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Grassland Science Research Institute, Dali, China, 3Institute of Remote Sensing and Geographic
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Introduction: The rational structure of forest stands plays a crucial role in

maintaining ecosystem functions, enhancing community stability, and ensuring

sustainable management. Although progress has been made in stand structure

optimization, most existing studies focus on static improvements and fail to

adequately capture the dynamic nature of stand development. In addition,

commonly used heuristic and traditional methods often suffer from limitations

in computational efficiency and generalization ability.

Methods: To address these challenges, this study explores the potential and

advantages of multi-agent deep reinforcement learning in forest management,

offering innovative insights and methods for achieving sustainable forest

ecosystem management. Using the secondary forests of Pinus yunnanensis in

southwest China as the research subject, we constructed an objective function

and constraints based on spatial and non-spatial structure indexes. Selective

harvesting and replanting were employed as optimization measures, and

experiments were conducted on five circular plots to compare the

performance of multi-agent deep reinforcement learning with that of multi-

agent reinforcement learning. To account for the dynamic characteristics of

stand structure, we further integrated structure prediction with multi-agent deep

reinforcement learning for dynamic optimization across the five plots.

Results: The results indicate that multi agent deep reinforcement learning

consistently outperformed multi agent reinforcement learning across all plots.

For the initial objective function values of each plot (0.3501, 0.3799, 0.3982,

0.3344, 0.4294), the optimized results obtained through multi agent deep

reinforcement learning (0.5378, 0.5861, 0.5860, 0.5130, 0.6034) were

significantly superior to the maximum objective function values achieved by

multi agent reinforcement learning (0.5302, 0.5369, 0.5766, 0.5014, 0.5906).
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Furthermore, the dynamic optimization results incorporating structure

prediction demonstrate that all plots progressively approached an ideal stand

condition over multiple optimization cycles (0.5718, 0.6101, 0.6455, 0.5863,

0.6210), leading to a more balanced stand structure and improved long-

term stability.

Discussion: This study proposes a novel stand structure optimization method

that integrates multi agent deep reinforcement learning with structure

prediction, providing theoretical support and practical guidance for the

sustainable management of Pinus yunnanensis secondary forests.
KEYWORDS

multi-agent deep reinforcement learning, stand structure, multi-objective optimization,
structure prediction, secondary forests
1 Introduction

Secondary forests often face challenges such as unstable stand

structure, reduced biodiversity, increased risk of forest fires, and

susceptibility to natural disturbances, including insect infestations,

diseases, and wildfires (Lei et al., 2008; Ding and Zang, 2021; Zaizhi,

2001). To enhance the stability and sustainability of secondary

forests, stand structure optimization has become a key technical

approach in forest management and planning, providing essential

support for their scientific management.

Selective harvesting is a crucial measure for optimizing stand

structure and has received widespread attention (Dong et al., 2022;

Dongsheng et al., 2020; Chi et al., 2019; Dong et al., 2020). By removing

trees with limited growth potential and weak competitiveness, the

growth environment and resource allocation of the remaining trees can

be improved, thereby optimizing stand structure.

Common stand structure optimization algorithms include

heuristic methods such as particle swarm optimization (PSO) (Wu

et al., 2022), Monte Carlo algorithm (Haight and Travis, 1997; Boston

and Bettinger, 1999), and genetic algorithms (GA) (Jianming et al.,

2017; Okasha and Frangopol, 2009; Fotakis et al., 2012). PSO

provides certain advantages in global search but is prone to local

optima in complex problems; Monte Carlo methods explore the

solution space through random sampling but often suffer from low

computational efficiency; GA performs well in handling nonlinear

problems but typically requires many iterations to converge. Overall,

although these methods can address stand structure optimization

tasks, they generally face limitations such as high computational cost,

susceptibility to local optima, and insufficient solution efficiency. In

our previous study, we applied deep reinforcement learning to

improve the efficiency and accuracy of multi-objective stand

structure optimization. By modeling tree-felling decisions as agent

actions and incorporating neural networks with experience replay for

stable training, this approach achieved superior optimization results

compared with traditional heuristic algorithms and conventional
02
reinforcement learning methods across multiple plots of Pinus

yunnanensis secondary forests (Zhao et al., 2024).

A single selective harvesting measure can only reduce

competition and adjust stand density, but it cannot restore

species diversity or fill the spatial gaps created by harvesting;

therefore, it is insufficient to achieve comprehensive optimization

of stand structure. On this basis, replanting measures, namely the

planting of native tree seedlings in appropriate locations, should be

implemented to achieve overall optimization of stand structure.

Common strategies for selecting replanting location include the

Voronoi diagram method (Wang et al., 2019), the maximum

Delaunay triangulation area method (Chunyan and Jiping, 2017),

and the Kriging interpolation method (Jian et al., 2018). In general,

these methods identify relatively sparse areas within the stand as

potential replanting sites using different algorithms. However, they

have certain limitations: on one hand, the replanting locations are

relatively fixed and lack flexibility, which may lead to suboptimal

replanting outcomes; on the other hand, these methods often

overlook the competitive interactions between the replanting trees

and neighboring trees, potentially increasing resource competition

within the stand and affecting the optimization of stand structure.

Building on this foundation, our research team applied multi-

agent reinforcement learning to integrate selective harvesting and

replanting, using multiple agents for collaborative optimization.

Compared to single selective harvesting or replanting, multi-agent

reinforcement learning offers advantages such as improved harvesting

effectiveness and more flexible replanting locations, providing high

adaptability and variability (Xuan et al., 2024, 2023). However, for

such complex optimization problems, the trial-and-error cost in

reinforcement learning increases, leading to unstable training and

poor generalization capability. In contrast, multi-agent deep

reinforcement learning not only retains the collaborative

optimization advantages of multi-agent reinforcement learning but

also exhibits superior computational efficiency. It achieves higher

solution stability and efficiency when handling complex problems,
frontiersin.org
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along with enhanced generalization capability (Waschneck et al., 2018;

Ning et al., 2023; Gronauer and Diepold, 2022; Shen et al., 2022).

Despite significant progress in current stand structure

optimization research (Olsthoorn et al., 1999; Chen et al., 2023;

Zhang et al., 2024), existing studies primarily focus on optimizing

the present stand condition while overlooking the dynamic changes

in stand structure. Research on optimizing dynamic stand

structures remains relatively scarce (Na, 2019). As climate change,

ecological shifts, and increasing complexities in forest management

demand more adaptive strategies, dynamic stand structure

optimization—optimization from a long-term perspective—will

become increasingly important. Therefore, integrating scientific

prediction with effective optimization methods to enhance the

sustainability and adaptability of future stand management has

emerged as a key challenge in contemporary forestry research.

Structure prediction is another important field in ecology and

forest management. By analyzing existing stand data, it forecasts

future stand growth trends and structural evolution.

Extensive research has been conducted on predicting stand

variables such as DBH (Gyawali et al., 2015; Bohora and Cao, 2014),

tree height (Lee et al., 2024; Siipilehto et al., 2023), crown width

(Raptis et al., 2018; Sánchez-González et al., 2007), and crown

length (Mengying et al., 2021; Sattler and LeMay, 2011). General

growth models (Jiazheng et al., 2021) offer biologically interpretable

insights, mixed-effects models (Chang and Fan, 2024) capture both

population trends and individual variation, and machine learning

methods such as random forests (Xiaonan et al., 2024) excel in

nonlinear modeling and predictive accuracy. These approaches

have all achieved promising results. Particularly in forest

management and resource planning, these models provide critical

scientific support for stand management. However, existing studies

on structure prediction mainly focus on the interactions and trend

predictions of multiple tree attributes (Ling-bo and Zhao-gang,

2011; Xi et al., 2015), with relatively little attention given to their

overall impact on stand structural evolution (Jiping et al., 2020).

Integrating prediction with optimization not only enhances our

understanding of the dynamic changes in forest ecosystems but also

provides scientific guidance for dynamic stand structure

optimization, ultimately improving the long-term effectiveness of

forest management.

In summary, although existing studies have made significant

progress in stand structure optimization, they primarily focus on

static improvements and fail to adequately address the dynamic

nature of stand development over time. Moreover, heuristic

algorithms and traditional reinforcement learning methods suffer

from limitations in computational efficiency and generalization

ability, restricting their applicability in long-term, complex

ecosystem management. To bridge these gaps, this study proposes

an innovative approach that integrates multi-agent deep

reinforcement learning with stand structure prediction, focusing

on the secondary forests of Pinus yunnanensis. By incorporating

dynamic prediction into selective harvesting and replanting

measures, we aim to achieve dynamic optimization of stand

structure, not only enhancing the current structural condition but

also improving long-term stability and sustainability.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Study areas

The study area is located in the Cangshan region of the Dali Bai

Autonomous Prefecture, Yunnan Province. Pinus yunnanensis is a

typical pioneer and dominant species in this region, playing a key

role in water conservation, soil and water preservation, and the

maintenance of biodiversity. However, due to historical

overexploitation, secondary Pinus yunnanensis forests in this area

generally exhibit simple stand structures and poor stability, making

them a focus and challenge for sustainable forest management.

Therefore, conducting structural optimization studies on this

typical forest type is of significant theoretical and practical

importance for achieving precise improvement of regional forest

ecosystems. The study area is located in Cangshan, Dali, Yunnan

Province, southwestern China, spanning 25°34′ ∼ 26°00′N, 99°55′ ∼
100°12′E, with a total area of approximately 293 km² and an

elevation range of 1966–4122 m. The region has a plateau

monsoon subtropical climate characterized by mild and stable

weather, ample sunlight, small annual temperature variations, and

large diurnal temperature fluctuations, with an annual average

temperature of 16.1°C. The prevailing wind direction is the

southwest monsoon (Shuai et al., 2024). Annual precipitation is

abundant, reaching 861.1 mm, with distinct dry and wet seasons.

