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Introduction: Plant type is an important part of plant phenotypic research, which
is of great significance for practical applications such as plant genomics and
cultivation knowledge modeling. The existing plant type judgment mainly relies
on subjective experience, and lacks automatic analysis and identification
methods, which seriously restricts the progress of efficient crop breeding and
precision cultivation.

Methods: In this study, the digital structure model of cotton plant was
constructed based on multi-dimensional vision, and the rapid analysis and
identification method of cotton plant type was established. 50 cotton plants
were used as experimental objects in this study. Firstly, multi-view images of
cotton plants at boll opening stage were collected, and a three-dimensional
point cloud model of cotton plants was constructed based on Structure From
Motion and Multi View Stereo (SFM-MVS) algorithm. The original cotton point
cloud data was preprocessed by coordinate correction, statistical filtering,
conditional filtering and down-sampling to obtain a high-quality three-
dimensional model. The three-dimensional model is projected in two
dimensions to obtain the two-dimensional projection data of cotton plants
from multiple perspectives. Secondly, based on the fast convex hull algorithm,
the cotton plant two-dimensional convex hull was constructed from multiple
perspectives, and the distribution range and corner change rate of each corners
of the convex hull were analyzed, and the identification basis of cotton plant type
was established.

Results: The R2 of plant height and width extracted from the model were greater
than 0.90, and RMES were 0.372 cm and 0.387 cm, respectively. When the
maximum number of point clouds is 75335, the point cloud reading time, cotton
multi-view projection time, and convex hull automatic construction time are
0.402 S, 2.275 S, and 0.018 S, respectively. Finally, the cotton cylinder type
classification interval is 0-0.2, and the tower type classification interval is 0.4-1.5.
Discussion: The cotton plant type identification method proposed in this study is
fast and efficient. It provides a solid theoretical basis and technical support for
cotton plant type identification.

KEYWORDS

three-dimensional reconstruction, two-dimensional projection, fast convex hull, corner
change rate, plant type
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1 Introduction

Cotton is a valuable economic crop and the main raw material
of the global textile Industry (Dai et al., 2017; Li et al., 2021). In
2023, the cotton planting area in Xinjiang was 2369.3 khm?, with a
total output of 5.112 million tons, accounting for 91% of the
national total output. Plant type is a key factor affecting cotton
yield, early maturity and mechanized harvesting, and is an
indispensable part of crop breeding. The ideal plant type is
helpful to increase planting density, improve photosynthetic
efficiency and reduce yield loss during mechanized harvesting
(Wang et al., 2024). Cotton plant type is mainly divided into
cylinder type and tower type (Du and Zhou, 2005). At present,
cotton plant type is mainly judged by visual observation, lacking
quantitative evaluation system and standard. It is urgent to
construct a rapid, accurate and undamaged cotton plant type
analysis and identification method.

With the rise of smart agriculture, three-dimensional
reconstruction technology has become an important means to
capture shape and structure information (Yu et al., 2024a) (Yang
etal, 2024)used the improved Structure From Motion algorithm to
achieve high-precision three-dimensional reconstruction and trait
measurement of complex plants. The R* of plant height and plant
width was above 0.999 (Sha et al., 2025b)used a variety of
optimization strategies to perform three-dimensional
reconstruction of transparent objects under limited constraints.
The error indexes CD and CDN-mean were 1.81 and 5.62,
respectively. The results show that the proposed TransNeXt
achieved better results (Zou et al., 2024)used TOF sensor to
capture the three-dimensional geometric structure of fruit trees,
used Delaunay triangulation algorithm and Dijkstra shortest path
algorithm to calculate the minimum spanning tree, and completed
the construction of high-precision fruit tree point cloud model. The
accuracy deviation between the constructed three-dimensional
point cloud and skeleton model of fruit trees and the measured
data is kept within 7% (Wu et al., 2024)used the MVS-Pheno high-
throughput phenotypic platform to obtain high-precision three-
dimensional point clouds of wheat plants, and then based on the
SoftGroup network model, the point cloud organ segmentation and
morphological parameter extraction of wheat plants were
performed. The accuracy of organ semantic segmentation was
95.2%, and R? of leaf length and width was above 0.80 (Wu et al.,
2019)accurately extracted maize plant skeleton based on three-
dimensional point cloud, and used the extracted plant skeleton to
estimate morphological parameters such as leaf inclination angle
and leaf growth height. The extracted phenotypic parameters R
were all above 0.93. At the same time, the method based on
agricultural big model has strong application potential in the
fields of crop classification and recognition (Guo et al., 2024)
(Gurav et al., 2023)proposed to use SAM to divide the field
contour of satellite images as the basis for crop classification, and
used Clustering Consensus Metrics to evaluate its ability, as the
basis of subsequent crop classification and map generation process
(Tan et al., 2023)designed an experiment to identify farmland crops
based on remote sensing images and corresponding basic
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information for GPT-4. The results show that GPT-4 performs
well on general images (Li et al., 2023b)used SAM adapter for image
segmentation of pests and diseases, especially in the identification of
coffee leaf diseases, the average Dice coefficient and the average
cross-over score increased by about 40%. Based on prediction
models, deep learning, unsupervised training and other methods,
the application of large models has been promoted (Alhatemi and
Savas, 2024; Fei et al., 2025; Liu et al., 2025; Sha et al., 2025¢; Xiang
et al, 2025). In summary, the technical methods based on three-
dimensional reconstruction and large-scale agricultural models
have become an important method for studying plant
phenotypes, and are the primary prerequisites for crop
identification and classification and phenotypic data analysis.

The construction of three-dimensional model of plants based
on three-dimensional reconstruction technology has become an
important method to study the phenotypic structure of plants, and
is the primary prerequisite for the analysis of crop phenotypic data.

