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Introduction: The development of automated high-throughput plant 
phenotyping systems with non-destructive characteristics fundamentally relies 
on achieving accurate segmentation of botanical structures at both semantic and 
instance levels. However, most existing approaches rely heavily on empirically 
determined threshold parameters and rarely integrate semantic and instance 
segmentation within a unified framework. 

Methods: To address these limitations, this study introduces a methodology 
leveraging 2D image data of real plants, i.e., Caladium bicolor, captured using a 
custom-designed plant cultivation platform. A high-quality 3D point cloud 
dataset was generated through reconstruction. Building on this foundation, we 
propose a streamlined Dual-Task Segmentation Network (DSN) incorporating a 
multi-head hierarchical attention mechanism to achieve superior segmentation 
performance. Also, the dual-task framework employs Multi-Value Conditional 
Random Field (MV-CRF) to enable semantic segmentation of stem-leaf and 
individual leaf identification through the DSN architecture when processing 
manually-annotated 3D point cloud data. The network features a dual-branch 
architecture: one branch predicts the semantic class of each point, while the 
other embeds points into a high-dimensional vector space for instance 
clustering. Multi-task joint optimization is facilitated through the MV-CRF model. 

Results and discussion: Benchmark evaluations validate the novel framework’s 
segmentation efficacy, yielding 99.16% macro-averaged precision, 95.73% class-
wise recognition rate, and an average Intersection over Union of 93.64%, while 
comparative analyses confirm its superiority over nine benchmark architectures 
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in 3D point cloud analytics. For instance segmentation, the model achieved 
leading metrics of 87.94%, 72.36%, and 71.61%, respectively. Furthermore, 
ablation studies validated the effectiveness of the network’s design and

substantiated the rationale behind each architectural choice. 
KEYWORDS 

automated plant phenotyping, 3D point cloud segmentation, multi-head attention, 
instance segmentation, semantic segmentation, Multi-Value Conditional Random Field 
(MV-CRF) 
1 Introduction 

Plant phenotyping captured the interaction between genotype 
and environment, and encompassed traits essential for crop 
improvement and for understanding the relationships among 
genome, environment, and phenotype (Pan, 2015). Despite 
advances in genotyping, phenotyping tools were often manual, 
invasive, and time-consuming, which highlighted the need for 
automated, high-throughput solutions (Song et al., 2025). 
Computer vision, particularly Deep Learning (DL) methods, 
advanced phenotyping by integrating feature extraction and 
decision-making and enabled efficient trait measurement 
(Magistri et al., 2020; Kolhar and Jagtap, 2021; Li et al., 2023; 
Murphy et al., 2024). 

However, 2D image-based methods often failed in occlusion 
scenarios and overlooked organ-level segmentation, which was 
critical for precise phenotypic measurements. For various trait 
measurements, such as stem length and branch diameter (Turgut 
et al., 2022), accurately segmenting a plant into its constituent 
organs was essential. 3D point cloud segmentation, enabled by 
advancements in 3D photogrammetry and sensing technologies, 
provided occlusion-free models (Turgut et al., 2022; Li et al., 2022; 
Akhtar et al., 2024) for precise organ-level analysis, and overcame 
challenges of 2D methods. 

While recent advances in 3D DL-based point cloud 
segmentation methods showed great potential for enhancing the 
robustness and precision of point cloud segmentation, their 
application to full 3D segmentation of plant organs remained 
limited. The main challenges limiting the wider adoption of 3D 
deep learning for plant phenotyping included the limited 
availability of annotated point cloud datasets from real plant 
models, the need for CNNs specifically designed to handle 
unstructured and unordered point cloud data, and the complexity 
of developing networks capable of performing versatile and 
comprehensive point cloud segmentation. Furthermore, the 
network struggled to effectively balance organ-level semantic 
segmentation and instance segmentation. 

This study is part of a larger research initiative focused on 
developing a high-speed, automated platform for plant 
phenotyping, such as C. bicolor. This platform is designed to 
02	
capture comprehensive plant phenotype data with speed 
and efficiency. 
 

1. 2D Image Capture: Plants are positioned on a turntable, 
which rotates at a constant speed. Cameras are mounted at 
three distinct heights on a stationary support frame, 
enabling simultaneous image acquisition from multiple 
perspectives. This configuration ensures complete 360
degree coverage of each plant, eliminating blind spots. As 
a result, the system captures 180 high-resolution 2D images 
per plant. 

2. 3D Reconstruction:	 A Structure-from-Motion (SfM) 
algorithm (Schonberger and Frahm, 2016) processes a 
sequence of 2D images to generate a 3D point cloud of 
the plant. 

3. Point Cloud Denoising: The point cloud is then denoised 
using various filters to remove irrelevant points, retaining 
only those within the target plant region. 

4. Semantic and instance Segmentation: The cleaned point 
cloud is segmented to isolate individual components, such 
as the stem, leaves, flower pot, and auxiliary markers. 

5. Point Cloud Completion (if necessary): To address missing 
regions due to occlusions or reconstruction artifacts, the 
segmented point clouds of stems and leaves are completed 
to  achieve  a  fu l l  geometr ic  representat ion  of  
these structures. 

6. Registration: For	 each plant, point clouds captured at 
different time points are aligned using non-rigid 
registration techniques. This process ensures that the 
plant point clouds from different time points are 
consistently mapped into the same spatial coordinate 
system, enabling accurate temporal analysis of plant 
growth and morphological changes. 

7. Phenotype Data Extraction: Phenotypic traits, such as leaf 
surface area, perimeter, bounding box dimensions, and 
stem height, are derived from the segmented point 
clouds. By leveraging the paired temporal information 
obtained in Step 6, time-series data of the plant’s 
phenotypic characteristics are produced, enabling 
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systematic investigation of developmental patterns and 
structural evolution. 
This  research  initiative  focuses  on  the  phenotypic  
characterization and growth prediction of greenhouse plants. The 
platform enables the collection of plant growth pattern data under 
varying resource conditions (light intensity, temperature, nutrient 
content), thereby identifying optimal environmental parameters for 
crop cultivation. Additionally, it allows us to predict whether 
current plants require supplementation of growth resources. 
Going forward, we will utilize drones to capture 3D point clouds 
of field crops, extending this technology to open-field applications. 
Naturally, plant occlusion issues in field conditions present greater 
challenges than those in greenhouse environments. This will be a 
primary research focus in our future work. Previously, we proposed 
a multi-scale geometry-aware point-transformer-based plant point 
cloud completion network to address occlusion issues in tropical 
ornamental plants (Zeng et al., 2022). 

