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As a globally important economic crop, cotton often faces yield and quality
limitations due to drought stress. To elucidate drought tolerance mechanisms,
this study screened a drought-tolerant variety (64-22-3) and a drought-sensitive
variety (Anmian 3, A3) from five drought-resistant and five drought-sensitive
materials, respectively. Integrated transcriptomic and metabolomic analyses
revealed 7,351 differentially expressed genes (DEGs) in the drought-tolerant
variety under drought treatment (5034 upregulated, 2,317 downregulated),
while the drought-sensitive variety exhibited 5,009 DEGs (3,222 upregulated,
1,787 downregulated). Metabolomic profiling identified 169 differentially
accumulated metabolites (DAMs) (120 upregulated, 49 downregulated) in 64-
22-3 and 173 DAMs (120 upregulated, 53 downregulated) in A3. KEGG
enrichment analysis showed that DEGs and DAMs in both varieties were
significantly enriched in secondary metabolite biosynthesis, flavonoid
biosynthesis, and sesquiterpenoid/triterpenoid biosynthesis. Notably, the
drought-tolerant variety displayed specific enrichment in phenylpropanoid
biosynthesis, linoleic acid metabolism, and glucosinolate biosynthesis,
suggesting their roles in drought adaptation. Weighted gene co-expression
network analysis (WGCNA) of 2,064 unique DEGs and 20 key metabolites in
the drought-tolerant variety identified blue and turquoise modules as strongly
associated with metabolite accumulation, with core hub genes Ghi_D06G05631
and Ghi_A13G12271, which encode TOPLESS-related 1 protein and CIPK6 (CBL-
interacting protein kinase 6) separately. Transcription factor (TF) analysis revealed
seven high-connectivity TF families (HSF, Golden2-like, SNF2, mTERF, bHLH,
C2H2, B3) in the blue module and six TF families (Tify, ARR-B, AUX/IAA, bHLH,
Alfin-like, LUG) in the turquoise module, suggesting their coordinated regulation
of drought responses. This study systematically elucidates the molecular network
underlying cotton’s drought adaptation, providing critical insights for identifying
key drought-resistant genes and developing resilient cultivars.
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1 Introduction

Cotton is one of the most economically significant natural fiber
crops globally (Geng et al, 2024). As the largest producer and
consumer of cotton globally, China faces significant economic
implications from potential shortages of cotton and cotton-
derived products. Current cultivation practices concentrate cotton
production in arid and semi-arid zones, rendering the crop highly
susceptible to drought stress. Emerging evidence underscores
drought as the primary abiotic constraint that impairs cotton
growth, development, yield formation, and fiber quality (Geng
et al., 2024). Addressing this challenge necessitates a systematic
exploration of drought response mechanisms at the molecular level.
By identifying candidate drought-resistant genes, characterizing key
regulatory networks, and implementing marker-assisted breeding
strategies, researchers can develop stress-tolerant cotton cultivars.
This integrative approach holds promise for alleviating genetic
resource limitations and optimizing water use efficiency in cotton
production systems (Yin et al., 2024a).

Current research has revealed that plants have evolved
sophisticated multi-level response mechanisms to cope with
drought stress, which can be systematically categorized as follows:
(1) Rapidly initiating stomatal closure and stress-related gene
expression via the ABA pathway (Yoshida et al, 2014); (2)
Synthesizing osmoprotectants like proline and betaine for cellular
turgor maintenance (Hennig, 2012); (3) Activating the antioxidant
enzyme system, including superoxide dismutase (SOD) and catalase
(CAT), to scavenge reactive oxygen species (ROS) (Ali et al., 2022);
(4) Accumulating secondary metabolites such as flavonoids and
terpenoids to enhance cell membrane stability (Jan et al., 2024).
Notwithstanding these conserved adaptive strategies, drought
responses involve intricate molecular networks, signaling
cascades, and metabolic reprogramming that exhibit substantial
interspecific and intraspecific variations. Therefore, gaining
mechanistic insights into species-specific or genotype-specific
drought responses is critical for precise identification of key
regulatory genes and development of targeted breeding strategies.

Transcriptomics is the study of the overall gene expression in a
biological organism under specific conditions. It reveals the
molecular mechanisms of gene regulatory networks and biological
processes by analyzing the types and quantities of RNA molecules,
such as mRNA, IncRNA, and miRNA. Recent advances in high-
throughput sequencing technologies have revolutionized plant
transcriptomics, enabling comprehensive investigations into
growth regulation, stress adaptation, and metabolic networks (Yin
et al., 2023). At the same time, the advancement of mass
spectrometry technology has also promoted the widespread
application of metabolomics in plant research. Metabolomics is a
technology for the quantitative analysis of all metabolites in a
biological organism. It can detect small molecules and exogenous
substances, including endogenous substances in tissues or organs
with a relative molecular mass usually less than 1000. Metabolites
represent the final products of cellular regulatory processes, serving
as the ultimate indicators of biological systems’ responses to genetic
or environmental changes (Liang et al., 2022).
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During the last few years, advancements in high-throughput
sequencing technologies have driven a paradigmatic shift in plant
drought research. Integrated transcriptomic and metabolomic
analysis offers a systematic approach to elucideate cooperative
networks between gene expression regulation and metabolite
accumulation. Firstly, transcriptomic data provide genetic-level
explanations for metabolite biosynthesis, transport, and
regulation. For instance, transcriptomic profiling may identify
upregulated expression of key enzyme-encoding genes involved in
carbohydrate metabolism, which can be correlated with
corresponding metabolite changes observed in metabolomic
datasets. This establishes direct links between gene expression
dynamics and metabolic reprogramming. Moreover, metabolomic
data can corroborate transcriptomic findings by functional
validation. When transcriptomics identifies DEGs under drought
whose functions remain elusive, metabolomic analysis may reveal
specific metabolite perturbations associated with these genes,
enabling hypotheses regarding their roles in metabolic
pathway regulation.

Integrated transcriptomic and metabolomic analyses have
revealed key molecular responses to drought in switchgrass. The
drought-tolerant Alamo genotype upregulates diterpenoid
biosynthetic genes, leading to root diterpenoid accumulation and
enhanced stress tolerance (Tiedge et al, 2022). Metabolomic
profiling demonstrated that both drought and cold stress
stimulate raffinose, trehalose-6-phosphate, proline and
monosaccharide accumulation, coupled with increased expression
of corresponding biosynthetic genes (Guo et al., 2021). Correlation
analysis between transcriptomics and metabolomics has revealed
that LOC110713661 and LOCI110738152 may be key genes for
drought tolerance in quinoa, with DEGs and metabolites being
annotated to starch and sucrose metabolism as well as flavonoid
biosynthesis pathways, indicating that these metabolic pathways are
crucial for enhancing quinoa’s drought tolerance (Huan et al,
2022). Integrated transcriptomic and metabolomic analyses
demonstrated that ZmGLK44 directly binds to and activates
tryptophan synthase TSB2, regulating the tryptophan biosynthesis
pathway in maize and playing a key role in metabolic regulation and
drought response (Zhang et al., 2021). Transcriptomic and
metabolomic profiling demonstrated that sweet potato boosts
drought resistance through the activation of antioxidant-related
genes and increased flavonoid production under drought stress (Yin
et al, 2024b). Studies demonstrate that proline, tryptophan, and
phenylalanine serve as crucial amino acids for maize drought
adaptation, with enhanced expression of tryptophan biosynthesis
genes (ZmAOI, ZmCAT1I, and ZmYUCS) significantly contributing
to drought resistance regulation (Li et al., 2024b).