Plant type research is attracting widespread attention (Zhao
et al., 2024b)reviewed the morphological characteristics of crop
ideal plant type from four aspects: leaf, stem, panicle and root, and
summarized the cultivation techniques of ideal plant type
regulation, providing a theoretical basis for the cultivation of ideal
plant type (Li et al., 2023a)proposed four stages of ideal plant type of
rapeseed, constructed the index system of ideal plant type of
rapeseed, and discussed the basic characteristics, construction
strategies and research trends of ideal plant type of rapeseed. At
present, most of the plant type research stays at the level of review
and qualitative analysis. There have been many reports on wheat,
rice, corn, flue-cured tobacco and other crops, but there are
relatively few studies on cotton. The research on automatic
analysis and identification of cotton plant type based on three-
dimensional model is limited.

The plant type of cotton is a complex trait, which is controlled
by genotype and environment. There is a correlation between plant
type traits and yield, quality and early maturity traits. Plant type
breeding is an effective way to improve cotton yield and fiber quality
(Fu et al, 2019). Quantitative analysis of cotton plant type was
carried out to improve the identification accuracy of cotton plant
traits and promote the application of plant type research in
breeding. In summary, based on the above research, this study
proposes a cotton plant type identification method based on multi-
dimensional vision with cotton as the research object. The main
work is as follows:

1. The three-dimensional model of multiple cotton plants was
obtained by using the low-cost cotton three-dimensional
reconstruction method based on Structure From Motion
and Multi View Stereo (SFM-MVY) algorithm.

2. The three-dimensional point cloud model of cotton is
preprocessed, and the point cloud coordinates of cotton
are corrected by rotation and translation matrix to make it
consistent with the growth direction. Statistical filtering and
color-based conditional filtering are used to denoise the
point cloud to obtain a pure point cloud model. Then, the
number of three-dimensional model point clouds is
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FIGURE 1
Main process of this study.

reduced by down-sampling, and the running speed of the
algorithm is improved.

. A low-cost cotton plant type determination method based
on multi-view two-dimensional projection and fast convex
hull algorithm was proposed. The main process of this
study is shown in Figure 1.
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2 Materials and methods
2.1 Plant materials

Taking cotton as the experimental object of this study, from
April to November 2024, data collection was carried out at the
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Cotton sample point collection area distribution map
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FIGURE 2
Experimental field distribution map.

TABLE 1 Camera specifications.

Parameter Value

Image width (pixels) 1280

Image weight (pixels) 800
Visual angle (°) 91*66
Frame rate (fps) 30

cotton base of Kuche Modern Agricultural Science and Technology
Innovation Center. A total of 25 varieties were selected, 2 plants for
each variety, and a total of 50 cotton plant samples were selected.
Among them, 20 cotton plants were used as validation set. The field
distribution position is shown in Figure 2, and the cotton plants
were moved to the flowerpot and moved indoors.

2.2 Data acquisition

In order to obtain clear and high-quality data, an indoor image
acquisition platform composed of a tripod, a binocular structured light
camera, a black screen, a 39 cm-diameter electric turntable and a
computer is built. In this study, ORBBEC Gemini 2 is used for data
shooting. The intrinsic parameters of the camera are shown in Table 1.
The depth range of the camera is 0.2 m-5 m. This camera uses a depth
sensing system, which uses active infrared (IR) stereo vision and inertial
measurement unit (IMU). The system uses structured light technology
to work through a pattern projector to create the difference between the
stereo images captured by two infrared cameras. Accurate direction
parameters are provided by 6-axis IMU. The Lenovo computer is used
for later data processing and analysis. The computer is configured as:
Windows 64-bit operating system, 32G running memory, inter (R)
Core (TM) i7-14700HX CPU, RTX 4060 graphics card. The principle
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of coordinate transformation between cameras is shown in Figure 3A.
The camera calibration process is as follows:

1. Prepare a chessboard with a grid size of 15 mm * 15 mm, and
calibrate the camera by Zhang Zhengyou calibration method.

2. Detect the corner points on the chessboard and obtain their
pixel coordinates;

3. Determine the internal parameter matrix K=

456.1847 0 683.9744
0 457.5567 336.5738
0 0 1

>

The distortion coefficient k; = 0.0027, k, = —0.0041.

Mean Reprojection Error = 0.25 pixel. Reprojection error is
small, indicating the accuracy of the calibration results.

In the process of camera calibration, slight blurring and ghosting of
the image may occur, resulting in excessive differences in multiple
repeated calibration results. In order to reduce the image shooting error,
this manuscript increases the camera bracket to more accurately control
the camera ‘s angle and height, and improve the calibration accuracy.

The camera faces the cotton plant directly and locates it accurately.
The fixed horizontal distance between the camera and the center of the
turntable is 2.23 m. The turntable rotates at a fixed speed of 10 S to shoot
cotton images. and a total of 249 high-resolution images are obtained.
Considering that the growth height of cotton can reach 1.2m-1.5m and
the morphological structure is complex, this study adopts three different
heights to rotate clockwise to shoot cotton plants. The data acquisition
scheme is shown in Figure 3B. The shooting distance D and the ground
height H of the camera from the cotton plant are measured by a laser
rangefinder. The plant height and plant width of training set were
measured with a ruler, and the mean values were measured 7 times and
recorded in Table 2 as the data source for subsequent correlation analysis.
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FIGURE 3

(A) Data acquisition principle. (B) Data acquisition scheme.

TABLE 2 Manual measurement data.

