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Introduction: The rational structure of forest stands plays a crucial role in
maintaining ecosystem functions, enhancing community stability, and ensuring
sustainable management. Although progress has been made in stand structure
optimization, most existing studies focus on static improvements and fail to
adequately capture the dynamic nature of stand development. In addition,
commonly used heuristic and traditional methods often suffer from limitations
in computational efficiency and generalization ability.

Methods: To address these challenges, this study explores the potential and
advantages of multi-agent deep reinforcement learning in forest management,
offering innovative insights and methods for achieving sustainable forest
ecosystem management. Using the secondary forests of Pinus yunnanensis in
southwest China as the research subject, we constructed an objective function
and constraints based on spatial and non-spatial structure indexes. Selective
harvesting and replanting were employed as optimization measures, and
experiments were conducted on five circular plots to compare the
performance of multi-agent deep reinforcement learning with that of multi-
agent reinforcement learning. To account for the dynamic characteristics of
stand structure, we further integrated structure prediction with multi-agent deep
reinforcement learning for dynamic optimization across the five plots.

Results: The results indicate that multi agent deep reinforcement learning
consistently outperformed multi agent reinforcement learning across all plots.
For the initial objective function values of each plot (0.3501, 0.3799, 0.3982,
0.3344, 0.4294), the optimized results obtained through multi agent deep
reinforcement learning (0.5378, 0.5861, 0.5860, 0.5130, 0.6034) were
significantly superior to the maximum objective function values achieved by
multi agent reinforcement learning (0.5302, 0.5369, 0.5766, 0.5014, 0.5906).
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Furthermore, the dynamic optimization results incorporating structure
prediction demonstrate that all plots progressively approached an ideal stand
condition over multiple optimization cycles (0.5718, 0.6101, 0.6455, 0.5863,
0.6210), leading to a more balanced stand structure and improved long-
term stability.

Discussion: This study proposes a novel stand structure optimization method
that integrates multi agent deep reinforcement learning with structure
prediction, providing theoretical support and practical guidance for the
sustainable management of Pinus yunnanensis secondary forests.

KEYWORDS

multi-agent deep reinforcement learning, stand structure, multi-objective optimization,
structure prediction, secondary forests

1 Introduction

Secondary forests often face challenges such as unstable stand
structure, reduced biodiversity, increased risk of forest fires, and
susceptibility to natural disturbances, including insect infestations,
diseases, and wildfires (Lei et al., 2008; Ding and Zang, 2021; Zaizhi,
2001). To enhance the stability and sustainability of secondary
forests, stand structure optimization has become a key technical
approach in forest management and planning, providing essential
support for their scientific management.

Selective harvesting is a crucial measure for optimizing stand
structure and has received widespread attention (Dong et al.,, 2022;
Dongsheng et al., 2020; Chi et al., 2019; Dong et al., 2020). By removing
trees with limited growth potential and weak competitiveness, the
growth environment and resource allocation of the remaining trees can
be improved, thereby optimizing stand structure.

Common stand structure optimization algorithms include
heuristic methods such as particle swarm optimization (PSO) (Wu
etal, 2022), Monte Carlo algorithm (Haight and Travis, 1997; Boston
and Bettinger, 1999), and genetic algorithms (GA) (Jianming et al.,
2017; Okasha and Frangopol, 2009; Fotakis et al., 2012). PSO
provides certain advantages in global search but is prone to local
optima in complex problems; Monte Carlo methods explore the
solution space through random sampling but often suffer from low
computational efficiency; GA performs well in handling nonlinear
problems but typically requires many iterations to converge. Overall,
although these methods can address stand structure optimization
tasks, they generally face limitations such as high computational cost,
susceptibility to local optima, and insufficient solution efficiency. In
our previous study, we applied deep reinforcement learning to
improve the efficiency and accuracy of multi-objective stand
structure optimization. By modeling tree-felling decisions as agent
actions and incorporating neural networks with experience replay for
stable training, this approach achieved superior optimization results
compared with traditional heuristic algorithms and conventional
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reinforcement learning methods across multiple plots of Pinus
yunnanensis secondary forests (Zhao et al., 2024).

A single selective harvesting measure can only reduce
competition and adjust stand density, but it cannot restore
species diversity or fill the spatial gaps created by harvesting;
therefore, it is insufficient to achieve comprehensive optimization
of stand structure. On this basis, replanting measures, namely the
planting of native tree seedlings in appropriate locations, should be
implemented to achieve overall optimization of stand structure.
Common strategies for selecting replanting location include the
Voronoi diagram method (Wang et al., 2019), the maximum
Delaunay triangulation area method (Chunyan and Jiping, 2017),
and the Kriging interpolation method (Jian et al., 2018). In general,
these methods identify relatively sparse areas within the stand as
potential replanting sites using different algorithms. However, they
have certain limitations: on one hand, the replanting locations are
relatively fixed and lack flexibility, which may lead to suboptimal
replanting outcomes; on the other hand, these methods often
overlook the competitive interactions between the replanting trees
and neighboring trees, potentially increasing resource competition
within the stand and affecting the optimization of stand structure.

Building on this foundation, our research team applied multi-
agent reinforcement learning to integrate selective harvesting and
replanting, using multiple agents for collaborative optimization.
Compared to single selective harvesting or replanting, multi-agent
reinforcement learning offers advantages such as improved harvesting
effectiveness and more flexible replanting locations, providing high
adaptability and variability (Xuan et al, 2024, 2023). However, for
such complex optimization problems, the trial-and-error cost in
reinforcement learning increases, leading to unstable training and
poor generalization capability. In contrast, multi-agent deep
reinforcement learning not only retains the collaborative
optimization advantages of multi-agent reinforcement learning but
also exhibits superior computational efficiency. It achieves higher
solution stability and efficiency when handling complex problems,
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along with enhanced generalization capability (Waschneck et al., 2018;
Ning et al,, 2023; Gronauer and Diepold, 2022; Shen et al., 2022).

Despite significant progress in current stand structure
optimization research (Olsthoorn et al, 1999; Chen et al., 2023;
Zhang et al., 2024), existing studies primarily focus on optimizing
the present stand condition while overlooking the dynamic changes
in stand structure. Research on optimizing dynamic stand
structures remains relatively scarce (Na, 2019). As climate change,
ecological shifts, and increasing complexities in forest management
demand more adaptive strategies, dynamic stand structure
optimization—optimization from a long-term perspective—will
become increasingly important. Therefore, integrating scientific
prediction with effective optimization methods to enhance the
sustainability and adaptability of future stand management has
emerged as a key challenge in contemporary forestry research.

Structure prediction is another important field in ecology and
forest management. By analyzing existing stand data, it forecasts
future stand growth trends and structural evolution.

Extensive research has been conducted on predicting stand
variables such as DBH (Gyawali et al., 2015; Bohora and Cao, 2014),
tree height (Lee et al., 2024; Siipilehto et al., 2023), crown width
(Raptis et al., 2018; Sanchez-Gonzalez et al., 2007), and crown
length (Mengying et al., 2021; Sattler and LeMay, 2011). General
growth models (Jiazheng et al., 2021) offer biologically interpretable
insights, mixed-effects models (Chang and Fan, 2024) capture both
population trends and individual variation, and machine learning
methods such as random forests (Xiaonan et al., 2024) excel in
nonlinear modeling and predictive accuracy. These approaches
have all achieved promising results. Particularly in forest
management and resource planning, these models provide critical
scientific support for stand management. However, existing studies
on structure prediction mainly focus on the interactions and trend
predictions of multiple tree attributes (Ling-bo and Zhao-gang,
20115 Xi et al,, 2015), with relatively little attention given to their
overall impact on stand structural evolution (Jiping et al., 2020).
Integrating prediction with optimization not only enhances our
understanding of the dynamic changes in forest ecosystems but also
provides scientific guidance for dynamic stand structure
optimization, ultimately improving the long-term effectiveness of
forest management.

