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Introduction: Plant type is an important part of plant phenotypic research, which

is of great significance for practical applications such as plant genomics and

cultivation knowledge modeling. The existing plant type judgment mainly relies

on subjective experience, and lacks automatic analysis and identification

methods, which seriously restricts the progress of efficient crop breeding and

precision cultivation.

Methods: In this study, the digital structure model of cotton plant was

constructed based on multi-dimensional vision, and the rapid analysis and

identification method of cotton plant type was established. 50 cotton plants

were used as experimental objects in this study. Firstly, multi-view images of

cotton plants at boll opening stage were collected, and a three-dimensional

point cloud model of cotton plants was constructed based on Structure From

Motion and Multi View Stereo (SFM-MVS) algorithm. The original cotton point

cloud data was preprocessed by coordinate correction, statistical filtering,

conditional filtering and down-sampling to obtain a high-quality three-

dimensional model. The three-dimensional model is projected in two

dimensions to obtain the two-dimensional projection data of cotton plants

from multiple perspectives. Secondly, based on the fast convex hull algorithm,

the cotton plant two-dimensional convex hull was constructed from multiple

perspectives, and the distribution range and corner change rate of each corners

of the convex hull were analyzed, and the identification basis of cotton plant type

was established.

Results: The R2 of plant height and width extracted from the model were greater

than 0.90, and RMES were 0.372 cm and 0.387 cm, respectively. When the

maximum number of point clouds is 75335, the point cloud reading time, cotton

multi-view projection time, and convex hull automatic construction time are

0.402 S, 2.275 S, and 0.018 S, respectively. Finally, the cotton cylinder type

classification interval is 0-0.2, and the tower type classification interval is 0.4-1.5.

Discussion: The cotton plant type identification method proposed in this study is

fast and efficient. It provides a solid theoretical basis and technical support for

cotton plant type identification.
KEYWORDS

three-dimensional reconstruction, two-dimensional projection, fast convex hull, corner
change rate, plant type
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1610577/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1610577/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1610577/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1610577&domain=pdf&date_stamp=2025-10-13
mailto:aixiantao@xju.edu.cn
mailto:lxj_xj903@163.com
https://doi.org/10.3389/fpls.2025.1610577
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1610577
https://www.frontiersin.org/journals/plant-science


Liu et al. 10.3389/fpls.2025.1610577
1 Introduction

Cotton is a valuable economic crop and the main raw material

of the global textile Industry (Dai et al., 2017; Li et al., 2021). In

2023, the cotton planting area in Xinjiang was 2369.3 khm2, with a

total output of 5.112 million tons, accounting for 91% of the

national total output. Plant type is a key factor affecting cotton

yield, early maturity and mechanized harvesting, and is an

indispensable part of crop breeding. The ideal plant type is

helpful to increase planting density, improve photosynthetic

efficiency and reduce yield loss during mechanized harvesting

(Wang et al., 2024). Cotton plant type is mainly divided into

cylinder type and tower type (Du and Zhou, 2005). At present,

cotton plant type is mainly judged by visual observation, lacking

quantitative evaluation system and standard. It is urgent to

construct a rapid, accurate and undamaged cotton plant type

analysis and identification method.

With the rise of smart agriculture, three-dimensional

reconstruction technology has become an important means to

capture shape and structure information (Yu et al., 2024a) (Yang

et al., 2024)used the improved Structure From Motion algorithm to

achieve high-precision three-dimensional reconstruction and trait

measurement of complex plants. The R2 of plant height and plant

width was above 0.999 (Sha et al., 2025b)used a variety of

optimizat ion strategies to perform three-dimensional

reconstruction of transparent objects under limited constraints.

The error indexes CD and CDN-mean were 1.81 and 5.62,

respectively. The results show that the proposed TransNeXt

achieved better results (Zou et al., 2024)used TOF sensor to

capture the three-dimensional geometric structure of fruit trees,

used Delaunay triangulation algorithm and Dijkstra shortest path

algorithm to calculate the minimum spanning tree, and completed

the construction of high-precision fruit tree point cloud model. The

accuracy deviation between the constructed three-dimensional

point cloud and skeleton model of fruit trees and the measured

data is kept within 7% (Wu et al., 2024)used the MVS-Pheno high-

throughput phenotypic platform to obtain high-precision three-

dimensional point clouds of wheat plants, and then based on the

SoftGroup network model, the point cloud organ segmentation and

morphological parameter extraction of wheat plants were

performed. The accuracy of organ semantic segmentation was

95.2%, and R2 of leaf length and width was above 0.80 (Wu et al.,

2019)accurately extracted maize plant skeleton based on three-

dimensional point cloud, and used the extracted plant skeleton to

estimate morphological parameters such as leaf inclination angle

and leaf growth height. The extracted phenotypic parameters R2

were all above 0.93. At the same time, the method based on

agricultural big model has strong application potential in the

fields of crop classification and recognition (Guo et al., 2024)

(Gurav et al., 2023)proposed to use SAM to divide the field

contour of satellite images as the basis for crop classification, and

used Clustering Consensus Metrics to evaluate its ability, as the

basis of subsequent crop classification and map generation process

(Tan et al., 2023)designed an experiment to identify farmland crops

based on remote sensing images and corresponding basic
Frontiers in Plant Science 02
information for GPT-4. The results show that GPT-4 performs

well on general images (Li et al., 2023b)used SAM adapter for image

segmentation of pests and diseases, especially in the identification of

coffee leaf diseases, the average Dice coefficient and the average

cross-over score increased by about 40%. Based on prediction

models, deep learning, unsupervised training and other methods,

the application of large models has been promoted (Alhatemi and

Savaş, 2024; Fei et al., 2025; Liu et al., 2025; Sha et al., 2025c; Xiang

et al., 2025). In summary, the technical methods based on three-

dimensional reconstruction and large-scale agricultural models

have become an important method for studying plant

phenotypes, and are the primary prerequisites for crop

identification and classification and phenotypic data analysis.