Cotton Average plant Average plant Cotton Average plant Average plant
varieties height/cm width/cm varieties height/cm width/cm
Xinluzao 964 352 Xinluzao 104.7 887
No.3 1265 144.1 No.13 80.2 326
Xinluzao 934 38.1 Xinluzao 775 294
Nos5 735 323 No.15 89.7 342
Xinluzao 723 28.6 Xinluzao 89.9 557
Nos6 715 302 No.l6 85.9 462
Xinluzao 88.8 339 Xinluzao 4 711
No.8 9722 435 No.18 93.4 412
inluzao 108.4 82.9 Xinluzao 79.4 28.9
No.l 1016 89.4 No.19 1116 58.6
Xinluzao 78.2 47.8 Xinluzao 108.5 706
No.20 1105 686 No.33 97.4 35.8
Xinluzao 88.6 567 Xinluzao 768 376
No.36 109.7 435 No.38 89.9 56.7
Xinluzao 95.2 395
No.55 775 343

2.3 Three-dimensional reconstruction and
data preprocessing method

2.3.1 Three-dimensional reconstruction method
of cotton plant

The process of three-dimensional reconstruction method is
shown in Figure 4. Firstly, the image acquisition platform is used
to capture the multi-temporal plant images of cotton. Secondly, the
three-dimensional point cloud model of cotton is reconstructed by
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using the SFM-MVS algorithm. Finally, the point cloud model is
subjected to coordinate correction, filtering and down-sampling
operations to obtain a pure point cloud model.

The core of the algorithm mainly includes feature point
extraction, stereo matching, pose estimation and parameter
optimization (Schonberger and Frahm, 2016; Schonberger et al.,
2016).The specific reconstruction process is as follows:

(1) Feature point extraction and matching: A set of cotton
sequence images are input, and the feature points in multi-view
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The pipeline of three-dimensional reconstruction.

two-dimensional images are detected and extracted by Scale-
Invariant Feature Transform (SIFT). The K-dimensional tree is
used to calculate the Euclidean distance between the feature points
of the two images for stereo matching of the feature points. Finally,
the projection geometry is used to map the transformation of the
feature points between the images to verify the matching.

(2) Incremental sparse point cloud reconstruction: Based on the
correspondence between two-dimensional - three-dimensional, the
triangulation is used to expand the point set and estimate the spatial
pose of the camera, and then the Bundle Adjustment (BA) method
is used to iteratively optimize the minimum reprojection error E of
the Equation 1. Finally, the sparse point cloud reconstruction of
cotton is realized.

E =3 p(n(P, X)?) (1)

P. is the camera parameter, Xy is the point parameter, p; is the
loss function, XjERz represents the image coordinates of the
feature points.

(3) Dense point cloud reconstruction: In the process of dense
reconstruction, due to the distorted image, there will be a large
disparity estimation error at the edge. Firstly, the multi-view plant
image is de-distorted. Combined with the optical consistency and
geometric consistency in multi-view, the depth map and normal
vector map of multi-view are estimated and optimized. Finally, the
depth map fusion is used to reconstruct the dense three-
dimensional point cloud of cotton.

2.3.2 Point cloud coordinate correction

In order to accurately obtain the cotton plant type information,
it is necessary to correct the coordinates of the three-dimensional
point cloud of cotton (Huang et al., 2019). Because there is a certain
deviation between the main direction of the reconstructed cotton
three-dimensional point cloud model and the growth direction of
the real cotton plant, it is necessary to use the translation and
rotation matrix for coordinate transformation, so that the main
direction of the three-dimensional point cloud of the cotton plant is
consistent with the growth direction. The coordinate
transformation is shown in Equation 2. T, is the three-
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dimensional point cloud of cotton after coordinate
transformation, M is the translation and rotation matrix, Tq is
the original three-dimensional point cloud of cotton plant.

Ty =MrTo (2)

2.3.3 Point cloud denoising

Due to the influence of equipment accuracy and environmental
factors, there are two kinds of noise in the reconstructed point
cloud. One is the outliers scattered throughout the plant, which are
removed by statistical filtering. The other is black noise uniformly
distributed along the edges of cotton stems and leaves, which is
removed by color-based conditional filtering. The non-target plants
were cut based on the CloudCompare software before removing
the noise.

(1) Statistical filtering.

For cotton point cloud data, the average distance from each
point to its nearest k points is calculated, and the neighborhood of
each point is statistically analyzed (Han et al., 2017). The distance of
all points in the point cloud constitutes a Gaussian distribution,
where the mean (1 and the standard deviation o are determined by
Equation 3. The coordinates of the nth point P,(X,,Y,,Z,) to any
point P, (X, Yim»Zp) is calculated by Equation 4.

U=13500 =[S - ®
i=1
$i= V(X - X, + (Y, - Y, +(Z, - Z,) (4)

The average distance between a point and its nearest k points is
calculated. If the average distance is within the standard range (u-
Gestd, p+Gestd), the point is retained. Otherwise, it is judged as an
outlier and removed, where std is the standard deviation multiple.

(2) Color-based conditional filtering.

The first step is to define a conditional filter based on the color
attribute of the point (Watanabe et al., 2023), and create a multi-
condition composite conditional object, which is composed of RGB
color components.
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The second step: create a condition to remove the filter object,
input the condition object and the point cloud to the filter. The
color component threshold is set separately, each point in the input
point cloud is traversed, and compared with the color threshold. If
all conditions are met, the point is retained, otherwise the point is
discarded, and the operation is repeated. Finally, the qualified
points are stored in the new point cloud object.

2.3.4 Point cloud down-sampling

The three-dimensional point cloud data of the original cotton
plant is dense. In order to save the running time of the later
algorithm, the voxel grid down-sampling method is used to
simplify the cotton point cloud data. Point cloud down-sampling
is to reduce the number of point clouds without changing the basic
geometric characteristics of point clouds. A minimum three-
dimensional voxel grid is created for the input point cloud data,
and then the three-dimensional voxel grid is divided into several
small grids. The point cloud data is placed in the corresponding
small grid, and all the data points in the small cube grid are replaced
by the voxel center of gravity to realize the point cloud down-
sampling. The voxel grid down-sampling can well preserve the
geometric features of the point cloud and prevent the loss of feature
information (Lyu et al., 2024).The number of points after down-
sampling is reduced to about 25% of the original point cloud, and
the contour of the cotton plant is almost unchanged, which can
improve the running speed of the algorithm and reduce the
running time.