This paper primarily focuses on the fourth step: performing 
semantic and instance segmentation on the plant point cloud. This 
step is crucial for enabling steps 6 and 7. First, due to the non-rigid 
deformations that occur as plants grow, registering point clouds 
based solely on the plant’s structure is both time-consuming and 
inefficient. By utilizing segmented registration markers as fixed points 
and key reference frames, the accuracy and efficiency of non-rigid 
registration are greatly enhanced. Second, during the process of 
quantifying plant morphological features, the minimum bounding 
box technique is commonly applied to analyze key structural 
attributes. This approach depends on precise instance segmentation 
to effectively distinguish individual organs, such as stems and leaves. 
Precise segmentation is therefore critical to ensuring the reliability 
and accuracy of subsequent phenotypic measurements. 

Traditional computer vision-based instance segmentation 
methods frequently necessitate extensive manual parameter tuning 
to adapt to different plant species, thereby creating constraints in 
operational efficiency. Such constraints create barriers to fulfilling the 
requirements of high-speed, automated plant phenotype 
measurement. This study presents an innovative point cloud 
segmentation approach leveraging a Multi-head Hierarchical 
Attention mechanism, termed the Dual-Task Segmentation 
Network (DSN). This approach can efficiently detect C. bicolor’s 
stems and individual leaves, laying the foundation for rapid, 
automated plant phenotype measurement. As for step 5, our 
preliminary research findings have already been published in (Zeng 
et al., 2022). Concurrently, we are actively pursuing further research 
on step 6 to enhance the overall framework. 

In this study, we achieved 3D reconstruction from 2D image 
data of actual plant specimens captured through an automated 
phenotypic platform, from which we obtained a dataset of 276 
instances of annotated C. bicolor point clouds. We also make this 
dataset openly available upon reasonable request to contribute to 
addressing the limited availability of ornamental plant point 
cloud datasets. 

This research focuses on achieving complete automation and 
intelligent processing in plant phenotyping. While the current stage 
tiers in Plant Science 03	
of our work has not extensively addressed the issue of leaf occlusion, 
this challenge will be a key focus in our future research efforts. Our 
current research not only demonstrates the high-precision 
performance of the DSN model on this dataset, but also evaluates 
its advantages in plant organ segmentation through comparisons 
with leading deep-learning frameworks for point cloud processing, 
including PointNet, PointNet++ (Qi et al., 2017b; Wang et al., 2019b), 
DGCNN, and ASIS (Wang et al., 2019a). The key innovations and 
contributions of this study are summarized as follows: 
 

1. Designing the DSN: We developed a dual-task, point-based 
deep learning network designed to directly process fully 
annotated 3D point cloud datasets. DSN simultaneously 
generates semantic labels and instance embeddings, 
enabling precise organ-level segmentation. To further 
refine predictions, we incorporated the Multi-Value 
Conditional Random Field (MV-CRF) model for joint 
optimization of object categories and instances, 
significantly improving segmentation accuracy and 
phenotypic trait extraction. Our approach achieves state-
of-the-art performance in plant phenotyping, with DSN 
surpassing nine existing deep learning frameworks in both 
semantic and instance segmentation, demonstrating 
exceptional accuracy (99.16% overall) and robustness. 

2. Proposing Multi-Scale Feature Extraction	 and Attention 
Mechanism: Within the DSN, we defined organized local 
regions based on metric radii to extract multi-scale features, 
enhancing the flexibility and selectivity of plant geometric 
modeling. Additionally, we introduced a Multi-head 
Hierarchical Attention Module (MHAM) to capture 
feature dependencies between local and global regions. 
Through  ablation  studies,  we  demonstrated  the  
effectiveness of the Local Attention Module (LAM) and 
Global Attention Module (GAM) within the MHAM of the 
DSN architecture. 

3. Developing and publicly releasing a real plant point cloud 
dataset for semantic and instance segmentation tasks: We 
developed a non-destructive, automated phenotypic 
measurement platform and leveraged 2D image data from 
real plants for 3D reconstruction, creating a manually 
annotated point cloud dataset that is publicly available. 
This dataset includes semantic segmentation labels for three 
categories (non-plant, leaf, and stem) as well as instance 
segmentation labels for individual leaves, providing a 
valuable resource for plant phenotyping research. 
2 Materials and methods 

2.1 Overview of the method 

In initiating this research, we believed that starting with 
structurally simple plants would facilitate the gradual application 
of this technology to more complex plant morphologies, such as 
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soybeans and corn. We selected C. bicolor (a member of the Araceae 
family) as a representative species. Renowned for its vibrant foliage, 
high ornamental value, and low maintenance requirements, C. 
bicolor is a popular indoor plant. Its short growth cycle and 
simple structure made it an ideal candidate for this study, 
allowing for detailed monitoring of its growth through the 
automated phenotyping platform. Accordingly, we continuously 
recorded and observed 252 C. bicolor specimens over a three-month 
period, tooking multi-angle pictures of each plant at three-
day intervals. 

The research was conducted in a greenhouse in Guangzhou, 
Guangdong Province, China. Using high-precision 3D point cloud 
data, the DSN model was employed to perform semantic 
segmentation of C. bicolor’s organs (e.g., stems  and  leaves)
alongside instance segmentation specifically for its leaves. In the 
semantic segmentation task, each point is classified into one of three 
categories: non-plant (not part of the plant), leaf, or stem. For leaf 
instance segmentation, our method can accurately identify all 
points associated with each leaf respectively. 

In pursuit of this objective, a system was developed for 
acquiring 2D images of C. bicolor, which were then used for 3D 
reconstruction to generate a point cloud dataset. We then removed 
the background and noise points from the point clouds. 
Additionally,  the  segmentation  tool  in  CloudCompare  
(Girardeau-Montaut, 2016) was employed to manually annotate 
the preprocessed point clouds, creating a 3D point cloud dataset 
from real plants for neural network training. Subsequently, we 
Frontiers in Plant Science 04
scanned the point cloud using overlapping windows and passed it 
through the DSN to assign semantic classifications. These points 
were subsequently mapped into a multidimensional embedding 
space, enabling the clustering of points into distinct object 
instances. Finally, we propose a Multi-Value Conditional Random 
Field (MV-CRF) model that holistically embeds the co-
optimization of semantic categorizations and instance delineation 
within a unified framework. This model is constructed through 
mean field variational inference methodologies. 
2.2 Data acquisition 

2.2.1 Image-capturing system 
The image-capturing system consists of the following key 

components: a frame, a turntable, a bracket, three LED lights, three 
digital cameras, a light controller, and a computer that functions as 
the camera controller, as illustrated in Figure 1. The frame (0.8m × 
0.8m) was constructed using twelve aluminum extrusions onto which 
all components were mounted. A circular turntable was engineered to 
rotate the plant along a predefined trajectory, completing one full 
revolution every 30 seconds. The bracket securely held the cameras in 
place, while three LED lights were mounted onto the structural 
framework to ensure uniform illumination across the imaging area. 
Three digital cameras were strategically positioned at different angles 
and set to autofocus throughout the capture process, maintaining 
platform stability with fixed camera parameters. A Python script was 
FIGURE 1 

Image capturing system. 
 frontiersin.org 

https://doi.org/10.3389/fpls.2025.1610443
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pan et al. 10.3389/fpls.2025.1610443 
developed to control each camera, capturing 60 images per plant, 
resulting in a total of 180 images from the tri-camera system. All 
images were recorded at a resolution of 2048×1536 pixels and saved 
in JPG format. 

