between these two factors may be attributed to

the role of water as an optical medium when water content is high.

Water fills the intercellular spaces and cells within the leaf, thereby

enhancing the leaf’s capacity to scatter and absorb light. This leads

to a reduction in the amount of light reflected from the leaf surface

and a subsequent decrease in reflectance. In contrast, when the leaf

loses water and its water content drops, the intercellular spaces

expand, and the leaf tissue’s ability to scatter light diminishes. As a

result, more light is reflected from the leaf surface, causing an

increase in reflectance. However, even with the same water content,

variations in spectral reflectance can be observed (Figure 5). These

variations may stem from differences in leaf internal structure

(Yuwei et al., 2021) and nutritional status, among other factors,

that impact reflectance.
4.2 Analysis of results from different
modeling methods

The modeling results before and after data preprocessing using

SG smoothing in this study show little difference. This is because the

original hyperspectral data is relatively smooth and does not

contain a large amount of noise. The R2 of the modeling results
TABLE 5 Modeling results for different combinations of feature wavelength bands and regression models.

Feature selection method Regression model R2 RMSE RP
2 RMSEP

CARS

ANN 0.9907 0.0180 0.9849 0.0228

RF 0.9979 0.0085 0.9861 0.0219

PLSR 0.9644 0.0352 0.9614 0.0365

MLR 0.9831 0.0244 0.9798 0.0259

SPA

ANN 0.9878 0.0204 0.9857 0.0223

RF 0.9979 0.0086 0.9853 0.0225

PLSR 0.9699 0.0324 0.9650 0.0349

MLR 0.9830 0.0245 0.9810 0.0257

UVE

ANN 0.9863 0.0217 0.9828 0.0244

RF 0.9974 0.0095 0.9842 0.0234

PLSR 0.9499 0.0418 0.9489 0.0420

MLR 0.9842 0.0237 0.9820 0.0244

Full Spectrum

ANN 0.9757 0.0290 0.9723 0.0310

RF 0.9957 0.0123 0.9705 0.0319

PLSR 0.9665 0.0341 0.9669 0.0338

MLR 0.9902 0.0207 0.9834 0.0241
Bolded portions indicate the best performing modeling results.
FIGURE 11

The relationship between the measured and predicted values of
peach tree leaves water content based on CARS-RF.
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using various preprocessing methods are all around 0.96 (Table 3).

This is because the original data is already in a relatively standard

and stable state, so further preprocessing does not significantly

change the original data.
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The modeling results using characteristic wavelengths (Table 5)

show that the precision of the ANN and RF models established by

each selection method has increased compared with full-spectrum

modeling, while the R2 of the PLSR and MLR models has decreased.

This may be because ANN and RF models are usually more

complex and better at handling complex nonlinear relationships.

The selected wavelengths remove noise and redundant information,

retaining the characteristic wavelengths most related to leaf water

content. This allows ANN and RF models to focus more on these

relevant pieces of information, no longer being affected by irrelevant

or weakly relevant information, thereby improving the model’s

precision and generalization ability. In contrast, PLSR and MLR

models, which are based on linear relationships for prediction, may

not be able to fully capture the true relationship between the

remaining characteristics and the target, resulting in lower

prediction performance than ANN and RF models.

Yasir et al. (2023) collected hyperspectral data from 277 leaf

samples of 10 plant species as the modeling set and used publicly

available datasets to validate the modeling results, identifying the

three-band vegetation index most suitable for predicting water

content. The optimal result had an R2 of 0.969 and an RMSE of

0.001, which is better than the precision of the optimal model for

peach tree leaves in this study (RP
2 = 0.9636, RMSEP=0.0356). This

is because Yasir et al. used leaves from 10 different plant species for

modeling, whereas this study only used peach tree leaves for

modeling. In the future, more leaves from different plant species

should be collected to improve the modeling set. Compared with

the previously reported melon canopy leaf water content prediction

model (Guo et al., 2022), the number of bands used in this study

was reduced by 85%, while RP
2 increased by 0.0604. This

phenomenon may be attributed to the fact that the previous study

used only 150 samples for modeling, which is a relatively small

sample size. Additionally, the reflectance data for each sample was

obtained by averaging the values of three points on the leaf. In

contrast, this study had a much larger sample size, with 1118

samples in the modeling set. Moreover, the reflectance data for

each sample was obtained by averaging the reflectance of all pixel
FIGURE 12

Visualization of the water content of peach tree leaves. (a) Water content 76.61%, (b) Water content 64.46%, (c) Water content 41.41%, and (d) Water
content 24.43%.
TABLE 6 Correlation coefficients between NISDI and leaf water content
for different samples.