The construction of three-dimensional model of plants based

on three-dimensional reconstruction technology has become an

important method to study the phenotypic structure of plants, and

is the primary prerequisite for the analysis of crop phenotypic data.

Plant type research is attracting widespread attention (Zhao

et al., 2024b)reviewed the morphological characteristics of crop

ideal plant type from four aspects: leaf, stem, panicle and root, and

summarized the cultivation techniques of ideal plant type

regulation, providing a theoretical basis for the cultivation of ideal

plant type (Li et al., 2023a)proposed four stages of ideal plant type of

rapeseed, constructed the index system of ideal plant type of

rapeseed, and discussed the basic characteristics, construction

strategies and research trends of ideal plant type of rapeseed. At

present, most of the plant type research stays at the level of review

and qualitative analysis. There have been many reports on wheat,

rice, corn, flue-cured tobacco and other crops, but there are

relatively few studies on cotton. The research on automatic

analysis and identification of cotton plant type based on three-

dimensional model is limited.

The plant type of cotton is a complex trait, which is controlled

by genotype and environment. There is a correlation between plant

type traits and yield, quality and early maturity traits. Plant type

breeding is an effective way to improve cotton yield and fiber quality

(Fu et al., 2019). Quantitative analysis of cotton plant type was

carried out to improve the identification accuracy of cotton plant

traits and promote the application of plant type research in

breeding. In summary, based on the above research, this study

proposes a cotton plant type identification method based on multi-

dimensional vision with cotton as the research object. The main

work is as follows:
1. The three-dimensional model of multiple cotton plants was

obtained by using the low-cost cotton three-dimensional

reconstruction method based on Structure From Motion

and Multi View Stereo (SFM-MVS) algorithm.

2. The three-dimensional point cloud model of cotton is

preprocessed, and the point cloud coordinates of cotton

are corrected by rotation and translation matrix to make it

consistent with the growth direction. Statistical filtering and

color-based conditional filtering are used to denoise the

point cloud to obtain a pure point cloud model. Then, the

number of three-dimensional model point clouds is
frontiersin.org
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Fron
reduced by down-sampling, and the running speed of the

algorithm is improved.

3. A low-cost cotton plant type determination method based

on multi-view two-dimensional projection and fast convex

hull algorithm was proposed. The main process of this

study is shown in Figure 1.
tiers in Plant Science 03
2 Materials and methods

2.1 Plant materials

Taking cotton as the experimental object of this study, from

April to November 2024, data collection was carried out at the
FIGURE 1

Main process of this study.
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cotton base of Kuche Modern Agricultural Science and Technology

Innovation Center. A total of 25 varieties were selected, 2 plants for

each variety, and a total of 50 cotton plant samples were selected.

Among them, 20 cotton plants were used as validation set. The field

distribution position is shown in Figure 2, and the cotton plants

were moved to the flowerpot and moved indoors.
2.2 Data acquisition

In order to obtain clear and high-quality data, an indoor image

acquisition platform composed of a tripod, a binocular structured light

camera, a black screen, a 39 cm-diameter electric turntable and a

computer is built. In this study, ORBBEC Gemini 2 is used for data

shooting. The intrinsic parameters of the camera are shown in Table 1.

The depth range of the camera is 0.2 m-5 m. This camera uses a depth

sensing system, which uses active infrared (IR) stereo vision and inertial

measurement unit (IMU). The system uses structured light technology

to work through a pattern projector to create the difference between the

stereo images captured by two infrared cameras. Accurate direction

parameters are provided by 6-axis IMU. The Lenovo computer is used

for later data processing and analysis. The computer is configured as:

Windows 64-bit operating system, 32G running memory, inter (R)

Core (TM) i7-14700HX CPU, RTX 4060 graphics card. The principle
Frontiers in Plant Science 04
of coordinate transformation between cameras is shown in Figure 3A.

The camera calibration process is as follows:
1. Prepare a chessboard with a grid size of 15 mm * 15 mm, and

calibrate the camera by Zhang Zhengyou calibration method.

2. Detect the corner points on the chessboard and obtain their

pixel coordinates;
3. Determine the interna l parameter matr ix K =

456:1847 0 683:9744
0 457:5567 336:5738
0 0 1

2
4

3
5
,

The distortion coefficient k1 = 0:0027, k2 = −0:0041.
Mean Reprojection Error = 0.25 pixel. Reprojection error is

small, indicating the accuracy of the calibration results.

In the process of camera calibration, slight blurring and ghosting of

the image may occur, resulting in excessive differences in multiple

repeated calibration results. In order to reduce the image shooting error,

this manuscript increases the camera bracket to more accurately control

the camera ‘s angle and height, and improve the calibration accuracy.

The camera faces the cotton plant directly and locates it accurately.

The fixed horizontal distance between the camera and the center of the

turntable is 2.23 m. The turntable rotates at a fixed speed of 10 S to shoot

cotton images. and a total of 249 high-resolution images are obtained.

Considering that the growth height of cotton can reach 1.2m-1.5m and

the morphological structure is complex, this study adopts three different

heights to rotate clockwise to shoot cotton plants. The data acquisition

scheme is shown in Figure 3B. The shooting distance D and the ground

height H of the camera from the cotton plant are measured by a laser

rangefinder. The plant height and plant width of training set were

measured with a ruler, and the mean values were measured 7 times and

recorded in Table 2 as the data source for subsequent correlation analysis.
FIGURE 2

Experimental field distribution map.
TABLE 1 Camera specifications.

