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Toward non-invasive early pest
surveillance: cross-modal
adaptation using PLMS acoustic-
visual representation and
pre-trained transfer learning
Yaqin Wu*, Lijun Cheng, Wangli Hao, Jianjun Niu, Yuze Li,
Yan Chang, Jia Lv and Xuru Li

School of Software, Shanxi Agricultural University, Jinzhong, Shanxi, China
Pest infestations pose significant threats to agricultural productivity and

ecological balance, making early prevention crucial for effective management.

Toward non-invasive early-stage pest surveillance, this study introduces a novel

cross-modal adaptation paradigm, leveraging the comprehensive bioacoustic

repository, InsectSound1000 database. Firstly, the methodology initiates with

adaptive audio preprocessing, where raw signals are filtered using the low-pass

filter to remove high-frequency interference, followed by the downsampling

operation to prevent aliasing and reduce computational complexity. Secondly,

Patch-level log-scale mel spectrum (PLMS) spectrograms are proposed to

convert acoustic signals into visual representations, refining time-frequency

patterns through patch-level hierarchical decomposition to capture low-

frequency and localized spectral features. The logarithmic transformation

further enhances subtle low-frequency insect sound characteristics, optimizing

feature analysis and boosting model sensitivity and generalization. Next, the

PLMS acoustic-visual spectrograms undergo data augmentation prior to being

processed by the pre-trained You Only Look Once version 11(YOLOv11) model

for deep transfer learning, facilitating the efficient extraction of high-level

semantic features. Finally, we compare the proposed algorithm with traditional

acoustic features and networks, investigating how to balance preserving the

frequency content of the signal and meeting computational requirements

through optimized downsampling. Experimental results demonstrate that the

proposed method achieves an Accuracy@1 of 96.49%, a Macro-F1 score of

96.49%, and a Macro-AUC of 99.93% at the 2500Hz sampling rate, showcasing

its superior performance. These findings indicate that cross-modal adaptation

with PLMS spectrograms and YOLOv11-based transfer learning can significantly

enhance pest sound detection, providing a robust framework for non-invasive,

early-stage agricultural pest surveillance.
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1 Introduction

Agriculture plays a critical role in the global economy, food

security, and rural development. As the backbone of many nations,

particularly in developing regions, agriculture supports the

livelihoods of billions of people and is responsible for producing

food, fiber, and raw materials that sustain both local and global

markets (FAO, 2024). Meanwhile, the increasing significance and

attention towards sustainable agriculture as a solution to global

challenges and a driver of rural development (Rusdiyana et al.,

2024). However, the sector faces significant challenges, especially

due to climate change, population growth, pest invasion and the

increasing demand for sustainability. Climate change, in particular,

has a significant negative impact on agricultural productivity (Bai

et al., 2024). Concurrently, the rapidly growing global population

intensifies concerns over food security. By 2050, the world will need

to feed approximately 10 billion people, without depleting the

planet’s resources or damaging the environment (Ghosh et al.,

2024). Consequently, ensuring food security while preserving

environmental sustainability has emerged as one of the most

pressing challenges of the 21st century (Varzakas and Smaoui,

2024). Moreover, the escalating frequency and severity of pest

invasions, frequently exacerbated by climate variability and global

trade, further jeopardize crop yields and compromise the stability of

agricultural systems worldwide. Among these challenges, pest

infestation is a critical concern, as it directly impacts crop yields,

food security, and the livelihoods of millions of farmers. To address

this, Integrated Pest Management has emerged as a sustainable

solution, effectively minimizing reliance on pesticides while

simultaneously improving crop productivity and promoting

ecosystem health (Zhou et al., 2024).

Pest infestation is critical to sustaining agricultural productivity.

Certain insects, rodents, and other pests inflict significant damage

to crops, resulting in major economic losses and jeopardizing food

security. In addition to direct agricultural impacts, pest infestations

can have profound environmental and social consequences.

Environmentally, pests may lower biodiversity, endanger local

species through predation and competition, destroy habitats, and

interfere with pollination and other ecological processes. Socially,

pests threaten food security, which can result in starvation and

social unrest, as well as harming urban surroundings and cultural

heritage, like when invasive pests cause urban trees to disappear.

Furthermore, the health and well-being of communities can also be

impacted by pests; urban pests like bedbugs and rats frequently

indicate underlying psychological, social, or economic problems in

local communities. Effective pest management strategies aim to

promote sustainable agricultural practices, significantly reduce

reliance on synthetic pesticides, and address a range of socio-

economic, environmental, and human health challenges (Deguine

et al., 2021). Although traditional pest control methods, such as

chemical pesticides, have been widely adopted, their long-term

adverse effects, including pesticide resistance, environmental

degradation, and harm to non-target species, are becoming

increasingly apparent (Gandara et al., 2024; Liu et al., 2024; Liu
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et al., 2024). Consequently, there is an urgent need for more

sustainable and efficient pest control alternatives.

Among the various methods developed, image-based pest

detection and control systems have garnered significant attention,

driven by recent advancements in computer vision and machine

learning techniques. For example, Li et al. (2021) explores the

technical methods and frameworks of deep learning for smart

pest monitoring, focusing on insect pest classification and

detection based on field images. The study provides a

comprehensive analysis of methodologies across key stages,

including image acquisition, data preprocessing, and modeling

techniques. By analyzing the captured images, the system could

accurately identify the presence and quantity of pests, enabling

farmers to take appropriate control measures promptly. However,

image-based methods also face inherent challenges, including the

lack of large, well-annotated image datasets, the impact of

environmental factors on insect features, and difficulties in

detecting hidden or camouflaged pests arising from their position

and similarity to other species (Ngugi et al., 2021). Additionally,

these systems may require substantial computational resources and

be sensitive to environmental factors such as lighting and weather

conditions, all of which complicate AI-based approaches (Kiobia

et al., 2023).

Given these limitations, researchers have been exploring

alternative and complementary techniques, one of which is pest

detection through acoustic recognition technology. Unlike image-

based methods that rely on visual cues, acoustic-based detection

utilizes the unique acoustic features emitted by pests during

behaviors such as feeding, mating, or movement, offering a

promising avenue for accurate identification and monitoring. For

example, the chirping of crickets or the buzzing of certain beetles can

be distinct identifiers. Moreover, acoustic technology offers valuable

insights into stored insect behavior, physiology, abundance, and

distribution, providing information that is otherwise challenging to

obtain through traditional methods (Mankin et al., 2021). To build

upon this, acoustic technology can operate effectively in complete

darkness or in environments with dense foliage, where visual access is

restricted. Unlike visual methods, it is unaffected by variations in

lighting that may degrade image quality. Moreover, the hardware

required for sound acquisition, such as basic microphones, is often

more cost-effective than high-resolution cameras. However, acoustic

detection can be susceptible to environmental noise and adverse

weather conditions such as wind, rain, or foliage movement, which

may mask or distort target acoustic signals. Following this line of

research, a low-cost real-time platform for the acoustic detection of

cicadas in plantations was introduced (Escola et al., 2020). Similarly,

the system proposed (Ali et al., 2024), driven by Internet of Things-

based (IoT-based) computerized components, utilized machine

learning on insect acoustic recordings, further enhancing the

accuracy and reliability of pest detection. Thus, acoustic-based pest

detection provides an effective, cost-efficient, and adaptable solution

for pest monitoring across diverse environments.

In this study, a novel approach for early prevention of pest

infestation is proposed, utilizing a cross-modal adaptation
frontiersin.org
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framework based on the InsectSound1000 database. The main

contributions of the proposed approach are summarized as follows:
Fron
i. We introduced an advanced methodology for

transforming one-dimensional time-series signals into

two-dimensional PLMS spectrograms, facilitating a more

structured and informative acoustic-visual representation

of insect acoustic characteristics.

ii. We leveraged transfer learning by fine-tuning the pre-

trained YOLOv11 model, capitalizing on its robust feature

extraction capabilities acquired from large-scale datasets

after data Augmentation.

iii. We optimized computational efficiency by fine-tuning

only a subset of model parameters, minimizing Floating

Point Operations Per Second (FLOPS) and parameter

count to achieve the lowest resource footprint among

compared models, enabling real-time pest surveillance.

iv. We explored the impact of different patch sizes and sample

rates on classification performance, investigating the

optimal parameter tuning to balance preserving the

frequency content of the signal while meeting

computational requirements.

v. Extensive experiments were conducted using the

InsectSound1000 dataset. Results demonstrate that our

method achieves superior classification performance,

significantly outperforming existing related works.
2 Related works

A substantial cohort of researchers conducts investigations on

acoustic-based insect detection. As shown in Table 1, this section

provides a comprehensive synthesis of the relevant literature in

terms of methodology, dataset, strengths and limitation to provide

context for the present study.

The methodologies employed in insect acoustic recognition and

detection can be broadly categorized into traditional machine

learning (ML) and deep learning (DL) techniques. Traditional ML

methods, as exemplified by studies such as references (Le-Qing,

2011; Noda et al., 2016; Phung et al., 2017; Noda et al., 2019; Basak

et al., 2022; de Souza et al., 2022; Wang and Vhaduri, 2024), rely on

handcrafted features like mel frequency cepstral coefficients

(MFCC) and linear frequency cepstral coefficients (LFCC), paired

with classifiers such as support vector machines (SVM) and k-

Nearest Neighbors (kNN). These approaches have achieved notable

accuracy in constrained scenarios, for instance, Phung et al. (2017)

reported 97.1% accuracy for 11 insect species, while Noda et al.

(2016) achieved 99.08% accuracy for cicada detection. However,

their reliance on manual feature engineering limits adaptability to

complex or high-frequency acoustic patterns, as highlighted by the

analysis (Le-Qing, 2011; Phung et al., 2017).