WGCNA has emerged as an effective tool for identifying
functional genes by linking gene expression data with phenotypic
traits, constructing gene coexpression networks, and identifying
gene modules and hub genes closely associated with plant traits (Ma
etal,, 2024a). Through WGCNA analysis of transcriptomic data, the
hub gene GhNACO072 was identified, and subsequent functional
studies revealed that silencing GhNAC072 reduced cotton’s
tolerance to drought stress, while overexpressing this gene in
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Arabidopsis enhanced its drought tolerance (Mehari et al., 2021).
WGCNA analysis identified 851 core drought-resistant genes in
XZSN (the drought-resistant genotype of Tartary buckwheat), most
of which were induced earlier and more rapidly by drought stress
compared to genes in LK3 (the drought-sensitive genotype of
Tartary buckwheat) (Meng et al., 2022). WGCNA analysis
identified 22 distinct co-expression modules, among which the
deep blue module exhibited the strongest positive association with
drought tolerance characteristics. Further analysis identified twenty
potential hub genes, including g47370 (AFP2), g14296 (CDKF), and
g60091 (SPBC2A9), which were found to be potentially associated
with drought resistance regulation in sweet potato (Zong et al,
2023). WGCNA revealed MsC3H29c as a key drought-responsive
gene: its overexpression increased primary root length and biomass
in Medicago sativa, whereas RNAi silencing reduced these traits
(Dong et al., 2024).

With ongoing advances in cotton molecular biology and
functional genomics, researchers have uncovered key molecular
pathways involved in drought response and identified several
drought-tolerant genes. Nevertheless, the comparative analysis of
adaptive mechanisms among different drought-resistant cotton
genotypes remains to be fully elucidated. For example: (1)
Systematic comparison of gene expression and metabolite
dynamics under drought stress in different drought-resistant
varieties is insufficient; (2) The association network between
variety-specific differential genes and metabolites is not clear; (3)
The key regulatory modules and hub genes that confer high drought
resistance to varieties have not been fully mined. At the same time,
traditional WGCNA mostly relies on morphological or
physiological phenotypes (such as plant height, MDA, proline
content, SOD activity, etc.) for module selection (Tang et al,
2023; Wang et al, 2024a). There is a lack of research on the
correlation analysis between metabolomic data and gene
expression modules.

In this study, upland cotton variety 64-22-3 with strong
drought resistance and drought-sensitive variety A3 were used as
materials. Integrated transcriptomic and metabolomic analysis was
used to systematically compare the DEGs and DAMs of 64-22-3
and A3 in the control and drought groups. KEGG analysis showed
that Phenylpropanoid biosynthesis, Linoleic acid metabolism, and
Glucosinolate biosynthesis were specifically and significantly
enriched in the drought-resistant variety. We further conducted
WGCNA analysis on drought-specific DEGs and DAMs in the
drought-resistant cultivar 64-22-3 under water deficit conditions.
This identified two co-expression modules that exhibited strong
positive correlations with the unique accumulation of drought-
responsive metabolites in cultivar 64-22-3, with genes
Ghi_D06G05631 and Ghi_A13G12271 serving as hub genes for
these respective modules, which encodes TOPLESS-related 1
protein and CIPK6 (CBL-interacting protein kinase 6) separately.
These genes may be key factors that confer stronger stress
adaptation capabilities to drought-resistant varieties. The study
advances our understanding of drought resistance mechanisms in
cotton and reveals candidate genes for breeding enhanced tolerance.

Frontiers in Plant Science

10.3389/fpls.2025.1610552

2 Materials and methods
2.1 Experimental materials

Plant materials included ten cotton accessions provided by the
National Medium-term Gene Bank of Cotton in China and the
National Cotton Germplasm Resources Platform. This included
drought-sensitive varieties such as Fandimian (Fd), Zhong 6429
(Z6429), Anmian 1 (A1), Anmian 3 (A3), and Wanmian 3 (W3); as
well as drought-resistant materials including Zhong 833 (Z833),
Dongfeng 4 (D4), Xinmian 291 (X291), Changde 184 (C184), and
64-22-3.

Initially, cotton seeds were subjected to sulfuric acid defuzzing
treatment, followed by drying. Seeds that were plump and had a
darker color were selected and soaked in 15% sodium hypochlorite-
based solution for 15 minutes, then thoroughly washed with sterile
water. Subsequently, the seeds were soaked in the dark at 25°C for
12 hours and then transferred to a germination environment with a
temperature of 25°C and a 12-hour photoperiod for 24-36 hours.
Seeds with consistent radicle lengths were chosen for planting. At
the one-leaf-one-heart stage, uniform healthy cotton seedlings were
chosen, secured with sponges, and transplanted to pots filled with
half-strength Hoagland solution for hydroponic growth. The
nutrient solution was renewed with fresh half-strength Hoagland
solution every 3-4 days.

2.2 Drought treatment

For hydroponic cultivation, 10%, 15%, and 20% PEG6000
solutions were initially prepared to pre-treat the cotton materials.
Based on the observed phenotypic responses of the cotton plants, a
15% PEG6000 solution was selected to simulate the drought stress
environment. When the cotton seedlings reached the two-leaf-one-
heart stage, 15% PEG6000 solution was added to the culture
medium to initiate the stress treatment. The wilting degree and
survival status of the cotton plants were observed and photographed
at Oh, 3h, 6h, 12h, 24h, and 36h post-treatment.

For soil cultivation, 3-week-old cotton plants with consistent
growth status were selected for both the control and drought
groups. Before drought treatment, pots with equal amounts of soil
were watered quantitatively. Subsequently, natural drought
treatment was applied. Once distinct phenotypic differences
emerged between the control and drought groups, immediate
photographic records were taken.

2.3 Measurement of indicators

Cotton plants were subjected to simulated drought stress using
a 15% PEG6000 solution. The wilting degree and survival status of
the plants were monitored at Oh, 3h, 6h, 12h, 24h, and 36h post-
treatment. After the 36h treatment, the relative water content,
maximum photochemical efficiency of photosystem II (Fv/Fm),
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and root-shoot ratio of the cotton plants were measured. Three
cotton seedlings were used as one biological replicate for
these measurements.