Rainfall is concentrated from May to October, accounting for 83%

of the total annual precipitation. The predominant soil type in the

area is Hyperdystric Clayic Ferralsol (Ferric). Pinus yunnanensis is

the primary tree species, and the associated tree species in the

canopy layer include Pinus armandii Franch., Betula alnoides

Buch.-Ham. ex D. Don, Quercus acutissima Carruth., and

Quercus variabilis Blume. The understory shrub layer includes

species such as Vaccinium bracteatum Thunb., Rhododendron

microphyton Franch., Gaultheria griffithiana Wight, Eurya nitida

Korthals, and Ternstroemia gymnanthera (Wight & Arn.) Bedd

(Figure 1).
2.2 Study site and data collection

When establishing standard sample plots, circular plots offer

advantages over traditional ones, such as easier setup and

positioning in complex terrains and a smaller edge effect for the

same area (Packalen et al., 2023). Generally, common square plots

are typically set at 20m×20m as the initial size, which translates to a

circular plot with a radius of approximately 11.29m. To study the

structural characteristics and optimization methods of secondary

Pinus yunnanensis forests at different scales, this research

established circular plots of varying radii based on topographic

conditions and plot accessibility, in accordance with predefined

rules for standard plot radius division.

Based on the terrain conditions and stand characteristics, 11

fixed circular standard plots with radii ranging from 12 to 35 meters

were established at elevations between 2100 and 2400 meters on

Cangshan Mountain (Packalen et al., 2023). The geographical
frontiersin.org
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coordinates, elevation, slope, aspect, and plot radius of each plot

were measured and recorded. For each circular standard plot, all

living trees with a diameter at breast height of at least 5cm were

individually measured. The species, relative coordinates, DBH, tree

height, crown width, and other basic tree factors were recorded for

each tree. The relative coordinates of each tree at the base were

accurately measured using a total station (GTS-2002). Additionally,

plots with better site conditions, P1-P5, were selected as the

experimental plots for simulation optimization, with the basic

plot information provided in Table 1.
2.3 Determination of spatial structure units
and edge correction

This study employed the Voronoi diagram method to

determine spatial relationships among trees (Liu et al., 2023).

Centered on a reference tree, the Voronoi diagram method

accurately captures tree adjacency relationships while effectively

reflecting their horizontal distribution pattern. During data

processing, Voronoi diagrams were generated using R 4.2.0, with

each polygon representing a spatial structural unit formed by a tree

and its neighboring trees. To minimize errors in calculating spatial

structure indexes caused by edge trees being fragmented at the plot

boundary, this study adopted the buffer zone method. The plot

boundary was contracted inward by 2 m to create a buffer zone

(Von Gadow et al., 2003). When computing spatial structure

indexes, trees within the buffer zone were only considered as
Frontiers in Plant Science 04
neighboring trees for constructing spatial structural units and

were not used as reference trees.
2.4 Stand structure indexes

Quantifying stand structure is a fundamental aspect of stand

structure optimization. In this study, spatial structure was set as the

primary objective, while non-spatial structure served as a

constraint. The selected non-spatial structure indexes included

tree diameter classes, number of species, canopy density,

harvesting intensity, and planting density. The selected spatial

structure indexes included the uniform angle index, complete

mingling, crown competition index, stratification index, and

neighbourhood comparison. Among these, the uniform angle

index describes the horizontal distribution pattern of trees,

complete mingling represents the degree of tree species

segregation, the crown competition index quantifies competition

pressure among trees, the stratification index characterizes the

vertical distribution pattern, and neighborhood comparison

measures the degree of size differentiation among trees.

2.4.1 Non-spatial structure indexes
2.4.1.1 Tree diameter classes

Trees are classified into different categories based on their DBH,

with a greater number of diameter classes indicating better stand

growth. In the optimization process, it is required that the diversity

of tree diameter classes remains consistent before and after
FIGURE 1

Location of the study area.
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optimization. In this study, tree diameter classification starts from a

DBH of 6 cm, with a 2 cm interval for each diameter class (Equation

1).

D = D0 (1)

Where D0 represents the number of diameter classes of trees

within the stand before harvesting, and D represents the number of

diameter classes of trees within the stand after harvesting.
2.4.1.2 Number of species

During the optimization process, tree species diversity must be

preserved, and no species should be artificially eliminated from the

stand. It is required that the tree species diversity remains consistent

before and after optimization to ensure that no species disappear

(Equation 2).

T = T0 (2)

Where T0 denotes the initial number of tree species, while T

indicates the number of tree species after harvesting.
2.4.1.3 Canopy density

A healthy forest requires the canopy to form a continuous

cover. Generally, a canopy density of no less than 0.7 is considered

indicative of continuous forest cover (Equation 3).

Cd ≥ 0:7 (3)
2.4.1.4 harvesting intensity

harvesting intensity determines whether the stand’s growth

condition remains favorable after optimization. According to

harvesting requirements, the amount of selective harvesting

should be less than the growth increment. Research indicates that

the harvesting intensity of Pinus yunnanensis secondary forests
Frontiers in Plant Science 05
should be controlled within 35% (Su et al., 2010; Han et al., 2011)

(Equation 4).

N ≥ N0(1 − 35%) (4)

Where N0 represents the total number of trees before

harvesting, while N represents the total number of trees

after harvesting.

2.4.1.5 Planting density

The planting density is a key factor influencing the effectiveness

of replanting. Previous studies have shown that the optimal planting

density for Pinus yunnanensis ranges from 1667 to 3333 trees per

hectare (Zhang et al., 2023). After replanting optimization, the

stand density should fall within the range of [1,667, 3,333] trees per

hectare (Equation 5).

1667 ≤ PD ≤ 3333 (5)
2.4.2 Spatial structure indexes
2.4.2.1 Neighborhood comparison (U)

Neighborhood comparison (Aguirre et al., 2003) is used to

describe the degree of size differentiation and competition among

trees. It refers to the proportion of neighboring trees with a DBH

larger than that of the reference tree among neighboring trees. The

expression is given as (Equation 6):

Ui =
1
no

n

j=1
kij (6)

Ui represents the neighborhood comparison for reference tree i,

If the diameter at breast height of neighboring tree j is greater than

that of reference tree i, then kij = 1, otherwise, kij = 0. A smaller Ui

indicates a greater dominance of the reference tree. The value of Ui

can fall into five intervals: 0, (0, 0.25], (0.25, 0.5], (0.5, 0.75], and

(0.75, 1], corresponding to the reference tree being in dominant,
TABLE 1 Basic information of the sample plots.

Sample
plots

Altitude
Slope
(°)

Slope
dir.

Mean DBH
(cm)

Mean
height (m)

Sample plot
radius (m)

Survey
time

Stand density
(trees· ha−1)

P1 2254 13.45 E 17.10 11.97 35 2022 1603

P2 2273 16.16 S 13.79 9.39 32 2022 2182

P3 2205 17.70 NE 14.50 9.30 20 2022 2109

P4 2138 5.10 NE 14.26 10.94 19 2021 2618

P5 2253 15.25 SE 16.03 9.57 30 2023 2631

P6 2226 30.75 E 12.77 9.48 14 2021 3839

P7 2184 36.80 E 15.62 8.99 12 2021 1415

P8 2393 26.30 NE 21.33 13.58 12 2021 1627

P9 2136 13.60 NE 15.51 9.41 15 2021 1627

P10 2194 11.75 S 16.17 9.88 19 2022 2504

P11 2284 30.35 SE 15.69 8.58 18 2022 2504
E, east; S, south; NE, north-east; SE, south-east.
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sub-dominant, intermediate, disadvantaged, and absolutely

disadvantaged status within the stand, respectively.

2.4.2.2 Crown competition index

The crown competition index (Jianming, 2017) is a method

used to describe the degree of competition among trees by

calculating the crown overlap area based on tree characteristics

such as crown width and crown length, thereby reflecting the

competitive pressure during tree growth. The expression is given

as (Equations 7–10):

CIi =
1
Zi

�o
n

j=1
AOij �

Lj
Li

(7)

CIi represents the crown competition index for reference tree i,

and Zi represents the crown projection area of reference tree i. Lj =

Hj × CWj × CLj (height of competing tree j × crown width of

competing tree j × crown length of competing tree j), Li = Hi × CWi

× CLi (height of reference tree i × crown width of reference tree i ×

crown length of reference tree i). AOij represents the crown overlap

area between reference tree i and competitor tree j. If there is no

overlap, AOij = 1. When there is overlap,

S0 =
CW2

i

2 o
n

j=1
arccos(

q2j
2CW2

i
− 1) −

1
4
qj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4CW2

i − q2i

q
(8)

S1 =
1
2o

n

j=1
f½CW2

j arccos(1 −
4CW2

i − q2i
2CW2

j
) −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4CW2

i − q2j
q

2
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4CW2

i − (4CW2
i − q2j )

q
g

(9)

AOij = S0 + S1 (10)

S0 represents the total shaded area of reference tree i by n

competitor trees, and S1 represents the total shaded area of n

competitor trees by reference tree i. qj =
L2ij−(CW

2
j −CW

2
i )

Lij
, Lij

represents the distance between competitor tree j and reference

tree i, CWi represents the crown width of reference tree i, CWj

represents the crown width of competitor tree j, and n represents

the number of competitor trees.

2.4.2.3 Stratification index

The stratification index (Zhao et al., 2024; Zhou et al., 2022)

reflects the vertical distribution pattern of trees and the diversity of

stand structure. It is an extension of the storey index, incorporating

the influence of terrain on forest stratification. The expression is

given as (Equations 11–13):

Si =
zi
3
� 1

no
n

j=1
(1 −

FLi − FLj
�� ��

max( FLi − FLj
�� ��,   1) ) (11)

FLi =

−1,Hi ≤
1
3 Hd

0, 13 Hd ≤ Hi ≤
2
3 Hd

1,Hi ≥
2
3 Hd

8>><
>>:

(12)
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Hd =
1

⌊ 100A ⌋o
⌊ 100A ⌋
i=1 (Hsort(i) + Esort(i)) (13)

Si represents the stratification index for reference tree i, zi denotes

the number of layers within the spatial structure unit to which the

reference tree i belongs. FLi indicates the classification of reference tree

i in the vertical stratification. Hi represents the height of reference tree

i, while Hd denotes the dominant height. A stands for the per hectare

plot area, and Hsort(i) is the height of the i-th tree among the tallest

⌊100A⌋ trees per hectare, and Esort(i) indicates the relative elevation of

the i-th tree among these ⌊100A⌋ trees. The closer the stratification

index is to 1, the more complex the vertical stratification of the stand.