Parameter Value

Image width (pixels) 1280

Image weight (pixels) 800

Visual angle (°) 91*66

Frame rate (fps) 30
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2.3 Three-dimensional reconstruction and
data preprocessing method

2.3.1 Three-dimensional reconstruction method
of cotton plant

The process of three-dimensional reconstruction method is

shown in Figure 4. Firstly, the image acquisition platform is used

to capture the multi-temporal plant images of cotton. Secondly, the

three-dimensional point cloud model of cotton is reconstructed by
Frontiers in Plant Science 05
using the SFM-MVS algorithm. Finally, the point cloud model is

subjected to coordinate correction, filtering and down-sampling

operations to obtain a pure point cloud model.

The core of the algorithm mainly includes feature point

extraction, stereo matching, pose estimation and parameter

optimization (Schönberger and Frahm, 2016; Schönberger et al.,

2016).The specific reconstruction process is as follows:

(1) Feature point extraction and matching: A set of cotton

sequence images are input, and the feature points in multi-view
FIGURE 3

(A) Data acquisition principle. (B) Data acquisition scheme.
TABLE 2 Manual measurement data.

Cotton
varieties

Average plant
height/cm

Average plant
width/cm

Cotton
varieties

Average plant
height/cm

Average plant
width/cm

Xinluzao
No.3

96.4 35.2 Xinluzao
No.13

104.7 88.7

126.5 144.1 80.2 32.6

Xinluzao
No.5

93.4 38.1 Xinluzao
No.15

77.5 29.4

73.5 32.3 89.7 34.2

Xinluzao
No.6

72.3 28.6 Xinluzao
No.16

89.9 55.7

71.5 30.2 85.9 46.2

Xinluzao
No.8

88.8 33.9 Xinluzao
No.18

94.4 71.1

97.2 43.5 93.4 41.2

Xinluzao
No.11

108.4 82.9 Xinluzao
No.19

79.4 28.9

101.6 89.4 111.6 58.6

Xinluzao
No.20

78.2 47.8 Xinluzao
No.33

108.5 70.6

110.5 68.6 97.4 35.8

Xinluzao
No.36

88.6 56.7 Xinluzao
No.38

76.8 37.6

109.7 43.5 89.9 56.7

Xinluzao
No.55

95.2 39.5

77.5 34.3
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two-dimensional images are detected and extracted by Scale-

Invariant Feature Transform (SIFT). The K-dimensional tree is

used to calculate the Euclidean distance between the feature points

of the two images for stereo matching of the feature points. Finally,

the projection geometry is used to map the transformation of the

feature points between the images to verify the matching.

(2) Incremental sparse point cloud reconstruction: Based on the

correspondence between two-dimensional - three-dimensional, the

triangulation is used to expand the point set and estimate the spatial

pose of the camera, and then the Bundle Adjustment (BA) method

is used to iteratively optimize the minimum reprojection error E of

the Equation 1. Finally, the sparse point cloud reconstruction of

cotton is realized.

E =ojrj(p(Pc,Xk)
2) (1)

Pc is the camera parameter, Xk is the point parameter, rj is the
loss function, xj∈R2 represents the image coordinates of the

feature points.

(3) Dense point cloud reconstruction: In the process of dense

reconstruction, due to the distorted image, there will be a large

disparity estimation error at the edge. Firstly, the multi-view plant

image is de-distorted. Combined with the optical consistency and

geometric consistency in multi-view, the depth map and normal

vector map of multi-view are estimated and optimized. Finally, the

depth map fusion is used to reconstruct the dense three-

dimensional point cloud of cotton.

2.3.2 Point cloud coordinate correction
In order to accurately obtain the cotton plant type information,

it is necessary to correct the coordinates of the three-dimensional

point cloud of cotton (Huang et al., 2019). Because there is a certain

deviation between the main direction of the reconstructed cotton

three-dimensional point cloud model and the growth direction of

the real cotton plant, it is necessary to use the translation and

rotation matrix for coordinate transformation, so that the main

direction of the three-dimensional point cloud of the cotton plant is

consistent with the growth direction. The coordinate

transformation is shown in Equation 2. TA is the three-
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dimensional point c loud of cot ton af ter coord inate

transformation, MT is the translation and rotation matrix, TO is

the original three-dimensional point cloud of cotton plant.

TA = MTTO (2)
2.3.3 Point cloud denoising
Due to the influence of equipment accuracy and environmental

factors, there are two kinds of noise in the reconstructed point

cloud. One is the outliers scattered throughout the plant, which are

removed by statistical filtering. The other is black noise uniformly

distributed along the edges of cotton stems and leaves, which is

removed by color-based conditional filtering. The non-target plants

were cut based on the CloudCompare software before removing

the noise.

(1) Statistical filtering.

For cotton point cloud data, the average distance from each

point to its nearest k points is calculated, and the neighborhood of

each point is statistically analyzed (Han et al., 2017). The distance of

all points in the point cloud constitutes a Gaussian distribution,

where the mean m and the standard deviation s are determined by

Equation 3. The coordinates of the nth point Pn(Xn,Yn,Zn) to any

point Pm(Xm,Ym,Zm) is calculated by Equation 4.

m = 1
no

n

i=1
Si,s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Si − m)2

r
(3)

Si =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Xn − Xm)

2 + (Yn − Ym)
2 + (Zn − Zm)

2
p

(4)

The average distance between a point and its nearest k points is

calculated. If the average distance is within the standard range (m-
s•std, m+s•std), the point is retained. Otherwise, it is judged as an

outlier and removed, where std is the standard deviation multiple.

(2) Color-based conditional filtering.

The first step is to define a conditional filter based on the color

attribute of the point (Watanabe et al., 2023), and create a multi-

condition composite conditional object, which is composed of RGB

color components.
FIGURE 4

The pipeline of three-dimensional reconstruction.
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The second step: create a condition to remove the filter object,

input the condition object and the point cloud to the filter. The

color component threshold is set separately, each point in the input

point cloud is traversed, and compared with the color threshold. If

all conditions are met, the point is retained, otherwise the point is

discarded, and the operation is repeated. Finally, the qualified

points are stored in the new point cloud object.