The degree of drought stress on cotton plants was assessed using
the absolute soil water content (ASWC), calculated as follows:
ASWC (%) = [(Pre-drought total weight of the soil-pot system) -
(dry weight of mixed nutrient soil + pot weight))/dry weight of
mixed nutrient soil] x 100%. When the ASWC reached
approximately 10%, the plants were considered to be under
moderate drought stress. Once the cotton plants reached this
moderate drought level, samples were collected to measure
physiological indicators such as peroxidase (POD), superoxide
dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and
proline (Pro). These measurements were conducted using reagent
kits from Suzhou Greiss Biotechnology Co., Ltd., following the
operational procedures outlined in the kit instructions.

2.4 Experimental workflow (RNA-seq
analysis)

Total RNA isolated from cotton leaves was reverse transcribed
for cDNA library preparation. The libraries were sequenced using
Illumina HiSeq2000, generating raw sequencing data that
underwent quality control to yield high-quality reads. These reads
were mapped to the Gossypium hirsutum reference genome (TM-
1_WHU) with TopHat2, followed by transcript assembly using
StringTie. Functional annotation was performed through BLAST
searches against NR, Swiss-Prot, GO, COG, KOG, and KEGG
databases. Gene expression levels were quantified with RSEM,
and differential expression analysis was performed using DESeq2
(R package) with thresholds of fold change (FC) = 2 and False
Discovery Rate (FDR) < 0.05. DEGs were mapped to GO terms and
KEGG pathways, followed by hypergeometric tests to determine
significantly enriched functional categories and metabolic/signaling
pathways relative to the genomic background.

2.5 Metabolomic analysis

Leaf samples (100 mg) were cryogenically ground in liquid
nitrogen and extracted with 500 pL 80% methanol/water (v/v).
Following vortexing and 5 min incubation on ice, centrifugation
was performed at 15,000g (4°C, 20 min). The supernatant was
diluted to 53% methanol with LC-MS grade water, centrifuged
again under the same conditions, and analyzed by LC-MS. Raw data
were converted to mzXML format (ProteoWizard) and processed
using XCMS (10 ppm mass tolerance) for feature detection,
retention time alignment, and area normalization. Metabolite
identification was achieved by matching MS2 spectra against
reference databases (e.g, HMDB, MassBank), with background
subtraction using blank samples. Data normalization was
performed prior to statistical analysis, and all computational
workflows were implemented on CentOS 6.6 using R/Python
scripts. DAMs were identified through integrated multivariate
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(OPLS-DA) and univariate (Student’s t-test) analyses. Metabolites
meeting dual criteria (VIP 21 from OPLS-DA and p<0.05 from t-
tests) were considered significant. These DAMs were then
annotated against the KEGG database, with pathway enrichment
assessed via hypergeometric testing relative to the complete
metabolic background.

2.6 Integrated transcriptomic and
metabolomic analysis using WGCNA

Weighted Gene Co-expression Network Analysis (WGCNA)
was employed to systematically integrate transcriptomic and
metabolomic data. Co-expression modules of genes were
identified, and key modules were selected based on their
correlation strengths with phenotypic traits. Hub genes and key
transcription factors (TFs) within these modules were identified
based on intramodular connectivity for subsequent analysis. A gene
interaction network was constructed using Cytoscape software to
visualize the co-expression relationships between hub genes, key
TFs, and other correlated genes.

3 Results
3.1 Drought-resistant variety screening

In this study, a 15% PEG6000 solution was utilized to simulate
drought stress conditions for treating cotton seedlings. Phenotypic
observations revealed that after 36 hours of stress treatment, four
varieties—Fd (Fandi Cotton), A1 (Anmian 1), A3 (Anmian 3), and
W3 (Wanmian 3)—exhibited significant wilting and dehydration.
In comparison, three lines—Z833 (Zhong 833), C184 (Changde
184), and 64-22-3 —maintained relatively good growth conditions
(Supplementary Figure 1). Based on these phenotypic differences,
seven typical materials were ultimately selected for further analysis:
four drought-sensitive varieties (sensitive group) and three
drought-resistant varieties (resistant group). The sensitive group
included Fd, A1, A3, and W3, while the resistant group comprised
7833, C184, and 64-22-3.

To further validate the results of the initial experiment and to
identify the most drought-resistant and drought-sensitive varieties,
a re-screening experiment was conducted using a 15% PEG6000
solution to simulate drought stress. The results indicated that under
normal watering conditions, there were no significant differences in
growth indices and physiological characteristics among the different
lines. However, after drought stress treatment, significant
differences in stress resistance were observed among the varieties
(Figure 1A). Specifically, A3 exhibited severe wilting and even plant
death after 36 hours of stress, resulting in a survival rate of only
16.3%. In comparison 64-22-3 demonstrated strong drought
resistance, with a survival rate of 80% and relatively intact plant
morphology (Figure 1B). Physiological assessments confirmed
varietal differences in drought tolerance. While all genotypes
showed reduced leaf RWC under water deficit, the drought-
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FIGURE 1

Phenotypic and physiological characterization of different cotton cultivars under normal irrigation (CK) and drought stress conditions(Drought).
Asterisks (*) indicate significant differences (p < 0.05) between drought-treated and control groups within each cultivar. (A) Phenotypic responses of
cotton cultivars to PEG6000-simulated drought stress; (B) Survival rates of different cotton cultivars under drought stress; (C) Leaf relative water
content (RWC) of cotton cultivars under normal irrigation and drought treatment; (D) Maximum quantum yield of PSIl photochemistry (Fv/Fm) in
cotton cultivars under both conditions; (E) Root-to-shoot ratio of cotton cultivars under normal irrigation and drought stress.

resistant 64-22-3 exhibited a smaller decline (11%) compared to the ~ (Figure 1D). Additionally, analysis of the root-to-shoot ratio
sensitive A3 (26%) (Figure 1C). Similarly, chlorophyll fluorescence  indicated that drought stress enhanced root development in all
analysis revealed that 64-22-3 maintained higher Fv/Fm values lines, with 64-22-3 showing a significantly greater increase in root-
(3.2% reduction) than A3 (9.9% decrease) following drought stress  to-shoot ratio (39%) compared to A3 (11%). This suggests that 64-
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22-3 has enhanced water acquisition ability through root system
restructuring (Figure 1E). Based on a comprehensive analysis of
phenotypic and physiological indices, A3 was ultimately
determined to be a typical drought-sensitive variety, while 64-22—
3 was identified as a highly drought-resistant variety. These two
varieties, representing an extreme contrast in stress resistance
phenotypes, provide ideal material for subsequent studies on
drought resistance mechanisms.