In contrast, DL techniques leverage automated feature learning

and scalable architectures to overcome these limitations. Studies

such as those in references (Karar et al., 2021; Zhang et al., 2021;
tiers in Plant Science 03
Tey et al., 2022; Boulila et al., 2023; Faiß and Stowell, 2023; Szekeres

et al., 2023; Truong et al., 2023; Zhang, 2023; Balingbing et al., 2024;

Dhanaraj et al., 2024; Montemayor et al., 2024; Ferreira et al., 2025)

employ convolutional neural networks (CNNs), gated recurrent

units (GRUs), transformers, and hybrid models, often integrated

with IoT or unmanned aerial vehicle (UAV) systems. For instance,

the deep multibranch fusion residual network (DMF-ResNet)

(Dhanaraj et al., 2024), trained on the comprehensive “Bug Bytes

sound library”, demonstrated exceptional performance with 99.75%

accuracy, 99.18% precision, and 99.08% recall, showcasing the

potential of DL for high-precision applications. Similarly, Kamar

et al. (Karar et al., 2021) utilized the IoT-based Inception-Residual

Network V2 (InceptionResNet-V2) model on the TreeVibes

dataset, achieving 97.18% accuracy for real-time red palm weevil

detection while addressing class imbalance through transfer

learning. UAV-integrated systems (Zhang, 2023) further

expanded scalability by combining 48MP visual data with

acoustic recordings from 16 species to achieve 92% precision and

84% recall for large-area grasshopper monitoring. Adaptive

frontends, such as the learnable frontend (LEAF) model (Faiß

and Stowell, 2023), dynamically adjusted filter parameters for

high-frequency sounds, leading to an accuracy boost from 67% to

86% across multiple datasets, thereby outperforming static Mel-

spectrogram method. Similarly, the CNN-Gated Recurrent Unit

(GRU) model (Truong et al., 2023) enhanced bee buzzing

recognition by 1% over existing methods, leveraging Bayesian

optimization for hyperparameter tuning. Despite these

advancements, DL models still face several challenges. One major

issue is computational intensity, as evidenced by the IoT system

(Dhanaraj et al., 2024), which requires significant resources.

Another challenge is dataset dependency, highlighted by the

transformer model (Ferreira et al., 2025), which necessitated data

augmentation for 15 bee species. However, reliance on

augmentation introduces risks, particularly the potential for

overfitting to synthetic variations, as noted in Wang et al (Wang

and Vhaduri, 2024). Additionally, environmental noise sensitivity

remains a concern, as seen in the UAV recordings (Zhang, 2023),

which suffered from interference.

The strengths and limitations of these methodologies are

intricately shaped by the inherent characteristics of the datasets

employed. Some studies focus on small, specialized datasets, such as

the 43 acoustic recordings of three cicada species (Tey et al., 2022),

datasets focused on fruit flies and mosquitoes (Szekeres et al., 2023),

bee buzzing sounds (Phan et al., 2023), and 343 samples spanning

three insects (Noda et al., 2019). While these datasets are useful for

specific applications, they often lack the diversity required for

robust generalization. Larger datasets, such as the TreeVibes

database (Karar et al., 2021) and the InsectSet66 dataset (Faiß

and Stowell, 2023), offer a more comprehensive coverage of insect

sounds. However, even these datasets face challenges, such as class

imbalance and limited audio quality (Karar et al., 2021; Faiß and

Stowell, 2023). On the other hand, several studies highlighted

limitations in scalability and dependency on specialized

equipment. For instance, the dual-frequency and spectral fusion

module (DFSM) architecture with EfficientNet (He et al., 2024)
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TABLE 1 A concise overview of the literature reviews.

Methodology Dataset Strengths Limitations Ref.

Transformer-based networks with
data augmentation

518 audio samples of 15 bee
species

F1: 64.5%, Accuracy: 82.2%
Small dataset; Class imbalance;
Reliance on pre-training

(Ferreira
et al., 2025)

DFSM with Efficientnet and dual
towers

InsectSet32
Accuracy: 80.26%, outperforms
SOTA by 3%

Class imbalance; Insufficient data;
Unaddressed real-world issues (insect
sound variability and scalability for
large-scale pest monitoring)

(He et al.,
2024)

ML algorithms with MFCC features
and data augmentation

Sound recordings of cicada,
beetle, termite, and cricket

Improved generalization, reduced
overfitting, diverse data
augmentation

Potential over-reliance on
augmentation; Limited to four insect
types

(Wang and
Vhaduri,
2024)

MEMS microphone, multi-layer
CNN

Sounds of lesser grain borer,
rice weevil, and red flour beetle
in stored paddy grains

Accuracy: 84.51%, non-chemical
pest detection, high information
density handling

Limited to adult insect stages,
potential noise interference in storage
environments; Lack of diversity

(Balingbing
et al., 2024)

Hyper-parameter tuning, MFCC
BUZZ1, BUZZ2, and
add_BUZZ2

Accuracy: 96.9% Limited to bee buzzing recognition
(Phan et al.,
2023)

Sound-to-image conversion, feature
fusion, DL classification

Recordings from date palm
trees in Al-Ahssa, Saudi Arabia

Outperformed existing techniques
for public datasets

Limited to red palm weevil infestation
classification

(Boulila et al.,
2023)

UAV visual-acoustic system, DL
source separation, spectral denoising,
CNN transfer learning

100+in-field 48 Megapixels
(MP) photos, 16 species audio
recordings

Precision(visual: 0.92, acoustic:
0.87), Recall (visual: 0.84, acoustic:
0.90), cost-effective (<$1000/unit),
covers 12,500 m²/hr

Limited to grasshoppers; Requires
UAV deployment; Noise interference
challenges

(Zhang, 2023)

MFCC features, CNN 2800 acoustic samples

Precision (positive: 0.89, negative:
0.98), Recall (positive: 0.98,
negative: 0.90), F1 (positive:0.93,
negative: 0.94)

Limited to Rice Weevils; Requires
high-performance microphone

(Montemayor
et al., 2024)

IoT and DMF-ResNet Bug Bytes sound library
Accuracy (99.75%), Precision
(99.18%), Recall (99.08%), F1
score (99.11%)

High initial cost; Limited to specific
pests

(Dhanaraj
et al., 2024)

LEAF and mel-spectrogram

InsectSet32 (32 species),
InsectSet47 (47species),
InsectSet66 (66 species);
Focused on Orthoptera and
Cicadidae

InsectSet32: LEAF Accuracy
(78%);
InsectSet47: LEAF Accuracy
(86%); InsectSet66: LEAF
Accuracy (83%)

Small dataset; Limited audio quality
(Faiß and
Stowell, 2023)

CNN-GRU model with Mel
Spectrogram and Bayesian
Optimization

BUZZ1, BUZZ2, and
add_BUZZ2

Outperforms existing models by
1% in bee sound identification.

Limited to bee buzzing sounds; Small
improvement margin (1%).

(Truong et al.,
2023)

ResNet-9 Wingbeats; Fruitfiles; Abuzz
High accuracy, reduced trainable
parameters (90% reduction)

Limited to fruit flies and mosquitoes
(Szekeres
et al., 2023)

Improved MFCC scanning with ML
models

Collected from MobCup, Quick
Sounds, and Pixabay; includes
9 insect species

Achieved 85.4% accuracy with
kNN

Limited to 9 insect species
(Basak et al.,
2022)

Empirical Mode Decomposition
(EMD) and Paraconsistent Feature
Engineering (PFE) for feature
extraction, SVM for classification

1366 audio files (683 cicada,
683 noise) from São Paulo and
Minas Gerais, Brazil

Accuracy (98%) Limited to Quesada gigas species
(de Souza
et al., 2022)

Syllable segmentation, Spectrogram
representation, CNN

43 sound recordings of three
cicada species

Accuracy (66.67% to 100%),
robust species recognition

Small dataset; limited to cicada
species; Dependent on syllable
segmentation

(Tey et al.,
2022)

IoT-based with fine-tuned
InceptionResNet-V2

TreeVibes database (1754
samples: 1023 clean, 731
infested)

Accuracy (97.18%), effective
transfer learning, real-time
detection

Limited to Red Palm Weevils; Small
dataset

(Karar et al.,
2021)

MFCC feature, CNN
Insect sound library from ARS
Center

Accuracy (92.56%) Limited dataset
(Zhang et al.,
2021)

MFCC and LFCC
343 species of katydids, crickets
and cicadas

Accuracy (98.07%) Limited to 3 species
(Noda et al.,
2019)

(Continued)
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achieved 80.26% accuracy on InsectSet32, outperforming state-of-

the-art (SOTA) methods by 3%, but scalability for large-scale

monitoring remained an unresolved issue. Similarly, Zhang et al.

(Montemayor et al., 2024) achieved high precision and recall using

MFCC features and CNNs on 2,800 rice weevil samples but required

high-performance microphones, limiting practical deployment.

Innovations like micro-electromechanical system (MEMS)

microphones (Balingbing et al., 2024) enabled non-chemical pest

detection with 84.51% accuracy but faced challenges with noisy

storage environments and limited taxonomic coverage.
3 Data description

The comparison of various insect sound datasets is presented in

Table 2, highlighting the species covered, sample sizes, descriptions,

and download links. These datasets differ in terms of the number of

species, total samples, and species diversity. In comparison, datasets

such as BUZZ1 (Kulyukin et al., 2018), BUZZ2 (Kulyukin et al.,

2018), SINA (Walker and Moore, 2019), and Insectsingers

(Marshall and Hill), focus on a limited number of insect species,

resulting in less diversity in terms of species variety and sound level

range. Additionally, datasets like ESC-50 (Piczak, 2015), and

InsectSet32 (Faiß, 2022), focus on fewer species with smaller

sample sizes. The Bug Bytes sound library (Mankin, 2019),

features a broader range of insect species (72), with 7,200

samples. However, the presence of non-agricultural pest species

may introduce interference, limiting the dataset’s effectiveness for

agricultural pest monitoring.

Notably, InsectSound1000 (Branding et al., 2024) stands out as

the most comprehensive and diverse dataset for training robust insect

acoustic recognition models, especially given its extensive sample size

and wide range of insect species and sound levels. Therefore,

InsectSound1000 is selected for this study, containing over 169,000

labelled sound samples from 12 insect species, recorded in an

anechoic box with a four-channel low-noise microphone array. The

acoustic intensity spans a range from the very loud Bombus terrestris

to the nearly inaudible Aphidoletes aphidimyza for the human ears.

Each sample is a four-channel WAV file with a duration of 2500 ms,

sampled at 16 kHz with 32-bit resolution. With over 1000 hours of

high-quality recordings, InsectSound1000 is suitable for training DL
Frontiers in Plant Science 05
models for insect acoustic recognition. Primarily used for model pre-

training, this dataset also supports developing insect acoustic

recognition systems across different hardware platforms for various

species. As outlined in Table 3, the details of the pests used in the

analytical procedures are provided. To ensure data balance and

consistency, the final dataset is determined based on the class with

the smallest sample size.
4 Proposed methodology

The objective of this study is to rapidly identify and detect pests at

their early stages of appearance or as soon as they reach detectable

levels, enabling the swift initiation of localized control measures to

prevent further spread and minimize damage. For instance, upon

detecting a small number of pests in a specific area of an orchard, the

affected zone is immediately isolated. Subsequently, biological control

methods or precision pesticide treatments are applied to eradicate the

pests at this early stage, thereby preventing their spread to the entire

orchard. Figure 1 describes the architecture of the proposed

approach. The process begins with pre-processing of the

InsectSound1000 dataset, followed by PLMS feature extraction

alongside conventional feature representations for comparative

analysis. These feature representations are mapped into DL-based

classification frameworks, where our proposed model is

systematically benchmarked against ResNet18, EfficientNet,

VGG19, DenseNet, and MobileNet and other algorithms to assess

its efficacy and robustness. The resulting classification facilitates high-

precision pest identification, enhancing automated surveillance and

enabling proactive early-stage intervention strategies.
4.1 Preprocessing

4.1.1 Low-pass filtering
The purpose of low-pass filtering is to eliminate components of

the signal above specific frequency. Figure 2 presents the

representative spectrums of the insect acoustic signals from

Aphidoletes aphidimyza and Bradysia difformis. Analysis shows

that the acoustic signals of the pests studied in this paper are

predominantly concentrated within the low-frequency range.
TABLE 1 Continued

Methodology Dataset Strengths Limitations Ref.