2.2.2 3D reconstruction 
All 2D images acquired through the imaging apparatus were 

employed to generate a 3D point cloud through a multi-step 3D 
reconstruction process. The SfM algorithm was used to reconstruct 
a dense point cloud through matching, expansion, and 
filtering processes. 

In the first step, the Scale-Invariant Feature Transform 
algorithm (Lowe, 1999) was employed to extract local feature 
points. The Euclidean distances between feature points in image 
pairs were calculated to achieve stereo matching and establish 
corresponding point pairs. In the second step, the camera’s 
internal calibration attributes and spatial orientation (pose) were 
derived from the matched point pairs via triangulation. The 
fundamental matrix F was estimated to recover both the cameras’ 
internal properties (e.g., focal length) and external properties (e.g., 
rotation and translation). Outliers and erroneous matches were 
filtered to improve accuracy. The third step involved estimating the 
3D coordinates of corresponding points using the camera poses, 
resulting in a sparse point cloud. This sparse cloud was further 
refined through iterative optimization using Bundle Adjustment, 
which minimized errors across all views to ensure consistency and 
accuracy (Agarwal et al., 2010). The final output was generated by 
applying surface reconstruction methodology to 3D spatial data. 
The entire process yielded high-quality 3D point clouds of C. bicolor 
suitable for further analysis. 
2.2.3 Data preprocessing 
We began by applying a color-threshold-based method to remove 

unnecessary background points, enhancing computational efficiency. 
Next, we applied the Statistical Outlier Removal (SOR) filter from the 
Point Cloud Library to remove outliers and suppress noise in the point 
cloud. The SOR filter assumes that the point cloud follows a Gaussian 
distribution, characterized by its mean µ and standard deviation s. 
Outliers are identified as points with an average distance exceeding a 
predefined threshold. The threshold is defined by Equation 1: 
Frontiers in Plant Science 05 
   threshold = m + a * s (1) 

where a acts as a scaling coefficient for the standard deviation s. 
The specific process is illustrated in Figure 2. 

2.2.4 Data manually annotation 
The point cloud dataset used for network training and testing 

was manually annotated with semantic labels using the 
segmentation tool in CloudCompare. To improve the network’s 
generalization, mitigate overfitting, and assess segmentation 
performance, a total of 314 point cloud samples were manually 
labeled. These samples were randomly partitioned into two groups: 
211 allocated for training and 103 for evaluation. Each point cloud 
consists of 1,024 points, with each point assigned to one of three 
semantic categories: leaf, stem, or non-plant. 
2.3 Network architecture 

2.3.1 Backbone structure 
We adopted a U-Net-structured DSN for complex prediction 

tasks, such as semantic segmentation, structured as a multi-scale 
feature integration framework incorporating cross-layer feature 
fusion pathways. 

The proposed network is architecturally organized around three 
core components: the Multi-head Hierarchical Attention Module, the 
Down-Sampling module, and the Up-Sampling module. The detailed 
architecture of our DSN for point-wise segmentation is shown in 
Figure 3. Initially, the input point cloud is processed by a shared Multi-

Layer Perceptron (MLP) layer for feature transformation and 
extraction. Subsequently, we use four encoding layers to reduce the 
number of point while simultaneously enriching feature complexity per 
point. Each encoding layer includes an MHAM and a Down-Sampling 
module. The point cloud undergoes four-fold downsampling, retaining 
just 25% of the original points at each processing layer. This results in a 
progressively reduced point set cardinality that decreases by factors of 4 
at successive stages, ultimately reaching 1/256 of the original scale. 
Simultaneously, the feature dimension of each layer continuously 
increases to capture more information: (32 → 64 → 128 → 256 → 
512). After the encoder, four decoders are used to restore the point 
cloud to its original number of points N. Each decoder layer employs 
FIGURE 2 

The workflow for processing point cloud data to achieve 3D reconstruction of real plant models. 
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an Up-Sampling module and an MLP. Through skip connections, the 
upsampled feature maps of the encoder’s earlier stages are fused with 
the decoder’s deeper stages. Finally, the DSN separates into dual 
pathways dedicated to semantic label prediction per point and high-
dimensional instance embedding generation respectively. The final 
semantic predictions and instance embeddings are obtained through 
three shared Fully Connected (FC) layers: (N,128) → (N,32) → (N,C) 
Frontiers in Plant Science 06
for semantic labels, or (N,128) → (N,32) → (N,D) for  instance
embeddings. Following the initial FC layer, a stochastic masking 
layer is applied where half of the neural units are randomly silenced 
during activation. The network’s output consists of predicted semantic 
labels in an N × C matrix and instance embeddings in an N × D matrix, 
where N denotes the point count, with C and D corresponding to class 
count and embedding dimension respectively. 
FIGURE 4 

The proposed MHAM module. The top panel shows the Local Attention Module(LAM) that weights the most important features of neighboring points 
between local regions of ball radius, and the bottom panel shows the Global Attention Module(GAM) weights the features dependency of all points. 
Numbers associated with tensors denote the dimensions N and feature channels D. 
FIGURE 3 

The detailed architecture of DSN for plant-part segmentation. The encoder mainly comprises four MHAM and four Down-sampling modules. The 
decoder mainly comprises four Up-sampling modules and four Multi-Layer Perceptron (MLP) layers. The numbers (N, D) signify the quantity of 
points and the output channels, respectively. FC, Fully Connected layer; DP, Dropout; MHAM, Muti-head Hierarchical Attention-based Module; 
Conv, convolutional layer; CBNR, Conv + BatchNorm + ReLU; CBND, Conv + BatchNorm + ReLU + DP; US, Up-sampling; DS, Down-sampling. 
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2.3.2 Multi-head Hierarchical Attention Module 
We introduce a Multi-head Hierarchical Attention Module 

(Figure 4), which processes the input point cloud to capture fine-
grained geometric and graph features. Each head of the MHAM 
consists of two sequential sub-modules: the Local Attention Module 
(LAM) and the Global Attention Module (GAM). Given the 
morphological complexity of plant point clouds, particularly scale 
and density variations, we employ the ball query method (Qi et al., 
2017a) to identify spatially coherent neighborhoods, rather than 
relying on the conventional K-Nearest Neighbors (KNN) approach. 
The KNN is less practical for extracting features from the complex 
structures of plant models. The LAM focuses on the feature 
interdependencies within hierarchically organized local regions. 
These regions are determined using the ball query method, which 
identifies the neighboring points {pi1,pi2,…,pik} (where k is an upper 
limit) of a query point pi within a metric radius r. On the other 
hand, the GAM focuses on the feature dependencies of all points, 
employ ing  a  se l f -a t t en t ion  mechani sm  to  es tab l i sh  
interconnectedness across all spatial positions of the point cloud. 
 