Following screening of materials with contrasting phenotypes,
the drought-sensitive A3 and drought-tolerant 64-22-3 varieties
were selected for soil-based drought experiments. At the two-leaf-
one-heart stage, plants were subjected to water deficit while controls
received normal irrigation. After 10 days of treatment, A3 displayed
severe leaf wilting compared to the mild symptoms observed in 64-
22-3 (Figure 2A). Post-drought analysis revealed significantly
greater leaf RWC in 64-22-3 compared to A3 (p<0.05),
confirming its superior drought tolerance (Figure 2B). The
accumulation of proline (Pro) in the leaves of 64-22-3 was
significantly higher than that in A3, suggesting a stronger osmotic
regulation ability (Figure 2C). Moreover, the malondialdehyde
(MDA) content in A3 was significantly higher than that in 64-22-
3, indicating more severe lipid peroxidation damage to the cell
membranes (Figure 2D). Analysis of the antioxidant enzyme system
revealed that the activities of catalase (CAT), superoxide dismutase
(SOD), and peroxidase (POD) in 64-22-3 were all significantly
higher than those in A3, confirming that 64-22-3 maintained
cellular homeostasis by enhancing its ability to scavenge reactive
oxygen species (Figures 2E-G). Furthermore, transcriptomic analysis
indicated that under drought conditions, the drought-resistant
cultivar 64-22-3 exhibited significantly upregulated expression of
multiple antioxidant enzyme-related genes, including Peroxidase
(PRX), peroxidase(POD), Superoxide Dismutase(SOD), Ascorbate
Peroxidase(APX), compared to cultivar A3 (Supplementary
Figure 2). This suggests a more robust antioxidant response
mechanism, which may be closely associated with enhanced
drought resistance in cotton. Collectively, these results suggest that
cultivar 64-22-3 enhances drought tolerance through synergistic
strategies involving osmoprotectant accumulation, alleviation of
membrane damage, and strengthening of antioxidant
enzyme activity.

3.2 Transcriptomic sequencing analysis

To further investigate the molecular mechanisms underlying
the drought stress response in cotton varieties 64-22-3 and A3, we
conducted transcriptomic sequencing on the leaves of these plants
under both normal irrigation and drought treatment conditions.
Quality analysis of the sequencing data revealed Q30 values ranging
from 93.54% to 95.09%, with GC content between 42.77% and
44.33%. (Supplementary Table S1). These results demonstrate that
we obtained high-quality transcriptomic data suitable for
further analysis.
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3.3 Identification and analysis of
differentially expressed genes

To elucidate transcriptional responses to drought across varieties
with differential resistance, we identified DEGs (p<0.05, |log2FC|>1).
Comparative analysis revealed 7,351 significantly altered genes in the
drought-tolerant 64-22-3 cultivar under water deficit versus well-
watered conditions, with 5,034 genes upregulated and 2,317 genes
downregulated (Figure 3A). In comparison, the drought-sensitive
variety A3 showed significant changes in the expression of 5,009
genes under drought stress, with 3,222 genes upregulated and 1,787
genes downregulated (Figure 3B). We found that the drought-
resistant variety 64-22-3 had a significantly higher number of
DEGs compared to the drought-sensitive variety A3 under drought
treatment conditions. This suggests that the drought-resistant variety
64-22-3 is capable of mobilizing a greater number of genes to
participate in the drought stress response. Additionally, we
observed that a higher proportion of DEGs in the drought-resistant
variety were upregulated, accounting for 68% of the total DEGs,
compared to 64% in the drought-sensitive variety. This may indicate
that the drought-resistant variety enhances its drought tolerance by
upregulating a larger number of genes.

3.4 Gene ontology enrichment analysis
reveals divergent drought response
mechanisms in cotton varieties

GO enrichment analysis of DEGs highlighted distinct functional
patterns between drought-resistant (64-22-3) and drought-sensitive
(A3) cotton varieties. Cellular component analysis revealed
significant enrichment of DEGs in chromosomal and cytoskeletal
organization pathways within the drought-resistant line (e.g.,
FANCM-MHF complex, nucleosome, mitotic spindle midzone),
whereas sensitive-line DEGs enriched membrane-related terms
(e.g., apoplast, chloroplast envelope) (Supplementary Figures 3A,
B). For molecular function, resistant-line DEGs showed strong
involvement in microtubule binding and ATP-dependent kinase
activities (e.g., protein kinase, phosphotransferase), while sensitive-
line DEGs were linked to oxidoreductase and glycosyl/phosphoryl
transferase activities (Supplementary Figures 3C, D). Biological
process analysis revealed that resistant-line DEGs primarily
participated in microtubule-based movement, cell cycle regulation,
and DNA replication, suggesting active cellular restructuring under
stress (Figure 4A). In comparison, sensitive-line DEGs were enriched
in polysaccharide metabolism, redox processes, and transcriptional
regulation. Strikingly, both varieties shared enrichment in
phosphorylation-related processes, underscoring their conserved
role in drought response (Figure 4B). The resistant variety’s unique
engagement of cytoskeletal and cell-cycle pathways (e.g., microtubule
motor activity, chromosome localization) implies a potential
mechanistic basis for enhanced drought tolerance, aligning with
established roles of cytoskeletal dynamics in stress adaptation.
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Phenotypic and physiological characterization of cotton under normal irrigation and drought conditions. Different lowercase letters indicate
significant differences among treatment groups at p < 0.05 level. (A) Phenotypic comparison between normally irrigated and drought-stressed
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Volcano plots of differentially expressed genes (DEGs) between drought-stressed and well-watered conditions in drought-tolerant cultivar 64-22-3
and drought-sensitive cultivar A3. The x-axis represents log2(FC) of gene expression between two groups, while the y-axis shows -logl0(FDR)
values. Red dots indicate significantly upregulated genes (Drought vs CK, FDR < 0.05 and log2(FC) > 1), blue dots represent significantly
downregulated genes (FDR < 0.05 and log2(FC) < -1), and black dots denote non-significant genes. (A) DEG volcano plot for drought-tolerant

cultivar 64-22-3; (B) DEG volcano plot for drought-sensitive cultivar A3.

3.5 Metabolomic sequencing of 64-22-3
and A3 under drought stress

To compare drought-responsive metabolic networks between
cotton cultivars 64-22-3 and A3, we performed LC-MS/MS-
based untargeted metabolomics on leaf samples under water
deficit conditions. Quality assessment revealed excellent
chromatographic stability in the total ion current (TIC) profiles
of QC samples, while principal component analysis (PCA)
showed that biological replicates clustered closely within each
group, with clear separation between distinct sample groups

(Supplementary Figure 4). A total of 1,500 metabolites were
identified across all samples. These metabolites included:
Alkaloids and derivatives (37), Benzenoids (164), Hydrocarbon
derivatives (3), Hydrocarbons (6), Lignans, neolignans, and
related compounds (19), Lipids and lipid-like molecules (454),
Nucleosides, nucleotides, and analogues (13), Organic acids and
derivatives (183), Organic nitrogen compounds (21), Organic
oxygen compounds (94), Organohalogen compounds (1),
Organoheterocyclic compounds (286), and Phenylpropanoids
and polyketides (202), Acetylides(1),0Organohalogen compounds

(1,0

rganosufur compounds(5).
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3.6 Identification of differential metabolites

To explore the changes in metabolites during drought stress, we
established criteria for differentially accumulated metabolites
(DAMs) as VIP > 1 and P-value < 0.05. Under drought stress
conditions, we identified 169 DAMs in the 64-22-3 variety (120
upregulated and 49 downregulated) (Figure 5A), while 173 DAMs
were identified in the A3 variety (120 upregulated and 53
downregulated) (Figure 5B).