Enhanced spectrogram, CNN
47 types of insect sounds from
USDA library

Accuracy (97.87%), reduced data
size, and faster training

Small dataset
(Dong et al.,
2018)

MFCC, Bagged Tree, KNN 11 insects from 6 species
species classification (over 97.1%);
insect classification (over 92.3%)

Limited sample size; Short-term
features only

(Phung et al.,
2017)

MFCC and LFCC, SVM InsectSingers Accuracy (99.08%) Limited to cicada species
(Noda et al.,
2016)

MFCC, Probabilistic Neural Network

insect sound library from
agricultural research service of
United States department of
agriculture

Accuracy (96%) Limited to 6 species
(Le-Qing,
2011)
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Therefore, finite impulse response (FIR) filter is employed for

low-pass filtering to suppress high-frequency noise while effectively

preserving the essential low-frequency information. FIR filters, a

class of digital filters with finite-duration impulse responses, are

distinguished by their ideal linear phase characteristics, where the

output is computed as the convolution of the input signal with the

filter coefficients, as depicted in Equation 1:

y½n� = o
N−1

k=0

h½k�x½n − k� (1)

The discrete-time output of an FIR filter can be represented as

the convolution of the input signal and the filter coefficients. Where

N denotes the order of the filter, i.e. the number of filter coefficients.

The design of an FIR filter typically involves three main steps:

determining the filter type, specifying the cutoff frequency, and

selecting an appropriate window function. In practical

implementations, the coefficients of the FIR filter are commonly

calculated using the window function method. This approach

applies a window function to the impulse response of the ideal
Frontiers in Plant Science 06
filter, effectively suppressing sidelobe leakage and ripple effects,

thereby improving overall filter performance. In this study, low-

pass filtering is selected. The time domain impulse response of an

ideal low-pass filter is calculated as shown in Equation 2:

hideal nð Þ = sin (2p fcn)
pn

(2)

Where fc denotes the cutoff frequency. The ideal filter possesses

an impulse response of infinite duration, rendering it infeasible for

practical implementation. Therefore, it is necessary to truncate its

duration through the window function method. The Hamming

window can effectively reduce the sidelobe leakage and enhance the

stopband attenuation performance. The application of the

Hamming window yields a flatter frequency response within the

passband, facilitates more rapid attenuation within the stopband,

and effectively suppresses sidelobe levels. The Hamming window is

calculated as shown in Equation 3:

w½n� = 0:54� 0:46cosð 2pn
N − 1

Þ,  0 ≤ n ≤ N − 1 (3)
TABLE 2 Comparison of various insect sound datasets.

References Insect species Number of samples Brief description

BUZZ1 (Kulyukin et al., 2018)
Available online:
https://usu.app.box.com/v/BeePiAudioData (accessed on
11 May 2021).

Bee\Cricket\Noise 3300\3500\3460 Very few insect species

BUZZ2 (Kulyukin et al., 2018)
Available online:
https://usu.app.box.com/v/BeePiAudioData (accessed on
11 May 2021).

Bee\Cricket\Noise 4300\4500\4114 Very few insect species

SINA (Walker and Moore, 2019)
Available online:
https://orthsoc.org/sina/crickets.htm.
(accessed on 7 September 2025)

255 species of katydids,
crickets and cicadas

/ Only three insect species

Insectsingers (Marshall and Hill)
Available online:
https://www.insectsingers.com/.
(accessed on 7 September 2025)

343 species of katydids,
crickets and cicadas

/ Only three insect species

ESC-50 (Piczak, 2015)
Available online:
https://github.com/karolpiczak/ESC-50?tab=readme-ov-
file.
(accessed on 7 September 2025)

Frog\Insects(flying)\Criets
\Chirping birds

40 examples per class, each 5
seconds long

No subdivision of insect species

InsectSet32 (Faiß, 2022)
Available online:
https://doi.org/10.5281/zenodo.7072196.
(accessed on 7 September 2025)

9 species of Orthoptera and
23 species of Cicadidae

335 files, 57 minutes in total Only two insect species

Bug Bytes sound library (Mankin, 2019)
Available online:
https://data.nal.usda.gov/dataset/bug-bytes-sound-
library-stored-product-insect-pest-sounds. (accessed on
7 September 2025)

72 7200
Includes many non-agricultural pest
insects, with diverse categories that may
cause interference

InsectSound1000 (Branding et al., 2024)
Available online:
https://www.openagrar.de/receive/
openagrar_mods_00091171.
(accessed on 7 September 2025)

Aphidoletes aphidimyza,
Myzus persicae, et al., a total
of 12 species.

Over169,000 labelled samples
Diverse insect species with a wide range of
sound levels.
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The ideal impulse response is multiplied by the window

function to obtain the final filter coefficients, as shown in

Equation 4:

h½n� = hideal nð Þ · w½n� (4)

In addition, the choice of filter order is influenced by the

transition band width, passband ripple, stopband attenuation, and

other design parameters. A higher order results in a narrower

transition band and more accurate frequency response, but it also

increases computational complexity.

4.1.2 Downsampling
In accordance with the Nyquist sampling theorem, the

maximum frequency component of the signal must be less than

half of the target sampling rate. If high-frequency components are

not adequately attenuated prior to downsampling, aliasing artifacts

may arise, wherein high-frequency energy is folded into the lower

frequency spectrum, leading to significant distortion of the signal.

Consequently, applying low-pass filtering before downsampling is

essential to prevent aliasing effects.

Let fmax denotes the maximum frequency of the signal. The

target sampling rate ft must satisfy the following condition, as
Frontiers in Plant Science 07
shown in Equation 5:

ft ≥ 2fmax (5)

Downsampling, an essential method in signal processing, is

employed to reduce data dimensionality and mitigate

computational load. Assume that the downsampling function is

defined as Resample, which is defined as Equation 6:

y 0 (n) = Re sample(x(n)) = x(
n · fs
ft

) = x(n=R) (6)

Where fs denotes the sampling rate of the original signal x(n). ft
denotes the sampling rate of the target signal y 0 (n). R denotes the

sampling rate ratio. Since n=R is usually not an integer, interpolation

must be performed. This paper utilizes the sinc interpolation method,

a high-fidelity anti-aliasing resampling technique that integrates a

window function to effectively suppress sidelobe leakage. The formula

is defined as shown in Equation 7:

y 0 (n) =o
k

x(k) · sin c(
n
R
− k) · w(k),    sin c(x) =

sin (px)
px

(7)

Where w(k) denotes the window function. The primary objective

of downsampling is to reduce the number of sampling points, thereby
TABLE 3 Details of Pest used in analytical procedures.

Insect order Insect family Insect species Number Duration /ms Brief description

Diptera Cecidomyiidae
Aphidoletes
aphidimyza

14065 2500
A natural predator of aphids, whose sound can be used
for pest control monitoring.

Hymenoptera Apidae Bombus terrestris 18291 2500
A bumblebee species, whose buzzing sounds can be used
to monitor pollinator activity and assess crop health.

Diptera Sciaridae Bradysia difformis 11394 2500
A small fungus gnat, whose larvae feed on fungi and
damage the root systems of host plants in humid
environments.

Coleoptera Coccinellidae
Coccinella
septempunctata

14682 2500
A beneficial ladybug that feeds on aphids and helps
control agricultural pests.

Diptera Syrphidae Episyrphus balteatus 16868 2500
A hoverfly species, whose larvae feed on aphids, helping
control agricultural pests.

Heteroptera Pentatomidae Halyomorpha halys 19671 2500
A destructive stink bug, whose feeding on plant tissues
causes damage to crops, leading to yield loss and quality
degradation.

Hemiptera Aphididae Myzus persicae 3208 2500
A destructive aphid that feeds on various crops, causing
poor growth, yellowing leaves, and spreading plant
viruses.

Heteroptera Pentatomidae Nezara viridula 20323 2500
A widespread agricultural pest that feeds on crops,
causing damage to plant tissues and reduced yield.

Heteroptera Pentatomidae Palomena prasina 27340 2500
A shield bug that feeds on plant tissues, causing minor
damage to crops and deformed fruits.

Heteroptera Pentatomidae Rhaphigaster nebulos 13443 2500
A shield bug that can cause minor damage to crops by
feeding on plant tissues in certain circumstances.

Hemiptera Aleyrodidae Vaporariorum 1062 2500
A common greenhouse pest that damages plants by
feeding on sap and can spread viruses, negatively affecting
crop growth and yield.