2.3.4 Point cloud down-sampling
The three-dimensional point cloud data of the original cotton

plant is dense. In order to save the running time of the later

algorithm, the voxel grid down-sampling method is used to

simplify the cotton point cloud data. Point cloud down-sampling

is to reduce the number of point clouds without changing the basic

geometric characteristics of point clouds. A minimum three-

dimensional voxel grid is created for the input point cloud data,

and then the three-dimensional voxel grid is divided into several

small grids. The point cloud data is placed in the corresponding

small grid, and all the data points in the small cube grid are replaced

by the voxel center of gravity to realize the point cloud down-

sampling. The voxel grid down-sampling can well preserve the

geometric features of the point cloud and prevent the loss of feature

information (Lyu et al., 2024).The number of points after down-

sampling is reduced to about 25% of the original point cloud, and

the contour of the cotton plant is almost unchanged, which can

improve the running speed of the algorithm and reduce the

running time.
2.4 Identification method of cotton plant
type

Reasonable plant type is conducive to improving planting

density and photosynthetic efficiency. Suitable plant type

structure is the key to mechanized harvesting of cotton.

Cultivating and screening cotton varieties suitable for mechanical

harvesting is an urgent problem to be solved in cotton production

(Song et al., 2024).

2.4.1 Fast convex hull algorithm of cotton plant
A convex hull is the smallest convex polygon or polyhedron that

can contain all given points, which can determine the minimum

enclosing shape of the point set (Zhou et al., 2024). The fast convex

hull algorithm can construct the minimum bounding shape of the

two-dimensional point set of cotton. By analyzing the minimum

bounding shape of cotton, the geometric structure information of

cotton can be obtained.

At present, the most commonly used convex hull algorithm is

Andrew and Graham scanning method (Ma et al., 2017).However,

both algorithms need to globally sort the contour point set based on the

polar angle. When facing large-scale point set data, it takes a long time.

Therefore, this study uses a fast convex hull algorithm that can save the

time of solving the contour convex hull (Kirkpatrick and Seidel, 1986).

It constructs the convex hull of cotton two-dimensional point set

quickly and automatically by recursive divide-and-conquer method.
Frontiers in Plant Science 07
Unlike other convex hull algorithms, the fast convex hull algorithm

gradually constructs the convex hull by selecting the farthest point,

without relying on global sorting. The specific steps are as follows:

(1) Select the reference points in the two-dimensional

projection data of cotton and segment the point set. Traverse all

the points in the point set, find the leftmost point and the rightmost

point in the point set according to the coordinates, and mark them

as A and B. A and B must be part of the convex hull, connect AB to

form a datum line segment, and the datum line segment divides the

cotton two-dimensional point set into upper and lower planes.

Given the coordinates of the two ends of the reference line AB in the

plane (XA,YA), (XB,YB) and any point P(XP,YP), determine the

positional relationship between point P and the straight line AB.

The equation of straight line AB is as follows (5):

Y − YA = YB−YA
XB−XA

(X − XA) (5)

By substituting the point P into the Equation 5, the position

relation F between the point P and the straight line AB is obtained

as Equation 6:

F = XA(YB − YP) − YA(XB − XP) + (XBYP − XPYB) (6)

(2) Select the farthest point in the two-dimensional point set of

cotton. The farthest point must be on the convex hull. Find out the

farthest point of the reference line AB in the upper and lower

planes, marked as C and D respectively, forming two triangles ABC

and ABD. The formula for calculating the distance d between any

point (X,Y) in the point set and the line segment AB is as Equation

7:

d = ax+by=cj jffiffiffiffiffiffiffiffiffi
a2+b2

p (7)

where a = YB − YA, b = XA − XB, c = XBYA − XAYB.

(3) Take the triangle ABC and ABD as new sub-problems

respectively, find out the farthest point of the original contour

relative to each edge of the triangle, get the new triangle and the new

farthest point, repeat the process until all points are processed.

(4) All the contour points found are the vertices of the convex

hull, and all the vertices are connected into a closed curve, which is

the two-dimensional minimum convex hull of cotton.
2.4.2 Identification method of cotton plant type
There are two common cotton plant types: the upper and lower

parts of the cylinder type are basically the same, and the lower part

of the tower type is larger and the upper part is smaller. The existing

cotton plant type identification methods are subjective, so this study

proposes the plant type identification method based on the pre-

processed cotton plant three-dimensional model.

Three-dimensional can characterize the growth characteristics

of crops in detail, but the cotton plant types observed from different

perspectives are different. In order to reduce the visual error, this

study rotates the three-dimensional model of cotton around the Y-

axis and projects it to the XOY two-dimensional plane every 10°

with Matlab2022. A total of 36 two-dimensional data of cotton

plants were obtained, and then the minimum convex hulls were

constructed for the two-dimensional data of multi-view cotton
frontiersin.org
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plants. Figure 5 is the process of cotton plant type identification

method. Figure 6 is a convex hull of 36 viewing angles of a cotton

plant, and the corner change rate of the convex hull is calculated

respectively. Finally, the corner change rate of the convex hull of 36

viewing angles of each cotton plant is statistically analyzed, and the

cotton plant type is further judged.

After the construction of the two-dimensional convex hull of

the cotton plant, the coordinates of the convex hull corner points

will be output. Table 3 shows the coordinates of the convex hull

corner points output after the projection and construction of the

convex hull when the rotation angle is 90°, and then the change rate

of the convex hull corner points is calculated by Equation 8. After

the corner change rate is solved, the height is taken as the vertical

axis, and the corner change rate is taken as the horizontal axis, and

the change interval range diagram is made.