Sample type |r| P-value

Apple leaf samples 0.975 8.283×10-160

All lettuce samples 0.707 2.679×10-38

Lettuce samples
(without veins)

0.906 6.391×10-58
FIGURE 13

The relationship between the measured and predicted values of
apple tree leaf water content.
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points in the leaf area. Compared with the reflectance extraction

method used by Guo et al., the method used in this study provides a

more representative reflectance value for the overall sample.

Compared with the linear regression model for corn canopy

water content constructed by Shu et al. (2022) using two

wavelengths (R2 of 0.72), the number of wavelengths used in this

study increased by one, but the estimation precision of leaf water

content for the three types of plant leaves in this study (RP
2 of

0.9636, 0.9504, and 0.8211) is higher than the model proposed by

Shu et al. This study further expands the potential of vegetation

indices in estimating plant leaf water content.
4.3 Analysis of the generalization ability of
the optimal model

The optimal model was used to estimate the water content of

leaves from the upper, middle, and lower parts of the peach tree,

and it was found that the RP
2 was above 0.95 for all (upper: RP

2 =

0.9578, RMSEP=0.0389; middle: RP
2 = 0.9685, RMSEP=0.0330;

lower: RP
2 = 0.9658, RMSEP=0.0353).

When the optimal model was used to estimate the water content

of apple tree leaves, the RP
2 and RMSEP were 0.9504 and 0.1226,

respectively. Compared with peach tree leaves (RP
2 = 0.9636,

RMSEP=0.0356), there was a slight decrease in precision (DRP
2 =

0.0132, DRMSEP=0.0870), but the difference was small. This

indicates that the model has good generalization ability for woody

plants in the same family, which may be due to the fact that both

peach and apple trees are woody plants in the Rosaceae family. They

have been long exposed to environmental stresses such as drought

and pests, and both have thick cuticles and epicuticular wax as

physiological structures (Arya et al., 2021). This similar structure

maintains the cross-species consistency of the water-spectrum

relationship. However, peach tree leaves have a smooth surface
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without hairs, while apple tree leaves have short pubescence. This

difference may alter the scattering properties of light, resulting in

different penetration, reflection, and absorption of near-infrared

light in the leaves, which slightly reduces the estimation precision.

Using the optimal model to estimate the water content of lettuce

leaves, while the RP
2 remains relatively high, the performance is

significantly worse compared to that for peach tree leaves and apple

tree leaves. The RP
2 decreased by 0.1425 and 0.1293, respectively.

This suggests that the model’s performance has degraded when

applied across different growth forms. This may be because lettuce

has a short growth cycle and its leaf surface has delicate wax, which

is significantly different from the basic structure of the other two

types of leaves. Additionally, the model’s ability to estimate the

water content of the leaf part of lettuce was stronger than that of the

leaf veins. This may be due to the structural differences between the

leaf and the leaf veins of lettuce. The leaf is mainly composed of

mesophyll cells rich in chloroplasts, while the leaf veins are mainly

composed of vascular bundle cells. Another main reason is that the

water content of the leaf veins is higher, and the water content of the

leaf vein sample set has a smaller degree of dispersion. The

maximum water content in the training set is only 76.61%. This

mismatch in distribution may prevent the model from effectively

generalizing to the extreme data points in the test set, resulting in

inaccurate estimation.
4.4 Visualization analysis of leaf water
content

In this study, when extracting the reflectance of each leaf

sample, the average reflectance of all pixel points in the leaf area

of each group of samples was calculated as the reflectance data for

that group of samples. However, the rich spatial distribution

information in the hyperspectral images was not fully explored.
FIGURE 14

The relationship between the measured and predicted values of water content in chicory leaves. (a) all lettuce samples, (b) lettuce samples
without veins.
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To more comprehensively and intuitively demonstrate the