 

2.3.3 Position Embedding Module 
We introduce a PEM that explicitly encodes the spatial position 

as shown in Equation 2: 

( ( ) ) 
k k k k 
i ipos = MLP xi ⊗ xi ⊗ xi − x ⊗∥ xi − xi ∥ (2) 

Where posk is the positional encoding vector, xi denotes the i 

coordinates of the central point, xi
k corresponds to those of 

neighboring points, and ∥ · ∥ computes the Euclidean distance 
between xi and its adjacent xi

k . 

2.3.4 Local Attention Module 
We subsequently employed the powerful attention mechanism 

rather than max/mean pooling—methods prone to critical information 
dissipation—for automatic aggregation of the ith features Fi

k. Our

method constructs a local neighborhood for each center point by 
performing KNN search to identify its fixed K adjacent points. This { }
process yields a feature set of K points, denoted as fi 

1, …, f K , …, f K .i i 

Subsequently, each point’s feature  fi is enhanced by concatenation with 
its corresponding relative feature difference (fi − fi

k), thereby generating 
the augmented feature Fi

k. Specifically, we employed a function f(·) to 
learn an attention score ai

k and then weighted the  sum of these  features,  
as shown in Equations 3–5: 

( ( )) 
Fi
k = fi ⊕ fi − fi

k (3) 

( ( ))
k
 
i
a = softmax  f Fi

k , W (4) 

K ( )
kFl = o ai · Fik (5) 

k=1 

In this case, the function f(·) is implemented using a shared 
MLP, W represents the learnable weights of the MLP, and ⊕ 
denotes the concatenation operation. 
Frontiers in Plant Science 07 
2.3.5 Global Attention Module 
After aggregating the local features, we developed a Global 

Attention Module to refine global features through self-attention, 
leveraging a matrix dot-product to compute attention scores for all 
points. We denote the query, key, and value matrices as Q, K, and V, 
respectively, which are derived from the input features, as defined in 
Equation 6. 

Q, K , V = Fl · (Wq, Wk, Wv)  (6)

Here, Wq, Wk, and Wvare the learnable weights. 
To begin, we calculate the attention weights s by combining the 

Q and K matrices, and then apply the softmax operator to 
normalize the attention map along the first dimension, as shown 
in Equation 7. 

s = softmax (Q · KT ) (7) 

To further enhance the normalization, we apply the l1-norm to 
normalize the second dimension, as shown in Equation 8. 

s0 s = K (8) 
ok=1sik 

0The normalized attention weights s determine the aggregated 
value vector output, formally denoted as Fs. The difference between 
the self-attention feature Fs and the input feature Fl is quantified 
through element-wise subtraction. The function g(·) uses two 
shared MLPs followed by a ReLU nonlinearity. The feature fusion 
formula is given in Equations 9, 10: 

Fs = s 0 · V  (9) 

Fi = g(Fl − Fs) +  Fl (10) 

In addition, we introduced a multi-head mechanism to obtain 
more comprehensive information and further enhance the 
generalization ability of the network. This is calculated as shown 
in Equation 11, Where Fm represents the feature of the mth head for i 

point pi, and M represents the number of attention heads, which is 
set to 4 in this study. 

F0 = F1 ⊕ Fm ⊕ … ⊕ FM (11)i i i 
2.3.6 Down-sampling module 
The iterative farthest point sampling (FPS) algorithm (Qi et al., 

2017b) is applied to the input point set P0 to generate the subsampled 
point set P1. Compared to random sampling, FPS achieves enhanced 
spatial coverage of point clouds when selecting equivalent numbers of 
centroid points, ensuring spatially uniform distribution (Qi et al., 
2017b). For propagating features between the source point set P0 and 
the downsampled subset P1 (P1 ⊂ P0), we employ the ball query 
method, which establishes a fixed region scale to locate all neighboring 
points that form a local region for each query point in P1. The  features  
of each local region are processed through a shared MLP, subsequently 
normalized via batch-wise standardization and non-linearly 
transformed by ReLU operations. Finally, max pooling is applied to 
each point in P1 using its neighboring points in P0. 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1610443
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pan et al. 10.3389/fpls.2025.1610443 
2.3.7 Up-sampling module 
Each decoder upsampling module performs dual operations 

through coordinated point cloud upsampling and hierarchical feature 
propagation, transferring encoded representations from the 
subsampled set P1 to the denser superset P0 while achieving 
structural preservation. Similar to deconvolution in CNNs, this 
mechanism performs geometric upsampling of the point cloud, 
progressively refining abstract, holistic pattern encoding into precise, 
localized positional attributes. First, a multi-stage feature mapping 
framework is implemented, where distance-aware neighborhood 
interpolation operates to transfer semantic attributes between the 
downsampled points to the original points. Subsequently, the 
upsampled decoder outputs are fused with co-existing encoder states 
through cross-stage linkages, enabling multi-level information 
integration that generates enhanced descriptor volumes. The fused 
feature maps subsequently undergo processing through a weight-
shared perceptron module, with sequential execution of batch 
normalization and non-linear transformation operations. 
   

2.4 Multi-Value Conditional Random Field 
model 

An MV-CRF model is constructed using the semantic labels and 
instance embeddings output by the DSN. Specifically, consider P = 
fp1, p2, …, png as the discrete geometric sampling of a reconstructed 
spatial configuration, where all spatially distributed elements 
constitute vertices within a complete graph topology, with all 
pairwise topological entities linked through bidirectional 
adjacency links. Each vertex has an associated semantic label lS , { }
with LS = l1

S , l2
S , …, lS representing the set of semantic labels. n 

Similarly, each vertex has an instance label lI, with  LI = { }
l1
I , l2

I , …, lI representing the set of instance labels. The graph, n 

defined over P, LS, and LI, is referred to as MV-CRF. Combined 
semantic-instance segmentation is achieved by minimizing the 
following energy function (Equation 12), which is then solved 
using the mean field variational method (Blei et al., 2017). 