2.4.2.4 Complete mingling

Complete mingling (Sheng et al., 2023) introduces the Simpson

index into the traditional mingling index to enhance the

differentiation of tree species diversity. It is used to describe the

degree of tree species segregation while also accounting for species

diversity. The expression is given as (Equation 14):

Mci =
Mi

2
½1 − 1

(n + 1)2 o
si

j=1
n2j +

ni
n
� (14)

Mci represents the complete mingling of reference tree i. nj is the

number of different species among the neighboring trees, nj is the

number of trees of the j-th species among the neighboring trees, and

si is the number of species within the spatial structure unit to which

reference tree j belongs. Mi represents the mingling degree of

reference tree i Mi =
1
non

j=1vij, When the reference tree i and

neighboring tree j are of the same species, vij = 0; otherwise, vij =

1. The value ofMci can fall into five intervals: 0, (0, 0.25], (0.25, 0.5],

(0.5, 0.75], and (0.75, 1], corresponding to zero mixing, low mixing,

moderate mixing, high mixing, and complete mixing, respectively.

2.4.2.5 Uniform angle index (W)

The uniform angle index (Zhang et al., 2018) is used to describe

the spatial distribution pattern of trees. It is defined as the

proportion of a angles (the smaller angles between neighboring

trees) that are less than the standard angle a0(a0 =
360∘

n+1 ) out of a

total of angles formed. Its expression is (Equation 15):

Wi =
1
no

n

j=1
zij (15)

Wi represents the uniform angle index for reference tree i. When

the j-th a angle is smaller than the standard angle a0, zij = 1;

otherwise, zij = 0. The value of Wi can fall into five intervals: 0, (0,

0.25], (0.25, 0.5], (0.5, 0.75], and (0.75, 1], corresponding to absolutely

uniform, uniform, random, non-uniform, and conmplete non-

uniform distributions, respectively. The ideal range for the mean

uniform angle index in a stand is between [0.475, 0.517].
2.5 Selective harvesting Strategy

Random selection (Tang et al., 2004), tree homogeneity index

(Yitong, 2019), and spatial competition (Zhang et al., 2019) are
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common methods for determining felling decisions. In the random

selection method, trees are randomly selected as candidates for

felling from the initial stand. The tree homogeneity index-based

method calculates a comprehensive index Li for each tree using

spatial structure parameters and ranks the trees in ascending order

to determine the felling candidates. The spatial competition-based

method evaluates trees based on horizontal spatial patterns and

competition pressure, selecting trees with a greater difference

between the uniform angle index and 0.496, a higher

neighborhood comparison value, and a larger crown competition

index as felling candidates. In our previous research, we conducted

an experimental comparison of these three methods and found that

random selection was best suited for integration with the deep

reinforcement learning algorithm Zhao et al. (2024). Therefore, in

this study, random selection is chosen as the preferred method for

the felling optimization process.
2.6 Replanting strategy

2.6.1 Planting location
The maximum Delaunay triangulation area method is a

planting location determination approach based on Delaunay

triangulation. In a Delaunay triangulation network, edge lengths

represent the distances between neighboring trees, while nodes

correspond to individual trees. Planting locations are determined

by identifying the incenter of the largest triangle formed by the

nodes, thereby reflecting both the presence of canopy gaps and the

overall stand distribution pattern. To account for the influence of

surrounding neighboring trees on the growth of replanted trees, the

replanting foreground index (RFI) (Xuan et al., 2024) is

incorporated to identify planting locations that have a greater

impact on stand structure optimization. This method

comprehensively considers various factors affecting the growth of

replanted trees, thereby improving the accuracy and effectiveness of

planting location determination and enhancing the efficiency of

stand structure adjustment and optimization.

The calculation formula for the RFI is as follows (Equation 16):

RFIi =
1+DAAi
dDAA

· 1+Mci
dMc

· 1+Ui
dU

1+CIi
dCI

(16)

RFIi represents the replanting foreground index of the replanted

tree i, DAAi refers to the area of the Delaunay triangulation element in

which tree i is located.Mci corresponds to the complete mingling of tree

i, while Ui denotes its neighborhood comparison, and CIi indicates its

crown competition index. Moreover, dDAA, dMc, dU and dCI represent
the standard deviations of their respective structural parameters.
2.6.2 Planting number
Relevant studies have shown that the optimal planting density

range for Pinus yunnanensis is 1667–3333 trees per hectare. In this

study, 3333 trees per hectare was selected as the upper limit for

stand density after replanting. Based on the plot area, the maximum

number of trees was determined for each plot: P1, P2, P3, P4, and
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P5 had upper limits of 1284, 1076, 418, 377, and 941

trees, respectively.

2.6.3 Spatial configuration of replanting
In mixed forests, the proportion and spatial arrangement of

replanted tree species directly influence the degree of species

mingling, while variations in DBH, H, and CW among different

species substantially affect interspecific competition. In this study,

replanting optimization simultaneously considered the spatial

distribution and size structure of trees to achieve a more balanced

species composition and stand structure. To promote the positive

succession of secondary forests and enhance the mingling index, the

main tree species widely distributed in the Cangshan region were

selected. The seven chosen species—Pinus yunnanensis, Pinus

armandii, Quercus acutissima, Vaccinium bracteatum, Camellia

sinensis, Betula alnoides, and Ternstroemia gymnanthera—are

either dominant or native tree species in the study area and

represent the typical species composition and ecological

characteristics of local secondary forests. Equal proportions were

applied in the simulation to simplify the modeling framework and

highlight species diversity and ecological complementarity. The

replanted trees were initialized with an average DBH of 5 cm and

an age of 5 years. Due to the limited availability of growth models

for some species, models of ecologically similar species (Xi et al.,

2015; Luo, 2021; Jiazheng et al., 2021) were adopted to estimate tree

height, crown width, and crown length, and the results were

subsequently validated using existing datasets. The configuration

of replanted trees is shown in Table 2.
2.7 Stand structure prediction

2.7.1 Models
Based on the data characteristics of different tree factors and the

requirements of the prediction tasks, this study selected four

different machine learning models to ensure predictive accuracy

and reliability. The CNN-PSO (Ma et al., 2022) model is suitable for

handling continuous variables with complex nonlinear

relationships; its convolutional layers can effectively capture latent

spatial patterns among features, and thus it was used to predict age

and crown length. The Random Forest (RF) model (Xiaonan et al.,

2024), with its strong anti-overfitting capability and ability to

handle high-dimensional data, can robustly manage complex

interactions among tree growth factors, making it suitable for

predicting tree height and crown width. The Multilayer

Perceptron (MLP) (Kim et al., 2025), due to its powerful function

approximation capability, was employed to model the growth of

diameter at breast height (DBH), a complex nonlinear regression

problem. The Gradient Boosting Decision Tree (GBDT) (Nhat-Duc

and Van-Duc, 2023), which excels in classification tasks—

particularly with imbalanced data and combining multiple weak

classifiers—was used to predict the probability of tree mortality, a

binary classification problem. This targeted model selection strategy

aims to maximize the accuracy and robustness of each

prediction task.
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2.7.1.1 CNN-PSO

CNN consists of an input layer, output layer, convolutional

layers, pooling layers, and fully connected layers. Its core concept is

to automatically learn local features through convolutional layers,

eliminating the need for manual feature extraction required by

traditional methods. Additionally, pooling layers perform

downsampling on the features, reducing computational

complexity while enhancing the model’s robustness.

PSO is a global optimization algorithm that simulates swarm

behavior, where each particle represents a potential solution. The

particles continuously move through the solution space, searching

for the optimal solution. PSO has strong global search capabilities

and can efficiently identify high-quality solutions.

The CNN-PSO was adopted in this study, where the global

search ability of PSO was utilized to optimize critical

hyperparameters, such as the number of output channels in the

convolutional layers, learning rate, and batch size. Traditional
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manual tuning is often constrained by experience and prone to

getting stuck in local optima. By applying PSO to CNN

hyperparameter optimization, the optimal parameter combination

can be automatically identified, enhancing model performance

while significantly reducing computational resources and time.

In the model design, two convolutional layers were used to

extract features from the input data, each followed by a batch

normalization layer to accelerate training and improve stability.

Then, pooling layers were applied to reduce data dimensionality,

alleviating computational burden and enhancing the model’s

adaptability to local features. After convolution and pooling, the

data was flattened and processed through fully connected layers

before producing the final prediction output. To prevent overfitting,

a Dropout layer was incorporated to randomly drop some neurons,

encouraging the model to learn diverse features and thereby

improving its predictive capability on new data. As shown

in Figure 2.
TABLE 2 Configuration of replanted trees.