significant spatial difference of water content in different regions

of peach tree leaves, this study implemented the visualization of leaf

water content (Figure 12), thereby more intuitively displaying the

internal water distribution and the water gradient changes in

different parts of the leaf. When the leaf water content is low (as

shown in Figures 12, d), the leaf tips and edges appear blue, while

the veins appear orange, indicating that the leaf tips and edges begin

to lose water first. In the four groups of visualization images, the

water content of the leaf veins is always higher than that of the leaf

tissues. This is because the veins are the main channels and storage

structures for water transport and storage, primarily responsible for

storing and transporting water. In contrast, although the leaf tissues

also contain water, their main function is photosynthesis and gas

exchange, with weaker water storage capacity and relatively lower

water content (Ellsworth et al., 2023). This phenomenon is

consistent with the research results of scholars such as (Sun et al.,

2018) and (Liu et al., 2024)
4.5 Outlook

This study collected leaves from the economically significant

fruit tree, the peach tree, and used leaves from the apple tree, which

is in the same family but a different genus, and the herbaceous plant

lettuce, to validate the model. The results may have certain

limitations when applied to the estimation of leaf water content

in other plant species. Future research should further collect leaf

samples from other plant species to evaluate the feasibility of the

model in estimating leaf water content across a variety of plants.

The study collected peach tree leaves during two growth periods

with the highest water content being 76.61%. Future research

should collect data when leaf water content is higher, such as

after rainfall or irrigation, and also collect data across other

growth stages to build a more comprehensive dataset.
5 Conclusion

To achieve accurate estimation of leaf water content across

different woody plant species and to supplement the validation

across different growth forms, this study obtained hyperspectral data

in the near-infrared region of peach tree leaves. estimation models for

peach tree leaf water content were established using two methods:

“vegetation indices” and “characteristic wavelengths.” The distribution

of water content in peach tree leaves was visualized. The generalization

ability of the optimal model was validated using the water content data

of apple tree leaves (same family but different genus) and lettuce leaves

(cross-growth form). The main conclusions are as follows:
Fron
1. Among the models established using the “vegetation index”

method, the best-performing model was the linear

regression model based on the vegetation index NISDI
tiers in Plant Science 16
constructed in this study (RP
2 = 0.9636, RMSEP=0.0356,

using 3 wavelengths);

2. Among the models established using the “characteristic

wavelength” method, the best-performing model was the

CARS-RF model (RP
2 = 0.9861, RMSEP=0.0219, using 3

wavelengths). Compared with the NISDI-based model,

DRP
2 = 0.0225 and DRMSEP=0.0131. However, the

number of wavelengths used in model ing was

significantly reduced from 12 to 3, a decrease of 75%.

Therefore, the linear regression model based on NISDI

was determined to be the optimal model;

3. When the water content and reflectance data of apple tree

and lettuce leaves were input into the optimal model, the

results showed that the RP
2 and RMSEP for apple tree leaves

were 0.9504 and 0.1226, respectively, while for lettuce, they

were 0.5001 and 0.2694, respectively. When modeling was

conducted separately for the leaf part of lettuce, the RP
2 and

RMSEP were 0.8211 and 0.1771, respectively. This suggests

that the model possesses a certain degree of generalization

capability within the same family of woody plants, but its

performance experiences a decline when applied across

different growth forms.
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Araújo, M. C. U., Saldanha, T. C. B., Galvao, R. K. H., Yoneyama, T., Chame, H. C.,
and Visani, V. (2001). The successive projections algorithm for variable selection in
spectroscopic multicomponent analysis. Chemometrics Intelligent Lab. Syst. 57, 65–73.
doi: 10.1016/s0169-7439(01)00119-8

Arya, G. C., Sarkar, S., Manasherova, E., Aharoni, A., and Cohen, H. (2021). The
plant cuticle: an ancient guardian barrier set against long-standing rivals. Front. Plant
Sci. 12. doi: 10.3389/fpls.2021.663165