In summary, although existing studies have made significant
progress in stand structure optimization, they primarily focus on
static improvements and fail to adequately address the dynamic
nature of stand development over time. Moreover, heuristic
algorithms and traditional reinforcement learning methods suffer
from limitations in computational efficiency and generalization
ability, restricting their applicability in long-term, complex
ecosystem management. To bridge these gaps, this study proposes
an innovative approach that integrates multi-agent deep
reinforcement learning with stand structure prediction, focusing
on the secondary forests of Pinus yunnanensis. By incorporating
dynamic prediction into selective harvesting and replanting
measures, we aim to achieve dynamic optimization of stand
structure, not only enhancing the current structural condition but
also improving long-term stability and sustainability.
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2 Materials and methods
2.1 Study areas

The study area is located in the Cangshan region of the Dali Bai
Autonomous Prefecture, Yunnan Province. Pinus yunnanensis is a
typical pioneer and dominant species in this region, playing a key
role in water conservation, soil and water preservation, and the
maintenance of biodiversity. However, due to historical
overexploitation, secondary Pinus yunnanensis forests in this area
generally exhibit simple stand structures and poor stability, making
them a focus and challenge for sustainable forest management.
Therefore, conducting structural optimization studies on this
typical forest type is of significant theoretical and practical
importance for achieving precise improvement of regional forest
ecosystems. The study area is located in Cangshan, Dali, Yunnan
Province, southwestern China, spanning 25°34" ~ 26°00'N, 99°55 ~
100°12'E, with a total area of approximately 293 km? and an
elevation range of 1966-4122 m. The region has a plateau
monsoon subtropical climate characterized by mild and stable
weather, ample sunlight, small annual temperature variations, and
large diurnal temperature fluctuations, with an annual average
temperature of 16.1°C. The prevailing wind direction is the
southwest monsoon (Shuai et al., 2024). Annual precipitation is
abundant, reaching 861.1 mm, with distinct dry and wet seasons.
Rainfall is concentrated from May to October, accounting for 83%
of the total annual precipitation. The predominant soil type in the
area is Hyperdystric Clayic Ferralsol (Ferric). Pinus yunnanensis is
the primary tree species, and the associated tree species in the
canopy layer include Pinus armandii Franch., Betula alnoides
Buch.-Ham. ex D. Don, Quercus acutissima Carruth., and
Quercus variabilis Blume. The understory shrub layer includes
species such as Vaccinium bracteatum Thunb., Rhododendron
microphyton Franch., Gaultheria griffithiana Wight, Eurya nitida
Korthals, and Ternstroemia gymnanthera (Wight & Arn.) Bedd
(Figure 1).

2.2 Study site and data collection

When establishing standard sample plots, circular plots offer
advantages over traditional ones, such as easier setup and
positioning in complex terrains and a smaller edge effect for the
same area (Packalen et al., 2023). Generally, common square plots
are typically set at 20mx20m as the initial size, which translates to a
circular plot with a radius of approximately 11.29m. To study the
structural characteristics and optimization methods of secondary
Pinus yunnanensis forests at different scales, this research
established circular plots of varying radii based on topographic
conditions and plot accessibility, in accordance with predefined
rules for standard plot radius division.

Based on the terrain conditions and stand characteristics, 11
fixed circular standard plots with radii ranging from 12 to 35 meters
were established at elevations between 2100 and 2400 meters on
Cangshan Mountain (Packalen et al., 2023). The geographical
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FIGURE 1
Location of the study area.

coordinates, elevation, slope, aspect, and plot radius of each plot
were measured and recorded. For each circular standard plot, all
living trees with a diameter at breast height of at least 5cm were
individually measured. The species, relative coordinates, DBH, tree
height, crown width, and other basic tree factors were recorded for
each tree. The relative coordinates of each tree at the base were
accurately measured using a total station (GTS-2002). Additionally,
plots with better site conditions, P1-P5, were selected as the
experimental plots for simulation optimization, with the basic
plot information provided in Table 1.

2.3 Determination of spatial structure units
and edge correction

This study employed the Voronoi diagram method to
determine spatial relationships among trees (Liu et al, 2023).
Centered on a reference tree, the Voronoi diagram method
accurately captures tree adjacency relationships while effectively
reflecting their horizontal distribution pattern. During data
processing, Voronoi diagrams were generated using R 4.2.0, with
each polygon representing a spatial structural unit formed by a tree
and its neighboring trees. To minimize errors in calculating spatial
structure indexes caused by edge trees being fragmented at the plot
boundary, this study adopted the buffer zone method. The plot
boundary was contracted inward by 2 m to create a buffer zone
(Von Gadow et al., 2003). When computing spatial structure
indexes, trees within the buffer zone were only considered as
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neighboring trees for constructing spatial structural units and
were not used as reference trees.

2.4 Stand structure indexes

Quantifying stand structure is a fundamental aspect of stand
structure optimization. In this study, spatial structure was set as the
primary objective, while non-spatial structure served as a
constraint. The selected non-spatial structure indexes included
tree diameter classes, number of species, canopy density,
harvesting intensity, and planting density. The selected spatial
structure indexes included the uniform angle index, complete
mingling, crown competition index, stratification index, and
neighbourhood comparison. Among these, the uniform angle
index describes the horizontal distribution pattern of trees,
complete mingling represents the degree of tree species
segregation, the crown competition index quantifies competition
pressure among trees, the stratification index characterizes the
vertical distribution pattern, and neighborhood comparison
measures the degree of size differentiation among trees.

2.4.1 Non-spatial structure indexes
2.4.1.1 Tree diameter classes

Trees are classified into different categories based on their DBH,
with a greater number of diameter classes indicating better stand
growth. In the optimization process, it is required that the diversity
of tree diameter classes remains consistent before and after
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TABLE 1 Basic information of the sample plots.

10.3389/fpls.2025.1610571

Sample . Slope Slope Mean DBH Mean Sample plot Survey Stand density
plots e (°) dir. (cm) height (m) radius (m) time (trees- ha™)
P1 2254 13.45 E 17.10 11.97 35 2022 1603
) 2273 16.16 S 13.79 9.39 32 2022 2182
P3 2205 17.70 NE 1450 9.30 20 2022 2109
P4 2138 5.10 NE 14.26 10.94 19 2021 2618
P5 2253 15.25 SE 16.03 9.57 30 2023 2631
P6 2226 30.75 E 12.77 9.48 14 2021 3839
P7 2184 36.80 E 15.62 8.99 12 2021 1415
P8 2393 26.30 NE 21.33 13.58 12 2021 1627
P9 2136 13.60 NE 1551 9.41 15 2021 1627
P10 2194 11.75 S 16.17 9.88 19 2022 2504
P11 2284 30.35 SE 15.69 8.58 18 2022 2504

E, east; S, south; NE, north-east; SE, south-east.

optimization. In this study, tree diameter classification starts from a
DBH of 6 cm, with a 2 cm interval for each diameter class (Equation

1).

D=D, (1)

Where D, represents the number of diameter classes of trees
within the stand before harvesting, and D represents the number of
diameter classes of trees within the stand after harvesting.

2.4.1.2 Number of species

During the optimization process, tree species diversity must be
preserved, and no species should be artificially eliminated from the
stand. It is required that the tree species diversity remains consistent
before and after optimization to ensure that no species disappear
(Equation 2).

T=T, (2)

Where T, denotes the initial number of tree species, while T
indicates the number of tree species after harvesting.

2.4.1.3 Canopy density

A healthy forest requires the canopy to form a continuous
cover. Generally, a canopy density of no less than 0.7 is considered
indicative of continuous forest cover (Equation 3).

Cd > 0.7 (3)

2.4.1.4 harvesting intensity

harvesting intensity determines whether the stand’s growth
condition remains favorable after optimization. According to
harvesting requirements, the amount of selective harvesting
should be less than the growth increment. Research indicates that
the harvesting intensity of Pinus yunnanensis secondary forests
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should be controlled within 35% (Su et al., 2010; Han et al., 2011)
(Equation 4).

(4)

Where N, represents the total number of trees before

N = Ny(1 - 35%)

harvesting, while N represents the total number of trees
after harvesting.

2.4.1.5 Planting density

The planting density is a key factor influencing the effectiveness
of replanting. Previous studies have shown that the optimal planting
density for Pinus yunnanensis ranges from 1667 to 3333 trees per
hectare (Zhang et al., 2023). After replanting optimization, the
stand density should fall within the range of [1,667, 3,333] trees per
hectare (Equation 5).

1667 < PD < 3333 (5)

2.4.2 Spatial structure indexes
2.4.21 Neighborhood comparison (U)

Neighborhood comparison (Aguirre et al, 2003) is used to
describe the degree of size differentiation and competition among
trees. It refers to the proportion of neighboring trees with a DBH
larger than that of the reference tree among neighboring trees. The
expression is given as (Equation 6):

(6)

U, represents the neighborhood comparison for reference tree i,
If the diameter at breast height of neighboring tree j is greater than
that of reference tree i, then kij = 1, otherwise, k,-j = 0. A smaller U;
indicates a greater dominance of the reference tree. The value of U;
can fall into five intervals: 0, (0, 0.25], (0.25, 0.5], (0.5, 0.75], and
(0.75, 1], corresponding to the reference tree being in dominant,
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sub-dominant, intermediate, disadvantaged, and absolutely
disadvantaged status within the stand, respectively.