Tree species Variable Model Optimal parameters Stand factor

Pinus yunnanensis

H H = a� (1 − e−b�DBH )c a = 16.7289, b = 0.0871, c = 1.1212 H = 5:20

CW CW = a� DBHb a = 0:5652, b = 0:7023 CW = 1:74

CL CL = a� DBHb a = 0:3646, b = 0:7984 CL = 1:32

Pinus armandii

H H = a� (1 − e−b�DBH )c a = 17.0986, b = 0.0816, c = 0.9258 H = 5:19

CW CW =
a

1 + b� e−c�DBH
a = 4.2420, b = 2.2677, c = 0.0523 CW = 1:54

CL CL = a� (1 − e−b�DBH )c a = 41.0291, b = 0.0289, c = 0.4971 CL = 2:56

Quercus acutissima

H H = a� eb+c=(DBH+1) + d
a = 1.0822, b = 3.2453, c = 17.2914,

d = 3.5632
H = 5:12

CW CW = a + b� DBH2 + c� DBH3 a = 0.2574, b = 0.2442, c = –0.0022 CW = 1:82

CL CL = a� DBHb a = 0:4833, b = 0:6892 CL = 1:47

Betula alnoides

H H−1 = a + b� DBH a = 0:0211, b = 0:6850 H = 6:33

CW CW =
a

1 + b� e−c�DBH
a = 3.0360, b = 0.8446, c = 0.1345 CW = 2:12

CL CL = a� DBHb a = 2:0317, b = 0:2375 CL = 2:98

Vaccinium bracteatum

H H = a� e−b=DBH
c

a = 2.2004, b = 0.5011, c = 4.9997 H = 2:20

CW CW =
a

1 + b� e−c�DBH
a = 2.9716, b = 1.0269, c = –0.0314 CW = 1:35

CL CL =
a

1 + b� e−c�DBH
a = 1.0123, b = 0.7829, c = 4.0326 CL = 1:01

Camellia sinensis

H H = a� (1 − e−b�DBH )c a = 10.0002, b = 0.2114, c = 1.9997 H = 4:26

CW CW =
a

1 + b� e−c�DBH
a = 1.9389, b = 0.5366, c = 0.1097 CW = 1:48

CL CL = a� DBHb a = 0:9009, b = 0:3250 CL = 1:55

Ternstroemia gymnanthera

H H = a + b� DBH + c� DBH2 a = 2.9963, b = 0.9818, c = –0.1110 H = 5:13

CW ln(CW) = a + b� ln(DBH) a = −0:1710, b = 0:2247 CW = 1:21

CL CL = a� (1 − e−b�DBH )c a = 1.9964, b = 0.1762, c = 1.0005 CL = 1:17
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2.7.1.2 Random Forest

RF is an ensemble learning algorithm based on the Bagging

method and decision trees, using decision trees as its fundamental

units. It constructs multiple decision trees and combines their

predictions to enhance overall performance. During training, each

tree is built using a randomly sampled subset of the original data,

and feature selection at each node split is performed randomly. This

approach reduces overfitting and improves the model ’s

generalization ability. By integrating the outputs of multiple

decision trees, random forest effectively captures complex feature

interactions, exhibits strong noise resistance, and achieves high

prediction accuracy.

To further enhance the predictive performance of the model,

this study employed ten-fold cross-validation and grid search for

hyperparameter optimization. Ten-fold cross-validation involves

partitioning the dataset into ten subsets, using nine for training

and the remaining one for validation in each iteration. This method

effectively mitigates biases caused by data partitioning and improves

the model’s stability and generalization ability. Grid search

systematically explores different hyperparameter combinations to

optimize the performance of the random forest model. The tested

hyperparameters include the number of trees (50, 100, 200), tree

depth (10, 20, 30), the minimum number of samples required for

node splitting (2, 5, 10), and the minimum number of samples

required for leaf nodes (1, 2, 4). As shown in Figure 3.

2.7.1.3 Multilayer perceptron

MLP is a deep feedforward neural network composed of an

input layer, multiple hidden layers, and an output layer. Each
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neuron in a layer is fully connected to the neurons in the

previous layer. Input data undergoes weighted summation and

activation function processing at each layer, ultimately producing

the final prediction output. MLP possesses strong function

approximation capabilities, enabling it to capture complex

patterns and features in data through multiple hidden layers,

thereby achieving high predictive accuracy.

In the model design, this study utilized MLP as the base model

and constructed a Stacked-MLP model by stacking three MLPs. The

prediction outputs of each MLP were used as inputs for a regressor,

which generated the final prediction. To balance computational cost

and model performance, the hyperparameters of the regressor were

set as follows: learning rate (0.0001–0.1), number of iterations (100–

500), and batch size (16, 32, 64, 128). As shown in Figure 4.

2.7.1.4 Gradient boosting decision tree

GBDT is an ensemble learning-based classification algorithm

that incrementally trains multiple weak classifiers, combining their

weighted predictions to obtain the final classification result. Each

new model is optimized to correct the errors made by the previous

model, focusing on misclassified samples and gradually adjusting

the model parameters to improve classification performance. GBDT

efficiently handles complex nonlinear relationships and can

automatically identify interactions between features, reducing the

need for extensive manual feature engineering. It offers high

predictive accuracy and strong flexibility, making it a powerful

tool for classification tasks.

To enhance model performance, improve stability, and

strengthen generalization ability, this study employed grid search
FIGURE 2

The architecture of the CNN-PSO model.
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to explore the hyperparameter space and identify the optimal

combination of parameters. The selected hyperparameters include

learning rate (0.01, 0.1, 0.2), number of trees (50, 100, 200), and tree

depth (10, 20, 30). As shown in Figure 5.
2.7.2 Prediction
Stand structure prediction involves forecasting parameters such

as diameter at breast height, tree height, age, crown width, crown

length, and mortality rate to understand the dynamic changes in

stand structure. This enables dynamic optimization of stand

structure and provides decision-making support for forest

management, resource conservation, and ecological restoration.

We selected various indicators to construct the model,

including age (AGE), diameter at breast height (DBH,1/DBH,

DBH2), tree height (H), crown width (CW), crown length (CL),
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number of trees per hectare (NT), stand density index (SDI), slope

(SLO), aspect (ASP), height-to-diameter ratio (HDR), the sum of

basal area larger than the target tree (BAL), and Hegyi competition

index (HCI). To eliminate multicollinearity when building different

predictive models, independent variables with a variance inflation

factor (VIF) greater than 10 were excluded.

The diameter growth model was developed using the Stacked-

MLP algorithm, with AGE, ASP, NT, SLO, SDI, BAL, and DBH2

selected as feature variables. The model’s target variable was set as the

natural logarithm of diameter growth squared plus one, ln(DGI + 1).

Since tree diameter growth occurs over long periods, shorter

prediction intervals may fail to capture significant growth changes.

Therefore, a five-year prediction cycle was used in the model.

The RF algorithm was used for tree height and crown width

prediction models. The selected feature variables for tree height

prediction were AGE, ASP, DBH, and SLOPE, with H as the target
FIGURE 3

Framework of the Random Forest Model.
FIGURE 4

The architecture of the Stacked-MLP model.
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variable. For crown width prediction, the feature variables included

AGE, 1/DBH, CL, ASP, SDI, HDR, and NT, with CW as the

target variable.

The CNN-PSO was used for age and crown length prediction

models. The feature variables for age prediction were 1/DBH, H,

ASP, SLO, NT, and SDI, with AGE as the target variable. For crown

length prediction, the selected feature variables were AGE, 1/DBH,

ASP, SDI, HDR, and NT, with CL as the target variable.

Mortality prediction is a binary classification problem, and the

GBDT model was chosen for this task. To improve prediction

accuracy, the classification threshold was initially set at 0.5;

however, this value is only applicable when the number of

surviving and dead trees in the stand is approximately equal. In

reality, mortality is a low-probability event, and cases where

mortality and survival are equal are rare. Therefore, this study

incorporated the HCI as an additional criterion. Trees with a

mortality probability greater than 0.5 and experiencing high

competition pressure (HCI > 0.75) were classified as dead. The

selected feature variables included 1/DBH, H, BAL, and HCI, with

tree mortality status (STATE) used as the target label.

Since the stand structure prediction model simultaneously

predicts multiple stand factors, redundancy in feature variable

selection is inevitable, which may lead to internal inconsistencies

within the model. To address this, predictions were conducted

sequentially in the following order: age, diameter at breast height,
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tree height, mortality, crown width, and crown length. This ensures

that the feature variables used in all prediction models are updated

accordingly during the prediction process.

The VIF values of the feature variables and the prediction

accuracy of each model are presented in Tables 3–5.
2.8 Optimization model of stand structure

2.8.1 Constrain
After optimization adjustments, the values of each sub-objective

must not fall below their pre-optimization levels to ensure that the

diversity of stand spatial structure does not decline. This means that

the horizontal distribution pattern of the stand should become

closer to a random distribution, the degree of species mingling

should increase, the richness of vertical structure should be

enhanced, and both size differentiation and competition pressure

should be correspondingly reduced. During the optimization

process, the number of tree diameter classes and species should

not decrease, harvesting intensity should be controlled within 35%,

and canopy density should not fall below 0.7. The number of

replanted trees should remain within the stand density range, and

after replanting, both the degree of mingling and the horizontal

distribution pattern should be improved compared to prereplanting

conditions (Equation 17).
TABLE 3 VIF values of feature variables in different prediction models.

Age prediction DBH prediction H prediction CW prediction CL prediction Mortality prediction

feature VIF feature VIF feature VIF feature VIF feature VIF feature VIF

1=DBH 1.5352 DBH 1.4852 DBH 4.6597 AGE 5.8744 AGE 3.5899 DBH2 4.1586

H 1.6049 AGE 2.0224 AGE 4.6514 1=DBH 4.4287 1=DBH 4.4283 H 5.8075

ASP 2.1709 ASP 2.0374 ASP 1.3759 CL 2.0131 ASP 2.2043 BAL 2.0631

SLO 1.1583 SLO 1.2576 SLO 1.3651 ASP 2.2399 SDI 2.3709 HCI 1.1315

NT 1.5428 NT 1.2727 HDR 1.6552 HDR 1.5049

SDI 2.5316 BAL 1.5647 NT 1.0445 NT 1.0434

SDI 2.5414 SDI 2.3858
fro
FIGURE 5

Framework of the Gradient Boosting Decision Tree Model.
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s : t :

Mc1 ≥ Mc0

S1 ≥ S0

U1 ≤ U0

CI1 ≤ CI0

W1 − 0:496
�� �� ≤ W0 − 0:496

�� ��
D1 = D0

T1 = T0

Cd ≥ 0:7

N1 ≥ N0(1 − 35%)

W2 − 0:496
�� �� ≤ W1 − 0:496

�� ��
Mc2 ≥ Mc1

1667 ≤ PD ≤ 3333

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(17)

Mc1, S1, U1, CI1, W1, D1, T1, Cd, N1 respectively represent the

values of complete mingling, stratification index, neighborhood

comparison, crown competition index, uniform angle index, tree

diameter classes, number of species, canopy density, and harvesting

intensity after selective harvesting.  Mc0, S0,U0, CI0,W0, D0, T0, Cd

, N0 represent the values of the initial stand for the following

indicators.Mc2,W2 represent the values of after complete mingling

and uniform angle index after replanting. PD represents the stand

density after selective redharvesting and replanting optimization.