Lepidoptera Gelechiidae Tuta absoluta 633 2500
A destructive pest of tomato crops, whose larvae damage
leaves and fruits, leading to significant yield and quality
losses.
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lowering the computational burden associated with subsequent

feature extraction and classifier model training. However, higher

downsampling ratios may compromise temporal resolution,

particularly affecting the accurate representation of high-frequency
Frontiers in Plant Science 08
components. Therefore, the choice of an appropriate downsampling

rate must achieve a trade-off between preserving the critical spectral

characteristics of the signal and satisfying the computational

efficiency requirements of downstream processing tasks.
FIGURE 2

Spectra of the insect acoustic signals from Aphidoletes aphidimyza and Bradysia difformis.
FIGURE 1

Architecture of the proposed approach for insect acoustic classification with comparative analysis of multiple features and benchmark models.
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4.2 Feature engineering

4.2.1 PLMS
An innovative feature representation method, termed the

PLMS, is proposed in this study to enhance the accuracy of insect

sound signal recognition. The complete process of PLMS extraction

is outlined in Algorithm 1. First, the original insect acoustic signals

are preprocessed using low-pass filtering and downsampling to

reduce computational complexity while preserving relevant spectral

content. The processed signals are then segmented into overlapping

patch-level windows with predefined window length and shift,

enabling the extraction of local temporal structural features. Since

these signals exhibit distinct spectral characteristics across different

temporal regions, dividing the spectrogram into smaller, localized

patches allows for the capture of subtle, context-specific variations

in both time and frequency domains. This localized analysis

enhances the model’s ability to detect fine-grained temporal

dynamics, which is crucial for improving the accuracy and

robustness of classification and recognition tasks. Furthermore, by

enabling the model to learn discriminative features from multiple

local regions, the patch-level approach contributes to better

generalization performance when applied to unseen data. The

specific formula for the patch-level segmentation operation is as

shown in Equation 8:

y 0
frame (n) = Enframe(y 0 (n)) = y 0½n ∗ shift : n ∗ shift + N� (8)

Where N and shift represent the patch-level window length and

shift, respectively. Subsequently, the short-time fourier transform

(STFT) is performed on each patch-level segmented signal to

extract localized time-frequency features. This process facilitates

the characterization of spectral variations within each temporal

segment, thereby enhancing the representation of non-stationary

signal components, as shown in Equation 9:

X(n, k) = o
N−1

m=0
y 0

frame½n ∗ shift +m� · w(m) · e−j2pkm=N (9)

where n denotes the frame index. ? denotes the frequency index.

X(n, k) denotes the STFT complex spectrum of the ?-th frame.

Next, in order to compute the Mel spectrum for each frame, a

bank of Mel-scale filters must first be constructed to project the

power spectrum onto the perceptually motivated Mel frequency.

The Mel filter bank comprises a series of triangular band-pass filters

that are uniformly spaced on the Mel frequency scale but

nonlinearly distributed along the linear frequency axis. Given M

Mel filters, the frequency responsem-th filter is defined as shown in

Equation 10:

Hm(k) =

0                   fk < fm−1

fk−fm−1
fm−fm−1

     fm−1 ≤ fk < fm 

fm+1−fk
fm+1−fm

     fm ≤ fk < fm+1 

0                   fk ≥ fm+1

   

8>>>>>><
>>>>>>:

(10)

Where fk represents the k-th frequency point. fm represents the

center frequency of the m-th Mel filter. fm−1 and fm+1 are the
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boundary frequencies of adjacent filters. Center frequency is

usually mapped from the Mel scale to the frequency axis using

the following formula as shown in Equation 11:

fm = f −1mel(
m

M + 1
· (fmel(fmax) − fmel(fmin)) + fmel(fmin)) (11)

Where the Mel transform is defined as shown in Equation 12:

fmel = 2595 · log10 (1 +
f

700
) (12)

Then Mel filter bank and power spectrum are weighted

superimposed frame by frame to obtain Mel spectrum, as shown

in Equation 13:

S(n,m) = o
K−1

k=0

P(n, k) · Hm(k) (13)

Where P(n, k) denotes the power spectrum of each frame,

computed as follows shown in Equation 14:

P(n, k) = X(n, k)j j2 (14)

The Mel frequency scale, a nonlinear transformation of

frequency, provides enhanced resolution during the low-

frequency range while compressing resolution during the high-

frequency domain. This property aligns well with the spectral

characteristics of insect acoustic signals, where the energy is

predominantly concentrated in the low-frequency components.

To compress the dynamic range of the Mel spectrogram, the

logarithmic transformation and normalization are applied,

mitigating the influence of high-amplitude frequency components

and highlighting finer details during low-energy regions, as shown

in Equation 15:

log S(n,m) = 10 · log10 (
S(n,m)
ref

),  ref = maxn,mS(n,m) (15)

Finally, to align the visual representation of the Mel

spectrogram with the logarithmic nature of human auditory

perception, a logarithmic transformation is applied to its

frequency axis. This scaling enhances the interpretability of

spectral content, particularly in lower frequency regions where

human sensitivity is greater. By mapping the linear frequency axis

to a logarithmic scale, the resulting spectrogram more accurately

reflects perceptual frequency resolution. Furthermore, this

approach not only clarifies the low-frequency regions but also

diminishes the visual dominance of high-frequency details,

leading to a more balanced signal representation. Assume flog is

the transformed logarithmic frequency, the transformation formula

is shown as Equation 16:

flog = log10 (f ) (16)

From Figure 3, the original audio waveform (Figure 3A) and the

PLMS spectrogram (Figure 3B) are presented for comparison.

While the original waveform offers a broad, global representation

of signal energy variations over time, it falls short in capturing the

finer, localized details and intricate frequency characteristics

inherent within the signal. In contrast, the PLMS provides a more
frontiersin.org
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refined and precise depiction by explicitly encoding time-frequency

patterns through a hierarchical decomposition, thereby revealing

essential spectral and temporal features that the waveform alone

cannot fully convey.

Figure 4 illustrates a comparative analysis of PLMS spectrogram

of Bombus terrestris acoustic signals under varying sampling rates

and patch size parameters. Figure 4A presents the PLMS with a

16,000 Hz sampling rate and patch size of 10, covering a wide

frequency range and preserving high-frequency components.

However, the insect acoustic signals analyzed exhibit spectral

energy predominantly concentrated in the low-frequency region,

making high-frequency contributions relatively insignificant.

Moreover, the high sampling rate imposes constraints on

temporal resolution, leading to less detailed local feature

representation in the high-frequency region. Figure 4B shows the

PLMS with a reduced sampling rate of 2,500 Hz while maintaining a

patch size of 10. This configuration decreases frequency resolution

and slightly reduces the clarity of low-frequency details but

significantly enhances temporal resolution, which enables more

precise characterization of transient spectral dynamics and is

critical for capturing short-duration acoustic events in insect

signals. Figure 4C retains the 2,500 Hz sampling rate while

increasing the patch size to 20. This adjustment markedly

improves frequency resolution, producing smoother and more

continuous spectral structures across the full frequency spectrum.

However, the improved frequency resolution comes at the expense

of temporal resolution, diminishing the ability to resolve rapid
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temporal variations. In summary, higher sampling rates facilitate

the preservation of high-frequency spectral information but require

a trade-off with temporal resolution. Larger patch sizes improve

frequency resolution at the cost of temporal precision. Thus, the

selection of sampling rate and patch size should be task-specific,

balancing time and frequency resolution to achieve optimal and

accurate feature representation.

Figure 5 presents a comparison of the acoustic signal

spectrograms from Bombus terrestris and Bradysia difformis,

before and after logarithmic scaling. As shown in Figures 5A, B,

the logarithmic transformation significantly amplifies and

highlights the energy in the low-frequency region, effectively

expanding the dynamic range in this frequency band and thereby

rendering its details more discernible. In contrast, the spectrograms

without logarithmic scaling in Figures 5C, D exhibit relatively flat

low-frequency energy with a limited dynamic range, which results

in the masking of low-frequency details and hinders the effective

capture of subtle frequency variations. The PLMS feature, by

applying logarithmic scaling, effectively compresses the influence

of high-amplitude frequency components while enhancing the

resolution of low-energy regions. This leads to improved

robustness and representational capacity of the features,

facilitating subsequent acoustic feature extraction and

classification. Therefore, the logarithmic transformation of PLMS

constitutes a crucial preprocessing step for enhancing the analysis of

insect acoustic signals, markedly improving the expressiveness and

discriminability of low-frequency components.
FIGURE 3

Comparison of original acoustic waveform and PLMS spectrogram. (A) Original audio waveform. (B) PLMS spectrogram.
FIGURE 4

PLMS spectrograms of Bombus terrestris across different hyperparameters. (A) 16000Hz & patch size 10 (B) 2500Hz & patch size 10 (C) 2500Hz &
patch size 20.
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To summarize, the PLMS representation achieves an optimal

balance between computational efficiency and feature expressiveness

by integrating downsampling with logarithmic scaling. While

downsampling effectively reduces computational burden,

logarithmic scaling enhances the fidelity of low-frequency

components that are essential for capturing nuanced bioacoustic

features. Additionally, patch-level processing partitions the

spectrogram into localized sub-regions, thereby amplifying transient

and harmonic characteristics intrinsic to insect acoustic signals. By

maintaining the inherent time-frequency continuity within these

localized spectro-temporal segments, PLMS markedly improves the

model’s capability to characterize the dynamic and non-stationary

properties of bioacoustic signals. Collectively, these methodological

innovations produce a robust and discriminative feature

representation that significantly elevates classification performance

across a diverse spectrum of complex bioacoustic applications.
Fron
1: Begin

2: Input: audioFolderPath←/home/data/audio;

3: Output: imagesFolderPath←/home/data/images;

4: {Step1. Initialization}:;

5: SourceSamplingRate fs; TargetSamplingRate ft;

SegmentFrameNumber Num;
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6: Lowpass filter coefficients h(k); Frame length: wlen=

fs*0:025; Frame Shift: hop=wlen/5;

7: Window Function w(n); Mel filter response Hm(k).

8: {Step2.Read audio data}:;

9: for each fileName∈ audioFolderPath do ⊳ loop over all

files in the audio folder

1 0 : a u d i o F i l e P a t h ← j o i n P a t h

(audioFolderPath, fileName)

11: x(n)=loadAudio(audioFilePath)

12: {Step3. Lowpass filtering}:;

13: Perform the lowpass filter on the input signal x(n):

y(n) =oN−1
N−1h(k)x(n − k);

14: {Step4. DownSampling}:;

15: DownSample the signal y(n) to ft: y 0 (n) = Resample

y(n)f g;
16: {Step5. PLMS feature calculation};

17: Step5.1. Patch-level division is performed on  y(n)
0
:

18: Step5.1.1 Calculate Patch-level division length N  

and shift: N = Num*wlen, shift = Num*hop;

19: Step5.1.2 Patch-level division: yframe
0 (n)←Enframe

y(n)
0n o
;

20: Step5.2. Perform STFT: X(n,k).

21: Step5.3. Calculate Mel spectrum:
FIGURE 5

Comparison of spectrograms before and after logarithmic scaling for Bombus terrestris and Bradysia difformis. (A) Bombus terrestris with logarithmic
scaling (B) Bradysia difformis with logarithmic scaling. (C) Bombus terrestris without logarithmic scaling (D) Bradysia difformis without logarithmic
scaling.
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Fron
22: Step5.3.1 Calculate the power spectrum of each frame:

P(n,k);

23: Step5.3.2 Calculate the melSpectrum of each frame:

S(n,m), where m denotes the Mel filter index.

24: Step5.4. Logarithmic transformation and

normalization: logS(n,m);

25: Step5.5. Logarithmic scaling of the frequency axis:

Ylog ←Y, then generate the figure.