3.7 KEGG co-enrichment analysis unveils
metabolome-transcriptome linkage
patterns

Pathway enrichment analysis of the DEGs revealed that in the
64-22-3 variety, the significantly enriched pathways included
biosynthesis of secondary metabolites, plant hormone signal
transduction, DNA replication, flavonoid biosynthesis, MAPK
signaling pathway, alpha-linolenic acid metabolism, circadian
rhythm in plants, sesquiterpenoid and triterpenoid biosynthesis,
glutathione metabolism, selenocompound metabolism, cysteine and
methionine metabolism, galactose metabolism, phenylpropanoid
biosynthesis, alanine, aspartate, and glutamate metabolism, plant-
pathogen interaction, starch and sucrose metabolism, biosynthesis
of amino acids, and linoleic acid metabolism (Figure 6A). In
comparison, the DEGs of the A3 variety were mainly enriched in
the following pathways: photosynthesis - antenna proteins,
biosynthesis of secondary metabolites, flavonoid biosynthesis,
MAPK signaling pathway in plants, plant hormone signal
transduction, plant-pathogen interaction, circadian rhythm in
plants, porphyrin and chlorophyll metabolism, sesquiterpenoid
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and triterpenoid biosynthesis, starch and sucrose metabolism,
galactose metabolism, phosphatidylinositol signaling system,
glucosinolate biosynthesis, amino sugar and nucleotide sugar
metabolism, and carbon fixation in photosynthetic organisms
(Figure 6B). The KEGG pathways that were significantly enriched
in the DEGs of both the drought-resistant and drought-sensitive
varieties included the biosynthesis of secondary metabolites,
flavonoid biosynthesis, plant hormone signal transduction, MAPK
signaling pathway, plant-pathogen interaction, circadian rhythm in
plants, sesquiterpenoid and triterpenoid biosynthesis, starch and
sucrose metabolism, and galactose metabolism. These metabolic
pathways represent evolutionarily conserved components of
cotton’s drought response. Notably, the tolerant variety 64-22-3
showed distinct DEG enrichment in multiple pathways including:
o-linolenic acid metabolism, glutathione cycling, selenocompound
processing, sulfur amino acid metabolism, phenylpropanoid
biosynthesis, nitrogenous amino acid metabolism, amino acid
biosynthesis, and linoleic acid metabolism, potentially
contributing to its enhanced drought adaptation.

KEGG pathway enrichment analysis was performed on the
DAMs identified within the drought-resistant cultivar 64-22-3 and
within the drought-sensitive cultivar A3, respectively. Under drought
stress, the DAMs that accumulated in the drought-resistant variety
64-22-3 were significantly enriched in the following pathways:
biosynthesis of phenylpropanoids, aminoacyl-tRNA biosynthesis,
nucleotide metabolism, arginine and proline metabolism, flavonoid
biosynthesis, phenylalanine metabolism, 2-oxocarboxylic acid
metabolism, sesquiterpenoid and triterpenoid biosynthesis, D-
amino acid metabolism, linoleic acid metabolism, C5-branched
dibasic acid metabolism, biosynthesis of secondary metabolites, and
the biosynthesis of phenylalanine, tyrosine, and tryptophan, as well as
lysine biosynthesis (Figure 6C). In comparison, the DAMs in the A3
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Volcano plots of differential metabolites between drought-stressed and well-watered conditions in drought-tolerant cultivar 64-22-3 and drought-
sensitive cultivar A3. The x-axis represents log2(FC) of metabolite abundance between comparison groups, while the y-axis shows -log10-
transformed p-values. The dashed horizontal line indicates the p-value threshold for screening differential metabolites. Red dots denote significantly
upregulated metabolites (VIP > 1 and p < 0.05 with FC > 1), blue dots represent significantly downregulated metabolites (VIP > 1 and P < 0.05 with
FC < -1), and dot size corresponds to VIP value magnitude. (A) Differential metabolite volcano plot for drought-tolerant cultivar 64-22-3;

(B) Differential metabolite volcano plot for drought-sensitive cultivar A3.
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KEGG enrichment analysis of DEGs and DAMs between drought-stressed and well-watered conditions in drought-tolerant cultivar 64-22-3 and
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in drought-sensitive cultivar A3.

variety showed significant enrichment in pathways such as amino
acid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis,
aminoacyl-tRNA biosynthesis, flavonoid biosynthesis, plant
hormone biosynthesis, plant secondary metabolite biosynthesis,
phenylalanine/tyrosine/tryptophan biosynthesis, and terpenoid/
steroid biosynthesis, cyanoamino acid metabolism, D-amino acid
metabolism, alpha-linolenic acid metabolism, nucleotide metabolism,
cutin, suberine, and wax biosynthesis, valine, leucine, and isoleucine
biosynthesis, pyruvate metabolism, butanoate metabolism, and
indole alkaloid biosynthesis (Figure 6D). We found that the KEGG
pathways significantly enriched in the DAMs of both the drought-
resistant and drought-sensitive varieties included 2-oxocarboxylic
acid metabolism, sesquiterpenoid and triterpenoid biosynthesis,
aminoacyl-tRNA biosynthesis, lysine biosynthesis, flavonoid
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biosynthesis, biosynthesis of plant secondary metabolites, arginine
and proline metabolism, and phenylalanine, tyrosine, and tryptophan
biosynthesis, along with D-amino acid metabolism and nucleotide
metabolism (Figures 6C, D). These metabolic pathways represent
conserved components of cotton’s drought response. The drought-
tolerant cultivar 64-22-3 showed specific accumulation of DAMs in
seven key pathways: 2-oxocarboxylic acid metabolism,
sesquiterpenoid/triterpenoid biosynthesis, lysine production,
flavonoid formation, arginine/proline cycling, aromatic amino acid
biosynthesis, and nucleotide metabolism (Figure 6C).

Integrated transcriptomic and metabolomic analyses revealed
significant co-enrichment in the resistant cultivar 64-22-3 for
secondary metabolism, flavonoid biosynthesis, o-linolenic acid
metabolism, sesquiterpenoid/triterpenoid biosynthesis,
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phenylpropanoid biosynthesis, linoleic acid metabolism, and
glucosinolate biosynthesis (Figures 6A, C). In comparison, the DEGs
and DAMs in the A3 variety showed significant enrichment in
pathways including amino acid biosynthesis, sesquiterpenoid and
triterpenoid biosynthesis, aminoacyl-tRNA biosynthesis, flavonoid
biosynthesis, plant hormone biosynthesis, plant secondary metabolite
biosynthesis, phenylalanine/tyrosine/tryptophan biosynthesis, and
terpenoid/steroid biosynthesis (Figures 6B, D).