2.4.2.2 Crown competition index

The crown competition index (Jianming, 2017) is a method
used to describe the degree of competition among trees by
calculating the crown overlap area based on tree characteristics
such as crown width and crown length, thereby reflecting the
competitive pressure during tree growth. The expression is given
as (Equations 7-10):

1 n
=— X >AO; x

CI, =
"z j=1 L

7)

CI; represents the crown competition index for reference tree i,
and Z; represents the crown projection area of reference tree i. L; =
H; x CW; x CL; (height of competing tree j x crown width of
competing tree j x crown length of competing tree j), L; = H; x CW;
x CL; (height of reference tree i x crown width of reference tree i x
crown length of reference tree i). AO;; represents the crown overlap
area between reference tree i and competitor tree j. If there is no
overlap, AO;; = 1. When there is overlap,

-5 2
cw2 ~1) - g\ JACWE g2 (8)
Si = lzn‘a{[C"V-zarccos(l - -4 ) - 4CW; - q1'21 )
A ] 2CW2 2 |

x \/4wa ~ (4CW? - )}

AO; =S+, (10)

So represents the total shaded area of reference tree i by n
competitor trees, and S; represents the total shaded area of n
Li~(CW}-CW?)
Li,)’ ij
represents the distance between competitor tree j and reference

competitor trees by reference tree i. q;=

tree i, CW; represents the crown width of reference tree i, CW;
represents the crown width of competitor tree j, and n represents
the number of competitor trees.

2.4.2.3 Stratification index

The stratification index (Zhao et al., 2024; Zhou et al., 2022)
reflects the vertical distribution pattern of trees and the diversity of
stand structure. It is an extension of the storey index, incorporating
the influence of terrain on forest stratification. The expression is
given as (Equations 11-13):

Lz 1 FL;, - FL;
at } ! J| ) (11)
3 ”j=1 max( il 1)
-1,H; <1H,
FL; = O,in <H; < %Hd (12)
LH; > 2H,
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E L1004 (Hsort(i) + Esurt(i)) (13)

Ha= L 1OOAJ

S; represents the stratification index for reference tree i, z; denotes
the number of layers within the spatial structure unit to which the
reference tree i belongs. FL; indicates the classification of reference tree
i in the vertical stratification. H; represents the height of reference tree
i, while H; denotes the dominant height. A stands for the per hectare
plot area, and Hy,, is the height of the i-th tree among the tallest
[100A] trees per hectare, and E,; indicates the relative elevation of
the i-th tree among these |100A] trees. The closer the stratification
index is to 1, the more complex the vertical stratification of the stand.

2.4.2.4 Complete mingling

Complete mingling (Sheng et al., 2023) introduces the Simpson
index into the traditional mingling index to enhance the
differentiation of tree species diversity. It is used to describe the
degree of tree species segregation while also accounting for species
diversity. The expression is given as (Equation 14):

(14)

M.
=5l E j
2 (n+ 1)
Mc; represents the complete mingling of reference tree i. ; is the
n; is the
number of trees of the j-th species among the neighboring trees, and

number of different species among the neighboring trees,

s; is the number of species within the spatial structure unit to which
reference tree j belongs. M; represents the mingling degree of
reference tree i M; :%E}leﬁ» When the reference tree i and
neighboring tree j are of the same species, v;; = 0; otherwise, v;; =
1. The value of Mc; can fall into five intervals: 0, (0, 0.25], (0.25, 0.5],
(0.5, 0.75], and (0.75, 1], corresponding to zero mixing, low mixing,

moderate mixing, high mixing, and complete mixing, respectively.

2.4.2.5 Uniform angle index (W)

The uniform angle index (Zhang et al., 2018) is used to describe
the spatial distribution pattern of trees. It is defined as the
proportion of o/ angles (the smaller angles between neighboring

trees) that are less than the standard angle o (0 = 3ni01 ) out of a
total of angles formed. Its expression is (Equation 15):
n
W;=—3z; (15)
n&

W; represents the uniform angle index for reference tree i. When
the j-th o angle is smaller than the standard angle g, z; = 1;
otherwise, z; = 0. The value of W; can fall into five intervals: 0, (0,
0.25], (0.25,0.5], (0.5, 0.75], and (0.75, 1], corresponding to absolutely
uniform, uniform, random, non-uniform, and conmplete non-
uniform distributions, respectively. The ideal range for the mean
uniform angle index in a stand is between [0.475, 0.517].

2.5 Selective harvesting Strategy

Random selection (Tang et al., 2004), tree homogeneity index

(Yitong, 2019), and spatial competition (Zhang et al., 2019) are
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common methods for determining felling decisions. In the random
selection method, trees are randomly selected as candidates for
felling from the initial stand. The tree homogeneity index-based
method calculates a comprehensive index Li for each tree using
spatial structure parameters and ranks the trees in ascending order
to determine the felling candidates. The spatial competition-based
method evaluates trees based on horizontal spatial patterns and
competition pressure, selecting trees with a greater difference
between the uniform angle index and 0.496, a higher
neighborhood comparison value, and a larger crown competition
index as felling candidates. In our previous research, we conducted
an experimental comparison of these three methods and found that
random selection was best suited for integration with the deep
reinforcement learning algorithm Zhao et al. (2024). Therefore, in
this study, random selection is chosen as the preferred method for
the felling optimization process.

2.6 Replanting strategy

2.6.1 Planting location

The maximum Delaunay triangulation area method is a
planting location determination approach based on Delaunay
triangulation. In a Delaunay triangulation network, edge lengths
represent the distances between neighboring trees, while nodes
correspond to individual trees. Planting locations are determined
by identifying the incenter of the largest triangle formed by the
nodes, thereby reflecting both the presence of canopy gaps and the
overall stand distribution pattern. To account for the influence of
surrounding neighboring trees on the growth of replanted trees, the
replanting foreground index (RFI) (Xuan et al., 2024) is
incorporated to identify planting locations that have a greater
impact on stand structure optimization. This method
comprehensively considers various factors affecting the growth of
replanted trees, thereby improving the accuracy and effectiveness of
planting location determination and enhancing the efficiency of
stand structure adjustment and optimization.

The calculation formula for the RFI is as follows (Equation 16):

1+DAA; 1+Mc¢;  1+U;

) 4, &
RFI, = DAA 1+CA[4: U

5(,‘[

(16)

RFI; represents the replanting foreground index of the replanted
tree i, DAA, refers to the area of the Delaunay triangulation element in
which tree 7 is located. Mc; corresponds to the complete mingling of tree
i, while U; denotes its neighborhood comparison, and CI; indicates its
crown competition index. Moreover, dpaa, Oy Oy and ¢y represent
the standard deviations of their respective structural parameters.

2.6.2 Planting number

Relevant studies have shown that the optimal planting density
range for Pinus yunnanensis is 1667-3333 trees per hectare. In this
study, 3333 trees per hectare was selected as the upper limit for
stand density after replanting. Based on the plot area, the maximum
number of trees was determined for each plot: P1, P2, P3, P4, and
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P5 had upper limits of 1284, 1076, 418, 377, and 941
trees, respectively.

2.6.3 Spatial configuration of replanting

In mixed forests, the proportion and spatial arrangement of
replanted tree species directly influence the degree of species
mingling, while variations in DBH, H, and CW among different
species substantially affect interspecific competition. In this study,
replanting optimization simultaneously considered the spatial
distribution and size structure of trees to achieve a more balanced
species composition and stand structure. To promote the positive
succession of secondary forests and enhance the mingling index, the
main tree species widely distributed in the Cangshan region were
selected. The seven chosen species—Pinus yunnanensis, Pinus
armandii, Quercus acutissima, Vaccinium bracteatum, Camellia
sinensis, Betula alnoides, and Ternstroemia gymnanthera—are
either dominant or native tree species in the study area and
represent the typical species composition and ecological
characteristics of local secondary forests. Equal proportions were
applied in the simulation to simplify the modeling framework and
highlight species diversity and ecological complementarity. The
replanted trees were initialized with an average DBH of 5 cm and
an age of 5 years. Due to the limited availability of growth models
for some species, models of ecologically similar species (Xi et al.,
2015; Luo, 2021; Jiazheng et al., 2021) were adopted to estimate tree
height, crown width, and crown length, and the results were
subsequently validated using existing datasets. The configuration
of replanted trees is shown in Table 2.