Bai, S. H., Tootoonchy, M., Kämper, W., Tahmasbian, I., Farrar, M. B., Boldingh, H.,
et al. (2024). Predicting carbohydrate concentrations in avocado and macadamia leaves
using hyperspectral imaging with partial least squares regressions and artificial neural
networks. Remote Sens. 16, 17. doi: 10.3390/rs16183389

Barnes, R., Dhanoa, M. S., and Lister, S. J. (1989). Standard normal variate
transformation and de-trending of near-infrared diffuse reflectance spectra. Appl.
Spectrosc. 43, 772–777. doi: 10.1366/0003702894202201

Breiman, L. (2001). Random forests.Mach. Learn. 45, 5–32. doi: 10.1016/b978-0-12-
824271-1.00018-4

Centner, V., Massart, D.-L., de Noord, O. E., de Jong, S., Vandeginste, B. M., and
Sterna, C. (1996). Elimination of uninformative variables for multivariate calibration.
Analytical Chem. 68, 3851–3858. doi: 10.1021/ac960321m

Champagne, C. M., Staenz, K., Bannari, A., McNairn, H., and Deguise, J.-C. (2003).
Validation of a hyperspectral curve-fitting model for the estimation of plant water
content of agricultural canopies. Remote Sens. Environ. 87, 148–160. doi: 10.1016/
s0034-4257(03)00137-8

Chu, X., Yuan, H., and Lu, W. (2004). Progress and application of spectral data
pretreatment and wavelengthSelection methods in NIR analytical technique. Prog.
Chem. 16, 528–542. doi: 10.3321/j.issn:1005-281X.2004.04.008

Dai, Q. F., Liao, C. L., Li, Z., Song, S. R., Xue, X. Y., and Xiong, S. L. (2022).
Hyperspectral visualization of citrus leaf moisture content based on CARS-CNN.
Spectrosc. Spectral Anal. 42, 2848–2854. doi: 10.3964/j.issn.1000-0593(2022)09-2848-07

Dong, C. W., An, T., Yang, M., Yang, C. S., Liu, Z. Y., Li, Y., et al. (2022). Quantitative
prediction and visual detection of the moisture content of withering leaves in black tea
(Camellia sinensis) with hyperspectral image. Infrared Phys. Technol. 123, 10.
doi: 10.1016/j.infrared.2022.104118

Dou, S. Q., Zhang, W. J., Deng, Y. X., Zhang, C. H., Mei, Z. M., Yan, J. C., et al.
(2024). Comparison of citrus leaf water content estimations based on the continuous
wavelet transform and fractional derivative methods. Horticulturae 10, 15.
doi: 10.3390/horticulturae10020177

Ellsworth, P. Z., V E. P., A. M. R., K, K. N., and &, B. C. A. (2023). Leaf cell wall
properties and stomatal density influence oxygen isotope enrichment of leaf water.
Plant Cell Environ. 46, 2694–2710.doi:10.1111/PCE.14612. doi: 10.1111/pce.14612

Gao, B.-C. (1995). Normalized difference water index for remote sensing of
vegetation liquid water from space. Defense Security Sens. 2480, 225–236.
doi: 10.1117/12.210877

Geladi, P., and Kowalski, B. R. (1986). Partial least-squares regression: a tutorial.
Analytica chimica Acta 185, 1–17. doi: 10.1016/0003-2670(86)80028-9

Geladi, P., MacDougall, D., and Martens, H. (1985). Linearization and scatter-
correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 39, 491–500.
doi: 10.1366/0003702854248656
Guo, Y., Guo, J., Shi, Y., Li, X., Huang, H., and Liu, Y. (2022). Estimation of leaf
moisture content in cantaloupe canopy based on siPLS-CARS and GA-ELM. Spectrosc.
Spectral Anal. 42, 2565–2571. doi: 10.3964/j.issn.1000-0593(2022)08-2565-07

Horablaga, A., Sibu, A., Megyesi, C. I., Gligor, D., Bujanca, G. S., Velciov, A. B., et al.
(2023). Estimation of the Controlled Release of Antioxidants from b-Cyclodextrin/
Chamomile (Matricaria chamomilla L.) or Milk Thistle (Silybum marianum L.),
Asteraceae, Hydrophilic Extract Complexes through the Fast and Cheap
Spectrophotometric Technique. Plants-Basel 12, 24. doi: 10.3390/plants12122352