E(LS , LI ❘ P) =  of(lj
S) +  f(lj

S , lk
S)o 

j (j,k),j<k 
(12) 

Y(lj
S) +  Y(lj

S , lk
S) +  o F(s, i)+ o o o 

j (j,k),j<k s∈Si∈I 

Here, f(ljS) represents the probability of assigning point pj to 
semantic class s; f(ljS , lk

S) denotes the similarity score of semantic 
classification between points pjand pk. Y(lj

S) quantifies the 
likelihood that a vertex’s latent representation maximizes 
proximity to the centroid vector characterizing its associated 
object cohort. Y(lj

S , lk
S) quantifies the similarity of instance labels 

between pjand pk, determined jointly by attributes such as position, 
surface normal, and color. F(s, i) establishes a connection between 
semantic and instance labels, ensuring consistency between 
semantic and instance predictions. 
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As described in the study, minimizing this energy function 
enforces constraints based on the semantic and physical properties 
of the object, thereby refining the segmentation results. 
2.5 Loss functions 

Our DSN consists of two separate branches, each responsible for 
a distinct task: (1) categorical classification of geometric primitives 
and (2) instance embedding generation at individual point resolution. 
The overall loss function of DSN combines the prediction loss 
Lprediction and the embedding loss Lembedding, as shown  in  Equation 13: 

L = Lprediction + Lembedding (13) 

For semantic segmentation, our implementation adopts the 
canonical cross-entropy formulation, formally expressed through 
Equation 14: 

N C 0 Lsem = −oi=1oj=1pj (i) log pj(i) (14) 

where pj(i) represents the predicted probability that the 
likelihood of class affiliation for the current point i belongs to the 
class j calculated by the model, and pj

0 
(i) corresponds to the 

reference classification indicator encoded through binary 
activation patterns. 

Taking the instance segmentation task as an example, we used a 
discriminative function to represent instance embedding loss 
Lembedding which is shown in Equation 15: 

Lembedding = a · Lpull + b · Lpush + g · Lreg (15) 

where a, b, and g are hyperparameters controlling the relative 
weights of the pull loss Lpull, push loss Lpush, and regularization loss 
Lreg, respectively. 

The instance embedding loss consists of three components: 
Lpull, which pulls embeddings toward the centroids µk; Lpush, which 
separates the centroids from each other; and Lreg, which applies a 
small force to attract all centroids toward the origin. The individual 
components of the embedding loss are defined as follows in 
Equations 16–18, respectively: 

K Nk Lpull =
1 1 

o½∥ mk − ej ∥2 −dv +2 (16)
K o 

k=1 Nk j=1 

1 K KLpush = k=1om=1,m≠k½2dd − ∥ mk − mm ∥2 +2 (17)
K(K − 1) o 

Lreg =
1 

k
K 
=1 ∥ mk ∥2 (18)

K o 

where K specifies the instance count, ∥·∥ represents the 
Euclidean distance, and Nk records the element count within the 
kth instance. The embedding of point pj is denoted by ej, while µk 

and µm represents the mean embedding of the kth instance and the 
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mth instance, respectively. The notation [x]+ = max(0,x) is used to 
enforce non-negativity. dv and dd define the margin thresholds for 
Lpull and Lpush respectively, with values empirically set to dv= 0.5 
and dd= 1.5. Additionally, the weighting coefficients are fixed as a = 
b = 1 and g = 0.001 in this study. 
2.6 Training details 

To address the challenge of feeding the entire C. bicolor model 
into point-based DL architectures—which would require a high 
subsampling rate and result in significant geometric information 
loss—we adopted the strategy used in PointNet for handling large-
scale point clouds. Specifically, the input point cloud is processed 
using overlapping fixed-size blocks. Our proposed network 
processes local point clouds of 4096 points, with each point 
encoded as a 9-dimensional feature vector. This vector includes 
the centralized 3D coordinates (x, y, z), normalized color 
information (r, g, b), and normalized local coordinates (x0, y0, z0). 
The neural network independently segments the plant parts for 
each local point cloud during model training. For testing, an unseen 
dataset is preprocessed in the same manner, and the final 
segmentation predictions from all blocks are merged to achieve 
complete segmentation result. 
 

2.7 Experiments 

2.7.1 Experiments setup 
The neural network was developed within the PyTorch 

framework, employing a Stochastic Gradient Descent (SGD) 
optimizer configured with momentum = 0.9 and weightdecay = 
0.0005 during training. The learning rate commences at 10−3, 
undergoing a halving process every 20 epochs. The network was 
trained with a batch size of 16 across 100 epochs. The experiments 
were conducted using PyTorch 1.6 on a 64-bit Linux CentOS 8 
server equipped with an AMD EPYC 7302 CPU (16 cores, 3.00 
GHz), 256 GB of RAM, and two NVIDIA GeForce RTX 3090 
GPUs. The dataset used for the experiments was the C. bicolor point 
cloud dataset collected and annotated as described earlier. 

2.7.2 Evaluation metrics 
This study conducts a comprehensive assessment of the 

proposed method’s efficacy across both point-wise and object-
wise dimensions. 

For evaluating semantic segmentation, we employed widely 
used metrics, including overall accuracy (oAcc), mean of 
Intersection over Union (mIoU), and mean of class-wise accuracy 
(mAcc) across all classes. These metrics are commonly utilized for 
assessing 3D point cloud segmentation performance. The formulas 
for the OAcc, mAcc, and mIoU are as follows in Equations 19–21, 
respectively: 

coi=0piioAcc = (19)c coi=0oj=0pij 
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1 c piimAcc = (20)i=0 cc + 1  o oj=0pij 

1 c piimIoU = (21)i=0 c cc + 1  o oj=0pij + oj=0(pji − pii) 

where c is the category of structural parts of plants, therefore we 
set c = 3 in this study. Here, pij represents class-i ground truth 
instances misclassified as class j, while pji corresponds to class-j 
instances erroneously predicted as class i; both terms quantify 
cross-classification errors. The elements pii indicate correctly 
classified instances within their true categories. 