2.7 Stand structure prediction

2.7.1 Models

Based on the data characteristics of different tree factors and the
requirements of the prediction tasks, this study selected four
different machine learning models to ensure predictive accuracy
and reliability. The CNN-PSO (Ma et al., 2022) model is suitable for
handling continuous variables with complex nonlinear
relationships; its convolutional layers can effectively capture latent
spatial patterns among features, and thus it was used to predict age
and crown length. The Random Forest (RF) model (Xiaonan et al.,
2024), with its strong anti-overfitting capability and ability to
handle high-dimensional data, can robustly manage complex
interactions among tree growth factors, making it suitable for
predicting tree height and crown width. The Multilayer
Perceptron (MLP) (Kim et al., 2025), due to its powerful function
approximation capability, was employed to model the growth of
diameter at breast height (DBH), a complex nonlinear regression
problem. The Gradient Boosting Decision Tree (GBDT) (Nhat-Duc
and Van-Duc, 2023), which excels in classification tasks—
particularly with imbalanced data and combining multiple weak
classifiers—was used to predict the probability of tree mortality, a
binary classification problem. This targeted model selection strategy
aims to maximize the accuracy and robustness of each
prediction task.
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TABLE 2 Configuration of replanted trees.
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Tree species Variable Model Optimal parameters Stand factor
H H=ax (1-¢ P a=16.7289, b = 0.0871, c = 1.1212 H =520
Pinus yunnanensis cw CW = a x DBH" a=0.5652,b =0.7023 CW =174
CL CL =a x DBH" a=0.3646,b = 0.7984 CL=132
H H=ax (1-¢t*PBHe a =17.0986, b = 0.0816, ¢ = 0.9258 H=519
Pinus armandii cw CW = 0 XuefchBH a =4.2420, b = 2.2677, ¢ = 0.0523 CW =1.54
CL CL=ax (1-e Py a =41.0291, b = 0.0289, ¢ = 0.4971 CL=2.56
. H 2 /OB a=1.0822, h;:;:;i ¢=17.2914, Hes
Quercus acutissima cw CW=a+bxDBH®+cx DBH® | a=02574, b = 0.2442, ¢ = ~0.0022 CW =182
CL CL =a x DBH" a=0.4833,b = 0.6892 CL=147
H H'=a+bxDBH a=0.0211,b = 0.6850 H =633
Betula alnoides cw CW = TTh X‘;MDBH a = 3.0360, b = 0.8446, ¢ = 0.1345 CW =212
CL CL = a x DBH" a=20317,b=0.2375 CL =2.98
H H=a x ¢ /PP a =2.2004, b = 05011, ¢ = 4.9997 H=220
Vaccinium bracteatum cw W=y X“(MDBH a=29716, b = 1.0269, ¢ = -0.0314 CW =135
CL CL = ﬁ a=1.0123, b = 0.7829, ¢ = 4.0326 CL=1.01
H H=ax (1-e?*PBHy a =10.0002, b = 0.2114, ¢ = 1.9997 H =426
Camellia sinensis CwW CW = m a=1.9389, b =0.5366, c = 0.1097 CW =1.48
CL CL =a x DBH" a =0.9009, b = 0.3250 CL=1.55
H H=a+bx DBH + ¢ x DBH® a=29963, b= 09818, ¢ = -0.1110 H =513
Ternstroemia gymnanthera cw In(CW) =a+b x In(DBH) a=-0.1710,b = 0.2247 CW=1.21
CL CL=ax (1-¢"*PBH)e a=1.9964, b = 0.1762, ¢ = 1.0005 CL=1.17

2.7.1.1 CNN-PSO

CNN consists of an input layer, output layer, convolutional
layers, pooling layers, and fully connected layers. Its core concept is
to automatically learn local features through convolutional layers,
eliminating the need for manual feature extraction required by
traditional methods. Additionally, pooling layers perform
downsampling on the features, reducing computational
complexity while enhancing the model’s robustness.

PSO is a global optimization algorithm that simulates swarm
behavior, where each particle represents a potential solution. The
particles continuously move through the solution space, searching
for the optimal solution. PSO has strong global search capabilities
and can efficiently identify high-quality solutions.

The CNN-PSO was adopted in this study, where the global
search ability of PSO was utilized to optimize critical
hyperparameters, such as the number of output channels in the
convolutional layers, learning rate, and batch size. Traditional
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manual tuning is often constrained by experience and prone to
getting stuck in local optima. By applying PSO to CNN
hyperparameter optimization, the optimal parameter combination
can be automatically identified, enhancing model performance
while significantly reducing computational resources and time.

In the model design, two convolutional layers were used to
extract features from the input data, each followed by a batch
normalization layer to accelerate training and improve stability.
Then, pooling layers were applied to reduce data dimensionality,
alleviating computational burden and enhancing the model’s
adaptability to local features. After convolution and pooling, the
data was flattened and processed through fully connected layers
before producing the final prediction output. To prevent overfitting,
a Dropout layer was incorporated to randomly drop some neurons,
encouraging the model to learn diverse features and thereby
improving its predictive capability on new data. As shown
in Figure 2.
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FIGURE 2

The architecture of the CNN-PSO model.

2.7.1.2 Random Forest

RF is an ensemble learning algorithm based on the Bagging
method and decision trees, using decision trees as its fundamental
units. It constructs multiple decision trees and combines their
predictions to enhance overall performance. During training, each
tree is built using a randomly sampled subset of the original data,
and feature selection at each node split is performed randomly. This
approach reduces overfitting and improves the model’s
generalization ability. By integrating the outputs of multiple
decision trees, random forest effectively captures complex feature
interactions, exhibits strong noise resistance, and achieves high
prediction accuracy.

To further enhance the predictive performance of the model,
this study employed ten-fold cross-validation and grid search for
hyperparameter optimization. Ten-fold cross-validation involves
partitioning the dataset into ten subsets, using nine for training
and the remaining one for validation in each iteration. This method
effectively mitigates biases caused by data partitioning and improves
the model’s stability and generalization ability. Grid search
systematically explores different hyperparameter combinations to
optimize the performance of the random forest model. The tested
hyperparameters include the number of trees (50, 100, 200), tree
depth (10, 20, 30), the minimum number of samples required for
node splitting (2, 5, 10), and the minimum number of samples
required for leaf nodes (1, 2, 4). As shown in Figure 3.

2.7.1.3 Multilayer perceptron
MLP is a deep feedforward neural network composed of an
input layer, multiple hidden layers, and an output layer. Each
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neuron in a layer is fully connected to the neurons in the
previous layer. Input data undergoes weighted summation and
activation function processing at each layer, ultimately producing
the final prediction output. MLP possesses strong function
approximation capabilities, enabling it to capture complex
patterns and features in data through multiple hidden layers,
thereby achieving high predictive accuracy.

In the model design, this study utilized MLP as the base model
and constructed a Stacked-MLP model by stacking three MLPs. The
prediction outputs of each MLP were used as inputs for a regressor,
which generated the final prediction. To balance computational cost
and model performance, the hyperparameters of the regressor were
set as follows: learning rate (0.0001-0.1), number of iterations (100-
500), and batch size (16, 32, 64, 128). As shown in Figure 4.

2.7.1.4 Gradient boosting decision tree

GBDT is an ensemble learning-based classification algorithm
that incrementally trains multiple weak classifiers, combining their
weighted predictions to obtain the final classification result. Each
new model is optimized to correct the errors made by the previous
model, focusing on misclassified samples and gradually adjusting
the model parameters to improve classification performance. GBDT
efficiently handles complex nonlinear relationships and can
automatically identify interactions between features, reducing the
need for extensive manual feature engineering. It offers high
predictive accuracy and strong flexibility, making it a powerful
tool for classification tasks.

To enhance model performance, improve stability, and
strengthen generalization ability, this study employed grid search
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FIGURE 3
Framework of the Random Forest Model.

to explore the hyperparameter space and identify the optimal
combination of parameters. The selected hyperparameters include
learning rate (0.01, 0.1, 0.2), number of trees (50, 100, 200), and tree
depth (10, 20, 30). As shown in Figure 5.

2.7.2 Prediction

Stand structure prediction involves forecasting parameters such
as diameter at breast height, tree height, age, crown width, crown
length, and mortality rate to understand the dynamic changes in
stand structure. This enables dynamic optimization of stand
structure and provides decision-making support for forest
management, resource conservation, and ecological restoration.