K 0 =
Y3−Y2
X3−X2

−Y2−Y1
X2−X1

X3−X1
(8)

Where K’ is the corner change rate, (X1,Y1), (X2,Y2), (X3,Y3) are

the corner coordinates of two-dimensional convex hull.
2.5 Evaluating indicator

1. Accuracy evaluation of reconstruction method.
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Accuracy evaluation of reconstruction method: The correlation

coefficient R2 and root mean square error (RMSE) between the

measured values and the height and width values of cotton plants

extracted from the reconstructed point cloud were calculated

respectively to evaluate the error of reconstruction accuracy.

RMSE is determined by Equation 9.

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(ŷ i − yi)
2

q
(9)

where n is the number of samples, i is the current sample, ŷ ı́ and

yi are the predicted value and the true value, respectively.

2. Evaluation of plant type classification method.

(1) The Accuracy is expressed in Equation 10. It refers to the

proportion of correct classification of plant type.

Accuracy = TP+TN
TP+FP+FN+TN (10)

(2) The Precision is expressed in Equation 11. It expressed the

proportion of the predicted plant type to the true plant type.

Precision = TP
TP+FP (11)

(3) The Recall rate is expressed in Equation 12. It represents the

proportion of plant type correctly predicted in the actual plant type.

Recall = TP
TP+FN (12)
FIGURE 5

Flow chart of cotton plant type identification method. (A1, A2) Three-dimensional point cloud. (B1, B2) Two-dimensional projection. (C1, C2) Two-
dimensional convex hull.
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3 Results

3.1 Point cloud visualization

The three-dimensional reconstruction and denoising results of the

point cloud are shown in Figure 7. Taking the varieties of Xinluzao

No.11 and 15 as examples, the visualization results of the point cloud

show that the algorithm can obtain the point cloud with clear structure

and realistic color. The denoising method successfully eliminates the
Frontiers in Plant Science 09
black noise of the leaf edge and the outliers around the plant, while

retaining the three-dimensional information of the plant.
3.2 Accuracy of three-dimensional
reconstruction algorithm

The width and height of cotton plants were extracted from the

reconstructed point cloud, and the correlation analysis was
FIGURE 6

A cotton multi-view two-dimensional convex hull.
TABLE 3 Two-dimensional convex hull corner coordinates of cotton when the rotation angle is 90°.

Convex hull
Convex hull left corner
coordinates/cm

Convex hull right corner
coordinates/cm

(5.47, 0.01) (5.47, 0.01)

(5.05, -0.26) (4.95, 0.48)

(4.22, -0.65) (3.95, 0.57)

(3.39, -0.69) (3.07, 0.64)

(2.05, -0.45) (2.55, 0.62)

(0.48, 0.04) (0.48, 0.04)
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performed with the measured values in Table 2. The error analysis is

shown in Figure 8. The results showed that the R2 value of plant

height was 0.9137 and RMSE was 0.372 cm, while the R2 value of

plant width was 0.9092 and RMSE was 0.387 cm. The R2 values of

plant height and plant width were all above 0.90, indicating that the

proposed plant three-dimensional reconstruction method can

accurately realize the construction of complex phenotypic

information and has a strong correlation with the actual data.

In order to evaluate the reconstruction quality under different

lighting conditions, this manuscript tests the 3D reconstruction

algorithm for different background complexity and different

environments (indoor and outdoor). In this manuscript, the data

of 10 cotton boll opening periods were collected at Shihezi planting

base (outdoor) from October 20 to October 23, 2024 at 19: 00 pm.

The collection environment was sunny and the wind level was small

and there was no strong light. As shown in Figure 9, outdoor data

include natural light, drip irrigation tape, plastic film and other

complex backgrounds, and three-dimensional reconstruction and

reconstruction accuracy verification are carried out. On October 24,

2024, 10 cotton plants were moved into the room, and three-

dimensional reconstruction was carried out under a simple indoor

background. Regression analysis was performed on the

reconstructed cotton plant height and plant width, The RMSE of

indoor plant height and plant width after reconstruction were

0.372 cm and 0.387 cm, respectively, and the RMSE of outdoor

plant height and plant width were 0.391 cm and 0.402 cm,

respectively. The RMSE of plant height and plant width in

outdoor were slightly higher than those in indoor by 0.019 cm

and 0.015 cm, respectively. It shows that the SFM reconstruction

algorithm has good robustness in different environments.

In order to verify the effectiveness of MVS in cotton plant type

reconstruction, We used MVS, NeRF and Mip-NeRF methods to
Frontiers in Plant Science 10
reconstruct cotton plants on the same data set. As shown in Table 4.

Although Mip-NeRF and NeRF methods were slightly higher than

MVS in plant height RMSE by 0.076 cm and 0.064 cm, respectively,

these two methods significantly increased computer memory

consumption and reconstruction time. The MVS method meets

the requirements of plant type for plant structure clarity.

Considering the reconstruction accuracy and memory

consumpt ion , th i s manuscr ipt uses MVS for three-

dimensional reconstruction.
3.3 Plant type identification method
analysis

3.3.1 Algorithm evaluation
The point cloud data reading, automatic acquisition of multi-

view two-dimensional projection and rapid construction of convex

hull were carried out on the three-dimensional model of cotton

plant after down-sampling. The results are shown in Table 5. When

the maximum number of point clouds is 75335, the point cloud

reading time, multi-view projection time and convex hull

construction time are 0.402 S, 2.275 S and 0.018 S, respectively,

indicating that the algorithm in this study runs faster.