For instance segmentation, the evaluation was based on the 
mean precision (mPrec), mean recall (mRec) with an IoU higher 
than 0.5 or 0.25 in each semantic category (Conn et al., 2017). 
Furthermore, we treat instance segmentation as a form of object 
detection and employ average precision (AP) with an IoU threshold 
of 0.5 (Pham et al., 2019) as the evaluation metric. The formulas for 
the Prec, Rec, mPrec, and mPrec are as follows in Equations 22–25, 
respectively: 

TPins❘ c ❘ 
Prec = (22)

PRins❘ c ❘ 

TPins❘ c ❘ 
Rec = (23)

GTins❘ c ❘ 

TPinsc 
mPrec = i (24) 

1 ❘ ❘ 
o PRins❘ c ❘ ❘ ❘i=1 i 

TPinsc 
mRec = i (25) 

1 ❘ ❘ 
o GTins❘ c ❘ ❘ ❘i=1 i 

TPinsHere, ❘ ❘ represents the count of successfully predicted c 

instances with an IoU greater than 0.5 relative to the ground truth 
PRins GTinsand belonging to semantic class c. ❘ ❘ and ❘ ❘ denote the c c 

number of predicted instances and ground truth instances, 
respectively, for semantic class c. The  term  |c| indicates  the
number of semantic classes, which in this study is ❘ c ❘ = 3. The 
ground truth instances are categorized into semantic classes c ∈ 
{non-plant, leaf, stem}. The Precision-Recall (P-R) curve is obtained 
by plotting Precision (Prec) on the vertical axis against Recall (Rec) 
on the horizontal axis. The Average Precision (AP) is defined as the 
area under the P-R curve and is computed as follows Equation 26): 

Z 1 

AP = Prec(Rec)   dRec (26) 
0 
2.7.3 Semantic segmentation experiments 
We performed a thorough quantitative and qualitative 

evaluation of our per-point semantic segmentation method, 
benchmarking it against several mainstream deep learning 
models: (1) PointNet (Qi et al., 2017a), (2) PointNet++ (Qi et al., 
2017b), (3) DGCNN (Wang et al., 2019b), (4) ShellNet (Zhang et al., 
2019), (5) PointWeb (Zhao et al., 2019), (6) PointTransformer 
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(PCT) (Zhao et al., 2021), (7) JSNet (Zhao and Tao, 2020), (8) ASIS 
(Wang et al., 2019a), and (9) JSIS3D (Pham et al., 2019). Among 
these, models (1)–(6) support only semantic segmentation and were 
trained and tested using semantic labels alone. In contrast, our 
proposed network and models (7)–(9) — designed for joint 
semantic and instance segmentation — were evaluated under 
unified annotation conditions, where identical semantic and 
instance labels were utilized throughout both training and 
testing procedures. 

2.7.4 Instance segmentation experiments 
We performed comprehensive qualitative and quantitative 

evaluations against state-of-the-art multi-task models, assessing 
instance segmentation performance using mPrec, mRec, and AP 
as key metrics. These metrics were calculated with IoU thresholds of 
0.5 and 0.25 for each semantic category. An instance point group is 
considered a valid segmentation region if its IoU exceeds the 
predefined threshold. For instance segmentation comparison, we 
evaluated ASIS (Wang et al., 2019a), JSIS3D (Pham et al., 2019), and 
JSNet (Zhao and Tao, 2020) on the test set of the point cloud data. 
Additionally, we evaluated two variations of our pipeline: “MHA

CRF” which incorporates MV-CRF, and “MHA-MSC” which 
applies the Mean-Shift Clustering (MSC) algorithm (Comaniciu 
and Meer, 2002) directly to DSN’s instance embeddings. 

2.7.5 Ablation experiments 
Ablation experiments were conducted to assess the impact of 

PEM, LAM, and GAM modules within the DSN framework on 
semantic and instance segmentation performance. 
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For the Neighbors Number, we investigated the optimal 
number of neighboring points k, which defines the local region 
range for feature extraction based on the attention mechanism. 

For the Position Embedding Module, we conducted a thorough 
investigation into the impact of different spatial information 
representations on our framework, particularly focusing on 
ablative experiments for the PEM. These experiments were 
divided into the following cases: 

P1: Encodes only the 3D coordinates of the point xi. 
P2: Encodes only the 3D coordinates of the neighboring 

points xk. 
P3: Encodes the 3D coordinates of the point xiand its 

neighboring points xkas [xi ⊕ xk]. 
P4: Encodes the 3D coordinates of the point xi, its neighbors xk, 

and their relative positions (xi− xk) as [xi ⊕ xk ⊕ (xi − xk)]. 
P5: Encodes the 3D coordinates of the point xi, its neighbors xk, 

and the Euclidean distance ∥ xi − xk ∥ as ½xi ⊕ xk(xi − xk) . 
P6: Encodes the 3D coordinates of the point xi, its neighbors xk, 

the relative positions (xi− xk), and Euclidean distance ∥ xi − xk ∥ as 
½xi ⊕ xk ⊕ (xi − xk) ⊕ ∥ xi − xk ∥ . 
3 Results 

3.1 Semantic segmentation performance 

The quantitative performance of semantic segmentation, 
evaluated using metrics (oAcc, mAcc, and mIoU) on the test set, 
is presented in Table 1. Each row in the table represents the 
TABLE 1 Quantitative results of different DL-based models on our labeled plant cloud point dataset. 

Methods 

Acc(%) IoU(%) 
oAcc 
(%) 

mAcc 
(%) 

mIoU 
(%)Leaf Stem Non-

plant 
Leaf Stem Non-

plant 

PointNet (Qi 
et al., 2017a) 

91.71 72.49 98.12 88.76 67.75 86.51 91.38 87.44 81.01 

PointNet++ (Qi 
et al., 2017b) 

98.45 84.44 99.94 95.74 80.40 99.57 96.76 94.28 91.90 

DGCNN (Wang 
et al., 2019b) 

97.80 85.09 97.91 94.03 77.79 95.06 95.43 93.60 88.96 

ShellNet (Zhang 
et al., 2019) 

98.66 79.96 99.97 97.68 66.33 98.99 98.19 92.86 87.67 

PointWeb (Zhao 
et al., 2019) 

98.48 82.43 99.74 94.61 79.77 99.43 93.52 93.55 91.27 

PCT (Zhao et al., 2021) 99.63 83.70 99.69 97.88 72.18 99.65 98.41 94.34 89.90 

ASIS (Wang et al., 2019a) 97.68 82.88 99.98 96.85 68.06 98.98 97.34 93.51 87.96 

JSNet (Zhao and 
Tao, 2020) 

97.47 86.80 98.75 96.37 65.67 97.34 97.07 94.35 86.46 

JSIS3D (Pham 
et al., 2019) 

98.99 74.64 99.76 98.17 69.91 98.96 98.56 91.13 89.01 

DSN (Ours) 99.63 87.58 99.97 98.86 82.19 99.89 99.16 95.73 93.64 
fro
The best-performing values are highlighted in bold. 
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experimental results for the corresponding model. Our proposed 
model demonstrates leading segmentation results, attaining 
99.16% oAcc, 95.73% mAcc, and 93.64% mIoU, while showing 
enhanced capabilities in local information perception and 
segmentation accuracy. 

The improved performance arises from the integration of the 
LAM and GAM modules within the network, which systematically 
combines neighborhood and global information. These 
enhancements address common challenges in 3D point cloud 
segmentation, particularly in handling boundary regions and 
areas with sparse plant biomass. 