We selected various indicators to construct the model,
including age (AGE), diameter at breast height (DBH,1/DBH,
DBH?), tree height (H), crown width (CW), crown length (CL),

MLP

Input Layer Hidden Layer1 Hidden Layer2 Ouput Layer
FIGURE 4

The architecture of the Stacked-MLP model.
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— Average Aggregation —— Result

number of trees per hectare (NT), stand density index (SDI), slope
(SLO), aspect (ASP), height-to-diameter ratio (HDR), the sum of
basal area larger than the target tree (BAL), and Hegyi competition
index (HCI). To eliminate multicollinearity when building different
predictive models, independent variables with a variance inflation
factor (VIF) greater than 10 were excluded.

The diameter growth model was developed using the Stacked-
MLP algorithm, with AGE, ASP, NT, SLO, SDI, BAL, and DBH?
selected as feature variables. The model’s target variable was set as the
natural logarithm of diameter growth squared plus one, In(DGI + 1).
Since tree diameter growth occurs over long periods, shorter
prediction intervals may fail to capture significant growth changes.
Therefore, a five-year prediction cycle was used in the model.

The RF algorithm was used for tree height and crown width
prediction models. The selected feature variables for tree height
prediction were AGE, ASP, DBH, and SLOPE, with H as the target

MLP1

_______________
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MLP2 Final Prediction
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FIGURE 5
Framework of the Gradient Boosting Decision Tree Model.

variable. For crown width prediction, the feature variables included
AGE, 1/DBH, CL, ASP, SDI, HDR, and NT, with CW as the
target variable.

The CNN-PSO was used for age and crown length prediction
models. The feature variables for age prediction were 1/DBH, H,
ASP, SLO, NT, and SDI, with AGE as the target variable. For crown
length prediction, the selected feature variables were AGE, 1/DBH,
ASP, SDI, HDR, and NT, with CL as the target variable.

Mortality prediction is a binary classification problem, and the
GBDT model was chosen for this task. To improve prediction
accuracy, the classification threshold was initially set at 0.5;
however, this value is only applicable when the number of
surviving and dead trees in the stand is approximately equal. In
reality, mortality is a low-probability event, and cases where
mortality and survival are equal are rare. Therefore, this study
incorporated the HCI as an additional criterion. Trees with a
mortality probability greater than 0.5 and experiencing high
competition pressure (HCI > 0.75) were classified as dead. The
selected feature variables included 1/DBH, H, BAL, and HCI, with
tree mortality status (STATE) used as the target label.

Since the stand structure prediction model simultaneously
predicts multiple stand factors, redundancy in feature variable
selection is inevitable, which may lead to internal inconsistencies
within the model. To address this, predictions were conducted
sequentially in the following order: age, diameter at breast height,

TABLE 3 VIF values of feature variables in different prediction models.

tree height, mortality, crown width, and crown length. This ensures
that the feature variables used in all prediction models are updated
accordingly during the prediction process.

The VIF values of the feature variables and the prediction
accuracy of each model are presented in Tables 3-5.

2.8 Optimization model of stand structure

2.8.1 Constrain

After optimization adjustments, the values of each sub-objective
must not fall below their pre-optimization levels to ensure that the
diversity of stand spatial structure does not decline. This means that
the horizontal distribution pattern of the stand should become
closer to a random distribution, the degree of species mingling
should increase, the richness of vertical structure should be
enhanced, and both size differentiation and competition pressure
should be correspondingly reduced. During the optimization
process, the number of tree diameter classes and species should
not decrease, harvesting intensity should be controlled within 35%,
and canopy density should not fall below 0.7. The number of
replanted trees should remain within the stand density range, and
after replanting, both the degree of mingling and the horizontal
distribution pattern should be improved compared to prereplanting
conditions (Equation 17).

Age prediction DBH prediction H prediction CW prediction CL prediction Mortality prediction
feature VIF feature VIF feature VIF feature VIF feature VIF feature VIF
1/DBH 1.5352 DBH 1.4852 DBH 4.6597 AGE 5.8744 AGE 3.5899 DBH? 4.1586
H 1.6049 AGE 2.0224 AGE 46514 1/DBH 4.4287 1/DBH 4.4283 H 5.8075
ASP 2.1709 ASP 2.0374 ASP 1.3759 CL 2.0131 ASP 2.2043 BAL 2.0631
SLO 1.1583 SLO 1.2576 SLO 1.3651 ASP 2.2399 SDI 2.3709 HCI 1.1315
NT 1.5428 NT 12727 HDR 1.6552 HDR 1.5049
SDI 2.5316 BAL 1.5647 NT 1.0445 NT 1.0434
SDI 2.5414 SDI 23858
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TABLE 4 Evaluation metrics of selected prediction models.

Target variable Model R? RMSE MAE
AGE CNN-PSO 0.4246 5.3775 4.1626
DBH Stacked-MLP 0.8461 0.3055 0.2041

H RF 0.8280 1.4143 1.0992
cw RF 0.6315 0.3554 0.2704
CL CNN-PSO 0.6403 1.02485 0.7951
Mc, > Mc,
S8,
U<y
CIL < CL
W, - 0.496| < |W, - 0.49%
R (17)
T, =T,
Cd 207
Ny = Ny(1 - 35%)
|W, - 0.496| < |W, - 0.496
Me, = Mc,
1667 < PD < 3333

Mc,, S, Uy, CI,;, Wy, D;, Ty, Cd, N, respectively represent the
values of complete mingling, stratification index, neighborhood
comparison, crown competition index, uniform angle index, tree
diameter classes, number of species, canopy density, and harvesting
, Ny represent the values of the initial stand for the following
indicators. Mc,, W, represent the values of after complete mingling
and uniform angle index after replanting. PD represents the stand
density after selective redharvesting and replanting optimization.

2.8.2 Model construction

Stand structure optimization is a multi-objective problem that
typically involves multiple interrelated goals. Since these objectives
are often mutually constraining, it is difficult to achieve their
individual optima simultaneously. Therefore, it is necessary to
adopt an integrated approach and balance multiple objectives
from the perspective of the overall stand. In the optimization
process, the complete mingling and stratification index should be
increased to enhance stand diversity and stability; the crown
competition index and neighborhood comparison should be
reduced to alleviate competition among individuals and prevent
excessive dominance by a few large trees; and the uniform angle
index should be maintained within the range close to random

TABLE 5 Evaluation metrics for the mortality prediction model.

Target variable Model Acc

Mortality ‘ GBDT ‘ 0.9002
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distribution to ensure a reasonable horizontal pattern. Accordingly,
in this study, five spatial structure parameters—uniform angle
index, neighborhood comparison, complete mingling,
stratification index, and crown competition index—were
incorporated into a multi-objective optimization model using a
multiplicative—divisive approach to construct the objective function
(Equation 18):

N 1+Mc;  14S;
Sue 0
maxL = ;21 1+U, | 1+CI,  1+]W;=0.496] (18)
=y St 5\»«/,—0 496

W, Mc;, S;, U; and CI; represent the uniform angle index,
complete mingling, stratification index, neighborhood comparison,
and crown competition index of the reference tree, respectively. dy,
Ouc, Os, Oy and Oy are the standard deviations of these structural
indexes. N represents the total number of trees in the forest stand.

2.9 Solution algorithm

2.9.1 Multi-agent deep reinforcement learning

This study selected multi-agent deep Q-network (MADQN) as
the solution algorithm. The MADQN model incorporates deep Q-
network (DQN) and multi-agent Q-learning (MAQL). Each agent
utilizes a deep neural network to approximate the Q-value function,
enabling decision-making in large-scale and complex state spaces.
By leveraging experience replay and target networks, the model
achieves faster convergence, avoids overfitting, and ensures policy
stability and generalization capability.

In the application of MADQN for stand structure optimization,
selective harvesting and replanting serve as two key regulatory
measures. Two agents, Agentl and Agent2, were designed to
achieve optimization. Each agent has its own tasks and objectives,
interacting with the environment while also collaborating with each
other. Through continuous learning, they work together to optimize
the objective function of stand structure.Agentl selects trees for
selective harvesting based on the random selection method and
adjusts its strategy according to the impact of tree removal on the
objective function value. After harvesting, if the selected trees result
in an increase in the objective function value, Agentl receives a
reward; otherwise, it is penalized. Through this process, Agentl
gradually learns how to select trees for harvesting, aiming to
minimize unnecessary losses while maximizing the improvement
of the stand’s objective function during the harvesting process.