2.4 ldentification method of cotton plant
type

Reasonable plant type is conducive to improving planting
density and photosynthetic efficiency. Suitable plant type
structure is the key to mechanized harvesting of cotton.
Cultivating and screening cotton varieties suitable for mechanical
harvesting is an urgent problem to be solved in cotton production
(Song et al., 2024).

2.4.1 Fast convex hull algorithm of cotton plant

A convex hull is the smallest convex polygon or polyhedron that
can contain all given points, which can determine the minimum
enclosing shape of the point set (Zhou et al., 2024). The fast convex
hull algorithm can construct the minimum bounding shape of the
two-dimensional point set of cotton. By analyzing the minimum
bounding shape of cotton, the geometric structure information of
cotton can be obtained.

At present, the most commonly used convex hull algorithm is
Andrew and Graham scanning method (Ma et al,, 2017).However,
both algorithms need to globally sort the contour point set based on the
polar angle. When facing large-scale point set data, it takes a long time.
Therefore, this study uses a fast convex hull algorithm that can save the
time of solving the contour convex hull (Kirkpatrick and Seidel, 1986).
It constructs the convex hull of cotton two-dimensional point set
quickly and automatically by recursive divide-and-conquer method.
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Unlike other convex hull algorithms, the fast convex hull algorithm
gradually constructs the convex hull by selecting the farthest point,
without relying on global sorting. The specific steps are as follows:

(1) Select the reference points in the two-dimensional
projection data of cotton and segment the point set. Traverse all
the points in the point set, find the leftmost point and the rightmost
point in the point set according to the coordinates, and mark them
as A and B. A and B must be part of the convex hull, connect AB to
form a datum line segment, and the datum line segment divides the
cotton two-dimensional point set into upper and lower planes.
Given the coordinates of the two ends of the reference line AB in the
plane (Xa,Ya), (Xp,Yp) and any point P(Xp,Yp), determine the
positional relationship between point P and the straight line AB.
The equation of straight line AB is as follows (5):

Y - Y, = 5t (X - Xy) (5)

-

By substituting the point P into the Equation 5, the position
relation F between the point P and the straight line AB is obtained

as Equation 6:
F=X,(Yp = Yp) - Ya(Xp — Xp) + (XpYp — XpYp) (6)

(2) Select the farthest point in the two-dimensional point set of
cotton. The farthest point must be on the convex hull. Find out the
farthest point of the reference line AB in the upper and lower
planes, marked as C and D respectively, forming two triangles ABC
and ABD. The formula for calculating the distance d between any
point (X,Y) in the point set and the line segment AB is as Equation

7:
d =" ?)
wherea =Yg - Yy, b=X, —Xp, c = XY, — X, V3.

(3) Take the triangle ABC and ABD as new sub-problems
respectively, find out the farthest point of the original contour
relative to each edge of the triangle, get the new triangle and the new
farthest point, repeat the process until all points are processed.

(4) All the contour points found are the vertices of the convex
hull, and all the vertices are connected into a closed curve, which is
the two-dimensional minimum convex hull of cotton.

2.4.2 Identification method of cotton plant type
There are two common cotton plant types: the upper and lower
parts of the cylinder type are basically the same, and the lower part
of the tower type is larger and the upper part is smaller. The existing
cotton plant type identification methods are subjective, so this study
proposes the plant type identification method based on the pre-
processed cotton plant three-dimensional model.
Three-dimensional can characterize the growth characteristics
of crops in detail, but the cotton plant types observed from different
perspectives are different. In order to reduce the visual error, this
study rotates the three-dimensional model of cotton around the Y-
axis and projects it to the XOY two-dimensional plane every 10°
with Matlab2022. A total of 36 two-dimensional data of cotton
plants were obtained, and then the minimum convex hulls were
constructed for the two-dimensional data of multi-view cotton
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Convex hull construction process of different cotton types

Three-dimensional point cloud

Two-dimensional projection

Two-dimensional convex hull

A1 B1

C1

FIGURE 5

Flow chart of cotton plant type identification method. (A1, A2) Three-dimensional point cloud. (B1, B2) Two-dimensional projection. (C1, C2) Two-

dimensional convex hull.

plants. Figure 5 is the process of cotton plant type identification
method. Figure 6 is a convex hull of 36 viewing angles of a cotton
plant, and the corner change rate of the convex hull is calculated
respectively. Finally, the corner change rate of the convex hull of 36
viewing angles of each cotton plant is statistically analyzed, and the
cotton plant type is further judged.

After the construction of the two-dimensional convex hull of
the cotton plant, the coordinates of the convex hull corner points
will be output. Table 3 shows the coordinates of the convex hull
corner points output after the projection and construction of the
convex hull when the rotation angle is 90°, and then the change rate
of the convex hull corner points is calculated by Equation 8. After
the corner change rate is solved, the height is taken as the vertical
axis, and the corner change rate is taken as the horizontal axis, and
the change interval range diagram is made.

Y3-Y YY)

K =533 ®)

Where K’ is the corner change rate, (X,Y;), (X5,Y2), (X3,Y3) are
the corner coordinates of two-dimensional convex hull.