26: {Step6. Save PLMS feature figures}:

2 7 : i m a g e F i l e P a t h ← j o i n P a t h

(imageFolderPath, fileName)

28: Save(mageFilePath, figure).

29: End for

30: End
ALgorithm 1. PLMS extraction.

4.2.2 Baseline features
In this study, we select five features as baseline features and

juxtaposed them with the PLMS features. These five features

encompass the STFT, Wavelet Transform, Wigner-Ville

Distribution, Generalized S-Transform and LEAF. The extraction

procedures for these features are depicted in Figure 6.

The STFT partitions the acoustic signal into consecutive short-

time windows and applies the Fourier Transform within each

window, generating the time-frequency representation. One of the

key advantages of the STFT is its capability to offer localized time-

frequency representations. However, the Heisenberg uncertainty

principle introduces an inherent trade-off between time and

frequency resolution, limiting the precision with which both can

be simultaneously captured. The Wavelet Transform, in contrast,
tiers in Plant Science 12
decomposes the signal using wavelet basis functions across multiple

scales, enabling excellent localization in both the time and

frequency domains. The ability of the Wavelet Transform to

capture transient and localized variations within the signal makes

it particularly effective, especially for tasks where traditional Fourier

analysis fails due to its inability to resolve short-lived or time-

varying features. The Wigner-Ville Distribution, a joint time-

frequency analysis technique, offers high-resolution time-

frequency maps, addressing the typical limitations of classical

linear time-frequency methods in reconciling time and frequency

resolution. However, the presence of cross-term interference can

severely degrade the clarity of the time-frequency map, impairing

the accuracy of the analysis. In contrast, the Generalized S-

Transform provides adaptive localization by selecting an

appropriate kernel function, offering greater flexibility in

adjusting time and frequency resolution. Such capabilities make

the method particularly well-suited for analyzing non-stationary

signals with rapid and substantial variations in instantaneous

frequency, which pose challenges for traditional methods that

may fail to capture these dynamic characteristics. LEAF employs

a learnable convolutional frontend to optimize time-frequency

representations through end-to-end training. By replacing fixed

filterbanks and compressors with trainable Gabor filters and

adaptive per-channel energy normalization, it enables task-

specific feature extraction and robust noise suppression.

4.2.3 Cross-modal transfer learning with
pretrained YOLO

The YOLO series of models, known for their single-stage detection

architecture, have been widely adopted in computer vision due to their

high-speed and accurate object detection capabilities. As a more recent
FIGURE 6

Flowchart of the feature extraction procedures for different acoustic representations.
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iteration in this series, YOLOv11 retains the core real-time detection

advantages while introducing enhanced feature extraction structures,

stronger attention mechanisms, and a more lightweight design. Given

the computational constraints and deployment requirements of pest

acoustic classification tasks, this study adopts the YOLOv11n variant.

This version maintains high accuracy while significantly reducing model

parameters and computational overhead, making it well-suited for efficient

inference on edge devices. Therefore, leveraging the preprocessed PLMS

feature spectrograms, we employ the pre-trained YOLOv11n-cls model

within a transfer learning framework and perform partial fine-tuning,

updating the classification head and higher-level feature layers. This

targeted adaptation preserves the generic low-level features learned

during pre-training while fine-tuning the higher-level representations for

the specific insect acoustics classification task, yielding an end-to-end, high-

efficiency classification framework.

As depicted in Figure 7, we first optimize the input layer. The

PLMS time-frequency representation of insect sounds, with

dimensions 256×256×3, is preprocessed to comply with the input

requirements of YOLOv11n, facilitating direct processing of multi-

scale time-frequency features. Specifically, we apply resizing and

normalization techniques, along with various data augmentation

methods, including random cropping, random rotation, and color

jittering. These strategies augment the diversity and robustness of

the training dataset, thereby strengthening the model ’s

generalization ability and significantly enhancing its accuracy in

capturing the intrinsic variability of insect sound patterns.
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Next, the augmented data is fed into the Backbone layer of the

pre-trained model. We refine the Backbone architecture by

introducing the C3 module with kernel size 2 (C3k2) structure,

replacing several conventional convolutional layers. The C3k2

module represents a deep optimization of the traditional Cross

Stage Partial Network (CSP) Bottleneck structure, aiming to

improve feature extraction efficiency through parallel convolution

designs and flexible parameter configurations. This module divides

the input feature map into two branches: one is passed directly

through to preserve shallow details, while the other undergoes

multi-scale feature extraction via the C3k module, which employs

variable convolution kernels, such as 3×3 or 5×5. The extracted

features are then concatenated and fused. This design not only

captures subtle high-frequency vibrations but also suppresses low-

frequency environmental noise, ensuring a robust representation of

acoustic features. Furthermore, this approach reduces redundant

computations, accelerates inference speed, and employs grouped

convolutions and channel compression for lightweight

optimization. These enhancements make the model particularly

well-suited for deployment on IoT edge devices in agricultural

fields, offering high precision with minimal resource

consumption. Additionally, we integrate the Cross Stage Partial

with Pyramid Squeeze Attention (C2PSA) module into the

Backbone. Based on the CSP structure, this module segments

feature processing and incorporates the Pyramid Slice Attention

mechanism to dynamically adjust spatial attention. Through multi-
FIGURE 7

Architecture of the cross-modal transfer learning model with pretrained YOLO.
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scale convolution kernels and channel weighting, the module

significantly enhances the expression of the PLMS time-frequency

dynamics, thereby improving the model’s sensitivity to the

frequency patterns of pest activities.

Finally, during the design of the classification module, we adopt

a hybrid approach that combines global feature extraction with

classification output, while freezing the detection head parameters

to facilitate the expansion of classification-derived tasks. This

module comprises convolutional layers, pooling layers, Dropout

layers, linear layers, and Softmax layers: the convolutional layers

extract high-dimensional features, the pooling layers perform

downsampling to reduce dimensionality, the Dropout layers

prevent overfitting, the linear layers map the features to the class

space, and the Softmax layer outputs the class probabilities. This

design strikes an optimal balance between computational efficiency

and classification accuracy, making it well-suited for real-time

classification tasks in complex environments. Consequently, the

model proposed in this paper can effectively extract deep semantic

information from PLMS, offering significant advantages over

traditional methods in terms of parameter count, computational

cost, and deployment efficiency.

The detailed parameter configuration of the proposed model is

presented in Table 4. This model comprises 11 sequential stages,

integrating five convolutional layers (Conv), three C3K2 modules,

and one C2PSA module to enhance feature extraction efficiency

while maintaining an effective trade-off between accuracy and

computational complexity. The backbone begins with two Conv

layers utilizing 3×3 kernels with a stride of 2 to extract low-level

features while reducing spatial dimensions. To enhance feature

extraction, the C3K2 module is introduced in Stage 3, incorporating

multi-scale convolutional kernels, though without residual

connections, and applying a channel reduction ratio of 0.25 to

optimize efficiency. Stage 4 follows with another Conv layer, further

refining feature maps, while Stage 5 reintroduces the C3K2 module.

As the model progresses, Stage 6 applies a Conv layer, followed by

Stage 7, where a C3K2 module integrates residual connections to
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improve gradient flow and feature learning. Stage 8 continues with

Conv processing, while Stage 9 employs another residual-connected

C3K2 module to maintain deeper feature representations. The

C2PSA module in Stage 10 enhances spatial attention through

pyramid slice attention mechanisms, refining classification

performance. Finally, Stage 11 serves as the classification layer,

reducing feature maps to 12 output categories corresponding to

different pest species. This architecture is designed to efficiently

extract multi-scale features while maintaining robust classification

performance for pest detection.
5 Additional requirements

5.1 Implementation details

In this study, all models were implemented in the PyTorch DL

framework and executed on the workstation with a 12th Gen Intel®

Core™ i7-12700F Processor (2.10 GHz), 32.0 GB RAM, and one

NVIDIA GeForce RTX 4070 GPU.

During the preprocessing stage, the original sampling rate of the

acoustic signal is 16KHz. The cutoff frequency is set to half the

sampling rate. Window function selects hamming window. The

order of the filter is set to 100. Moreover, the training and testing

datasets are split in a ratio of 8:2. Additionally, multiple rounds of 5-

fold cross-validation are performed to further assess the

effectiveness and robustness of the proposed algorithm across

different data partitions. The image size of the input model

network is 256*256. The models are trained for 150 epochs on

each mini-batch with a batch size of 32. The loss function used in all

experiments is cross-entropy. All compared models apply early

stopping with a patience of five epochs, whereas our method is

trained without early stopping. The hyperparameter settings are as

follows: ResNet18 and DenseNet adopt the Adam optimizer,

whereas EfficientNet-B0, VGG19, MobileNet, and our proposed

model employ SGD. The learning rates are set to 0.001 for
TABLE 4 The detailed parameter configuration of our model.

Stage Operator Filter Kernel Stride Residual connection Channel reduction ratio

1 Conv 16 3×3 2 / /

2 Conv 32 3×3 2 / /

3 C3K2 64 / / × 0.25

4 Conv 64 3×3 2 / /

5 C3K2 128 / / × 0.25

6 Conv 128 3×3 2 / /

7 C3K2 128 / / ✓ /

8 Conv 256 3×3 2 / /

9 C3K2 256 / / ✓ /

10 C2PSA 256 / / / /

11 Classify 12 / / / /
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ResNet18, DenseNet, and MobileNet; 0.01 for EfficientNet-B0 and

VGG19; and 0.1 for our model. Dropout is applied at rates of 0.2 for

ResNet18, EfficientNet-B0, and MobileNet, and 0.5 for VGG19.