Four experts engaged in breeding have carried out agronomic

knowledge in the process of our study. The expert scores are only

based on the content of cotton plant type judgment in the ‘Cotton

Germplasm Resources Description Specification and Data

Standards’, which has certain subjectivity. Therefore, the score of

this manuscript is based on the cotton plant type classification

described in the ‘Cotton Germplasm Resources Description

Specification and Data Standard’ standard and the agronomic

knowledge of the experts.
FIGURE 7

Point cloud visualization results of cylinder type and tower type cotton. (A1, A2) Sparse point clouds. (B1, B2) Dense point clouds. (C1, C2)
Coordinate correction. (D1, D2) Point cloud denoising. (E1, E2) Point cloud down-sampling.
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Four cotton agronomists evaluated the proposed plant type

identification method from the point cloud reading rate, the

automatic acquisition ability of cotton multi-view projection and the

automatic construction ability of cotton convex hull in Table 6

respectively. The average evaluation scores were all above 90,

indicating the rationality and innovation of the cotton plant type

identification method proposed in this study. Four agronomic experts

judged the cotton test set for three times, and used Kappa test to test the

consistency of the expert classification results. The Kappa coefficient

was calculated to be 0.8655, which was between 0.75-1, indicating that

the expert classification results had good reliability.

In this study, the data set is increased to 50 cotton plants, of

which 20 cotton plants are used as the validation set. The manual

measurement method, Canny edge detection, YOLOV10 and the

proposed method are compared and analyzed respectively.

(1) Manual measurement method.

Based on the cotton plant type classification described in the

‘Cotton Germplasm Resources Description Specification and Data
Frontiers in Plant Science 11
Standards’ standard and the agronomic knowledge of experts, the

cotton plant type were judged as the real plant type label. According

to the plant type measurement method specified in the standard of

‘Technical Specification for Identification and Evaluation of Crop

Germplasm Resources Cotton’, the length of upper, middle and

lower fruiting branches of cotton plants was measured by manual

measurement method. If the length of the upper, middle and lower

fruit branches of cotton is similar, it is a cylinder type. If the lower

fruit branch is long and the upper branch is gradually shortened, it

is a tower type. Then the cotton plant type of the verification set is

obtained. On the same verification set, the plant type obtained by

the cotton plant type judgment method proposed in this study is

compared with the results of manual measurement.

(2) Canny edge detection.

In this study, Canny edge detection is used to detect the

boundary contours of different cotton plant types on the same

verification set. According to the plant type measurement method

specified in the standard of ‘Technical Specification for
FIGURE 9

Outdoor cotton data collection and reconstruction results from October 20 to 23, 2024.
FIGURE 8

Correlation and RMES analysis results. (A) Correlation analysis between calculated and measured value of cotton heights. (B) Correlation analysis
between calculated and measured value of cotton widths.
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Identification and Evaluation of Crop Germplasm Resources

Cotton’, the cross-sectional widths of the upper, middle and

lower branches of cotton plants are calculated respectively. If the

width values are similar, it is cylinder type, otherwise it is

tower type.

(3) YOLOV10.

In this study, YOLOV10 was used to classify cotton plant types,

and 200 different plant types of cotton were manually labeled with

cylinder and tower types. The training set, test set and verification

set are divided into 7: 2: 1 respectively.

In summary, the above three methods are compared with the

plant type judgment method proposed in this study. The results are

shown in Table 7. The Accuracy = 0.75, Precision = 0.80, Recall =

0.72 of this study are higher than the first three methods, indicating

that the proposed method reduces the interference of human

factors, and there are fewer false detections and missed

detections. It can maintain a high ability to distinguish cotton

plant types with similar characteristics.

3.3.2 Evaluation of plant type threshold
Firstly, the plant type of all cotton sample data sets were

obtained by expert consensus. Based on the plant type given by

experts, we project the three-dimensional model into two-

dimensional projection, and obtains 1800 two-dimensional

projection data of multi-view cotton plants. Then, based on the

fast convex hull algorithm, the two-dimensional convex hull of

cotton plants under multiple perspectives are constructed, and the

range of convex hull corner change rate of all cotton two-

dimensional projections are calculated and counted. After

counting the corner change rate of different cotton multi-view

convex hulls, as shown in Figure 10. The conclusion is drawn:

Figure 10A is the range of cylinder type: 0-0.2, and the distribution

range is small for the cylinder type; Figure 10B is the range of tower

type: 0.4-1.5, and the tower type has a large distribution range.
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Twenty cotton plants were used as the validation set. The plant

type evaluated by four experts engaged in breeding was used as the

real labels, and the corner change rate of cotton in the verification

set was calculated and compared with the range of corner change

rate obtained in this manuscript. The obtained plant type was used

as the prediction labels. The true and predicted plant types are

shown in Table 8.

The cotton plant type data were analyzed, and the results are

shown in Table 9. The accuracy of cotton plant type Accuracy is

0.75, indicating that the model performs well in the overall

classification task. Further analysis of the performance of each

category, the precision of the cylinder type and the recall rate of

the tower type reached 0.80 and 0.78, respectively, indicating that

the model has high reliability in identifying the tower type and the

cylinder type.

3.3.3 Analysis of plant type threshold difference
After three-dimensional reconstruction of cotton plants, 1800

two-dimensional images were obtained by two-dimensional

projection every 10° interval on all data sets, and the change rate

of corner points was calculated respectively. The corner change rate

of all cylinder types was calculated, the confidence interval was

(0.04687, 0.19357), indicating that most of the sample data were in

(0.04687, 0.19357) at 95% confidence level. The corner change rate

of all tower types was calculated, and the confidence interval was

(0.39987,1.46357), indicating that most of the sample data were

(0.39987,1.46357) at 95% confidence. It is basically consistent with

the conclusion of this study that the range of cylinder type is 0-0.2,

and the range of tower type is 0.4-1.5. The hypothesis test is carried
TABLE 6 Evaluation of cotton plant type identification method.