DEGs and DAMs in both cultivars were predominantly
enriched in secondary metabolite biosynthesis, flavonoid
biosynthesis, and sesquiterpenoid and triterpenoid biosynthesis
(Figures 6A-D). Notably, the drought-resistant cultivar 64-22-3
exhibited specific DEGs and DAMs primarily involved in
phenylpropanoid biosynthesis, linoleic acid metabolism, and
glucosinolate biosynthesis. By constructing interaction networks
between DEGs and DAMs within these pathways, we identified: 67
key genes (23 upregulated, 44 downregulated) and 4 metabolites (2
upregulated, 2 downregulated) in the phenylpropanoid biosynthesis
pathway (Supplementary Figure 5); 10 key genes (all upregulated)
and 4 metabolites (1 upregulated, 3 downregulated) in the linoleic
acid metabolism pathway (Supplementary Figure 6); 9 key genes (6
upregulated, 3 downregulated) and 3 metabolites (all upregulated)
in the glucosinolate biosynthesis pathway (Supplementary
Figure 7). These findings provide novel insights into the
molecular mechanisms underlying drought resistance in cotton
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and highlight potential target genes and metabolic markers for
drought-resistant breeding.

3.8 Identification of key co-expression
modules with hub genes and
transcriptional regulators associated with
drought resistance by WGCNA

To further explore the molecular mechanisms underlying the
enhanced drought resistance of the cotton variety 64-22-3, we
performed differential expression and metabolite analysis between
the two cotton varieties under both drought and normal irrigation
conditions. A total of 1,714 DEGs, including 1,076 upregulated and
638 downregulated, were identified between the control groups of
64-22-3 and A3 (Supplementary Figure 8A). In addition, we found
10,971 DEGs (6,577 upregulated and 4,394 downregulated) between
the drought-treated groups of 64-22-3 and A3 (Supplementary
Figure 8B). Similarly, 173 DAMs (96 upregulated and 83
downregulated) were identified between the control groups
(Supplementary Figure 8C), while 230 DAMs (123 upregulated
and 107 downregulated) were detected between the drought-treated
groups (Supplementary Figure 8D). Based on Venn diagram
analysis, we screened out 2,064 genes and 20 metabolites that
exhibited variety-specific differential expression and accumulation
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in 64-22-3 under drought stress compared to normal water
conditions (Figures 7A, B). These findings suggest that these
genes may regulate the accumulation of the 20 secondary
metabolites, thereby contributing to the drought response of the
drought-resistant variety and enhancing its drought resistance.

To systematically identify the gene regulatory networks that
confer key drought resistance to the drought-resistant variety, we
employed WGCNA in this study. A co-expression network was
constructed based on the expression profiles of 2,064 variety-
specific DEGs across 12 samples, and the quantitative data of 20
variety-specific DAMs were utilized as trait matrices for correlation
analysis. The results indicated that two co-expression modules
significantly associated with metabolites—the turquoise and blue
modules—were identified (Figure 7C). Module eigengenes
exhibited a strong correlation with metabolite accumulation levels
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(Figure 7D). Module-trait association analysis revealed that the blue
and turquoise modules were closely related to the accumulation of
the 20 metabolites, including benzenoids (4), lipids and lipid-like
molecules (11), organic acids and derivatives (2), organic oxygen
compounds (1), and phenylpropanoids and polyketides (2). These
findings suggest that these modules may play important roles in the
drought response of the drought-resistant variety.

To further elucidate the key genes that confer enhanced drought
resistance to the drought-resistant variety, we identified hub genes
based on intramodular connectivity, module membership and gene
significance. In the blue module, the core gene identified was
Ghi_D06G05631 (Module membership = 0.99), which encodes a
TOPLESS-related 1 (TOPLESS) protein (Figure 8A). In the
turquoise module, the hub gene was Ghi_A13G12271 (Module
membership = -0.99), annotated as CIPK6 (CBL-interacting
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module, with lines representing the expression correlation between the hub gene and other genes. (C) Highly connected transcription factors (TFs)
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transcription factors (TFs) in the turquoise module, with lines indicating the expression correlation between transcription factors and other genes.

Frontiers in Plant Science

12

frontiersin.org


https://doi.org/10.3389/fpls.2025.1610552
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Han et al.

protein kinase 6) (Figure 8B). qPCR validation of Ghi_D06G05631
and Ghi_A13G12271 revealed no significant differences in
expression between well-watered and drought-treated samples
in cultivar A3, whereas both genes exhibited significant
expression changes under drought stress in the drought-tolerant
line 64-22-3, which aligns with transcriptome profiling data
(Supplementary Figure 10).

Further analysis revealed that the blue module contained seven
classes of transcription factors with high connectivity, including
HSF, Golden2-like, SNF2, mTERF, bHLH, C2H2, and B3
(Figure 8C). The turquoise module included six classes of highly
connected transcription factors, mainly comprising Tify, ARR-B,
AUX/TAA, bHLH, Alfin-like, and LUG (Figure 8D). These findings
indicate that the blue and turquoise modules likely represent core
regulatory networks maintaining drought resistance in cultivar 64-
22-3. The genes Ghi_D06G05631, Ghi_A13G12271, and the
aforementioned transcription factors are likely key players in
conferring enhanced drought resistance to this variety.

4 Discussion

Drought stress impairs plant growth, triggering complex
regulatory mechanisms for adaptation to arid conditions (He
et al., 2024). Phenotypic and physiological assessments
distinguished variety 64-22-3 as a drought-tolerant genotype and
variety A3 as a drought-sensitive one, forming a suitable pair for
comparative investigations. Further, a combined metabolomic and
transcriptomic analysis strategy was employed to systematically
elucidate the molecular regulatory networks underlying the
response to drought stress in two cotton varieties (Gossypium
hirsutum L.) with significant differences in drought tolerance and
to reveal their variety-specific differences. WGCNA identified core
gene modules exhibiting strong positive correlations with drought
resistance, along with key hub genes and stress-responsive
transcription factors. These results enhance our mechanistic
understanding of cotton’s drought adaptation while offering novel
candidate targets for breeding drought-tolerant cultivars.

Drought stress induces excessive reactive oxygen species (ROS)
accumulation in plants, potentially causing oxidative cellular damage
(Sato et al., 2024). To enhance their resistance to oxidative damage,
plants have evolved a ROS scavenging system that includes enzymes
such as SOD, POD, and CAT (Wang et al, 2025¢). Under well-
watered conditions, no significant differences in CAT, SOD, and
POD activities were observed between cultivars 64-22-3 and A3.
However, drought stress significantly elevated these enzymatic
activities in the tolerant 64-22-3 compared to the sensitive A3.
Transcriptomic analysis further demonstrated higher expression
levels of multiple antioxidant genes (PRX, POD, SOD, APX) in
drought-stressed 64-22-3 relative to stressed A3 (Supplementary
Figure 9). These results demonstrate that the drought-tolerant 64-
22-3 cultivar enhances ROS scavenging capacity through elevated
antioxidant enzyme activity, mitigating oxidative cellular damage.