As shown in Table 1, the accuracy for the stem class consistently 
falls behind that of the other two classes across all models in the 
semantic segmentation task. We identify two main factors 
contributing to this phenomenon. First, the stem constitutes a 
relatively inconspicuous plant structure, with its points 
representing a limited percentage of the whole. This limited 
representation reduces the number of true positive predictions for 
stem points. Consequently, each false negative prediction 
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significantly impacts the stem’s segmentation accuracy. Second, 
the stem’s diverse and complex structure poses additional 
challenges for accurate segmentation. 

Additionally, Figure 5 presents a visual comparison of semantic 
segmentation outcomes across various DL-based networks on a 
sample point cloud, highlighting the strengths of our approach. 
3.2 Instance segmentation performance 

As evidenced in Table 2, our proposed method attains superior 
instance segmentation performance across all categories relative to 
existing deep learning models. Notably, MHA-CRF significantly 
improves segmentation performance in certain categories over DSN 
alone. Figure 6 provides a visual comparison of instance 
segmentation results from our proposed DSN network and other 
mainstream DL models on the C. bicolor point cloud dataset, 
highlighting  the  enhanced  accuracy  and  robustness  of  
our approach. 
TABLE 2 Performance of instance segmentation on our labeled point cloud dataset. 

Methods 
IoU0.5 (%) IoU0.25 (%) 

mPrec mRec mAP mPrec mRec mAP 

ASIS (Wang et al., 2019a) 73.19 62.43 54.69 86.51 71.73 66.49 

JSNet (Zhao and Tao, 2020) 77.06 67.25 55.40 85.75 74.85 68.51 

JSIS3D (Pham et al., 2019) 76.11 63.92 52.90 87.72 72.80 68.02 

MHA-MSC (ours) 84.17 72.66 66.16 93.34 79.59 78.03 

MHA-CRF (ours) 87.94 72.36 71.61 95.68 77.20 79.21 
We also present the standalone performance of DSN using the MSC algorithm (denoted as MHA-MSC) and its results when running the full pipeline with CRF (denoted as MHA-CRF). 
The best-performing values are highlighted in bold. 
FIGURE 5 

Visualization comparison of semantic segmentation results between mainstream deep learning models and the proposed DSN on the C. bicolor 
point cloud dataset. (a, b) represent the ground truth: the raw point cloud and the point cloud with semantic labels, respectively. (c–h) show the 
semantic segmentation outcomes for each model, where different colors distinguish categories, and misclassified points are highlighted with the red 
circles. 
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3.3 Ablation study 

3.3.1 Ablated modules of network 
As shown in Tables 3, 4, the full DSN (A1) consistently achieved 

the best performance, with a semantic segmentation mIoU of 
93.64% and instance segmentation mAP of 71.61%. Removing 
GAM (A2) led to the most significant drop in global feature 
quality, reducing leaf IoU by 5.64% and mAP by 12.35%. 
Disabling LAM (A3) particularly affected instance segmentation, 
lowering mAP to 60.78%. Without PEM (A4), accuracy and mIoU 
also declined, confirming its role in maintaining structural integrity. 
These results highlight the importance of all three modules in 
achieving optimal segmentation performance. 

3.3.2 Neighbors number 
As presented in Table 5, setting k to 16 yielded the best semantic 

and instance segmentation performance across most categories. The 
findings from our experiments suggest that with insufficient values 
of the neighbor count k, the model struggles to effectively acquire 
adequate local patterns and contextual relationships necessary for 
precise prediction outcomes. Conversely, when k is too large, each 
attention layer tends to introduce excessive noise from potentially 
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less relevant points, increasing computational costs and reducing 
model accuracy. 

3.3.3 Position embedding 
Table 6 compares the effect of each PEM configuration on 

semantic segmentation performance in our network using the C. 
bicolor point cloud dataset. The results show that explicitly 
encoding all spatial information (P6) yields the best segmentation 
performance for both leaf and stem classes across all metrics. The 
inclusion of relative position (xi− xk) is particularly impactful, as it 
enables the network to better capture local geometric patterns. 
4 Discussion 

This study attempts to utilize a hardware platform designed for 
plant cultivation experiments to generate 3D reconstructed point 
cloud datasets from 2D image data of real plant models. We then 
applied a newly proposed DSN to achieve semantic segmentation of 
various plant organs. Through this automated, non-destructive, and 
high-throughput pipeline, we successfully captured key phenotypic 
traits of real plants. This approach demonstrates significant 
TABLE 3 Performance of instance segmentation on our labeled point cloud dataset. 

Method 
Architecture Acc(%) IoU(%) 

PEM LAM GAM leaf stem non-plant leaf stem non-plant 

A1 ✓ ✓ ✓ 99.63 87.58 99.97 98.86 82.19 99.89 

A2 ✓ ✓ X 95.93 84.35 99.83 93.22 72.94 98.79 

A3 ✓ X ✓ 97.06 80.39 99.95 94.13 74.14 98.91 

A4 X ✓ ✓ 94.03 80.31 99.98 91.10 80.63 99.63 
The symbol ✓ indicates the inclusion of a module, while X denotes its removal. The best-performing values are highlighted in bold. 
FIGURE 6 

Visualization comparison of instance segmentation results between mainstream deep learning models and the proposed DSN on the C. bicolor point 
cloud dataset. (a, b) represent the ground truth: the raw point cloud and the point cloud with instance labels, respectively. (c–g) show the instance 
segmentation outcomes for each model, where different colors distinguish categories, and misclassified points are highlighted with the red circles. 
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TABLE 5 The effect of setting different k on network segmentation performance. 

Segmentation task type Metrics Different k values 

k=4 k=8 k=16 k=32 k=64 

Semantic Segmentation 

Acc 
(%) 

leaf 97.04 97.91 99.63 98.67 98.05 

stem 77.57 83.31 87.58 85.29 80.68 

non-plant 99.98 99.96 99.97 99.96 99.98 

IoU 
(%) 

leaf 93.97 95.13 98.86 95.25 94.41 

stem 72.58 81.76 82.19 80.68 76.20 

non-plant 99.53 98.94 99.89 98.32 96.75 

oAcc(%) 95.42 96.29 99.16 96.36 95.72 

mAcc(%) 91.53 93.73 95.73 94.64 92.90 

mIoU(%) 88.69 91.94 93.64 91.42 89.12 

Instance Segmentation 

mPrec(%) 82.24 83.23 87.94 84.40 85.64 

mRec(%) 72.13 73.73 72.36 73.76 70.47 

mAP0.5(%) 67.20 65.53 71.61 69.08 67.26 

mPrec(%) 89.29 91.11 95.68 90.16 92.96 

mRec(%) 77.31 80.17 77.20 78.57 75.76 

mAP0.25(%) 74.91 76.38 79.21 78.79 77.84 
F
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Bold values indicate optimal performance metrics. 
TABLE 4 Ablation study on oAcc and mIoU for semantic segmentation in the proposed DSN. 