2.5 Evaluating indicator

1. Accuracy evaluation of reconstruction method.

Frontiers in Plant Science

Accuracy evaluation of reconstruction method: The correlation
coefficient R* and root mean square error (RMSE) between the
measured values and the height and width values of cotton plants
extracted from the reconstructed point cloud were calculated
respectively to evaluate the error of reconstruction accuracy.
RMSE is determined by Equation 9.

RMSE = \/ %E?:l(f’i _yi)2 )

where n is the number of samples, i is the current sample, y, and
y; are the predicted value and the true value, respectively.

2. Evaluation of plant type classification method.

(1) The Accuracy is expressed in Equation 10. It refers to the
proportion of correct classification of plant type.

TP+TN

ACCuracy = rppp NN

(10)

(2) The Precision is expressed in Equation 11. It expressed the
proportion of the predicted plant type to the true plant type.
Precision =

(11)

(3) The Recall rate is expressed in Equation 12. It represents the

TP
TP+EP
proportion of plant type correctly predicted in the actual plant type.

_ TP
Recall = 5.5

(12)
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Multi-view convex hull of cylinder type cotton

60°

100°

FIGURE 6
A cotton multi-view two-dimensional convex hull.

3 Results

3.1 Point cloud visualization

The three-dimensional reconstruction and denoising results of the
point cloud are shown in Figure 7. Taking the varieties of Xinluzao
No.11 and 15 as examples, the visualization results of the point cloud
show that the algorithm can obtain the point cloud with clear structure
and realistic color. The denoising method successfully eliminates the

black noise of the leaf edge and the outliers around the plant, while
retaining the three-dimensional information of the plant.

3.2 Accuracy of three-dimensional
reconstruction algorithm

The width and height of cotton plants were extracted from the
reconstructed point cloud, and the correlation analysis was

TABLE 3 Two-dimensional convex hull corner coordinates of cotton when the rotation angle is 90°.

Convex hull Conve_x hull left corner Convgx hull right corner
coordinates/cm coordinates/cm
(5.47, 0.01) (5.47, 0.01)
(5.05, -0.26) (4.95, 0.48)
(4.22, -0.65) (3.95, 0.57)
(3.39, -0.69) (3.07, 0.64)
(2.05, -0.45) (2.55, 0.62)
(0.48, 0.04) (0.48, 0.04)
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performed with the measured values in Table 2. The error analysis is
shown in Figure 8. The results showed that the R* value of plant
height was 0.9137 and RMSE was 0.372 c¢m, while the R? value of
plant width was 0.9092 and RMSE was 0.387 cm. The R values of
plant height and plant width were all above 0.90, indicating that the
proposed plant three-dimensional reconstruction method can
accurately realize the construction of complex phenotypic
information and has a strong correlation with the actual data.

In order to evaluate the reconstruction quality under different
lighting conditions, this manuscript tests the 3D reconstruction
algorithm for different background complexity and different
environments (indoor and outdoor). In this manuscript, the data
of 10 cotton boll opening periods were collected at Shihezi planting
base (outdoor) from October 20 to October 23, 2024 at 19: 00 pm.
The collection environment was sunny and the wind level was small
and there was no strong light. As shown in Figure 9, outdoor data
include natural light, drip irrigation tape, plastic film and other
complex backgrounds, and three-dimensional reconstruction and
reconstruction accuracy verification are carried out. On October 24,
2024, 10 cotton plants were moved into the room, and three-
dimensional reconstruction was carried out under a simple indoor
background. Regression analysis was performed on the
reconstructed cotton plant height and plant width, The RMSE of
indoor plant height and plant width after reconstruction were
0.372 cm and 0.387 cm, respectively, and the RMSE of outdoor
plant height and plant width were 0.391 ¢m and 0.402 cm,
respectively. The RMSE of plant height and plant width in
outdoor were slightly higher than those in indoor by 0.019 cm
and 0.015 cm, respectively. It shows that the SFM reconstruction
algorithm has good robustness in different environments.

In order to verify the effectiveness of MVS in cotton plant type
reconstruction, We used MVS, NeRF and Mip-NeRF methods to

10.3389/fpls.2025.1610577

reconstruct cotton plants on the same data set. As shown in Table 4.
Although Mip-NeRF and NeRF methods were slightly higher than
MVS in plant height RMSE by 0.076 cm and 0.064 cm, respectively,
these two methods significantly increased computer memory
consumption and reconstruction time. The MVS method meets
the requirements of plant type for plant structure clarity.
Considering the reconstruction accuracy and memory
consumption, this manuscript uses MVS for three-

dimensional reconstruction.

3.3 Plant type identification method
analysis

3.3.1 Algorithm evaluation

The point cloud data reading, automatic acquisition of multi-
view two-dimensional projection and rapid construction of convex
hull were carried out on the three-dimensional model of cotton
plant after down-sampling. The results are shown in Table 5. When
the maximum number of point clouds is 75335, the point cloud
reading time, multi-view projection time and convex hull
construction time are 0.402 S, 2.275 S and 0.018 S, respectively,
indicating that the algorithm in this study runs faster.

Four experts engaged in breeding have carried out agronomic
knowledge in the process of our study. The expert scores are only
based on the content of cotton plant type judgment in the ‘Cotton
Germplasm Resources Description Specification and Data
Standards’, which has certain subjectivity. Therefore, the score of
this manuscript is based on the cotton plant type classification
described in the ‘Cotton Germplasm Resources Description
Specification and Data Standard’ standard and the agronomic
knowledge of the experts.

Three-dimensional reconstruction visualization of different plant types of cotton

Sparse point clouds Dense point clouds

Coordinate correction

Point cloud denoising Point cloud downsampling

D1

D2

FIGURE 7

Point cloud visualization results of cylinder type and tower type cotton. (A1, A2) Sparse point clouds. (B1, B2) Dense point clouds. (C1, C2)
Coordinate correction. (D1, D2) Point cloud denoising. (E1, E2) Point cloud down-sampling.
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FIGURE 8

Correlation and RMES analysis results. (A) Correlation analysis between calculated and measured value of cotton heights. (B) Correlation analysis

between calculated and measured value of cotton widths.