To further explore the differences in the molecular mechanisms
underlying the response to drought stress between the drought-
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resistant variety 64-22-3 and the drought-sensitive variety A3, we
conducted a combined transcriptomic and metabolomic analysis.
Previous studies have demonstrated that the integration of
transcriptomic and metabolomic approaches has become an
effective means of elucidating the molecular mechanisms of plant
responses to drought stress and identifying important drought-
resistant genes (Zhu et al., 2024). The combined analysis revealed
that Agropyron mongolicum primarily enhances its tolerance to
drought stress through proline metabolism and the pentose
phosphate pathway (Ma et al., 2024b). Integrated omics analysis
demonstrated that drought stress induces resistance in soybean
through P5CS and PAO gene upregulation, leading to increased
proline and spermidine accumulation (Wang et al., 2024b).
Drought-resistant goji (Lycium barbarum) enhances cuticular wax
accumulation by upregulating key wax biosynthesis genes (e.g.,
LbaWSD1 and LbaCER1) and transcription factors (e.g., LbaM'YB3)
under drought stress, leading to increased levels of wax components
such as alcohols (C16), fatty acids (C19), and alkanes (C31 and
C33). Consequently, it exhibits higher wax content and stronger
drought tolerance compared to drought-sensitive varieties (Wang
et al., 2024¢). We found that both the DAMs and DEGs in the two
varieties are enriched in the biosynthesis of secondary metabolites,
flavonoid biosynthesis, and the biosynthesis pathways of
sesquiterpenoids and triterpenoids (Figures 6A-D). Since
flavonoids, sesquiterpenes, and triterpenes are all classified as
secondary metabolites, this indicates that the biosynthesis
pathways of secondary metabolites play a significant and
conserved role in cotton’s response to drought stress (Baozhu
et al., 2022). Existing research has demonstrated that PFG3
contributes significantly to drought adaptation and osmotic stress
resistance through its regulatory function in flavonoid biosynthesis
pathways. Drought stress triggers significant activation of flavonoid
pathway genes in hybrid poplar, resulting in enhanced
accumulation of phenolic and flavonoid compounds possessing
antioxidant properties (Ahmed et al, 2021). Drought stress can
also stimulate the biosynthesis pathways of terpenoid skeletons and
triterpenoid compounds, thereby enhancing the synthesis of
saikosaponins and improving plant drought resistance (Yang
et al., 2021). Both our study and previous research have
demonstrated that flavonoids, sesquiterpenes, and triterpenoids as
secondary metabolites play a vital role in maintaining plant
drought resistance.

Comparative analysis further demonstrated that drought-
resistant cotton varieties show pronounced enrichment of DEGs
and DAMs in phenylpropanoid biosynthesis, linoleic acid
metabolism, and glucosinolate biosynthesis pathways (Figure 6).
Specifically, exogenous application of tea polyphenols (a group of
phenylpropanoid-derived compounds) significantly alleviated
drought-induced damage in tea plants by activating the
phenylpropanoid biosynthesis pathway (Sato et al, 2024). The
OsGRP3 gene in rice enhances drought resistance by regulating
the phenylpropanoid biosynthesis pathway to promote lignin
accumulation (Xu et al, 2022), which aligns with the pathway
enrichment trends observed in this study. Drought stress can affect
the fatty acid content in sunflowers (Ghaffari et al., 2023).
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Metabolomic analysis indicates that the linoleic acid metabolism
pathway plays a role in the drought response of Hibiscus mutabilis
(Zhang et al,, 2024). Transcriptomic-proteomic data further
demonstrated that 9-lipoxygenase, a key enzyme in the linoleic
acid metabolism pathway, is upregulated at both transcriptional and
translational levels under drought stress (Kim et al., 2024).
Additionally, biohormones can improve broccoli’s drought
tolerance by elevating glucosinolate levels (Montesinos et al.,
2024). Allyl isothiocyanate (AITC), a hydrolysis product of
glucosinolates, mitigates drought-induced growth inhibition in
cabbage by modulating glucosinolate metabolism and inducing
stomatal closure (Huang et al., 2024). Our findings further
support the critical involvement of the phenylpropanoid
biosynthesis, linoleic acid metabolism, and glucosinolate
biosynthesis pathways in drought stress responses.

To further analyze the molecular mechanisms underlying the
stronger drought resistance of drought-resistant variety 64-22-3, this
study employed Venn diagram analysis and found that a total of 2064
genes and 20 metabolites exhibited significant differences in
expression and accumulation between the drought treatment group
and the control group in the drought-resistant variety 64-22-3. This
suggests that these genes may enhance drought resistance by
regulating the accumulation changes of these 20 metabolites.
Notably, among these 20 metabolites, 9 showed more than a
twofold increase in accumulation in the 64-22-3 line compared to
the normal watering group, indicating their potential importance in
the drought resistance mechanism. Analysis of key metabolites
revealed that the accumulation of the isoflavonoid 2’-
Hydroxygenistein 7-O-(6"-malonylglucoside) was upregulated
44.67 times in the drought treatment group compared to the
normal watering group. Under drought stress, it has been found
that isoflavonoid accumulation can promote the reproductive growth
phase of Iris to some extent (Ai et al, 2024). Additionally, a
significant increase in isoflavonoid compounds in the roots was
observed under drought conditions (Trush and Pal’ove-Balang,
2023). Our study found that isoflavonoid compounds significantly
increased under drought stress, which is highly consistent with
previous research results and further validates the important role of
isoflavonoids in plant responses to drought. It was observed that the
accumulation of the organooxygen compound Arnebinol was
upregulated 4.7 times, and previous studies have shown that
Arnebinol D can inhibit the production of aflatoxins in Aspergillus
flavus (Madarshahi et al., 2022). Current studies report an association
between Arnebinol and biotic stress. However, we found that its
content was significantly upregulated under drought stress,
suggesting its potential role in abiotic stress responses as well.
Additionally, the accumulation of the steroid and steroid derivative
6-Desacetylscilliroside increased by 3.79 times, a finding that
resonates with existing research. Under drought stress, it was
demonstrated that treatment with 24-EBR (a bioactive steroid)
enhanced both yield and oil content in safflower (Carthamus
tinctorius) compared to the non-treated control (Zafari et al,
2020). Steroids in soybean play a critical role in mitigating
oxidative stress and enhancing drought resistance, as evidenced in
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crops like soybean and wheat (Yu et al,, 2024). These findings further
highlight the pivotal function of steroid metabolites in mediating
plant adaptation to drought.