DenseNet and our proposed method do not utilize dropout.
5.2 Evaluation

In this study, several evaluation metrics are employed to assess

model performance. The confusion matrix analyzes the true versus

predicted classifications, providing insight into the types of errors

made by the model through the enumeration of true positives, true

negatives, false positives and false negatives. Top-1 accuracy

(Accuracy@1) measures the proportion of instances where the top

predicted class matches the true class, reflecting primary

classification accuracy. Macro-Recall quantifies the ratio of true

positives to the total number of actual positive instances for each

class, then takes the arithmetic mean across all classes. This

approach ensures equal evaluation weight for all categories, which

is critical when each class holds independent importance. The

Macro-F1 score, the harmonic mean of Macro-Precision and

Macro-Recall, offers a balanced metric that accounts for the

trade-off between these two measures, adopting macro-averaging

to ensure uniform assessment of classification consistency. Lastly,

the receiver operating characteristic (ROC) curve provides a

graphical representation of discriminative power across various

classification thresholds, plotting the true positive rate against the

false positive rate. The Macro-area under the ROC curve (AUC)

serves as an aggregate measure of performance calculated by macro-

averaging AUC values across classes, with higher AUC values

indicating superior classification ability in maintaining inter-class

decision boundary coherence. We deliberately employ macro-

averaging to guarantee metric interpretability from a class-

agnostic perspective, as this method equally weights the decision

patterns of all categories. Furthermore, the number of parameters

(in millions) and the computational complexity in GigaFloating

Point Operations Per Second (GFLOPS) are used in this study. The

number of parameters in the model represents the model’s size and

capacity, and GFLOPS is a measure of the computational

complexity of the model, with higher values indicating more

computation is required.
6 Results & analysis

In this section, we present the results of classification validation

using six models, namely the model used in this paper, Resnet18

(He et al., 2016) (He Ket al., 2016), Efficientnet-b0 (Tan and Le,

2019) (Tan M et al., 2019), VGG19 (Simonyan and Zisserman,

2014) (Simonyan and Zisserman, 2014), MobileNetV2 (Sandler

et al., 2018) (Sandler et al., 2018), DenseNet (Huang et al., 2017)

(Huang G et al., 2017), for different features extracted from the

InsectSound1000 dataset. Additionally, we conducted ablation

studies and comparisons with other algorithms to further validate

the effectiveness and robustness of our proposed method.
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6.1 Comparative analysis of feature
dimensionality

To ensure rigorous benchmarking, the experimental

parameters are standardized across all models: the parameter

SegmentFrameNumber Num is fixed at 10 frames per audio

segment and the samplingrate is set to 16KHz. As shown in

Table 4, this study demonstrates the superior performance of the

proposed PLMS feature and the corresponding model (denoted as

Ours in Table 5) through extensive comparative experiments.

Under the PLMS feature representation, our model achieves the

highest performance, attaining an Accuracy@1 of 92.4%.

Additionally, it achieves a Macro-AUC of 99.70%, significantly

surpassing the performance of other models. This underscores the

strong discriminative capability of the PLMS feature, which is

further leveraged by our model through tailored network design.

The superiority of the PLMS feature becomes even more apparent

when compared to other feature representations. For instance,

within our model, the Accuracy@1 achieved with the PLMS

feature is 92.42%, which is 1.61%, 4.34%, 8.5%, 10.13% and

48.97% higher than those achieved with the S-Transform, STFT,

wavelet-based feature, Wigner-Ville and LEAF, respectively, with

accuracies of 90.96%, 88.58%, 83.92%, 84.92% and 62.04%. This

performance improvement can be attributed to the ability of the

PLMS feature to integrate the temporal dynamics of pest acoustic

signals with multi-scale frequency domain representations, enabling

a more comprehensive characterization of audio semantic

information. In contrast, baseline features such as S-Transform,

STFT, wavelet, and Wigner-Ville predominantly focus on either

time-domain or frequency-domain information in isolation. This

singular focus limits their capacity to fully capture the complex and

multi-faceted nature of audio signals, thereby constraining their

generalization capabilities. For instance, S-Transform and STFT

primarily emphasize frequency-domain information, while wavelet

and Wigner-Ville focus more on time-frequency representations

but may not capture the multi-scale characteristics as effectively as

the PLMS feature. Although LEAF employs a learnable frontend to

adaptively optimize time-frequency representations and enhance

robustness, it may still be less effective than PLMS at fully capturing

temporal dynamics across multiple scales.

From the perspective of model comparison, our model

demonstrates a comprehensive advantage under the PLMS

feature, achieving an Accuracy@1 of 92.42%, a Macro-F1 score of

92.41%, and a Macro-AUC of 99.70%, significantly outperforming

other models. In contrast, ResNet18, although yielding the second-

best performance under the PLMS feature with an Accuracy@1 of

87.59%, still trails our model by 4.83%. While EfficientNet-b0

benefits from a compound scaling strategy that enhances

computational efficiency, its Accuracy@1 is 3.97% lower than that

of our model, highlighting the superior capability of our model to

capture long-range temporal dependencies and integrate cross-

scale features.

It is noteworthy that traditional deep networks exhibit

significant sensitivity to feature representations. For example,

VGG19 achieves an Accuracy@1 of only 8.33% and a Macro-F1
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TABLE 5 Comparison of classification performance across different audio features and model combinations.

Features Models Accuracy@1 Macro-recall Macro-F1 Macro-AUC

PLMS

Ours 92.42 92.42 92.41 99.70

Resnet18 87.59 87.59 87.53 97.93

Efficientnet-b0 88.45 88.45 88.44 99.28

VGG19 8.33 8.33 1.28 50.00

Mobilenet 84.26 84.26 84.48 98.55

DenseNet 77.34 77.34 77.42 97.31

S-Transform

Ours 90.96 90.96 90.99 99.55

Resnet18 73.61 73.61 73.71 94.66

Efficientnet-b0 83.87 83.87 83.82 98.73

VGG19 41.58 41.58 41.70 79.48

Mobilenet 60.97 61.00 61.57 90.88

DenseNet 9.22 9.22 2.45 72.71

STFT

Ours 88.58 88.58 88.63 99.33

Resnet18 73.36 73.36 73.13 94.78

Efficientnet-b0 81.92 81.92 81.91 98.48

VGG19 44.94 44.94 43.97 82.73

Mobilenet 62.55 62.55 61.10 92.57

DenseNet 9.19 9.19 2.32 65.90

Wavelet

Ours 83.92 83.92 83.99 98.69

Resnet18 60.65 60.65 60.18 90.09

Efficientnet-b0 78.37 78.37 78.34 97.94

VGG19 39.38 39.38 39.39 78.06

Mobilenet 55.97 55.97 55.65 89.05

DenseNet 8.55 8.55 1.74 67.51

Wigner_ Ville

Ours 84.92 84.92 84.93 98.94

Resnet18 68.47 68.47 68.47 93.04

Efficientnet-b0 78.89 78.89 78.79 97.94

VGG19 43.50 43.50 42.60 81.59

Mobilenet 57.40 57.41 57.02 90.15

DenseNet 8.33 8.33 1.28 52.30

LEAF

Ours 62.04 62.04 61.62 93.14

Resnet18 62.25 62.25 62.28 90.25

Efficientnet-b0 60.12 60.12 59.89 92.58

VGG19 40.75 40.75 40.31 79.90

Mobilenet 54.32 53.46 53.27 89.13

DenseNet 42.88 42.88 43.34 82.76
F
rontiers in Plant Science
 16
Bold values indicate the highest performance achieved by the proposed algorithm among all compared methods for each metric, including Accuracy@1, Macro-recall, Macro-F1, and Macro-
AUC.
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of 1.28% under the PLMS feature. This poor performance is largely

attributed to its fixed receptive field and redundant parameter

design, which are ill-suited for capturing dynamic audio features.

DenseNet achieves an Accuracy@1 of only 9.22% under the

S-Transform feature, reflecting the limitations of its dense

connectivity mechanism in capturing frequency-domain

discontinuities. In contrast, MobileNet performs reasonably well

with the PLMS feature, achieving an Accuracy@1 of 84.26%.

However, its lightweight design compromises its ability to extract

deep semantic features, as evidenced by its Accuracy@1 of only

60.97% under the S-Transform feature, considerably lower than the

90.96% achieved by our model. This suggests that, although

depthwise separable convolutions are employed in MobileNet to

reduce computational overhead, the model’s capacity to capture

complex acoustic patterns remains limited. Collectively, these

findings underscore the importance of the coordinated

optimization of the PLMS feature representation and the

architectural design of our model as the key determinant of

performance improvements.
6.2 Comparative analysis of various models

As presented in Table 6, the number of parameters (in millions)

and the computational complexity in GFLOPS of various models

under the PLMS feature are systematically compared. From the

perspective of parameter quantity, VGG19 has the highest number

of parameters, reaching 139.62 million. This substantial parameter

volume is a direct consequence of its deep network architecture,

making it well-suited for high-precision applications that are less

constrained by computational resources. In contrast, ResNet18

contains 11.23 million parameters, while DenseNet has 6.85

million. ResNet18 balances depth and efficiency through residual

connections, whereas DenseNet enhances feature reuse via densely

connected layers, though at the expense of a larger number of

parameters compared to lightweight models. EfficientNet-b0

further reduces parameters to 4.02 million by optimizing

parameter utilization through a compound scaling strategy.

MobileNet compresses parameters even further to 2.24 million by

employing depthwise separable convolutions, showcasing the

advantages of lightweight network design. Notably, our model

achieves the most aggressive parameter reduction, with only 1.54
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million parameters, even surpassing MobileNet. This result

underscores its structural innovations in pre-trained model design

and fine-tuning strategies.

Regarding computational complexity, VGG19 incurs the

highest computational cost, with a GFLOPS of 1.04, primarily due

to its extensive fully connected layers and deep convolutional

operations. ResNet18 and DenseNet maintain moderate

computational complexity, with GFLOPS values of 0.07 and 0.11,

respectively. While their computational demands are consistent

with their parameter volumes, DenseNet incurs additional

computational overhead due to its dense connectivity pattern.

EfficientNet-b0 significantly reduces computational demands to

0.02 through a well-balanced scaling mechanism. MobileNet and

our model achieve the lowest computational complexity, with a

GFLOPS of 0.01, highlighting their superior efficiency. This

characteristic makes them particularly suitable for real-time

processing and low-power environments. In summary, our model

emerges as the most lightweight architecture in the comparison,

with both the lowest parameter count of 1.54 million and the lowest

GFLOPS of 0.01. These results emphasize its advantages in model

compression and computational optimization, rendering it highly

applicable to scenarios with stringent resource constraints.
6.3 Comparative analysis of sampling rate
dimensionality

To ensure rigorous benchmarking, the experimental parameters

SegmentFrameNumber Num is fixed at 10 frames per audio segment.

The original sampling rate is 16KHz. As shown in Table 7, we

compare classification performance across different sampling rates

and model combinations based on the PLMS feature. On one hand, a

comprehensive analysis of the dynamic correlation between model

performance and sampling rate reveals significant variations among

different architectures. Under the PLMS feature, our model exhibits

optimal performance at 2,500 Hz, achieving an Accuracy@1 of

96.49%, a Macro-F1 score of 96.49%, and a Macro-AUC of 99.93%.

In contrast, VGG19 demonstrates extreme instability at higher

sampling rates, particularly at 16 kHz, where its Accuracy@1

plunges to 8.33%, and Macro-F1 drops to 1.28%. This can be

attributed to the densely connected fully connected layers in

VGG19, which amplify sensitivity to high-resolution noise artifacts.
TABLE 6 Comparative analysis of model parameters and computational efficiency under the PLMS feature.