Four cotton agronomists evaluated the proposed plant type
identification method from the point cloud reading rate, the
automatic acquisition ability of cotton multi-view projection and the
automatic construction ability of cotton convex hull in Table 6
respectively. The average evaluation scores were all above 90,
indicating the rationality and innovation of the cotton plant type
identification method proposed in this study. Four agronomic experts
judged the cotton test set for three times, and used Kappa test to test the
consistency of the expert classification results. The Kappa coefficient
was calculated to be 0.8655, which was between 0.75-1, indicating that
the expert classification results had good reliability.

In this study, the data set is increased to 50 cotton plants, of
which 20 cotton plants are used as the validation set. The manual
measurement method, Canny edge detection, YOLOV10 and the
proposed method are compared and analyzed respectively.

(1) Manual measurement method.

Based on the cotton plant type classification described in the
‘Cotton Germplasm Resources Description Specification and Data

Outdoor images of cotton

Outdoor reconstruction of cotton

Standards’ standard and the agronomic knowledge of experts, the
cotton plant type were judged as the real plant type label. According
to the plant type measurement method specified in the standard of
‘Technical Specification for Identification and Evaluation of Crop
Germplasm Resources Cotton’, the length of upper, middle and
lower fruiting branches of cotton plants was measured by manual
measurement method. If the length of the upper, middle and lower
fruit branches of cotton is similar, it is a cylinder type. If the lower
fruit branch is long and the upper branch is gradually shortened, it
is a tower type. Then the cotton plant type of the verification set is
obtained. On the same verification set, the plant type obtained by
the cotton plant type judgment method proposed in this study is
compared with the results of manual measurement.

(2) Canny edge detection.

In this study, Canny edge detection is used to detect the
boundary contours of different cotton plant types on the same
verification set. According to the plant type measurement method
specified in the standard of ‘Technical Specification for

Pure cotton point cloud

i

FIGURE 9

Outdoor cotton data collection and reconstruction results from October 20 to 23, 2024.
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TABLE 4 Comparison of three-dimensional reconstruction methods.

Plant rAn\:eer:\ac?re Average
Methods Height consum t}i/on reconstruction
RMSE/cm P time /min
/GB
Mip-NeRF 0.300 25 170.4
NeRF 0312 3.6 424.8
MVS 0376 15 40.36

Identification and Evaluation of Crop Germplasm Resources
Cotton’, the cross-sectional widths of the upper, middle and
lower branches of cotton plants are calculated respectively. If the
width values are similar, it is cylinder type, otherwise it is
tower type.

(3) YOLOV10.

In this study, YOLOV10 was used to classify cotton plant types,
and 200 different plant types of cotton were manually labeled with
cylinder and tower types. The training set, test set and verification
set are divided into 7: 2: 1 respectively.

In summary, the above three methods are compared with the
plant type judgment method proposed in this study. The results are
shown in Table 7. The Accuracy = 0.75, Precision = 0.80, Recall =
0.72 of this study are higher than the first three methods, indicating
that the proposed method reduces the interference of human
factors, and there are fewer false detections and missed
detections. It can maintain a high ability to distinguish cotton
plant types with similar characteristics.

3.3.2 Evaluation of plant type threshold

Firstly, the plant type of all cotton sample data sets were
obtained by expert consensus. Based on the plant type given by
experts, we project the three-dimensional model into two-
dimensional projection, and obtains 1800 two-dimensional
projection data of multi-view cotton plants. Then, based on the
fast convex hull algorithm, the two-dimensional convex hull of
cotton plants under multiple perspectives are constructed, and the
range of convex hull corner change rate of all cotton two-
dimensional projections are calculated and counted. After
counting the corner change rate of different cotton multi-view
convex hulls, as shown in Figure 10. The conclusion is drawn:
Figure 10A is the range of cylinder type: 0-0.2, and the distribution
range is small for the cylinder type; Figure 10B is the range of tower
type: 0.4-1.5, and the tower type has a large distribution range.

TABLE 5 Algorithm running time.

Point Point - pMutti-view ~ Convex hull
cloud o automatic
cloud : projection :
number reading time/S construction
time/S time/S
75335 ‘ 0.402 ‘ 2275 0.018
43577 ‘ 0.147 ‘ 1.416 0.002
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TABLE 6 Evaluation of cotton plant type identification method.

Cotton
. S Cotton
Point multi-view
. o convex hull
Evaluation cloud projection .
. . automatic
standard reading automatic .
oy o construction
ability acquisition e
& ability
ability
Scholar 1 90 91 92
Scholar 2 90 93 92
Scholar 3 91 91 90
Scholar 4 92 91 91
Average score 90.75 91.5 91.25

Twenty cotton plants were used as the validation set. The plant
type evaluated by four experts engaged in breeding was used as the
real labels, and the corner change rate of cotton in the verification
set was calculated and compared with the range of corner change
rate obtained in this manuscript. The obtained plant type was used
as the prediction labels. The true and predicted plant types are
shown in Table 8.

The cotton plant type data were analyzed, and the results are
shown in Table 9. The accuracy of cotton plant type Accuracy is
0.75, indicating that the model performs well in the overall
classification task. Further analysis of the performance of each
category, the precision of the cylinder type and the recall rate of
the tower type reached 0.80 and 0.78, respectively, indicating that
the model has high reliability in identifying the tower type and the
cylinder type.