Agent2 determines the number of replanted trees and their
distribution based on the stand condition after Agentl has
completed selective harvesting and received its reward. Its goal is
to compensate for gaps created by harvesting and introduce
appropriate tree species to optimize stand structure, enhancing
growth potential and ecological benefits. After harvesting, Agent2

Fl1Score Recall ROCAUC

0.7850 0.7287 0.9486
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utilizes the RFI to identify suitable planting locations. It then applies
a curve trend-based approach (Xuan et al., 2024) to optimize the
number of replanted trees. Specifically, it selects three evenly spaced
replanting densities and evaluates their corresponding objective
function values to establish a trend curve. Based on this trend,
Agent2 adjusts the number of replanted trees by selecting new
values with the same spacing before and after the current replanting
density. This approach leverages curve monotonicity and extremum
detection to assign rewards or penalties, refining the sampling
strategy to gradually determine the optimal number of replanted
trees. This ensures that under the given harvesting conditions, the
replanting effect is maximized for optimal stand structure recovery.

Agentl and Agent2 are interdependent and interact throughout
the optimization process. Agentl’s selective harvesting decisions
directly influence Agent2’s replanting strategy, while Agent2’s
replanting results, in turn, affect the post-harvesting stand condition
and consequently impact the objective function value. Through a
reward and penalty mechanism, both agents continuously adjust their
strategies, enabling a coordinated optimization process that
dynamically balances selective harvesting and replanting to achieve
the best possible stand structure.

The process of solving stand structure optimization using
multi-agent deep reinforcement learning is illustrated in Figure 6
(Algorithms 1-3).

2.9.2 Solution for dynamic stand structure
optimization

During the subsequent optimization process, the selective
harvesting and replanting agents continuously collaborate and
interact, iteratively optimizing the current stand condition to achieve
the most optimal stand structure. In each optimization cycle, the agents
learn from environmental feedback, gradually approaching the
structural characteristics of an ideal stand. However, real-world stand
structures are influenced by multiple factors, and relying solely on
selective harvesting and replanting may not directly achieve the desired
stand structure. Therefore, a stand structure prediction model is
incorporated as a crucial step to further enhance the accuracy and
effectiveness of the optimization process.

The stand structure prediction model is used to forecast tree
growth trends over a future period based on the current stand
condition, as well as the potential changes after selective harvesting
and replanting. After providing predictions on the current stand
status, the agents further optimize the coordination between
harvesting and replanting. At this stage, the selective harvesting
and replanting agents not only rely on their original decision
framework but also adjust the stand structure based on the
prediction results. This process operates as a cyclic feedback
mechanism, where each optimization generates a new stand
condition, which in turn serves as the starting point for the next
round of optimization. After each selective harvesting and
replanting step, the updated stand condition is fed into the stand
structure prediction model, and the model’s prediction results
influence the next round of harvesting and replanting decisions.
Through this approach, harvesting and replanting decisions are
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dynamically adjusted, ensuring that each step moves closer to an
ideal stand structure. This iterative optimization process allows the
model to identify the best regulatory strategies in a complex and
dynamically changing stand environment. By avoiding a fixed
strategy from the outset, the optimization process becomes more
flexible and adaptive to stand dynamics.

The solution process for dynamic stand structure optimization
is illustrated in Figure 7 (Algorithm 1).

2.9.3 Parameter settings

The parameter settings for the solution algorithm used in the
experiment are shown in Table 6. The initial iteration count and
maximum iteration count for the solution algorithm were set to 0
and 1000, respectively. During the optimization process, the stand
structure at different time periods is abstracted into a sequence. At
the beginning of each iteration, the selective harvesting agent starts
at the initial state (statel = 0), while the replanting agent starts at
the final state (state2 = 100). Both agents interact with the
environment and collaborate with each other to decide whether
to move forward (statel = statel + 1, state2 = state2 — 1) or move
backward (statel = statel — 1, state2 = state2 + 1) . The iteration
ends when the selective redharvesting agent and the replanting
agent meet (statel = state2). To compare the performance of
MADQN and MAQL, both algorithms were set with the same
hyperparameters (y =0.9, Ir =0.01, € =0.9). Additionally, for
MADAQN, the experience replay buffer size was set to 10000, with
a batch size of 32. A three-layer fully connected network was used,
with each hidden layer containing 24 neurons. These parameter
settings were obtained through multiple experiments and fine-
tuning to achieve optimal results.

In structured forest management, neighborhood comparison,
representing size differentiation and competition intensity,
complete mingling, indicating species segregation, and uniform
angle index, describing horizontal distribution patterns, are the
three most important spatial structure indexes. Considering the
limitations of Pinus yunnanensis secondary forest plots, (U <
0.5,Mc > 0.75,0.475 < W < 0.517) is selected as the ideal stand
structure characteristic for dynamic stand structure optimization
(Gangying et al., 2005, 2018).

3 Results

To verify the effectiveness of the multi-agent deep reinforcement
learning solution in stand structure optimization, this study selected
five standard plots with different densities and site conditions for
simulation experiments. For optimizing the current stand condition, a
comparative experiment was conducted between the MADQN and
MAQL under the same selective harvesting and replanting methods to
evaluate the optimization advantages of MADQN. In the dynamic
optimization process, MADQN was integrated with stand structure
prediction to enable dynamic adjustments and optimization of the
stand structure over time.
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FIGURE 6
MADQN for stand structure optimization.

The Optimizing Direction of Cutting Agent

NEXT -
”STATE [I- _Iﬂ

0 om]

The Optimizing Direction of Replanting Agent

Frame 1

Impact

Frame 6

AGENT

STATE

Impact

REWARD

NEXT
STATE

3.1 Results of simulated harvesting
optimization

3.1.1 Current stand structure optimization

As shown in Figure 8, after implementing the two optimization
schemes for coordinated selective harvesting and replanting, the
stand structure indexes in each plot improved to varying degrees
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while meeting the constraint conditions, effectively enhancing stand
structure. The average uniform angle index in each plot slightly
decreased its deviation from 0.496, indicating that the horizontal
distribution pattern of the stands became more randomly
distributed. The complete mingling index significantly increased
across all plots, particularly because the initial mingling degree in
each plot was extremely low, leaving ample room for improvement.
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Dynamic optimization process flowchart

Notably, in Plot P4, the increase reached 16602.09%. Additionally,
the crown competition index decreased substantially in all plots,
indicating that tree competition pressure was alleviated after
optimization. The stratification index showed a moderate
increase, suggesting an improvement in vertical structural
complexity and a more diverse vertical distribution pattern.
However, the neighborhood comparison showed minimal changes
across all plots. This is likely due to the fact that the initial average
neighborhood comparison values were already in a moderate
growth state, limiting the potential for significant improvement.

As shown in Table 7, in the current stand structure
optimization, both MADQN and MAQL significantly improved
the objective function values. However, in terms of overall
improvement, MADQN consistently outperformed MAQL. The
objective function values for plots P1 to P5 under MADQN
optimization increased from 0.3501, 0.3799, 0.3982, 0.3344, and
0.4294 to 0.5378, 0.5861, 0.5860, 0.5130, and 0.6034, respectively—
higher than the values achieved by MAQL (0.5302, 0.5369, 0.5766,
0.5014, and 0.5906). The improvement rate under MADQN
reached 49.40%, exceeding the 44.58% achieved by MAQL. These
results indicate that MADQN is more effective in optimizing stand
structure, guiding it toward a more optimal target state.

As shown in Figure 9, MADQN outperformed MAQL in terms
of the number of iterations required for optimization. After
different numbers of iterations, MADQN exhibited a faster
increase in objective function values, especially in Plots P2 and
P4. This indicates that MADQN, which utilizes deep neural
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networks to approximate the Q-function, can find optimal
strategies more quickly during the optimization process compared
to MAQL, which relies on table-based Q-learning. As a result,
MADQN requires less extensive exploration and achieves higher
learning efficiency. It is worth noting that in Plots P1 and P3,
although MADQN achieved a higher objective function value,
MAQL required slightly fewer iterations to converge. This
suggests that stand density and site conditions influence
convergence performance, and in certain cases, MAQL’s
convergence efficiency is not necessarily inferior to MADQN. As
shown in Figure 10, MADQN also demonstrated better overall
performance in terms of computational efficiency. Across different
plots, MADQN consistently maintained a lower or comparable
runtime curve compared to MAQL, indicating superior
time efficiency.