Feature Models Param (million) GFLOPS (GigaFLOPs)

PLMS

Ours 1.54M 0.01

Resnet18 (He et al., 2016) 11.23M 0.07

Efficientnet-b0 (Tan and Le, 2019) 4.02M 0.02

VGG19 (Simonyan and Zisserman,
2014)

139.62M 1.04

Mobilenet (Sandler et al., 2018) 2.24M 0.01

DenseNet (Huang et al., 2017) 6.85M 0.11
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TABLE 7 Comparison of classification performance across different sample rates and model combinations based on the PLMS feature.

Sampling rate
(Hz)

Models Accuracy@1 Macro-recall Macro-F1 Macro-AUC

Original

Ours 92.42 92.42 92.41 99.70

Resnet18 87.59 87.59 87.53 97.93

Efficientnet-b0 88.45 88.45 88.44 99.28

VGG19 8.33 8.33 1.28 50.00

Mobilenet 84.26 84.26 84.48 98.55

DenseNet 77.34 77.34 77.42 97.31

4000

Ours 95.29 95.29 95.29 99.86

Resnet18 92.26 92.26 92.26 99.26

Efficientnet-b0 93.32 93.32 93.33 99.57

VGG19 89.55 89.55 89.60 98.99

Mobilenet 90.74 90.74 90.74 99.30

DenseNet 89.88 89.88 89.92 99.24

3500

Ours 96.03 96.03 96.02 99.87

Resnet18 91.60 91.60 91.68 99.22

Efficientnet-b0 92.20 92.20 92.17 99.45

VGG19 90.48 90.48 90.46 99.25

Mobilenet 90.01 90.08 90.03 99.21

DenseNet 91.20 91.20 91.17 99.40

3000

Ours 95.63 95.63 95.62 99.85

Resnet18 93.25 93.25 93.27 99.66

Efficientnet-b0 93.32 93.32 93.28 99.56

VGG19 91.70 91.07 91.02 99.31

Mobilenet 88.82 88.82 88.81 99.22

DenseNet 89.95 89.95 89.89 99.44

2500

Ours 96.49 96.49 96.49 99.93

Resnet18 92.86 92.86 92.84 99.42

Efficientnet-b0 92.00 92.00 92.01 99.59

VGG19 90.61 90.61 90.61 99.34

Mobilenet 86.51 86.57 86.81 98.61

DenseNet 92.13 92.13 92.11 99.44

2000

Ours 95.21 95.16 95.15 99.82

Resnet18 93.12 93.12 93.13 99.43

Efficientnet-b0 92.33 92.33 92.31 99.54

VGG19 91.01 91.01 91.00 99.29

Mobilenet 91.67 91.67 91.73 99.51

DenseNet 89.42 89.42 89.55 99.21

1500

Ours 96.16 96.16 96.17 99.92

Resnet18 93.78 93.78 93.76 99.56

Efficientnet-b0 92.92 92.92 92.90 99.60

(Continued)
F
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Consequently, the model tends to overfit specific frequency bands,

leading to a pronounced degradation in generalization performance.

While ResNet18 and EfficientNet-b0 exhibit relatively stable

performance across different sampling rates, their performance still

shows a slight degradation as the sampling rate decreases. ResNet18

achieves peak performance at 1,500 Hz, attaining an Accuracy@1 of

93.78%, while EfficientNet-b0 performs optimally at 3,000 Hz and

4,000 Hz, reaching an Accuracy@1 of 93.32%. These differences arise

from the architectural characteristics of ResNet18 and EfficientNet-b0.

ResNet18 utilizes residual connections to effectively mitigate gradient

vanishing, enhancing its adaptability to multi-sampling-rate features.

In contrast, EfficientNet-b0 employs neural architecture search to

optimize the balance between depth, width, and resolution, thereby

improving computational efficiency across various sampling rates.

In contrast, lightweight models such as MobileNet and DenseNet

perform reasonably well at mid-to-low sampling rates but degrade

significantly at the original high sampling rate. MobileNet achieves its

best Accuracy@1 (91.67%) at 2,000 Hz, while DenseNet peaks at 2,500

Hz with an Accuracy@1 of 92.13%. However, at 16 kHz, the

Accuracy@1 of MobileNet drops to 84.26%, while DenseNet

declines sharply to 77.34%. This performance gap stems from their

distinct architectural constraints. MobileNet employs depthwise

separable convolutions, which effectively reduce the number of

parameters but also weaken cross-channel dependencies, resulting in

suboptimal performance on high-resolution data. In contrast,

DenseNet faces increased computational complexity at high

sampling rates, where excessive redundant features introduce

gradient noise accumulation during backpropagation, ultimately

impairing model convergence stability. Notably, despite being

designed as a lightweight model, our model demonstrates

remarkable cross-sampling-rate stability. By integrating structural

innovations, it effectively compensates for the information loss

induced by downsampling, thereby enhancing classification

robustness under low-sampling-rate conditions. This suggests that

lightweight architectures, when appropriately designed, can mitigate

performance degradation across varying sampling rates.
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One the other hand, examining metric consistency and model

reliability further highlights the impact of sampling rates. All models

exhibit Macro-AUC values consistently exceeding 99%, indicating

strong class discrimination capability. However, discrepancies

between Macro-F1 and Accuracy@1 reveal subtle classification

biases. For instance, VGG19 achieves a Macro-AUC of 99.29% at

2,000 Hz, yet its Macro-F1 remains lower at 91.00%, suggesting

potential class imbalance issues or suboptimal recognition of

minority classes. In contrast, our model maintains exceptional

consistency across all sampling rates, with Accuracy@1, Macro-F1,

and Macro-AUC remaining highly aligned. At 2,500 Hz, it achieves

an Accuracy@1 of 96.49%, a Macro-F1 of 96.49%, and a Macro-AUC

of 99.93%, confirming its balanced classification capability and low-

variance characteristics. These findings underscore that sampling rate

has a profound impact on model performance, necessitating a

delicate balance between lightweight design and data adaptability.

The results suggest that while certain architectures, such as VGG19,

struggle with high-resolution noise sensitivity, others, like ResNet18

and EfficientNet-b0, exhibit better adaptability to varying sampling

rates. More importantly, our model, through architectural

innovation, achieves robust performance at lower sampling rates,

making it a highly efficient and practical solution for real-world

deployment, particularly in resource-constrained environments

where computational efficiency and robustness are crucial.
6.4 Comparative analysis of patch size

To rigorously analyze the impact of varying patch sizes on the

classification performance of different models based on the PLMS,

the downsampling rate is set to 2500Hz, as indicated by the results

in Table 7. Subsequently, as delineated in Table 8, we conducted a

comparative analysis across four patch sizes. Experimental results

demonstrate that patch size has a significant impact on model

performance. The proposed model achieves optimal performance

when the patch size is configured to a temporal window
TABLE 7 Continued

Sampling rate
(Hz)

Models Accuracy@1 Macro-recall Macro-F1 Macro-AUC

VGG19 89.81 89.81 89.79 99.19

Mobilenet 88.96 88.96 88.92 99.20

DenseNet 91.80 91.80 91.76 99.29

1000

Ours 95.44 95.44 95.45 99.85

Resnet18 93.58 93.58 93.57 99.40

Efficientnet-b0 92.53 92.53 92.49 99.56

VGG19 89.29 89.29 89.23 99.07

Mobilenet 91.53 91.53 91.51 99.63

DenseNet 90.81 90.81 90.84 99.30
Bold values indicate the highest performance achieved by the proposed algorithm among all compared methods for each metric, including Accuracy@1, Macro-recall, Macro-F1, and Macro-
AUC.
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encompassing 10 successive frames, attaining an Accuracy@1 of

96.49%, a Macro-F1 and Macro-Recall of 96.49%, and a Macro-

AUC as high as 99.93%, significantly outperforming the other four

models. This finding suggests that the patch size of 10 frames

effectively balances local detail and global contextual information.

In contrast, a patch size of 5 frames may lack sufficient temporal

correlation, leading to incomplete feature representations, while

patch sizes of 15 or 20 frames could introduce redundant noise,

diminishing the model’s sensitivity to informative signals.

From the perspective of model-specific characteristics, ResNet18

attains an Accuracy@1 of 92.86% when the patch size is 10 but

experiences a decline to 91.34% at a patch size of 20. This decrease

arises from interference due to redundant information, underscoring

the residual network’s proclivity for localized temporal contexts.

EfficientNet-b0 maintains relatively stable Accuracy@1 across

different patch sizes (ranging from 91.01% to 92.72%). However,

when the patch size is 15, it exhibits an anomalous drop in Macro-

AUC to 94.48%, which results in spectral confusion among certain

categories within the PLMS features. VGG19 exhibits minimal

sensitivity to patch size variations, maintaining an Accuracy@1

between 90.34% and 90.61%, as its fixed receptive field and extensive

parameterization limit its capacity for capturing dynamic temporal

features. MobileNet performs the worst when a patch size is 10 (an

Accuracy@1 reaching only 86.51%) but recovers to 89.04% at a patch

size of 15. This suggests that its lightweight architecture struggles with

modeling medium-length sequences, while longer sequences partially

mitigate this limitation through increased information density.

DenseNet achieves a peak Accuracy@1 of 92.26% at a patch size of

15 but drops to 89.35% when the patch size reaches 20, likely due to

gradient redundancy or noise propagation within its densely connected

structure under long-sequence conditions.

In terms of classification metric consistency, the Macro-Recall

and Macro-F1 values of all models are highly similar, indicating

good inter-class balance in classification results. However,

MobileNet exhibits a slight discrepancy at a patch size of 20, with

a Macro-Recall of 89.15%, marginally lower than its Macro-F1 score

of 89.36%. This suggests reduced sensitivity to certain low-

frequency or low-amplitude categories. Notably, EfficientNet-b0

exhibits an anomalous performance at a patch size of 15, with its

Macro-AUC decreasing sharply to 94.48%, significantly deviating

from the consistently higher Macro-AUC values observed at other

patch sizes. This decline suggests that, at this specific patch size,

spectral feature confusion occurs among certain categories within

longer sequences, thereby impairing the model’s discriminative

capabilities. Such observations highlight the necessity of jointly

modeling local and global features in temporal signal processing to

effectively capture both detailed and contextual information.
6.5 Comparative analysis of confusion
matrix and training convergence

Figure 8 shows the confusion matrices of 12 insect species for

the six models based on the PLMS feature, with a patch size of 20
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and a downsampling rate of 2,500 Hz. The horizontal axis

represents the predicted labels, while the vertical axis represents

the true labels, with 0–11 corresponding to the insect species listed

in Table 3 above. It is worth mentioning that our model exhibits

remarkable superiority, as evidenced by its confusion matrix.