3.3.3 Analysis of plant type threshold difference
After three-dimensional reconstruction of cotton plants, 1800
two-dimensional images were obtained by two-dimensional
projection every 10° interval on all data sets, and the change rate
of corner points was calculated respectively. The corner change rate
of all cylinder types was calculated, the confidence interval was
(0.04687, 0.19357), indicating that most of the sample data were in
(0.04687, 0.19357) at 95% confidence level. The corner change rate
of all tower types was calculated, and the confidence interval was
(0.39987,1.46357), indicating that most of the sample data were
(0.39987,1.46357) at 95% confidence. It is basically consistent with
the conclusion of this study that the range of cylinder type is 0-0.2,
and the range of tower type is 0.4-1.5. The hypothesis test is carried

TABLE 7 Comparison of plant type judgment methods.

Method Accuracy Precision Recall
Manual
0.65 0.72 0.67
measurement
C
anny edge 0.40 0.45 0.45
detection
YOLOV10 0.34 0.43 0.38
Our method 0.75 0.80 0.72
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FIGURE 10

Corner change rate distribution range of different cotton plant types. (A) The range distribution of cylinder type. (B) The range distribution of tower

type.

TABLE 8 Cotton plant type statistics data.

Truth plant Prediction plant

Truth plant

Prediction plant

Variet Variet;
v type type v type type
cylinder type cylinder type tower type cylinder type
Xinluzao No.40 Xinluzao No.47
tower type tower type tower type tower type
cylinder type cylinder type cylinder type cylinder type
Xinluzao No.42 Xinluzao No.48
cylinder type tower type tower type tower type
tower type tower type tower type tower type
Xinluzao No.44 Xinluzao No.49
cylinder type cylinder type cylinder type cylinder type
tower type cylinder type cylinder type tower type
Xinluzao No.45 Xinluzao No.50
tower type tower type cylinder type cylinder type
cylinder type tower type cylinder type cylinder type
Xinluzao No.46 Xinluzao No.52
tower type tower type cylinder type cylinder type

out on the corner change rate data of two different plant types of
cotton. The results are shown in Figure 11. The sample mean and
standard deviation of the tower type were 0.82988 and 0.40438. The
sample mean and standard deviation of cylinder type were 0.08641
and 0.09635, respectively. There were significant differences in
sample mean and standard deviation between tower type and
cylinder type. P = 1.91503x10->° is far less than the commonly
used significance level of 0.05, indicating that there is a significant
statistical difference between the corner change rate of the tower
type and the cylinder type.

In this manuscript, 30 training set samples are subjected to five
folds cross-validation. Each fold has six sample points. One fold is
taken as the verification set for each experiment, and the remaining
four folds are taken as the training set. The corner change rate of
cotton samples in the training set was calculated respectively, and
the interval range of corner change rate was obtained by statistics.
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The change rate of the corner points of the samples in the
verification set was calculated respectively. Finally, the plant type
of the cotton samples in the verification set was obtained by using
the interval range obtained from the training set, and compared
with the real plant type. Accuracy=0.93, Precision=0.8, Recall=0.9,
indicating the stability of the proposed method.

4 Discussion
4.1 Three-dimensional construction

The data acquisition process in this study is carried out in a
windless indoor environment, which avoids the inconsistency of

plant images taken from different perspectives due to plant shaking,
affects the quality of point cloud reconstruction, and lays a solid
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TABLE 9 Cotton plant type evaluation statistical data.

Plant type Accuracy Precision Recall
Cylinder type 0.75 0.80 0.72
Tower type 0.75 0.70 0.78

foundation for subsequent plant type identification. The
incremental SFM algorithm is adopted, compared with the global
SFM algorithm, although it is time-consuming and depends on the
selection of initial image pairs, the reconstruction accuracy is high
and the external points are robust (Gao et al, 2024). Neural
Radiance Fields has high quality rendering effect, but it requires
long training time and high hardware cost, and its generalization
ability is limited (Zhao et al., 2024a). Compared with other three-
dimensional imaging methods such as laser radar and laser scanner,
the reconstruction algorithm used in this study is lower in cost and
meets the needs of plant reconstruction accuracy. It can completely
reconstruct the morphological structure of cotton plants and is not
destructive to plants (Yu et al., 2024a).

In this study, the three-dimensional point cloud model of
cotton plants was successfully constructed in the indoor
environment. The R* of the plant height and plant width of the
reconstructed three-dimensional point cloud with the measured
data was greater than 0.89, and the RMSE was 0.376 cm and
0.395 cm, respectively. Although the accuracy of the
reconstructed point cloud meets the requirements of plant type
classification, the effects of different lighting conditions, complex
background in the field and different sensors on image acquisition
and three-dimensional reconstruction are not explored. In the

10.3389/fpls.2025.1610577

future, different experimental schemes will be designed
for discussion.

4.2 Plant type identification

In the early stage, some experimental studies were carried out to
confirm the projection step size, and the experimental verification
was carried out with 5°10°and15°interval steps. The experimental
data are shown in Table 10. The results show that the 5° interval can
provide more dense sample points, and the calculated corner
change rate changes slightly. Compared with this manuscript, the
number of projected images increased to 72, and the average multi-
view projection time increased to 2.932818/S, which reduced the
computational efficiency. The number of two-dimensional images
obtained by the 15°interval is too small, the sample points are too
sparse and the statistical basis of the data is weak, which cannot fully
cover the key boundary area of the convex hull. It will affect the
accuracy of the corner change rate distribution. Therefore, in order
to improve the computational efficiency and ensure the accuracy of
the distribution range of corner change rate, we finally decide to
adopt the scheme of projection every 10°.