3.1.2 Dynamic stand structure optimization

In the dynamic stand structure optimization of five plots using
multi-agent deep reinforcement learning combined with structure
prediction, most stand structure indexes showed significant
improvements after optimization. The uniform angle index for all
plots fell within the ideal range of [0.475, 0.517], indicating that the
horizontal distribution pattern had reached a random distribution
state. The complete mingling index increased substantially across all
plots, shifting from a very low mingling state to a high mingling
state. This demonstrates that dynamic optimization not only adjusts
the spatial relationships among trees but also enhances stand
stability and biodiversity at the species level. Notably, in Plot P4,
the mingling index increased from 0.0028 to 0.7505, highlighting
the strong adaptability of multi-agent deep reinforcement learning
in adjusting tree species composition. Additionally, the crown
competition index significantly decreased across all plots,
indicating a considerable reduction in competition pressure. The
stratification index also improved effectively, enhancing the vertical
distribution pattern. In contrast, the neighborhood comparison
showed minimal decline across all plots, suggesting that the pre-
optimization stand already exhibited a relatively stable size
differentiation state. As a result, despite some adjustments during
optimization, fluctuations in this index remained small.

As shown in Table 8, after incorporating structure prediction
for dynamic optimization, the objective function values for all plots
experienced significant improvements. Notably, in Plot P4, the
objective function value increased from 0.3344 to 0.5863,
achieving a remarkable 75.33% increase. Even in Plot P5, where
the improvement was relatively smaller, the increase still reached
44.62%. These results indicate that dynamic optimization using
multi-agent deep reinforcement learning combined with structure
prediction effectively enhances stand structure stability and balance,
making it more aligned with an ideal management state.

4 Discussion

To avoid the limitations of relying solely on selective harvesting
for optimization, this study proposed a multi-objective stand
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TABLE 6 Parameter settings of the solution algorithm.

10.3389/fpls.2025.1610571

state2,,,, = 50

Algorithms Settings Meaning
W=0 Initial iteration
W ax = 10000 Upper limit of iterations
statel =0 The agent1’s initial location
statel,, .. = 50 The agent1’s permitted farthest move distance
state2 = 100 The agent2’s initial location
state2,,,, = 50 The agent2’s permitted farthest move distance
MADQN layer =3 Neural network depth
buffer _size = 10000 Replay buffer capacity
batch _size = 32 Batch size for sampling from the replay bufter
y=09 Discount factor
Ir =0.01 Learning rate
£=09 exploration rate for e-greedy strategy
@=150.b==50.c1 :—11(,)2’62 i:oo’ G=10d=1e6= Reward and punishment values
W=0 Initial iteration
W ax = 10000 Upper limit of iterations
statel =0 The agent1’s initial location
statel .. = 50 The agentl’s permitted farthest move distance
state2 = 100 The agent2’s initial location
MAQL

The agent2’s permitted farthest move distance

Yy =09 Discount factor
Ir=0.01 Learning rate
£=09 exploration rate for e-greedy strategy

a=150,b=-50,c1 =100,c2 = 50,¢3 = 10,c4 = 1,¢5 =

—1,¢6 = =50

structure optimization scheme based on multi-agent deep
reinforcement learning. A simulation experiment was conducted
using sample plot data from Pinus yunnanensis secondary forests in
Southwest China, where MADQN was applied for the simulation
and compared with a multi-agent reinforcement learning
optimization scheme. The results showed that under both
optimization algorithms, stand structure indexes improved to
varying degrees across all plots. However, compared to MAQL,
MADQN consistently achieved higher optimization gains across
different stand conditions, demonstrating greater adaptability and
stability. These findings indicate that multi-agent deep
reinforcement learning can learn more optimal strategies in
complex environments and achieve more comprehensive
optimization in a shorter time.

Traditional multi-agent reinforcement learning is limited by the
dimensionality of the state-action space, especially in complex
optimization environments like stand structure optimization.
Stand structure features exhibit nonlinearity and continuity,
making it difficult for MARL to store Q-values in a tabular
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Reward and punishment values

format. This leads to high storage overhead and low
generalization ability. In contrast, multi-agent deep reinforcement
learning stores Q-values in a parametric form using neural
networks to extract stand structure features. It also employs
strategies such as experience replay and target networks to
improve training efficiency and stability (Gronauer and Diepold,
2022) (Shen et al, 2022). This allows the same agents, under
selective harvesting and replanting measures, to learn more
smoothly and approach a globally optimal optimization strategy,
with superior convergence capabilities.

Although multi-agent deep reinforcement learning has
significant advantages in optimization efficiency and result
accuracy for stand structure optimization, the optimal strategy
derived from multi-agent deep reinforcement learning is based
solely on the current stand structure. However, stand structure is
a dynamic system that changes over time due to factors such as tree
growth, mortality, and human intervention. Relying solely on
optimizing the current stand condition may not meet the long-
term management needs of the forest. Currently, stand structure
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FIGURE 8
Changes in structure indexes after current stand optimization.

prediction models can utilize tree factors from the current state,
such as diameter at breast height, tree height, crown width, crown
length, etc, to predict the future trend of these factors, thereby
simulating the natural evolution of the stand (Ali, 2019). In this
study, multi-agent deep reinforcement learning was combined with
structure prediction, providing dynamic environmental
information to the optimization process. This allows the
optimization strategy to not only apply to the current stand state
but also be dynamically optimized based on the predicted stand
evolution trend, enabling the agents to formulate more robust
strategies while considering long-term dynamic changes. In the
combined optimization process with stand structure prediction, the
agents can adjust the spatial configuration of trees in advance, based
on the predicted stand evolution information, and allocate growth
resources more effectively. This ensures that the optimization effect
remains stable over the long term. Since changes in stand structure
occur gradually, the optimization strategy can dynamically respond
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to potential future risks, such as intensified competition or
mortality, ensuring that the stand structure remains balanced
during the succession process and avoiding structural imbalance
issues caused by short-term optimization. This approach is better
suited to the developmental needs of the stand over different time
scales. On the other hand, integrating stand structure prediction
also affects the optimization time and strategy adjustment
approach. Without prediction, the agents typically require more
iterations to adapt to environmental changes. However, by
incorporating the prediction model, the agents can obtain future
potential structural changes earlier, reducing unnecessary
exploration and improving optimization efficiency. Moreover, the
long-term trend information provided by the prediction model
allows for more precise optimization strategies, preventing
fluctuations in stand structure caused by short-term optimization.

From the optimization results, it can be observed that the key
stand structure indicators for all plots significantly improved after
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TABLE 7 Current stand structure optimization under different optimization schemes across various plots.

Stand

Condition Average Increase
Initial Stand ‘ 03501 03799 0.3982 ‘ 0.3344 0.4294 0.3784
MADQN ‘ 05378 0.5861 0.5860 ‘ 0.5130 0.6034 0.5653 49.40%
MAQL ‘ 05302 05369 0.5766 ‘ 0.5014 0.5906 0.5471 44.58%

optimization, and the stand structure approached the ideal stand  pressure, and a less favorable horizontal distribution pattern. As a
condition. This validates the feasibility and effectiveness of the  result, the optimization process required more rounds of
method in long-term forest management, indicating that, when  exploration and adjustment to ensure an optimal outcome.
considering dynamic stand changes, the stand structure can  Furthermore, the length of the optimization time may also be
maintain a reasonable spatial configuration over extended time influenced by the multi-agent deep reinforcement learning
scales. Compared to the significant changes in other stand structure  algorithm itself. Different exploration strategies and parameter
indicators, the change in neighborhood comparison was relatively  settings directly affect the optimization efficiency. This conclusion
small. On one hand, the degree of size differentiation in the plots  is consistent with that obtained by using multi-agent reinforcement
was already in a stable growth state before optimization (Xuan etal.,  learning to solve forest stand structure optimization (Xuan
2023). On the other hand, multi-agent deep reinforcement learning et al., 2024).

primarily relies on selective harvesting and replanting as the main Surely, when introducing the deep reinforcement learning
regulatory measures. Therefore, the focus of the optimization was  algorithm, this research still has the following limitations and
on adjusting aspects such as mingling degree, competition pressure,  aspects that require further refinement: (1) This study only
and distribution pattern, while the direct impact on neighborhood  utilized the basic MADQN algorithm within multi-agent deep
comparison was relatively small. Additionally, the optimization  reinforcement learning. Further research is needed to explore
time varied across plots. Plot P4 required a longer optimization = whether other more advanced algorithms and corresponding
time, while Plot P5 took relatively less time. This may be related to ~ improvements could be more effective in solving multi-objective
the initial stand conditions and the difficulty of optimization. Plot  stand structure optimization problems. (2) Due to the limited data
P5 had a more balanced initial stand, with its horizontal distribution ~ coverage of the research plots, some of the tree factor predictions
pattern already close to the ideal stand distribution. The  still exhibit inaccuracies. Additionally, the current prediction
competition pressure and mingling degree were also higher than = models have certain limitations in addressing the growth
in Plot P4, allowing for a quicker convergence to an optimal  variability of individual trees and complex environmental factors.
adjustment strategy, resulting in a shorter optimization time. In  Therefore, more suitable prediction methods should be selected in
contrast, Plot P4 had poor mingling, relatively high competition  the future to improve the accuracy of structure prediction. (3) The
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Running time of different optimised strategies in different plots.