Except for the 4th and 8th classes, where the diagonal elements are

relatively low, all other classes have diagonal elements approaching

1.0, indicating exceptionally high classification accuracy. Moreover,

the off-diagonal elements are minimal, signifying an exceedingly

low misclassification rate. In contrast, models such as ResNet18,

EfficientNet-B0, VGG19, MobileNet, and DenseNet, while

achieving high accuracy in certain categories, exhibit significant

misclassifications in specific classes. For instance, ResNet18 shows

higher off-diagonal values for the 6th, 8th, 9th, and 11th classes;

EfficientNet-B0 for the 4th, 5th, 8th, and 11th classes; VGG19 for the

4th, 5th, 8th, 10th, and 11th classes; and DenseNet for the 5th, 8th, and

11th classes. Notably, MobileNet exhibits the diagonal values of

approximately 0.6 for the 4th and 11th classes.

Focusing on our experimental results, the confusion matrix

reveals significant misclassification issues between the 4th and 8th

classes. Samples of the 4th class are primarily misclassified as the 5th

and 11th classes, each accounting for 3%, while samples of the 8th

class are misclassified as the 4th and 5th classes, each accounting for

2%, and as the 11th class, accounting for 3%. Since the data are

collected under controlled conditions with minimal background

noise, and based on our careful inspection of the spectrograms, the

spectral features of the 4th, 5th, 8th, and 11th classes exhibit minimal

differences. Their frequency distributions and energy concentration

regions highly overlap, making traditional spectrogram-based

features insufficient to effectively distinguish these classes.

Additionally, although the training data quality is high, the

diversity of sound samples may be inadequate to capture subtle

acoustic variations present in real-world conditions, which limits

the model’s discriminative power.

To address these challenges, we propose several improvements.

First, incorporate richer and more discriminative acoustic features

such as transient signal characteristics or nonlinear dynamic

features. Second, exploring additional data augmentation

techniques, such as pitch shifting and the introduction of

simulated environmental effects, may further enhance the

diversity of insect acoustic samples and improve the model’s

generalization ability. Finally, consider multimodal fusion

approaches by integrating additional sensory data such as insect

vibration signals and behavioral patterns to better differentiate

similar classes and reduce misclassification rates between the 4th

and 8th classes.

Figure 9 shows the validation accuracy and loss progress of all the

used six models during the training; each line consists of 150 points,

one for each epoch. As illustrated in Figure 9, our model rapidly

reduces the loss value during the early training stages and achieves

high validation accuracy within a relatively small number of iterations,

maintaining stability thereafter. This demonstrates fast convergence

and strong generalization capability. In comparison, although VGG19

and EfficientNetB0 demonstrate excellent convergence properties,
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with the loss value of VGG19 approaching zero, their final accuracy

remains lower than that achieved by our model. ResNet18 also

converges relatively quickly in terms of both loss and accuracy

during training, yet its final accuracy still falls short. DenseNet and

MobileNet, however, exhibit a slower loss decline and a more gradual

accuracy increase during the initial stages of training, followed by

noticeable fluctuations in the later phases. Such fluctuations may arise

from their network architectures and parameter complexities, which

could impede stable training. In contrast, our model excels in training

efficiency, accuracy, and stability, clearly demonstrating its advantages.
6.6 Ablation and comparative experiments
under cross-validation

As presented in Sections 6.1 to 6.5, a fixed 8:2 dataset split was

employed to conduct a baseline performance comparison between

our method and representative CNN architectures. While this
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setting offers a consistent benchmark, it may be influenced by the

specific train–test partition. To further evaluate model robustness

and generalization across diverse data splits, we subsequently

performed a five-fold cross-validation experiment, as shown in

Table 9. In this setting, ablation studies were performed on the

proposed method, including its original version, a variant without

(w/o) spectral augmentation (SpecAug), and a variant employing

patchout, a regularization method that randomly discards a portion

of input patches to enhance generalization. These ablation

experiments were designed to isolate and quantify the

contribution of each component within our framework. In

parallel, we carried out comparative experiments with other

algorithms, specifically EfficientNet Lite (Sangar and Rajasekar,

2025) and MobileViT (Gu et al., 2024), in order to benchmark

our method against lightweight architectures proposed in recent

literature. Together, these evaluations provide a more

comprehensive and rigorous assessment of both accuracy and

stability under varying training conditions.
TABLE 8 Comparison of classification performance of different combinations of patch sizes and models based on the PLMS feature.

Patch size (segmentframenumber) Models Accuracy@1 Macro-recall Macro-F1 Macro-AUC

5

Ours 94.44 94.44 94.43 99.83

Resnet18 93.39 93.39 93.40 99.57

Efficientnet-b0 92.72 92.72 92.74 99.52

VGG19 90.34 90.34 90.35 99.24

Mobilenet 87.86 87.10 87.15 99.08

DenseNet 90.94 90.94 90.90 99.27

10

Ours 96.49 96.49 96.49 99.93

Resnet18 92.86 92.86 92.84 99.42

Efficientnet-b0 92.00 92.00 92.01 99.59

VGG19 90.61 90.61 90.61 99.34

Mobilenet 86.51 86.57 86.81 98.61

DenseNet 92.13 92.13 92.11 99.44

15

Ours 95.50 95.50 95.51 99.84

Resnet18 93.65 93.65 93.68 99.54

Efficientnet-b0 92.33 92.33 92.29 94.48

VGG19 90.41 90.41 90.41 99.36

Mobilenet 89.04 88.89 88.81 99.27

DenseNet 92.26 92.26 92.29 99.59

20

Ours 93.98 93.98 93.97 99.79

Resnet18 91.34 91.34 91.38 99.25

Efficientnet-b0 91.01 91.01 90.99 99.34

VGG19 90.61 90.61 90.60 99.20

Mobilenet 90.02 89.15 89.36 99.10

DenseNet 89.35 89.35 89.33 99.38
Bold values indicate the highest performance achieved by the proposed algorithm among all compared methods for each metric, including Accuracy@1, Macro-recall, Macro-F1, and Macro-
AUC.
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The results shown in Figure 9 indicate that, regarding the fixed

8:2 dataset partition, our model attains the highest performance

across all evaluation metrics. In contrast, the variants without

SpecAug or incorporating Patchout show a marginal performance

decline but still substantially outperform the baseline methods

reported in references (Sangar and Rajasekar, 2025) and (Gu

et al., 2024). Notably, the method in (Gu et al., 2024) exhibits

significantly inferior results, with all metrics falling well below those

of our model. From the perspective of five-fold cross-validation, the

robustness of our model is further confirmed, consistently leading

with an accuracy of 95.23% and a minimal standard deviation of

0.17, underscoring its strong generalization capability. The variant

without SpecAug and the one incorporating Patchout maintain

stable performance, although with slightly reduced scores.

Conversely, the methods from (Sangar and Rajasekar, 2025) and

(Gu et al., 2024) demonstrate comparatively poorer and more

variable outcomes, particularly (Gu et al., 2024), which shows a

markedly high standard deviation, indicating less stable

performance. In summary, the proposed approach not only

achieves superior accuracy on the fixed dataset partition, but also

demonstrates exceptional stability and generalization under the

more rigorous five-fold cross-validation, thereby validating the
Frontiers in Plant Science 22
effectiveness of the model architecture and data augmentation

strategies employed.
7 Conclusions

Early detection of pest infestations is critical for mitigating the

adverse effects on agricultural productivity and ensuring ecological

balance. Reviewed studies highlight the importance of balancing

accuracy, scalability, and robustness in pest detection. Building

upon these insights, this study presents a novel cross-modal

adaptation approach for early-stage pest surveillance, utilizing the

comprehensive bioacoustic InsectSound1000 database. By

employing adaptive audio preprocessing, the approach effectively

filters high-frequency noise and reduces computational complexity

through downsampling. The utilization of PLMS spectrograms

facilitates the refined transformation of acoustic signals into visual

representations, enhancing the precision of time-frequency pattern

extraction. The deployment of the YOLOv11 model for deep

transfer learning enables the extraction of high-level features,

thereby enhancing precision and the ability to generalize across

diverse datasets. Experimental results demonstrate that the
FIGURE 8

Confusion matrices of the six models based on the PLMS feature.
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proposed method achieves high detection accuracy while

maintaining manageable computational complexity. This

framework offers a promising alternative to conventional pest

monitoring techniques, paving the way for integrated, automated

pest management systems that combine acoustic and visual

modalities for enhanced early surveillance and pest control.

However, since the InsectSound1000 dataset is collected under

controlled conditions, it does not comprehensively represent

practical challenges such as hardware dependency, the

requirement for specialized equipment, and environmental noise
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encountered in real-world agricultural environments. To address

these limitations, we are actively conducting field surveys and on-

site experiments aimed at further validating and optimizing the

proposed method for effective deployment in operational settings.

Future research could focus on expanding the dataset to include a

broader range of insect species and environmental conditions,

which could further enhance the robustness of the model.

Additionally, integrating the proposed system into existing pest

management frameworks would enable automated, real-time

surveillance, further optimizing pest control strategies.
FIGURE 9

Validation accuracy and loss progress of the six models based on the PLMS feature.
TABLE 9 Ablation and comparative experiments under Cross-Validation.

Data partitioning Strategy Algorithms Accuracy@1 Macro-recall Macro-F1 Macro-AUC

Fixed 8:2

Ours 96.49 96.49 96.49 99.93

Ours w/o SpecAug 96.03 96.03 96.02 99.92

Ours with Patchout 96.23 96.23 96.23 99.90

(Sangar and Rajasekar, 2025):2025 94.25 94.25 94.24 99.79

(Gu et al., 2024):2024 41.17 17.79 15.25 69.64

Five-fold
cross-validation

Ours 95.23±0.17 95.23±0.17 95.23± 0.17 99.85±0.04

Ours w/o SpecAug 95.04±0.60 95.04±0.60 95.04± 0.60 99.84±0.04

Ours with Patchout 94.65±0.30 94.65±0.30 94.65± 0.30 99.85±0.02

(Sangar and Rajasekar, 2025):2025 91.46±0.75 91.41±0.75 91.43± 0.75 99.58±0.06

(Gu et al., 2024):2024 34.69±12.33 26.23± 10.89 22.4610.92 73.34±8.66
Bold values indicate the highest performance achieved by the proposed algorithm among all compared methods for each metric, including Accuracy@1, Macro-recall, Macro-F1, and Macro-
AUC.
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