Method Architecture Acc(%) IoU(%) 

PEM LAM GAM leaf stem non-plant leaf stem non-plant 

A1 ✓ ✓ ✓ 99.16 95.73 93.64 93.64 89.00 90.50 

A2 ✓ ✓ X 94.85 93.37 88.32 88.32 85.00 86.50 

A3 ✓ X ✓ 95.55 92.47 89.06 89.06 84.50 87.00 

A4 X ✓ ✓ 93.24 91.44 90.45 90.45 86.00 88.50 
The symbol ✓ indicates the inclusion of a module, while X denotes its removal. The best-performing values are highlighted in bold. 
TABLE 6 The ablation analysis of Acc, IoU, oAcc, mAcc, and mIoU for the effect of the PEM on the semantic segmentation performance. 

PEM 

Acc (%) IoU (%) 

oAcc (%) mAcc (%) mIoU (%) Leaf Stem Non-
plant 

Leaf Stem Non-
plant 

P1 98.45 70.59 99.89 94.70 69.02 99.80 95.99 89.64 87.74 

P2 95.66 79.93 99.97 92.75 72.78 99.66 94.51 91.85 88.40 

P3 97.94 77.89 99.95 94.75 74.29 99.81 96.01 91.93 89.61 

P4 98.72 82.80 99.98 95.66 80.51 99.54 96.71 93.83 91.90 

P5 98.52 80.21 99.94 95.01 78.34 99.65 96.20 92.89 91.00 

P6 99.63 87.58 99.97 98.86 82.19 99.89 99.16 95.73 93.65 
f

The best-performing values are highlighted in bold. 
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practical value in applications such as seeding phenotype 
measurement. To enable this, we first developed an image capture 
platform capable of obtaining multi-view 2D image sequences of 
real plants in a controlled growth environment. Using 180 images 
captured from three angles, we reconstructed a 3D point cloud 
dataset for real plant models. After data preprocessing and manual 
annotation, we curated a complete dataset for open research, 
consisting of 276 point cloud samples. 

Inspired by the attention mechanism, we proposed DSN to achieve 
high-precision semantic and instance segmentation on labeled point 
clouds. Our DSN demonstrated superior performance on the C. bicolor 
point cloud dataset, achieving an oAcc of 99.16%, mAcc of 95.73%, and 
mIoU of 93.64%, surpassing mainstream point-based deep learning 
models such as PointNet. For instance segmentation, which we treated 
as an object detection task, we evaluated performance using AP at IoU 
thresholds of 0.5 and 0.25. We further improved instance segmentation 
performance using MV-CRF, by predicting class labels and embedding 
points into high-dimensional vectors Compared with other existing 
deep learning models, including ASIS, our DSN achieved the best 
instance segmentation results, with mPrec, mRec, and mAP reaching 
87.94%, 72.36%, and 71.61%, respectively, at an IoU threshold of 0.5 on 
the C. bicolor dataset. 

For instance segmentation tasks, PointNet lacks a dedicated 
module for local feature extraction (Qi et al., 2017b), which limits its 
ability to capture the geometric characteristics of stems and leaves, 
resulting in a relatively low mIoU of around 80%. PointNet++ 
achieves the second-best results, with oAcc/mAcc/mIoU values of 
96.76%, 94.28%, and 91.90%, respectively. PointNet++ leverages a 
hierarchical feature extraction process, organizing local regions 
based on a metric radius (Qi et al., 2017b). This flexible design 
allows for versatile adjustments outside the network’s framework, a 
strategy that is also incorporated into our proposed network. 
PointWeb ranks next, effectively combining global shape and 
local neighborhood features (Zhao et al., 2019). Compared to 
PointNet, it improves mAcc and mIoU by approximately 5% and 
10%, respectively. ShellNet and DGCNN, which use K-
neighborhoods instead of metric radii for hierarchical point 
grouping and feature aggregation, offer less flexibility in adjusting 
receptive field dimensions. This limitation can hinder performance 
when accounting for both plant structure and data density. 
Bifunctional networks like ASIS tend to perform relatively poorly 
on semantic tasks, as they must balance semantic and instance 
segmentation tasks during training. In contrast, our proposed DSN 
maintains an effective balance between these tasks while achieving 
superior semantic segmentation results. 

The attention mechanism employed in this network results in 
moderately higher computational demands compared to traditional 
convolution and MLP-based approaches (Zhao et al., 2021). For 
input data sized (1, 1024, 9), PointNet requires 2.4G FLOPs with 
3.55M parameters, while PCT operates at 4.38G FLOPs with 2.93M 
parameters yet delivers highly accurate results. Our MHANet 
utilizes 20.84G FLOPs with 5.71M parameters. Although 
demanding the highest computational and memory resources 
among all models, MHANet achieves superior performance 
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improving stem accuracy by 4 percentage points and IoU by 10 
percentage points over PCT. 

Comprehensive experimental evaluations reveal that integrating 
attention mechanisms leads to noticeable improvements in plant-
part segmentation accuracy, effectively mitigating the prevalent 
under-segmentation challenges in 3D point cloud processing. 

Notably, most point cloud segmentation techniques require 
large volumes of fully labeled data Chen et al. (2023); Zhang et al. 
(2023). To reduce the labor-intensive nature of data annotation, 
future research could explore weakly supervised or unsupervised 
learning methods for plant-part segmentation. To further enhance 
the self-adaptability of fully automated phenotypic measurements, 
addressing the cross-cutting nature of plant components will be a 
key focus moving forward. 

The results presented in this paper establish the foundational 
conditions necessary for achieving fully automated intelligent 
phenotypic measurements. Real-time automated detection of plant 
phenotypic traits facilitates the analysis of plant growth status and 
enables the derivation of digital growth patterns (e.g., leaf color 
variation over time, timing and location of new leaf emergence, and 
senescence patterns of older leaves). Based on these growth patterns, we 
can establish evaluation metrics (such as leaf coloration and total leaf 
area) and configure varying resource environments. Through 
controlled experiments, we thereby identify optimal growth 
conditions that consistently regulate the expression of plant traits via 
environmental controls. Furthermore, deviations from established 
growth patterns may indicate nutrient deficiencies, disease outbreaks, 
or pest infestations. For ornamental plants, quantifying such growth 
patterns helps determine peak ornamental periods. This informs 
commercial sales timing strategies, mitigating losses from missed 
optimal selling windows. Additionally, advancements in drone and 
3D technologies now enable the acquisition of 3D point clouds for 
structurally complex plants in field environments. We plan to adapt 
this methodology to staple crops in future work, facilitating enhanced 
yields and improved pest and disease control. 
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