current dynamic stand structure optimization primarily focuses on
adjusting mingling degree, spatial distribution pattern, and
competition pressure, with relatively limited optimization of
neighborhood comparison. Future optimization strategies will pay
more attention to controlling neighborhood comparison to more
precisely optimize the diameter structure of the stand, enhancing
overall balance and growth stability. (4) In the spatial configuration
of replanting trees, the study currently uses a proportional method
to select multiple native species. However, due to the limited
number of certain species, the basic model is used to determine
tree height, crown width, and other tree factors. Future research will
further optimize the spatial configuration strategy for replanting
trees, making the species composition adjustment more scientific
and rational. Additionally, more accurate models will be introduced
to improve the prediction accuracy of fundamental tree factors, thus
enhancing the adaptability and long-term stability of the
optimization scheme.

5 Conclusion

This study applies multi-agent deep reinforcement learning to the
field of stand structure optimization. The objective function is
established using complete mingling, uniform angle index,
neighborhood comparison, stratification index, and crown
competition index, with selective harvesting and replanting
measures for coordinated optimization. Comparative simulation
experiments with multi-agent reinforcement learning across
different plots showed that the objective function values of multi-
agent deep reinforcement learning in each plot were 0.5378, 0.5861,
0.5860, 0.5130, and 0.6034, all higher than those of multi-agent
reinforcement learning, which were 0.5302, 0.5369, 0.5766, 0.5014,
and 0.5906. These results demonstrate the superiority of multi-agent
deep reinforcement learning in stand structure optimization.
Considering the dynamic nature of stand structure, combining
structural prediction with multi-agent deep reinforcement learning

TABLE 8 Dynamic stand structure optimization under different optimization schemes across various plots.

Sample Plot Stand Condition w Mc o] S U L Years  Increase

Initial Stand 0.3630 0.1459 2713 0.2205 0.4960 0.3501

P1 L 20 63.32%
After Optimizing 0.4785 0.7615 0.2041 0.3126 0.4914 0.5718
Initial Stand 0.5612 0.1693 3.4130 0.2772 0.4906 0.3799

P2 L. 20 60.59%
After Optimizing 0.4869 0.7774 0.2226 0.3450 0.4860 0.6101
Initial Stand 0.3867 0.1990 4.0990 0.3286 0.4965 0.3982

P3 L. 35 62.10%
After Optimizing 0.4768 0.7786 0.2745 0.3535 0.4852 0.6455
Initial Stand 0.2103 0.0028 3.1363 0.2846 0.4930 0.3344

P4 L. 40 75.33%
After Optimizing 0.4826 0.7505 0.2475 0.3512 0.4788 0.5863
Initial Stand 0.5551 0.1443 2.8202 0.2882 0.4950 0.4294

pP5 - 15 44.62%
After Optimizing 0.5102 0.7511 0.2468 0.3573 0.4954 0.6210
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enabled the stand structure in each plot to approach the ideal stand
structure within 15-40 years, achieving dynamic optimization of stand
structure. This approach provides a scientific basis and decision
support for the dynamic optimization of stand structure and has
broad application prospects.
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Appendix 1

To address stand structure optimization, this study proposes a
multi-agent deep reinforcement learning algorithm. The detailed
pseudocode is provided below. Due to its length, the decision-
making processes of Agentl and Agent2 in the MADQN framework
are presented separately.

-

Initialize actions A1, A2, states S1,S2, learning rate
o, e-greedy policy g, discount factor y, maximum
episodes MAXEPISODES, replay buffer REPLAY 1,REPLAY
2, main network MAIN_NET1, MAIN_NET2, target network
TARGET_NET1, TAG_NET2, and Q1(s1,al1),Q2(s2,a2),
where s1 €81, s2e€ 852, al € A1, a2 € A2;

2 Set initial s1,a1,a2 < 0, s2 < len(states);

3 for episode = 1 to MAXEPISODES do

4 Initialize s1 for Agent and initialize s2
for Agent2;

Execute Agent1 Process (Alogrithm?2);

Execute Agent2 Process (Alogrithm3);

Algorithm 1. Overall Process of MADQN for Stand
Structure Optimization.

1 for Agent1 do
2 if ACTION 1 ==1 then

3 Select actional fromcurrent state s1usingpolicy
derived from Q1 (e-greedy) ;

4 Execute action al, observe reward r1, and next

states1';

5 elseif S12S2 then

6 Set S1 to terminal;

7 Set reward R1 to d;

8 else

9 Selective harvesting by selecting random;

10 Utilize R program to divide the Voronoi diagram
structure and compute the stand structure
parameters and objective function values L1 after
selective harvesting;

11 if L1 >L then

12 Set S1toS1+1;

13 Set rewardR1 to a;

14 Document selective harvesting tree and
objective function values after
selective harvesting;

15 else

16 Set S1 to S1;

17 Set reward R1 tob;

18 sl«sl1';
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19 Store (s1, al, r1, s1') into the replay buffer
REPLAY 1;
20 if Size(REPLAY 1) > Batch then

21 Random Sample from REPLAY 1;

22 Q1(s1, al) « Q1(s1, al) + a[r1 + ymaxa' Q1(s1",
al') -Q1(s1, al)l;

23 Gradient Update;

24 TARGET_NET 1 « MAIN_NET 1;

Algorithm 2. Agent 1: Selective harvesting Process.

1 for Agent2 do

2 if ACTION 2 == 1 then

3 Select actiona2 fromcurrent state s2 using
policy derived from Q2 (e-greedy);

4 Execute action a2, observe reward r2, and

next state s2';

else if S1 > S2 then
Set S2 to terminal;
Set reward R2 to d;

else

O 0 N o G

Replanting by maintaining consistent
spacing between the replanted trees;

10
structure parameters and objective function value L1,

Utilize R program to compute the stand

Lm, Lr, Lm1, Lm2 after replanting different trees;

11 ifLl<Lm<LrorlLr<Lm<L1 then

12 ifmax(Lm1, Lm2) >max(L1, Lm, Lr) then
13 SetS2toS2-1;

14 Set reward R2 toc1;

15 else

16 SetS2toS2-1;

17 Set reward R2 toc2;

18 elseif L1 <LmandLm>Lr then

19 ifmax(Lm1, Lm2) >max(L1, Lm, Lr ) then
20 SetS2toS2-1;

21 Set reward R2 to c3;

22 else

23 SetS2toS2-1;

24 Set reward R2 to c4;

25 elseif L1>LmandLm<Lr then

26 ifmax(Lm1, Lm2) >max(L1, Lm, Lr) then
27 Set S2 to S2 +1;

28 Set reward R2 to c5;

29 else

30 Set S2 to S2 +1;

31 Set reward R2 to c6;

32 Document selective harvesting trees and the

largest replanting trees and objective function values
after replanting;
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33 S2 «—5s2';

34 Store (s2, a2, r2, s2') into the replay buffer
REPLAY 2;

35 if Size(REPLAY 2) > Batch then

36 Random Sample from REPLAY 2;

37 Q2(s2, a2) < Q2(s2, a2) + «[r2 + ymaxa' Q2
(s2', a2') -Q2(s2, a2)];

38 Gradient Update;

39 TARGET_NET 2 « MAIN_NET 2;

Algorithm 3. Agent 2: Replanting Process.

APPENDIX.2

Furthermore, to realize dynamic optimization of stand
structure, this study integrates multi-agent deep reinforcement
learning for stand structure optimization with structure
prediction, and presents the corresponding pseudocode.

1 while Stand is not ideal stand do

2 Using MADQON to solve stand structureoptimization;

3 Document the optimal trees after harvesting
and replanting;
Use the optimized stand as the initial stand;
Use the prediction model to estimate the initial
stand in five years;

6 Calculate the complete mingling, uniform angle
index, and neighborhood comparison of the
initial stand;

Algorithm 4. Stand Structure Dynamic Optimization.
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