2.8.2 Model construction
Stand structure optimization is a multi-objective problem that

typically involves multiple interrelated goals. Since these objectives

are often mutually constraining, it is difficult to achieve their

individual optima simultaneously. Therefore, it is necessary to

adopt an integrated approach and balance multiple objectives

from the perspective of the overall stand. In the optimization

process, the complete mingling and stratification index should be

increased to enhance stand diversity and stability; the crown

competition index and neighborhood comparison should be

reduced to alleviate competition among individuals and prevent

excessive dominance by a few large trees; and the uniform angle

index should be maintained within the range close to random
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distribution to ensure a reasonable horizontal pattern. Accordingly,

in this study, five spatial structure parameters—uniform angle

index, neighborhood comparison, complete mingling,

stratification index, and crown competition index—were

incorporated into a multi-objective optimization model using a

multiplicative–divisive approach to construct the objective function

(Equation 18):

maxL =
1
no

N

i=1

1+Mci
dMc

· 1+SidS
1+Ui
dU

· 1+CIidCI
· 1+ Wi−0:496j j

d Wi−0:496j j

(18)

Wi, Mci, Si, Ui and CIi represent the uniform angle index,

complete mingling, stratification index, neighborhood comparison,

and crown competition index of the reference tree, respectively. dW,
dMc, dS, dW and dCI are the standard deviations of these structural

indexes. N represents the total number of trees in the forest stand.
2.9 Solution algorithm

2.9.1 Multi-agent deep reinforcement learning
This study selected multi-agent deep Q-network (MADQN) as

the solution algorithm. The MADQN model incorporates deep Q-

network (DQN) and multi-agent Q-learning (MAQL). Each agent

utilizes a deep neural network to approximate the Q-value function,

enabling decision-making in large-scale and complex state spaces.

By leveraging experience replay and target networks, the model

achieves faster convergence, avoids overfitting, and ensures policy

stability and generalization capability.

In the application of MADQN for stand structure optimization,

selective harvesting and replanting serve as two key regulatory

measures. Two agents, Agent1 and Agent2, were designed to

achieve optimization. Each agent has its own tasks and objectives,

interacting with the environment while also collaborating with each

other. Through continuous learning, they work together to optimize

the objective function of stand structure.Agent1 selects trees for

selective harvesting based on the random selection method and

adjusts its strategy according to the impact of tree removal on the

objective function value. After harvesting, if the selected trees result

in an increase in the objective function value, Agent1 receives a

reward; otherwise, it is penalized. Through this process, Agent1

gradually learns how to select trees for harvesting, aiming to

minimize unnecessary losses while maximizing the improvement

of the stand’s objective function during the harvesting process.

Agent2 determines the number of replanted trees and their

distribution based on the stand condition after Agent1 has

completed selective harvesting and received its reward. Its goal is

to compensate for gaps created by harvesting and introduce

appropriate tree species to optimize stand structure, enhancing

growth potential and ecological benefits. After harvesting, Agent2
TABLE 4 Evaluation metrics of selected prediction models.

Target variable Model R2 RMSE MAE

AGE CNN-PSO 0.4246 5.3775 4.1626

DBH Stacked-MLP 0.8461 0.3055 0.2041

H RF 0.8280 1.4143 1.0992

CW RF 0.6315 0.3554 0.2704

CL CNN-PSO 0.6403 1.02485 0.7951
TABLE 5 Evaluation metrics for the mortality prediction model.

Target variable Model Acc F1Score Recall ROCAUC

Mortality GBDT 0.9002 0.7850 0.7287 0.9486
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utilizes the RFI to identify suitable planting locations. It then applies

a curve trend-based approach (Xuan et al., 2024) to optimize the

number of replanted trees. Specifically, it selects three evenly spaced

replanting densities and evaluates their corresponding objective

function values to establish a trend curve. Based on this trend,

Agent2 adjusts the number of replanted trees by selecting new

values with the same spacing before and after the current replanting

density. This approach leverages curve monotonicity and extremum

detection to assign rewards or penalties, refining the sampling

strategy to gradually determine the optimal number of replanted

trees. This ensures that under the given harvesting conditions, the

replanting effect is maximized for optimal stand structure recovery.

Agent1 and Agent2 are interdependent and interact throughout

the optimization process. Agent1’s selective harvesting decisions

directly influence Agent2’s replanting strategy, while Agent2’s

replanting results, in turn, affect the post-harvesting stand condition

and consequently impact the objective function value. Through a

reward and penalty mechanism, both agents continuously adjust their

strategies, enabling a coordinated optimization process that

dynamically balances selective harvesting and replanting to achieve

the best possible stand structure.

The process of solving stand structure optimization using

multi-agent deep reinforcement learning is illustrated in Figure 6

(Algorithms 1–3).

2.9.2 Solution for dynamic stand structure
optimization

During the subsequent optimization process, the selective

harvesting and replanting agents continuously collaborate and

interact, iteratively optimizing the current stand condition to achieve

the most optimal stand structure. In each optimization cycle, the agents

learn from environmental feedback, gradually approaching the

structural characteristics of an ideal stand. However, real-world stand

structures are influenced by multiple factors, and relying solely on

selective harvesting and replanting may not directly achieve the desired

stand structure. Therefore, a stand structure prediction model is

incorporated as a crucial step to further enhance the accuracy and

effectiveness of the optimization process.

The stand structure prediction model is used to forecast tree

growth trends over a future period based on the current stand

condition, as well as the potential changes after selective harvesting

and replanting. After providing predictions on the current stand

status, the agents further optimize the coordination between

harvesting and replanting. At this stage, the selective harvesting

and replanting agents not only rely on their original decision

framework but also adjust the stand structure based on the

prediction results. This process operates as a cyclic feedback

mechanism, where each optimization generates a new stand

condition, which in turn serves as the starting point for the next

round of optimization. After each selective harvesting and

replanting step, the updated stand condition is fed into the stand

structure prediction model, and the model’s prediction results

influence the next round of harvesting and replanting decisions.

Through this approach, harvesting and replanting decisions are
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dynamically adjusted, ensuring that each step moves closer to an

ideal stand structure. This iterative optimization process allows the

model to identify the best regulatory strategies in a complex and

dynamically changing stand environment. By avoiding a fixed

strategy from the outset, the optimization process becomes more

flexible and adaptive to stand dynamics.

The solution process for dynamic stand structure optimization

is illustrated in Figure 7 (Algorithm 1).

2.9.3 Parameter settings
The parameter settings for the solution algorithm used in the

experiment are shown in Table 6. The initial iteration count and

maximum iteration count for the solution algorithm were set to 0

and 1000, respectively. During the optimization process, the stand

structure at different time periods is abstracted into a sequence. At

the beginning of each iteration, the selective harvesting agent starts

at the initial state (state1 = 0), while the replanting agent starts at

the final state (state2 = 100). Both agents interact with the

environment and collaborate with each other to decide whether

to move forward (state1 = state1 + 1, state2 = state2 − 1) or move

backward (state1 = state1 − 1, state2 = state2 + 1) : The iteration

ends when the selective redharvesting agent and the replanting

agent meet (state1 = state2). To compare the performance of

MADQN and MAQL, both algorithms were set with the same

hyperparameters (g = 0:9, lr = 0:01, e = 0:9). Additionally, for

MADQN, the experience replay buffer size was set to 10000, with

a batch size of 32. A three-layer fully connected network was used,

with each hidden layer containing 24 neurons. These parameter

settings were obtained through multiple experiments and fine-

tuning to achieve optimal results.

In structured forest management, neighborhood comparison,

representing size differentiation and competition intensity,

complete mingling, indicating species segregation, and uniform

angle index, describing horizontal distribution patterns, are the

three most important spatial structure indexes. Considering the

limitations of Pinus yunnanensis secondary forest plots, (U ≤

0:5,Mc ≥ 0:75, 0:475 ≤ W ≤ 0:517) is selected as the ideal stand

structure characteristic for dynamic stand structure optimization

(Gangying et al., 2005, 2018).
3 Results

To verify the effectiveness of the multi-agent deep reinforcement

learning solution in stand structure optimization, this study selected

five standard plots with different densities and site conditions for

simulation experiments. For optimizing the current stand condition, a

comparative experiment was conducted between the MADQN and

MAQL under the same selective harvesting and replantingmethods to

evaluate the optimization advantages of MADQN. In the dynamic

optimization process, MADQN was integrated with stand structure

prediction to enable dynamic adjustments and optimization of the

stand structure over time.
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3.1 Results of simulated harvesting
optimization

3.1.1 Current stand structure optimization
As shown in Figure 8, after implementing the two optimization

schemes for coordinated selective harvesting and replanting, the

stand structure indexes in each plot improved to varying degrees
Frontiers in Plant Science 14
while meeting the constraint conditions, effectively enhancing stand

structure. The average uniform angle index in each plot slightly

decreased its deviation from 0.496, indicating that the horizontal

distribution pattern of the stands became more randomly

distributed. The complete mingling index significantly increased

across all plots, particularly because the initial mingling degree in

each plot was extremely low, leaving ample room for improvement.
FIGURE 6

MADQN for stand structure optimization.
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Notably, in Plot P4, the increase reached 16602.09%. Additionally,

the crown competition index decreased substantially in all plots,

indicating that tree competition pressure was alleviated after

optimization. The stratification index showed a moderate

increase, suggesting an improvement in vertical structural

complexity and a more diverse vertical distribution pattern.