WGCNA can identify gene modules and hub genes that are
highly correlated with traits by constructing gene co-expression
networks. It has become an effective tool for identifying important
functional genes in plants. Researchers used WGCNA analysis to
identify gene modules closely related to the relative water content
of leaves, and screened out the module hub gene ZmGRASI5 from
them. Functional analysis showed that this gene positively
regulates the drought response of maize (Wang et al., 2025a).
WGCNA identified PagNAC17 as a central regulator in poplar’s
salt stress response. Transgenic overexpression of PagNACI7 in
84K poplar substantially improved salt tolerance (Wang et al,
2025b). Heat stress (HS)-responsive transcriptome data identified
three key genes, PgCDF2, PgHSFAI, and PgHSFB3, all of which
play roles in the heat stress response of Physalis grisea (Jing et al.,
2025). Most previous studies used growth index data or
physiological index data as phenotypic data for WGCNA
analysis (Feng et al., 2021; Li et al., 2022). This study conducted
WGCNA using both quantitative data of 20 drought-specifically
accumulated metabolites and 2,064 uniquely DEGs in the drought-
resistant cultivar 64-22-3 under drought stress. The analysis
revealed that two gene expression modules (Blue and Turquoise)
exhibited a strong positive correlation with the accumulation of 20
metabolites (Figure 7D). Further screening of hub genes in these
two modules identified Ghi_D06G05631 as the hub gene in the blue
module, which encodes the TOPLESS-related 1 protein
(Figure 8A). It has been demonstrated that the interaction
between CmHSFA4/CmMYBS3 and CmTPL jointly inhibits the
expression of CmMYBI21, thereby enhancing salt stress tolerance
in chrysanthemums (Wang et al., 2024d). Additionally, it has been
found that AtMYB44, acting as a repressive transcription factor,
regulates the expression of APP2Cs. The complex formed between
AtMYB44 and TPR represses PP2C transcription by promoting
histone deacetylation at gene loci, thus participating in the
transduction of the ABA signaling pathway (Nguyen and
Cheong, 2018). Currently, there is no relevant literature
reporting the direct role of the TOPLESS-related 1 protein in the
drought stress response. Previous studies have established
TOPLESS-related 1 protein’s involvement in plant salt stress
responses and ABA signaling. Based on our findings, we
hypothesize that TOPLESS-related 1 protein may similarly
participate in drought stress adaptation. However, its precise
functional role and regulatory mechanisms in cotton drought
response remain to be elucidated. Notably, the turquoise
module’s hub gene, Ghi_A13G12271, encodes CIPK6 (CBL-
interacting protein kinase 6) (Figure 8B). Research has
demonstrated that under drought stress, the expression of
GhCIPK6D1 and GhCIPK6D3 is significantly upregulated, with
GhCIPK6DI being associated with drought sensitivity in cotton,
while GhCIPK6D3 is linked to drought tolerance. Mechanistic
studies reveal that the GhCBL1A1-GhCIPK6DI and GhCBL2AI-
GhCIPK6D3 complexes modulate stomatal aperture through
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regulation of K+ flux in guard cells, exhibiting both positive and
negative regulatory effects on cotton’s drought tolerance (Sun et al.,
2024). Overexpression of GhCIPK6 significantly enhanced salt,
drought, and ABA stress tolerance in transgenic Arabidopsis,
indicating that GhCIPK6 functions as a positive regulator in salt
and drought stress responses and represents a potential candidate
gene for improving stress tolerance through genetic manipulation
(He et al., 2013). Our study identified Ghi_A13G12271 (CIPK®6) as
the hub gene of the turquoise module, further confirming that
CIPKG is a key regulatory factor in the drought response of cotton.

Following activation via different signal transduction cascades,
transcription factors modulate plant biological processes by binding
to cis-regulatory elements and controlling expression of target genes
(Nunavath et al, 2025). The transcription factor HvHSFA2e
enhances drought and heat tolerance through coordinated
upregulation of heat-responsive genes and modulation of ABA
signaling and flavonoid biosynthesis pathways (Mishra et al,
2024). The Golden2-like transcription factor in maize enhances
the drought tolerance of rice by promoting stomatal closure (Li
etal,, 2024a). Studies have shown that the C2H2 transcription factor
can play an important regulatory role in the drought response of
plants by mediating the transduction process of the ABA and other
signaling pathways (Han et al., 2020). The TIFY transcription factor
ZmJAZ13 positively regulates the drought response of plants, and
overexpressing this gene improves the drought tolerance of
Arabidopsis (Zhang et al., 2025b). Additionally, Aux/TAA
transcription factors contribute to drought resistance in
Arabidopsis by modulating glucosinolate levels (Salehin et al,
2019). In addition, the MYB, bHLH, and GRAS transcription
factor families can all participate in the transduction process of
multiple signaling pathways by regulating the expression of various
downstream genes, thus playing roles in the plant response to
abiotic stresses (Lei et al., 2024; Liu et al., 2025; Zhang et al., 2025a).
To further identify important genes associated with drought
resistance, we conducted an analysis of highly connected
transcription factors in the blue and turquoise modules. We
found that the blue module contains seven classes of transcription
factors, primarily including HSF, Golden2-like, SNF2, mTERF,
bHLH, C2H2, and B3 (Figure 8C). The turquoise module
comprises six classes of transcription factors, mainly including
Tify, ARR-B, AUX/IAA, bHLH, Alfin-like, and LUG (Figure 8D).
This suggests that these transcription factors may play significant
roles in the drought resistance of cotton; however, their specific
functions and regulatory mechanisms require further in-
depth investigation.

5 Conclusion

Through comprehensive phenotyping and physiological
assessments of ten cotton cultivars with varying drought
tolerance, we identified the most resistant (64-22-3) and sensitive
(A3) varieties. Transcriptome profiling revealed 7,351 DEGs in 64-
22-3 and 5,009 DEGs in A3 under drought stress conditions
(Drought treatment vs. well-watered controls). Parallel

Frontiers in Plant Science

15

10.3389/fpls.2025.1610552

metabolomic analysis detected 169 and 173 significantly altered
metabolites in 64-22-3 and A3, respectively. KEGG enrichment
showed that both cultivars shared conserved drought-response
pathways (secondary metabolite, flavonoid, and sesquiterpenoid/
triterpenoid biosynthesis), while 64-22-3 specifically activated
phenylpropanoid biosynthesis, linoleic acid metabolism, and
glucosinolate biosynthesis pathways, likely enhancing drought
tolerance. We performed WGCNA using 2,064 drought-specific
DEGs and 20 unique DAMs from 64-22-3. This revealed significant
correlations between 20 DAMs and two key modules: The blue
module (hub gene: Ghi_D06G05631, a TOPLESS-related 1 protein)
contained eight high-connectivity transcription factor families:
HSF, Golden2-like, SNF2, mTERF, bHLH, C2H2, and B3. The
Turquoise module (hub gene: Ghi_D13G23691, a CIPK6)
comprised seven high-connectivity TF families: Tify, ARR-B,
AUX/TIAA, bHLH, Alfin-like, and LUG. This study provides
further elucidation of the molecular response mechanisms
underlying drought resistance in cotton, establishing a theoretical
foundation for subsequent applied research and utilization of
drought-resistant genes in cotton breeding.
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