Jobson, J., and Jobson, J. (1991). Multiple linear regression. Appl. multivariate Data
analysis: Regression Exp. design, 219–398. doi: 10.1038/nmeth.3665

Jones, C. L., Weckler, P. R., Maness, N. O., Stone, M. L., and Jayasekara, R. (2004).
Estimating water stress in plants using hyperspectral sensing. 2004 ASAE Annual
Meetin. Am. Soc. Agric. Biol. Engineers 1. doi: 10.13031/2013.17087

Junttila, S., Holtta, T., Saarinen, N., Kankare, V., Yrttimaa, T., Hyyppa, J., et al.
(2022). Close-range hyperspectral spectroscopy reveals leaf water content dynamics.
Remote Sens. Environ. 277, 13. doi: 10.1016/j.rse.2022.113071

Li, H., Liang, Y., Xu, Q., and Cao, D. (2009). Key wavelengths screening using
competitive adaptive reweighted sampling method for multivariate calibration.
Analytica chimica Acta 648, 77–84. doi: 10.1016/j.aca.2009.06.046

Liu, Y., Zhou, X., Sun, J., Li, B., and Ji, J. Y. (2024). A method for non-destructive
detection of moisture content in oilseed rape leaves using hyperspectral imaging
technology. J. Nondestructive Eval. 43, 12. doi: 10.1007/s10921-024-01049-w

Lu, Y. Y., Yang, G., Shen, Y. J., Yang, H. Y., and Xu, K. C. (2022). Multifunctional
flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro
Lett. 14, 34. doi: 10.1007/s40820-022-00895-5

Luo, W. T., Gonzalez, E., Zarei, A., Calleja, S., Rozzi, B., Demieville, J., et al. (2024).
Leaf cuticular wax composition of a genetically diverse collection of lettuce (Lactuca
sativa L.) cultivars evaluated under field conditions. Heliyon 10, 12. doi: 10.1016/
j.heliyon.2024.e27226

Lv, S. Y., Wang, J. H., Wang, Z. D., Fang, Y., Wang, S. S., Wang, F. Y., et al. (2024).
Construction of hyperspectral reflectance and spectral index inversion model for the
water content of Catalpa bungei leaves. Microchemical J. 197, 14. doi: 10.1016/
j.microc.2023.109811

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bull. Math. biophysics 5, 115–133. doi: 10.1007/bf02478259

Norris, K. H., and Hart, J. R. (1996). Direct spectrophotometric determination of
moisture content of grain and seeds. J. Near Infrared Spectrosc. 4, 23–30. doi: 10.1255/
jnirs.940

Peng, Y. Q., Xiao, Y. X., Fu, Z. T., Dong, Y. H., Li, X. X., Yan, H. J., et al. (2020). Water
content detection of maize leaves based on multispectral images. Spectrosc. Spectral
Anal. 40, 1257–1262. doi: 10.3964/j.issn.1000-0593(2020)04-1257-06

Qu, F. F., Nie, P. C., Lin, L., Cai, C. Y., and He, Y. (2018). Review of theoretical
methods and research aspects for detecting leaf water content using terahertz
spectroscopy and imaging. Int. J. Agric. Biol. Eng. 11, 27–34. doi: 10.25165/
j.ijabe.20181105.3952

Reynoud, N., Petit, J., Bres, C., Lahaye, M., Rothan, C., Marion, D., et al. (2021). The
complex architecture of plant cuticles and its relation to multiple biological functions.
Front. Plant Sci. 12. doi: 10.3389/fpls.2021.782773
frontiersin.org