Evaluation
standard

Point
cloud
reading
ability

Cotton
multi-view
projection
automatic
acquisition
ability

Cotton
convex hull
automatic
construction
ability

Scholar 1 90 91 92

Scholar 2 90 93 92

Scholar 3 91 91 90

Scholar 4 92 91 91

Average score 90.75 91.5 91.25
TABLE 7 Comparison of plant type judgment methods.

Method Accuracy Precision Recall

Manual
measurement

0.65 0.72 0.67

Canny edge
detection

0.40 0.45 0.45

YOLOV10 0.34 0.43 0.38

Our method 0.75 0.80 0.72
TABLE 4 Comparison of three-dimensional reconstruction methods.

Methods
Plant
Height

RMSE/cm

Average
memory

consumption
/GB

Average
reconstruction

time /min

Mip-NeRF 0.300 2.5 170.4

NeRF 0.312 3.6 424.8

MVS 0.376 1.5 40.36
TABLE 5 Algorithm running time.

Point
cloud

number

Point
cloud
reading
time/S

Multi-view
projection
time/S

Convex hull
automatic

construction
time/S

75335 0.402 2.275 0.018

43577 0.147 1.416 0.002
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out on the corner change rate data of two different plant types of

cotton. The results are shown in Figure 11. The sample mean and

standard deviation of the tower type were 0.82988 and 0.40438. The

sample mean and standard deviation of cylinder type were 0.08641

and 0.09635, respectively. There were significant differences in

sample mean and standard deviation between tower type and

cylinder type. P = 1.91503×10–29 is far less than the commonly

used significance level of 0.05, indicating that there is a significant

statistical difference between the corner change rate of the tower

type and the cylinder type.

In this manuscript, 30 training set samples are subjected to five

folds cross-validation. Each fold has six sample points. One fold is

taken as the verification set for each experiment, and the remaining

four folds are taken as the training set. The corner change rate of

cotton samples in the training set was calculated respectively, and

the interval range of corner change rate was obtained by statistics.
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The change rate of the corner points of the samples in the

verification set was calculated respectively. Finally, the plant type

of the cotton samples in the verification set was obtained by using

the interval range obtained from the training set, and compared

with the real plant type. Accuracy=0.93, Precision=0.8, Recall=0.9,

indicating the stability of the proposed method.
4 Discussion

4.1 Three-dimensional construction

The data acquisition process in this study is carried out in a

windless indoor environment, which avoids the inconsistency of

plant images taken from different perspectives due to plant shaking,

affects the quality of point cloud reconstruction, and lays a solid
FIGURE 10

Corner change rate distribution range of different cotton plant types. (A) The range distribution of cylinder type. (B) The range distribution of tower
type.
TABLE 8 Cotton plant type statistics data.

Variety
Truth plant

type
Prediction plant

type
Variety

Truth plant
type

Prediction plant
type

Xinluzao No.40
cylinder type cylinder type

Xinluzao No.47
tower type cylinder type

tower type tower type tower type tower type

Xinluzao No.42
cylinder type cylinder type

Xinluzao No.48
cylinder type cylinder type

cylinder type tower type tower type tower type

Xinluzao No.44
tower type tower type

Xinluzao No.49
tower type tower type

cylinder type cylinder type cylinder type cylinder type

Xinluzao No.45
tower type cylinder type

Xinluzao No.50
cylinder type tower type

tower type tower type cylinder type cylinder type

Xinluzao No.46
cylinder type tower type

Xinluzao No.52
cylinder type cylinder type

tower type tower type cylinder type cylinder type
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foundation for subsequent plant type identification. The

incremental SFM algorithm is adopted, compared with the global

SFM algorithm, although it is time-consuming and depends on the

selection of initial image pairs, the reconstruction accuracy is high

and the external points are robust (Gao et al., 2024). Neural

Radiance Fields has high quality rendering effect, but it requires

long training time and high hardware cost, and its generalization

ability is limited (Zhao et al., 2024a). Compared with other three-

dimensional imaging methods such as laser radar and laser scanner,

the reconstruction algorithm used in this study is lower in cost and

meets the needs of plant reconstruction accuracy. It can completely

reconstruct the morphological structure of cotton plants and is not

destructive to plants (Yu et al., 2024a).

In this study, the three-dimensional point cloud model of

cotton plants was successfully constructed in the indoor

environment. The R2 of the plant height and plant width of the

reconstructed three-dimensional point cloud with the measured

data was greater than 0.89, and the RMSE was 0.376 cm and

0.395 cm, respectively. Although the accuracy of the

reconstructed point cloud meets the requirements of plant type

classification, the effects of different lighting conditions, complex

background in the field and different sensors on image acquisition

and three-dimensional reconstruction are not explored. In the
Frontiers in Plant Science 14
future, different experimental schemes will be designed

for discussion.
4.2 Plant type identification

In the early stage, some experimental studies were carried out to

confirm the projection step size, and the experimental verification

was carried out with 5°,10°and15°interval steps. The experimental

data are shown in Table 10. The results show that the 5° interval can

provide more dense sample points, and the calculated corner

change rate changes slightly. Compared with this manuscript, the

number of projected images increased to 72, and the average multi-

view projection time increased to 2.932818/S, which reduced the

computational efficiency. The number of two-dimensional images

obtained by the 15°interval is too small, the sample points are too

sparse and the statistical basis of the data is weak, which cannot fully

cover the key boundary area of the convex hull. It will affect the

accuracy of the corner change rate distribution. Therefore, in order

to improve the computational efficiency and ensure the accuracy of

the distribution range of corner change rate, we finally decide to

adopt the scheme of projection every 10°.

In the process of exploring the identification method of cotton

plant type, the different viewing angles may affect the morphological

structure of cotton plants. In order to reduce the viewing angle

error, this study proposes to project the cotton point cloud model to

the two-dimensional plane every 10° in the three-dimensional

space. In the process of identifying the plant type of cotton plants

based on two-dimensional projection, in the early stage, the plant

type was judged by analyzing the horizontal cross-sectional width of
TABLE 9 Cotton plant type evaluation statistical data.