However, the neighborhood comparison showed minimal changes

across all plots. This is likely due to the fact that the initial average

neighborhood comparison values were already in a moderate

growth state, limiting the potential for significant improvement.

As shown in Table 7, in the current stand structure

optimization, both MADQN and MAQL significantly improved

the objective function values. However, in terms of overall

improvement, MADQN consistently outperformed MAQL. The

objective function values for plots P1 to P5 under MADQN

optimization increased from 0.3501, 0.3799, 0.3982, 0.3344, and

0.4294 to 0.5378, 0.5861, 0.5860, 0.5130, and 0.6034, respectively—

higher than the values achieved by MAQL (0.5302, 0.5369, 0.5766,

0.5014, and 0.5906). The improvement rate under MADQN

reached 49.40%, exceeding the 44.58% achieved by MAQL. These

results indicate that MADQN is more effective in optimizing stand

structure, guiding it toward a more optimal target state.

As shown in Figure 9, MADQN outperformed MAQL in terms

of the number of iterations required for optimization. After

different numbers of iterations, MADQN exhibited a faster

increase in objective function values, especially in Plots P2 and

P4. This indicates that MADQN, which utilizes deep neural
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networks to approximate the Q-function, can find optimal

strategies more quickly during the optimization process compared

to MAQL, which relies on table-based Q-learning. As a result,

MADQN requires less extensive exploration and achieves higher

learning efficiency. It is worth noting that in Plots P1 and P3,

although MADQN achieved a higher objective function value,

MAQL required slightly fewer iterations to converge. This

suggests that stand density and site conditions influence

convergence performance, and in certain cases, MAQL’s

convergence efficiency is not necessarily inferior to MADQN. As

shown in Figure 10, MADQN also demonstrated better overall

performance in terms of computational efficiency. Across different

plots, MADQN consistently maintained a lower or comparable

runtime curve compared to MAQL, indicating superior

time efficiency.

3.1.2 Dynamic stand structure optimization
In the dynamic stand structure optimization of five plots using

multi-agent deep reinforcement learning combined with structure

prediction, most stand structure indexes showed significant

improvements after optimization. The uniform angle index for all

plots fell within the ideal range of [0.475, 0.517], indicating that the

horizontal distribution pattern had reached a random distribution

state. The complete mingling index increased substantially across all

plots, shifting from a very low mingling state to a high mingling

state. This demonstrates that dynamic optimization not only adjusts

the spatial relationships among trees but also enhances stand

stability and biodiversity at the species level. Notably, in Plot P4,

the mingling index increased from 0.0028 to 0.7505, highlighting

the strong adaptability of multi-agent deep reinforcement learning

in adjusting tree species composition. Additionally, the crown

competition index significantly decreased across all plots,

indicating a considerable reduction in competition pressure. The

stratification index also improved effectively, enhancing the vertical

distribution pattern. In contrast, the neighborhood comparison

showed minimal decline across all plots, suggesting that the pre-

optimization stand already exhibited a relatively stable size

differentiation state. As a result, despite some adjustments during

optimization, fluctuations in this index remained small.

As shown in Table 8, after incorporating structure prediction

for dynamic optimization, the objective function values for all plots

experienced significant improvements. Notably, in Plot P4, the

objective function value increased from 0.3344 to 0.5863,

achieving a remarkable 75.33% increase. Even in Plot P5, where

the improvement was relatively smaller, the increase still reached

44.62%. These results indicate that dynamic optimization using

multi-agent deep reinforcement learning combined with structure

prediction effectively enhances stand structure stability and balance,

making it more aligned with an ideal management state.
4 Discussion

To avoid the limitations of relying solely on selective harvesting

for optimization, this study proposed a multi-objective stand
FIGURE 7

Dynamic optimization process flowchart.
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structure optimization scheme based on multi-agent deep

reinforcement learning. A simulation experiment was conducted

using sample plot data from Pinus yunnanensis secondary forests in

Southwest China, where MADQN was applied for the simulation

and compared with a multi-agent reinforcement learning

optimization scheme. The results showed that under both

optimization algorithms, stand structure indexes improved to

varying degrees across all plots. However, compared to MAQL,

MADQN consistently achieved higher optimization gains across

different stand conditions, demonstrating greater adaptability and

stability. These findings indicate that multi-agent deep

reinforcement learning can learn more optimal strategies in

complex environments and achieve more comprehensive

optimization in a shorter time.

Traditional multi-agent reinforcement learning is limited by the

dimensionality of the state-action space, especially in complex

optimization environments like stand structure optimization.

Stand structure features exhibit nonlinearity and continuity,

making it difficult for MARL to store Q-values in a tabular
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format. This leads to high storage overhead and low

generalization ability. In contrast, multi-agent deep reinforcement

learning stores Q-values in a parametric form using neural

networks to extract stand structure features. It also employs

strategies such as experience replay and target networks to

improve training efficiency and stability (Gronauer and Diepold,

2022) (Shen et al., 2022). This allows the same agents, under

selective harvesting and replanting measures, to learn more

smoothly and approach a globally optimal optimization strategy,

with superior convergence capabilities.

Although multi-agent deep reinforcement learning has

significant advantages in optimization efficiency and result

accuracy for stand structure optimization, the optimal strategy

derived from multi-agent deep reinforcement learning is based

solely on the current stand structure. However, stand structure is

a dynamic system that changes over time due to factors such as tree

growth, mortality, and human intervention. Relying solely on

optimizing the current stand condition may not meet the long-

term management needs of the forest. Currently, stand structure
TABLE 6 Parameter settings of the solution algorithm.

Algorithms Settings Meaning

MADQN

W = 0 Initial iteration

Wmax = 10000 Upper limit of iterations

state1 = 0 The agent1’s initial location

state1max = 50 The agent1’s permitted farthest move distance

state2 = 100 The agent2’s initial location

state2max = 50 The agent2’s permitted farthest move distance

layer = 3 Neural network depth

buffer _ size = 10000 Replay buffer capacity

batch _ size = 32 Batch size for sampling from the replay buffer

g = 0:9 Discount factor

lr = 0:01 Learning rate

e = 0:9 exploration rate for e-greedy strategy

a = 150, b = −50, c1 = 100, c2 = 50, c3 = 10, c4 = 1, c5 =
−1, c6 = −50

Reward and punishment values

MAQL

W = 0 Initial iteration

Wmax = 10000 Upper limit of iterations

state1 = 0 The agent1’s initial location

state1max = 50 The agent1’s permitted farthest move distance

state2 = 100 The agent2’s initial location

state2max = 50 The agent2’s permitted farthest move distance

g = 0:9 Discount factor

lr = 0:01 Learning rate

e = 0:9 exploration rate for e-greedy strategy

a = 150, b = −50, c1 = 100, c2 = 50, c3 = 10, c4 = 1, c5 =
−1, c6 = −50

Reward and punishment values
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prediction models can utilize tree factors from the current state,

such as diameter at breast height, tree height, crown width, crown

length, etc., to predict the future trend of these factors, thereby

simulating the natural evolution of the stand (Ali, 2019). In this

study, multi-agent deep reinforcement learning was combined with

structure prediction, providing dynamic environmental

information to the optimization process. This allows the

optimization strategy to not only apply to the current stand state

but also be dynamically optimized based on the predicted stand

evolution trend, enabling the agents to formulate more robust

strategies while considering long-term dynamic changes. In the

combined optimization process with stand structure prediction, the

agents can adjust the spatial configuration of trees in advance, based

on the predicted stand evolution information, and allocate growth

resources more effectively. This ensures that the optimization effect

remains stable over the long term. Since changes in stand structure

occur gradually, the optimization strategy can dynamically respond
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to potential future risks, such as intensified competition or

mortality, ensuring that the stand structure remains balanced

during the succession process and avoiding structural imbalance

issues caused by short-term optimization. This approach is better

suited to the developmental needs of the stand over different time

scales. On the other hand, integrating stand structure prediction

also affects the optimization time and strategy adjustment

approach. Without prediction, the agents typically require more

iterations to adapt to environmental changes. However, by

incorporating the prediction model, the agents can obtain future

potential structural changes earlier, reducing unnecessary

exploration and improving optimization efficiency. Moreover, the

long-term trend information provided by the prediction model

allows for more precise optimization strategies, preventing

fluctuations in stand structure caused by short-term optimization.

From the optimization results, it can be observed that the key

stand structure indicators for all plots significantly improved after
FIGURE 8

Changes in structure indexes after current stand optimization.
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optimization, and the stand structure approached the ideal stand

condition. This validates the feasibility and effectiveness of the

method in long-term forest management, indicating that, when

considering dynamic stand changes, the stand structure can

maintain a reasonable spatial configuration over extended time

scales. Compared to the significant changes in other stand structure

indicators, the change in neighborhood comparison was relatively

small. On one hand, the degree of size differentiation in the plots

was already in a stable growth state before optimization (Xuan et al.,

2023). On the other hand, multi-agent deep reinforcement learning

primarily relies on selective harvesting and replanting as the main

regulatory measures. Therefore, the focus of the optimization was

on adjusting aspects such as mingling degree, competition pressure,

and distribution pattern, while the direct impact on neighborhood

comparison was relatively small. Additionally, the optimization

time varied across plots. Plot P4 required a longer optimization

time, while Plot P5 took relatively less time. This may be related to

the initial stand conditions and the difficulty of optimization. Plot

P5 had a more balanced initial stand, with its horizontal distribution

pattern already close to the ideal stand distribution. The

competition pressure and mingling degree were also higher than

in Plot P4, allowing for a quicker convergence to an optimal

adjustment strategy, resulting in a shorter optimization time. In

contrast, Plot P4 had poor mingling, relatively high competition
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pressure, and a less favorable horizontal distribution pattern. As a

result, the optimization process required more rounds of

exploration and adjustment to ensure an optimal outcome.

Furthermore, the length of the optimization time may also be

influenced by the multi-agent deep reinforcement learning

algorithm itself. Different exploration strategies and parameter

settings directly affect the optimization efficiency. This conclusion

is consistent with that obtained by using multi-agent reinforcement

learning to solve forest stand structure optimization (Xuan

et al., 2024).