https://doi.org/10.1016/s0169-7439(01)00119-8
https://doi.org/10.3389/fpls.2021.663165
https://doi.org/10.3390/rs16183389
https://doi.org/10.1366/0003702894202201
https://doi.org/10.1016/b978-0-12-824271-1.00018-4
https://doi.org/10.1016/b978-0-12-824271-1.00018-4
https://doi.org/10.1021/ac960321m
https://doi.org/10.1016/s0034-4257(03)00137-8
https://doi.org/10.1016/s0034-4257(03)00137-8
https://doi.org/10.3321/j.issn:1005-281X.2004.04.008
https://doi.org/10.3964/j.issn.1000-0593(2022)09-2848-07
https://doi.org/10.1016/j.infrared.2022.104118
https://doi.org/10.3390/horticulturae10020177
https://doi.org/10.1111/pce.14612
https://doi.org/10.1117/12.210877
https://doi.org/10.1016/0003-2670(86)80028-9
https://doi.org/10.1366/0003702854248656
https://doi.org/10.3964/j.issn.1000-0593(2022)08-2565-07
https://doi.org/10.3390/plants12122352
https://doi.org/10.1038/nmeth.3665
https://doi.org/10.13031/2013.17087
https://doi.org/10.1016/j.rse.2022.113071
https://doi.org/10.1016/j.aca.2009.06.046
https://doi.org/10.1007/s10921-024-01049-w
https://doi.org/10.1007/s40820-022-00895-5
https://doi.org/10.1016/j.heliyon.2024.e27226
https://doi.org/10.1016/j.heliyon.2024.e27226
https://doi.org/10.1016/j.microc.2023.109811
https://doi.org/10.1016/j.microc.2023.109811
https://doi.org/10.1007/bf02478259
https://doi.org/10.1255/jnirs.940
https://doi.org/10.1255/jnirs.940
https://doi.org/10.3964/j.issn.1000-0593(2020)04-1257-06
https://doi.org/10.25165/j.ijabe.20181105.3952
https://doi.org/10.25165/j.ijabe.20181105.3952
https://doi.org/10.3389/fpls.2021.782773
https://doi.org/10.3389/fpls.2025.1609650
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ji et al. 10.3389/fpls.2025.1609650
Savitzky, A., and Golay, M. J. (1964). Smoothing and differentiation of data by
simplified least squares procedures. Analytical Chem. 36, 1627–1639. doi: 10.1021/
ac60214a047

Shu, M. Y., Dong, Q. Z., Fei, S. P., Yang, X. H., Zhu, J. Y., Meng, L., et al. (2022).
Improved estimation of canopy water status in maize using UAV-based digital and
hyperspectral images. Comput. Electron. Agric. 197, 11. doi: 10.1016/
j.compag.2022.106982

Sun, H., Feng, M. C., Xiao, L. J., Yang, W. D., Wang, C., Jia, X. Q., et al. (2019).
Assessment of plant water status in winter wheat (Triticum aestivum L.) based on
canopy spectral indices. PloS One 14, 15. doi: 10.1371/journal.pone.0216890

Sun, H., Ning, L., Li, W., Tao, Z., Min-zan, L., and Jing-zhu, W. (2018). Visualization
of water content distribution in potato leaves based on hyperspectral image.光谱学与光

谱分析 39, 910–916. doi: 10.3964/j.issn.1000-0593(2019)03-0910-07

Wang, Z. Q., Huang, H., Wang, H., Peñuelas, J., Sardans, J., Niinemets, Ü., et al.
(2022). Leaf water content contributes to global leaf trait relationships. Nat. Commun.
13, 9. doi: 10.1038/s41467-022-32784-1

Wang, Q., and Li, P. (2012). Identification of robust hyperspectral indices on forest
leaf water content using PROSPECT simulated dataset and field reflectance
measurements. Hydrological processes 26, 1–12. doi: 10.1002/hyp.8221

Wang, L. J., and Yang, Y. Y. (2017). Purification and noise elimination of near
infrared spectrum in rapid detection of milk components concentration by using
Frontiers in Plant Science 18
principal component weight resetting. Acta Optica Sin. 37, 350–357. doi: 10.3788/
AOS201737.1030003

Xu,M. X.,Wu, S. H., Zhou, S. L., Liao, F. Q., Ma, C.M., and Zhu, C. (2011). Hyperspectral
reflectance models for retrieving heavymetal content: application in the archaeological soil. J.
Infrared Millimeter Waves 30, 109–114. doi: 10.3724/SP.J.1010.2011.00109