Plant type Accuracy Precision Recall

Cylinder type 0.75 0.80 0.72

Tower type 0.75 0.70 0.78
FIGURE 11

Hypothesis test of corner change rate.
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different heights of plants through the height of cotton plants at the

bud stage. However, due to the shelter of leaves on stems and the

different heights of cotton plants, there is no uniform height value to

traverse all cotton plants and calculate the cross-sectional width.

Therefore, this study proposes to use cotton plants at the boll

opening stage to avoid the occlusion of leaves on stems. Since the

average height value may ignore the cross-sectional characteristics

of plants in any case, it is proposed to use convex hulls to capture

the contour characteristics of different cotton plants, and then

statistically analyze the change rate of convex hull corner points

to obtain the identification basis of cotton plant type. When

encountering cotton with both cylinder and tower characteristics

in the identification process, this study counts the number of points

falling into the obtained cylinder and tower ranges respectively. If

the number of points falling into the cylinder range is large, it is

included in the cylinder type, otherwise the tower type.

In the process of cotton plant type judgment, the three-

dimensional model of each cotton plant is projected three times,

and three different two-dimensional coordinates are obtained. The

average error between all two-dimensional coordinates is calculated

to be 5.931×10–6 cm, which represents the error of multi-view two-

dimensional projection. Three convex hulls are constructed for the

two-dimensional image of cotton. The perimeter of the convex hull

after three times of construction is calculated, and the maximum

perimeter error is 9.119×10–7 cm, which represents the error in the

construction process of the convex hull. Although the projection

error and convex hull construction error are small. However, in the

future, it is necessary to optimize the algorithm of two-dimensional

projection and convex hull construction to continuously reduce

the error.

In this study, the proposed plant type judgment method is

compared with other three existing methods. The manual

measurement method has high accuracy, but it is time-consuming

and labor-intensive, and is easily affected by the operator ‘s

subjective judgment and human error. When Canny operator is

used to detect unstructured features, it is easy to produce false edges

and false detection, thus reducing the accuracy. In the task of cotton

plant type classification, whether it is cylinder type or tower type,

there are more same characteristics between individuals, and there

are relatively few characteristics with obvious discrimination. When

using YOLOv10 for plant type classification, it is difficult to

effectively identify the key features that distinguish different plant

types. In contrast, the method proposed in this study achieves a

higher degree of automation, significantly reduces the interference

of human factors, and further improves the overall processing
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efficiency and reliability. The accuracy of this method is 0.75,

which is higher than 0.65 of manual measurement and 0.34 of

YOLOV10, indicating that this method performs better in correctly

classifying cotton plant types.

In terms of three-dimensional reconstruction, real-time

reconstruction of cotton plants has not yet been realized. In the

future, we will focus on studying more efficient data acquisition

methods, reducing reconstruction time and improving

reconstruction accuracy. In terms of plant type judgment, the

plant type identification method proposed in this study is not

applicable to all cotton plants. Only 50 cotton samples are

statistically analyzed to provide reference and inspiration for

further exploration of cotton plant type identification methods.

We acknowledge that the limited cotton data set collected in the

experiment limits the universality of the cotton plant type threshold

conclusion. In order to further verify the transferability of the

conclusion, cotton data was collected every 10 days from the

cotton seedling stage in May 2025, a total of 5 varieties were

collected, 20 plants per variety, a total of 100 plants. We will

collect data from four periods of cotton seedling stage, bud stage,

boll stage and boll opening stage. The collection traits included

plant height, initial node height of fruit branch, fruit branch angle

and so on. The growth status and plant type changes of the whole

growth cycle of cotton will be closely monitored to further verify

and optimize the conclusions of this manuscript. This study is

expected to collect more cotton plants for more detailed statistical

analysis of cotton plant type identification basis. In the future,

different sensors can be used to collect multi-time series data of

cotton, and multi-task joint learning (Sha et al., 2025a) can be

introduced to fuse time series data sets of different scales to increase

the diversity of data sets and understand the dynamic process of

cotton growth more comprehensively. The Siamese neural network

(Lu et al., 2024) is introduced to judge the plant type through multi-

stage training to improve the accuracy of plant type detection, and

further integrate the cotton convex hull automatic construction

algorithm into the APP to complete the automatic analysis and

identification of cotton plant type.
5 Conclusion

The low-cost plant three-dimensional reconstruction

technology used in this study can easily reconstruct field plants

and describe and analyze the growth of field plants. The R2 of the

height and width of the plants extracted from the three-dimensional

reconstruction model and the manual measurement value is above

0.90, and the RMES is 0.372 cm and 0.387 cm, indicating that the

reconstruction method can realize the three-dimensional

reconstruction of complex plants. The reconstructed three-

dimensional model can better reflect the morphological structure

of cotton plants.

By counting the corner change rate of multi-view two-

dimensional convex hull of 30 cotton plants, the range of corner

change rate of different plant types was obtained: the range of

corner change rate was 0-0.2, and the cylinder type has a small
TABLE 10 Different step size data statistics.

Projection
interval /°

Average projected
image / frame

Average multi-view
projection time /S

5° 72 2.932818

10° 36 1.415909

15° 24 1.020377
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distribution range. The range is 0.4-1.5, and the tower type has a

large distribution range. When the maximum number of point

clouds is 75335, the point cloud reading time, cotton multi-view

projection time, and convex hull automatic construction time are

0.402 S, 2.275 S, and 0.018 S, respectively, indicating that the

method is fast and efficient. It provides a theoretical and technical

basis for cotton mechanical picking and plant type breeding, and

also provides an effective reference method for cotton plant

type identification.
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