Surely, when introducing the deep reinforcement learning

algorithm, this research still has the following limitations and

aspects that require further refinement: (1) This study only

utilized the basic MADQN algorithm within multi-agent deep

reinforcement learning. Further research is needed to explore

whether other more advanced algorithms and corresponding

improvements could be more effective in solving multi-objective

stand structure optimization problems. (2) Due to the limited data

coverage of the research plots, some of the tree factor predictions

still exhibit inaccuracies. Additionally, the current prediction

models have certain limitations in addressing the growth

variability of individual trees and complex environmental factors.

Therefore, more suitable prediction methods should be selected in

the future to improve the accuracy of structure prediction. (3) The
TABLE 7 Current stand structure optimization under different optimization schemes across various plots.

Stand
Condition

P1 P2 P3 P4 P5 Average Increase

Initial Stand 0.3501 0.3799 0.3982 0.3344 0.4294 0.3784

MADQN 0.5378 0.5861 0.5860 0.5130 0.6034 0.5653 49.40%

MAQL 0.5302 0.5369 0.5766 0.5014 0.5906 0.5471 44.58%
FIGURE 9

Convergence states of different optimised strategies in different plots.
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current dynamic stand structure optimization primarily focuses on

adjusting mingling degree, spatial distribution pattern, and

competition pressure, with relatively limited optimization of

neighborhood comparison. Future optimization strategies will pay

more attention to controlling neighborhood comparison to more

precisely optimize the diameter structure of the stand, enhancing

overall balance and growth stability. (4) In the spatial configuration

of replanting trees, the study currently uses a proportional method

to select multiple native species. However, due to the limited

number of certain species, the basic model is used to determine

tree height, crown width, and other tree factors. Future research will

further optimize the spatial configuration strategy for replanting

trees, making the species composition adjustment more scientific

and rational. Additionally, more accurate models will be introduced

to improve the prediction accuracy of fundamental tree factors, thus

enhancing the adaptability and long-term stability of the

optimization scheme.
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5 Conclusion

This study applies multi-agent deep reinforcement learning to the

field of stand structure optimization. The objective function is

established using complete mingling, uniform angle index,

neighborhood comparison, stratification index, and crown

competition index, with selective harvesting and replanting

measures for coordinated optimization. Comparative simulation

experiments with multi-agent reinforcement learning across

different plots showed that the objective function values of multi-

agent deep reinforcement learning in each plot were 0.5378, 0.5861,

0.5860, 0.5130, and 0.6034, all higher than those of multi-agent

reinforcement learning, which were 0.5302, 0.5369, 0.5766, 0.5014,

and 0.5906. These results demonstrate the superiority of multi-agent

deep reinforcement learning in stand structure optimization.

Considering the dynamic nature of stand structure, combining

structural prediction with multi-agent deep reinforcement learning
FIGURE 10

Running time of different optimised strategies in different plots.
TABLE 8 Dynamic stand structure optimization under different optimization schemes across various plots.

Sample Plot Stand Condition W Mc CI S U L Years Increase

P1
Initial Stand

After Optimizing
0.3630
0.4785

0.1459
0.7615

2.713
0.2041

0.2205
0.3126

0.4960
0.4914

0.3501
0.5718

20 63.32%

P2
Initial Stand

After Optimizing
0.5612
0.4869

0.1693
0.7774

3.4130
0.2226

0.2772
0.3450

0.4906
0.4860

0.3799
0.6101

20 60.59%

P3
Initial Stand

After Optimizing
0.3867
0.4768

0.1990
0.7786

4.0990
0.2745

0.3286
0.3535

0.4965
0.4852

0.3982
0.6455

35 62.10%

P4
Initial Stand

After Optimizing
0.2103
0.4826

0.0028
0.7505

3.1363
0.2475

0.2846
0.3512

0.4930
0.4788

0.3344
0.5863

40 75.33%

P5
Initial Stand

After Optimizing
0.5551
0.5102

0.1443
0.7511

2.8202
0.2468

0.2882
0.3573

0.4950
0.4954

0.4294
0.6210

15 44.62%
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enabled the stand structure in each plot to approach the ideal stand

structure within 15–40 years, achieving dynamic optimization of stand

structure. This approach provides a scientific basis and decision

support for the dynamic optimization of stand structure and has

broad application prospects.
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forest structure using neighbourhood-based variables. For. Ecol. Manage. 183, 137–145.
doi: 10.1016/S0378-1127(03)00102-6

Ali, A. (2019). Forest stand structure and functioning: Current knowledge and future
cha l l enges . Eco log i ca l 707 . Ind i ca tor s 98 , 665–677 . do i : 10 . 1016 /
J.ECOLIND.2018.11.017

Bohora, S. B., and Cao, Q. V. (2014). Prediction of tree diameter growth using
quantile regression and mixed-effects models. For. Ecol. Manage. 319, 62–66.
doi: 10.1016/j.foreco.2014.02.006

Boston, K., and Bettinger, P. (1999). An analysis of monte carlo integer
programming, simulated annealing, and tabu search heuristics for solving spatial
harvest scheduling problems. For. Sci. 45, 292–301. doi: 10.1093/forestscience/45.2.292

Chang, G., and Fan, W. (2024). Model for predicting individual tree crown width of
natural secondary Betula Platyphylla. J. OF SOUTHWEST FORESTRY Univ. 44, 129–
135. doi: 10.11929/j.swfu.202312031
Chen, C., Zhou, L., Li, X., Zhao, Y., Yu, J., Lv, L., et al. (2023). Optimizing the spatial
structure of metasequoia plantation forest based on uav-lidar and backpack-lidar.
Remote Sens. 15, 4090. doi: 10.3390/rs15164090

Chi, P., Zhu, K., Li, J., Ai, W., Huang, J., and Qing, D. (2019). “Dynamic multi-
objective optimization model for forest spatial structure with environmental detection
mechanism,” in 2019 IEEE 21st International 720 Conference on High Performance
Computing and Communications; IEEE 17th International Conference on Smart City;
IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/
DSS). 1635–1642 (IEEE).

Chunyan, Z., and Jiping, L. (2017). Spatial location and allocation of replanting trees
on pure chinese fir plantation based on voronoi diagram and delaunay triangulation. J.
Cent. South Univ. Forestry Technol. 37, 1–8. doi: 10.14067/j.cnki.1673-
923x.2017.02.001

Ding, Y., and Zang, R. (2021). Effects of thinning on the demography and functional
community structure of a secondary tropical lowland rain forest. J. Environ. Manage.
279, 111805. doi: 10.1016/j.jenvman.2020.111805
frontiersin.org

https://doi.org/10.1016/S0378-1127(03)00102-6
https://doi.org/10.1016/J.ECOLIND.2018.11.017
https://doi.org/10.1016/J.ECOLIND.2018.11.017
https://doi.org/10.1016/j.foreco.2014.02.006
https://doi.org/10.1093/forestscience/45.2.292
https://doi.org/10.11929/j.swfu.202312031
https://doi.org/10.3390/rs15164090
https://doi.org/10.14067/j.cnki.1673-923x.2017.02.001
https://doi.org/10.14067/j.cnki.1673-923x.2017.02.001
https://doi.org/10.1016/j.jenvman.2020.111805
https://doi.org/10.3389/fpls.2025.1610571
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2025.1610571
Dong, L., Bettinger, P., and Liu, Z. (2022). Optimizing neighborhood-based stand
spatial structure: Four cases of boreal forests. For. Ecol. Manage. 506, 119965.
doi: 10.1016/j.foreco.2021.119965

Dong, L., Wei, H., and Liu, Z. (2020). Optimizing forest spatial structure with
neighborhood-based indices: Four case studies from northeast China. Forests 11, 413.
doi: 10.3390/f11040413

Dongsheng, Q., Xiaofang, Z., Jianjun, L., Rui, G., and Qiaoling, D. (2020). Spatial
structure optimization of natural forest based on bee colony-particle swarm algorithm.
J. System Simulation 32, 371. doi: 10.16182/j.issn1004731x.joss.19-0320

Fotakis, D. G., Sidiropoulos, E., Myronidis, D., and Ioannou, K. (2012). Spatial
genetic algorithm for multi-objective forest planning. For. Policy Econ 21, 12–19.
doi: 10.1016/j.forpol.2012.04.002

Gangying, H., Yanbo, H., and Hai, X. (2005). Quantitative analysis of forest spatial
structure. J. Northeast Forestry Univ. 26, 45-48, 60.

Gangying, H., Yanbo, H., and Zhonghua, Z. (2018). Research progress of structure-
based forest management. Lin Ye Ke Xue Yan Jiu 31, 85. doi: 10.13275/
j.cnki.lykxyj.2018.01.011

Gronauer, S., and Diepold, K. (2022). Multi-agent deep reinforcement learning: a
survey. Artif. Intell. Rev. 55, 895–943. doi: 10.1007/s10462-021-09996-w

Gyawali, A., Sharma, R., and Bhandari, S. (2015). Individual tree basal area growth
models for chir pine (Pinus roxberghii Sarg.) in western Nepal. 61, 535-543.
doi: 10.17221/51/2015-JFS

Haight, R. G., and Travis, L. E. (1997). Wildlife conservation planning using
stochastic optimization and importance sampling. For. Sci. 43, 129–139.
doi: 10.1093/forestscience/43.1.129

Han, M., Li, L., Zheng, W., Su, J., Li, W., Gong, J., et al. (2011). Effects of different
intensity of thinning on the improvement of middle-aged yunnan pine stand. J. Cent.
South Univ. For. Technol. 31, 27–33.

Jian, L., Jia, X., Kun-yong, Y., Su-ping, Y., Jin-zhao, Z., and Qiu-yue, Z. (2018).
Simulation of replantation of low-density ecological landscape forest with coupled
stand structure. Acta Agriculturae Universitatis Jiangxiensis 40, 1125–1133.
doi: 10.13836/j.jjau.2018142

Jianming, W. (2017). Study on Decision Technology of Tending Felling for Larix
principis-rupprechtii Plantation Forest. BeiJing Forestry University, Beijing. Ph.D.
thesis.