Yang, Y. C., Nan, R., Mi, T. X., Song, Y. X., Shi, F. H., Liu, X. R., et al. (2023b). Rapid
and nondestructive evaluation of wheat chlorophyll under drought stress using
hyperspectral imaging. Int. J. Mol. Sci. 24, 15. doi: 10.3390/ijms24065825

Yang, B. C., Zhang, H. N., Lu, X. H., Wan, H. L., Zhang, Y., Zhang, J., et al. (2023a).
Inversion of leaf water content of cinnamomum camphora based on preferred spectral
index and machine learning algorithm. Forests 14, 20. doi: 10.3390/f14122285

Yasir, Q. M., Zhang, Z. J., Tang, J. K., Naveed, M., and Jahangir, Z. (2023). Spectral
indices for tracing leaf water status with hyperspectral reflectance data. J. Appl. Remote
Sens. 17, 19. doi: 10.1117/1.Jrs.17.014523

Yuwei, H., Yanli, L., Liping, Y., Guoshun, Y., Kunyu, L., and Lei, W. (2021).
Hyperspectral response characteristics and correlation analysisof grape leaf tissue
structure. J. Plant Nutr. Fertilizers 27, 1213–1221. doi: 10.11674/zwyf.20571

Zhang, C., Li, C., He, M. Y., Cai, Z. Y., Feng, Z. P., Qi, H. N., et al. (2023). Leaf water
content determination of oilseed rape using near-infrared hyperspectral imaging with
deep learning regression methods. Infrared Phys. Technol. 134, 8. doi: 10.1016/
j.infrared.2023.104921
frontiersin.org

https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1016/j.compag.2022.106982
https://doi.org/10.1016/j.compag.2022.106982
https://doi.org/10.1371/journal.pone.0216890
https://doi.org/10.3964/j.issn.1000-0593(2019)03-0910-07
https://doi.org/10.1038/s41467-022-32784-1
https://doi.org/10.1002/hyp.8221
https://doi.org/10.3788/AOS201737.1030003
https://doi.org/10.3788/AOS201737.1030003
https://doi.org/10.3724/SP.J.1010.2011.00109
https://doi.org/10.3390/ijms24065825
https://doi.org/10.3390/f14122285
https://doi.org/10.1117/1.Jrs.17.014523
https://doi.org/10.11674/zwyf.20571
https://doi.org/10.1016/j.infrared.2023.104921
https://doi.org/10.1016/j.infrared.2023.104921
https://doi.org/10.3389/fpls.2025.1609650
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Estimation of plant leaf water content based on spectroscopy
	1 Introduction
	2 Materials and methods
	2.1 Technical route
	2.2 Data collection
	2.2.1 Leaf collection
	2.2.1.1 Peach tree leaves collection
	2.2.1.2 Cross-species leaves collection

	2.2.2 Leaf water content measurement
	2.2.3 Hyperspectral image acquisition and processing

	2.3 Estimation of leaf water content based on vegetation indices
	2.3.1 Vegetation indices construction
	2.3.2 Empirical vegetation indices
	2.3.3 Modeling methods

	2.4 Estimation of leaf water content based on characteristic wavelengths
	2.4.1 Reflectance data preprocessing
	2.4.2 Characteristic wavelength selection
	2.4.3 Modeling methods

	2.5 Model evaluation methods
	2.6 Peach tree leaf water content visualization
	2.7 Validation of model generalization

	3 Results
	3.1 Correlation between leaf water content and spectra
	3.2 Estimation results of leaf water content based on vegetation indices
	3.2.1 Estimation of leaf water content based on NISDI
	3.2.2 Estimation of leaf water content based on empirical vegetation indices

	3.3 Leaf water content estimation model based on characteristic wavelengths
	3.3.1 Preprocessing of peach tree leaf reflectance data
	3.3.2 Results of characteristic wavelength selection
	3.3.3 Leaf water content estimation model based on different characteristic wavelengths and modeling methods

	3.4 Visualization of peach tree leaf water content
	3.5 Model generalization performance validation

	4 Discussion
	4.1 Correlation analysis between leaf water content and spectral reflectance
	4.2 Analysis of results from different modeling methods
	4.3 Analysis of the generalization ability of the optimal model
	4.4 Visualization analysis of leaf water content
	4.5 Outlook

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