Jianming, W., Baoguo, W., and Qiyang, L. (2017). Forest thinning
subcompartment intelligent selection based on genetic algorithm. SCIENTIA
Silvae SINICAE 53, 63–72.

Jiazheng, L., Xiaona, X., and Huayong, Z. (2021). Study on the growth prediction
model of birch species in the mountainous area of northern hebei. J. Inner Mongolia
Univ. (Natural Sci. Edition). 52, 257-263. doi: 10.13484/j.nmgdxxbzk.20210306

Jiping, L., Rui, G., Dongsheng, Q., Jianjun, L., Xiaofang, Z., Kaiwen, Z., et al. (2020).
Prediction of stand spatial structure of natural secondary forest based on gm (1,1). J.
Cent. South Univ. Forestry Technol. 40, 9–21. doi: 10.14067/j.cnki.1673-
923x.2020.01.002

Kim, J.-H., Roh, M.-I., and Yeo, I.-C. (2025). A method for generating multiple hull
forms at once using mlp (multi-layer perceptron). Ocean Eng. 324, 120659.
doi: 10.1016/j.oceaneng.2025.120659

Lee, D., Repola, J., Bianchi, S., Siipilehto, J., Lehtonen, M., Salminen, H., et al. (2024).
Calibration models for diameter and height growth of Norway spruce growing in
uneven-aged stands in Finland. For. Ecol. Manage. 558, 121783. doi: 10.1016/
j.foreco.2024.121783

Lei, J., Yuanchang, L., Shengxi, L., Kun, L., and Genqian, L. (2008). A study on d
iametra l structure of yunnan pine forestin the pla teaus ofm id-yunnan province. For.
Res. 21, 126. doi: 10.13275/j.cnki.lykxy.2008.01.025

Ling-bo, D., and Zhao-gang, L. (2011). Visualization of individual Mongolian scots
pines in the plantation conditions based on characteristic parameters of morphological
structures. J. OF Beijing FORESTRY Univ. 33, 20–27. doi: 10.13332/j.1000-
1522.2011.05.017

Liu, H., Dong, X., Meng, Y., Gao, T., Mao, L., and Gao, R. (2023). A novel model to
evaluate spatial structure in thinned conifer-broadleaved mixed natural forests. J.
Forestry Res. 34, 1881–1898. doi: 10.1007/s11676-023-01647-w

Luo, D. (2021). Stand structure characteristics of betula alnoides natural forest in
dehong prefecture, yunnan province. (Master's thesis). Chinese Academy of Forestry,
Beijing.

Ma, Y., Liang, F., Zhu, M., Chen, C., Chen, C., and Lv, X. (2022). Ft-ir combined with
pso-cnn algorithm for rapid screening of cervical tumors. Photodiagnosis Photodyn.
Ther. 39, 103023. doi: 10.1016/j.pdpdt.2022.103023

Mengying, H., Lihu, D., and Fengri, L. (2021). Tree crown length prediction models
for Larix algensis and Fraxinus mandshurica in mixed plantations with different mixing
Frontiers in Plant Science 21
methods. J. Nanjing Forestry Univesity (Natural Sci. Edition) 45, 13. doi: 10.12302/
j.issn.1000-2006.202005043

Na, L. (2019). The Research on Dynamic multi-objective optimization model of forest
structure under CMIP5 model. (Master’s thesis). Central South University of Forestry &
Technology, Changsha.

Nhat-Duc, H., and Van-Duc, T. (2023). Comparison of histogram-based gradient
boosting classification machine, random forest, and deep convolutional neural network
for pavement raveling severity classification. Automation construction 148, 104767.
doi: 10.1016/j.autcon.2023.104767

Ning, Z., Yang, Y., Wang, X., Song, Q., Guo, L., and Jamalipour, A. (2023). Multi-
agent deep reinforcement learning based uav trajectory optimization for differentiated
services. IEEE Trans. Mobile Computing 23, 5818–5834. doi: 10.1109/
TMC.2023.3312276

Okasha, N. M., and Frangopol, D. M. (2009). Lifetime-oriented multi-objective
optimization of structural maintenance considering system reliability, redundancy
and life-cycle cost using ga. Struct. Saf. 31, 460–474. doi : 10.1016/
j.strusafe.2009.06.005

Olsthoorn, A., Bartelink, H., Gardiner, J., Pretzsch, H., Hekhuis, H., and Franc, A.
(1999). Management of mixed-species forest: silviculture and economics.

Packalen, P., Strunk, J., Maltamo, M., and Myllymäki, M. (2023). Circular or square
plots in als-based forest inventories—does it matter? Forestry 96, 49–61. doi: 10.1093/
forestry/cpac032

Raptis, D., Kazana, V., Kazaklis, A., and Stamatiou, C. (2018). A crown width-
diameter model for natural even-aged black pine forest management. Forests 9, 610.
doi: 10.3390/f9100610
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Appendix 1

To address stand structure optimization, this study proposes a

multi-agent deep reinforcement learning algorithm. The detailed

pseudocode is provided below. Due to its length, the decision-

making processes of Agent1 and Agent2 in the MADQN framework

are presented separately.
Fron
1 Initialize actions A1,A2, states S1,S2, learning rate

a, e-greedy policy e, discount factor g, maximum

episodes MAXEPISODES, replay buffer REPLAY 1,REPLAY

2, main network MAIN_NET1,MAIN_NET2, target network

TARGET_NET1,TAG_NET2, and Q1(s1,a1),Q2(s2,a2),

where s1 ∈ S1, s2 ∈ S2, a1 ∈ A1, a2 ∈ A2;

2 Set initial s1,a1,a2 ← 0, s2 ← len(states);

3 for episode = 1 to MAXEPISODES do

4 Initialize s1 for Agent and initialize s2

for Agent2;

5 Execute Agent1 Process (Alogrithm 2);

6 Execute Agent2 Process (Alogrithm 3);
Algorithm 1. Overall Process of MADQN for Stand
Structure Optimization.
1 for Agent1 do

2 if ACTION 1 == 1 then

3 Select action a1 from current state s1 using policy

derived from Q1 (e-greedy);

4 Execute action a1, observe reward r1, and next

state s1′;

5 else if S1 ≥ S2 then

6 Set S1 to terminal;

7 Set reward R1 to d;

8 else

9 Selective harvesting by selecting random;

10 Utilize R program to divide the Voronoi diagram

structure and compute the stand structure

parameters and objective function values L1 after

selective harvesting;

11 if L1 > L then

12 Set S1 to S1 + 1;

13 Set reward R1 to a;

14 Document selective harvesting tree and

o b j e c t i v e f u n c t i o n v a l u e s a f t e r

selective harvesting;

15 else

16 Set S1 to S1;

17 Set reward R1 to b;

18 s1 ← s1′;
tiers in Plant Science 23
19 Store (s1, a1, r1, s1′) into the replay buffer

REPLAY 1;

20 if Size(REPLAY 1) > Batch then

21 Random Sample from REPLAY 1;

22 Q1(s1, a1) ← Q1(s1, a1) + a[r1 + g maxa′ Q1(s1′,

a1′) − Q1(s1, a1)];

23 Gradient Update;

24 T ARGET_NET 1 ← MAIN_NET 1;
Algorithm 2. Agent 1: Selective harvesting Process.
1 for Agent2 do

2 if ACTION 2 == 1 then

3 Select action a2 from current state s2 using

policy derived from Q2 (e-greedy);

4 Execute action a2, observe reward r2, and

next state s2′;

5 else if S1 ≥ S2 then

6 Set S2 to terminal;

7 Set reward R2 to d;

8 else

9 Replanting by maintaining consistent

spacing between the replanted trees;

10 Utilize R program to compute the stand

structure parameters and objective function value Ll ,

Lm, Lr , Lm1, Lm2 after replanting different trees;

11 if Ll < Lm < Lr or Lr < Lm < Ll then

12 if max(Lm1, Lm2) > max(Ll , Lm, Lr ) then

13 Set S2 to S2 − 1;

14 Set reward R2 to c1;

15 else

16 Set S2 to S2 − 1;

17 Set reward R2 to c2;

18 else if Ll < Lm and Lm > Lr then

19 if max(Lm1, Lm2) > max(Ll , Lm, Lr ) then

20 Set S2 to S2 − 1;

21 Set reward R2 to c3;

22 else

23 Set S2 to S2 − 1;

24 Set reward R2 to c4;

25 else if Ll > Lm and Lm < Lr then

26 if max(Lm1, Lm2) > max(Ll , Lm, Lr ) then

27 Set S2 to S2 + 1;

28 Set reward R2 to c5;

29 else

30 Set S2 to S2 + 1;

31 Set reward R2 to c6;

32 Document selective harvesting trees and the

largest replanting trees and objective function values

after replanting;
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Fron
33 s2 ← s2′;

34 Store (s2, a2, r2, s2′) into the replay buffer

REPLAY 2;

35 if Size(REPLAY 2) > Batch then

36 Random Sample from REPLAY 2;

37 Q2(s2, a2) ← Q2(s2, a2) + a[r2 + g maxa′ Q2

(s2′, a2′) − Q2(s2, a2)];

38 Gradient Update;

39 T ARGET_NET 2 ← MAIN_NET 2;
Algorithm 3. Agent 2: Replanting Process.
APPENDIX.2

Furthermore, to realize dynamic optimization of stand

structure, this study integrates multi-agent deep reinforcement

learning for stand structure optimization with structure

prediction, and presents the corresponding pseudocode.
1 while Stand is not ideal stand do

2 Using MADQN to solve stand structure optimization;

3 Document the optimal trees after harvesting

and replanting;

4 Use the optimized stand as the initial stand;

5 Use the prediction model to estimate the initial

stand in five years;

6 Calculate the complete mingling, uniform angle

index, and neighborhood comparison of the

initial stand;
Algorithm 4. Stand Structure Dynamic Optimization.
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