In the process of exploring the identification method of cotton
plant type, the different viewing angles may affect the morphological
structure of cotton plants. In order to reduce the viewing angle
error, this study proposes to project the cotton point cloud model to
the two-dimensional plane every 10° in the three-dimensional
space. In the process of identifying the plant type of cotton plants
based on two-dimensional projection, in the early stage, the plant
type was judged by analyzing the horizontal cross-sectional width of

Hypothesis test of corner change rate
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Hypothesis test of corner change rate.
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different heights of plants through the height of cotton plants at the
bud stage. However, due to the shelter of leaves on stems and the
different heights of cotton plants, there is no uniform height value to
traverse all cotton plants and calculate the cross-sectional width.
Therefore, this study proposes to use cotton plants at the boll
opening stage to avoid the occlusion of leaves on stems. Since the
average height value may ignore the cross-sectional characteristics
of plants in any case, it is proposed to use convex hulls to capture
the contour characteristics of different cotton plants, and then
statistically analyze the change rate of convex hull corner points
to obtain the identification basis of cotton plant type. When
encountering cotton with both cylinder and tower characteristics
in the identification process, this study counts the number of points
falling into the obtained cylinder and tower ranges respectively. If
the number of points falling into the cylinder range is large, it is
included in the cylinder type, otherwise the tower type.

In the process of cotton plant type judgment, the three-
dimensional model of each cotton plant is projected three times,
and three different two-dimensional coordinates are obtained. The
average error between all two-dimensional coordinates is calculated
to be 5.931x10-° cm, which represents the error of multi-view two-
dimensional projection. Three convex hulls are constructed for the
two-dimensional image of cotton. The perimeter of the convex hull
after three times of construction is calculated, and the maximum
perimeter error is 9.119x10~" cm, which represents the error in the
construction process of the convex hull. Although the projection
error and convex hull construction error are small. However, in the
future, it is necessary to optimize the algorithm of two-dimensional
projection and convex hull construction to continuously reduce
the error.

In this study, the proposed plant type judgment method is
compared with other three existing methods. The manual
measurement method has high accuracy, but it is time-consuming
and labor-intensive, and is easily affected by the operator ‘s
subjective judgment and human error. When Canny operator is
used to detect unstructured features, it is easy to produce false edges
and false detection, thus reducing the accuracy. In the task of cotton
plant type classification, whether it is cylinder type or tower type,
there are more same characteristics between individuals, and there
are relatively few characteristics with obvious discrimination. When
using YOLOvV10 for plant type classification, it is difficult to
effectively identify the key features that distinguish different plant
types. In contrast, the method proposed in this study achieves a
higher degree of automation, significantly reduces the interference
of human factors, and further improves the overall processing

TABLE 10 Different step size data statistics.

Projection  Average projected Average multi-view
interval /° image / frame projection time /S
5° 72 2932818
10° 36 1.415909
15° 24 1.020377
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efficiency and reliability. The accuracy of this method is 0.75,
which is higher than 0.65 of manual measurement and 0.34 of
YOLOV 10, indicating that this method performs better in correctly
classifying cotton plant types.

In terms of three-dimensional reconstruction, real-time
reconstruction of cotton plants has not yet been realized. In the
future, we will focus on studying more efficient data acquisition
methods, reducing reconstruction time and improving
reconstruction accuracy. In terms of plant type judgment, the
plant type identification method proposed in this study is not
applicable to all cotton plants. Only 50 cotton samples are
statistically analyzed to provide reference and inspiration for
further exploration of cotton plant type identification methods.
We acknowledge that the limited cotton data set collected in the
experiment limits the universality of the cotton plant type threshold
conclusion. In order to further verify the transferability of the
conclusion, cotton data was collected every 10 days from the
cotton seedling stage in May 2025, a total of 5 varieties were
collected, 20 plants per variety, a total of 100 plants. We will
collect data from four periods of cotton seedling stage, bud stage,
boll stage and boll opening stage. The collection traits included
plant height, initial node height of fruit branch, fruit branch angle
and so on. The growth status and plant type changes of the whole
growth cycle of cotton will be closely monitored to further verify
and optimize the conclusions of this manuscript. This study is
expected to collect more cotton plants for more detailed statistical
analysis of cotton plant type identification basis. In the future,
different sensors can be used to collect multi-time series data of
cotton, and multi-task joint learning (Sha et al., 2025a) can be
introduced to fuse time series data sets of different scales to increase
the diversity of data sets and understand the dynamic process of
cotton growth more comprehensively. The Siamese neural network
(Lu et al,, 2024) is introduced to judge the plant type through multi-
stage training to improve the accuracy of plant type detection, and
further integrate the cotton convex hull automatic construction
algorithm into the APP to complete the automatic analysis and
identification of cotton plant type.

5 Conclusion

The low-cost plant three-dimensional reconstruction
technology used in this study can easily reconstruct field plants
and describe and analyze the growth of field plants. The R? of the
height and width of the plants extracted from the three-dimensional
reconstruction model and the manual measurement value is above
0.90, and the RMES is 0.372 cm and 0.387 cm, indicating that the
reconstruction method can realize the three-dimensional
reconstruction of complex plants. The reconstructed three-
dimensional model can better reflect the morphological structure
of cotton plants.

By counting the corner change rate of multi-view two-
dimensional convex hull of 30 cotton plants, the range of corner
change rate of different plant types was obtained: the range of
corner change rate was 0-0.2, and the cylinder type has a small
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distribution range. The range is 0.4-1.5, and the tower type has a
large distribution range. When the maximum number of point
clouds is 75335, the point cloud reading time, cotton multi-view
projection time, and convex hull automatic construction time are
0.402 S, 2.275 S, and 0.018 S, respectively, indicating that the
method is fast and efficient. It provides a theoretical and technical
basis for cotton mechanical picking and plant type breeding, and
also provides an effective reference method for cotton plant
type identification.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

YL: Data curation, Investigation, Methodology, Software,
Writing - original draft, Writing — review & editing. BL: Data
curation, Writing - review & editing. WF: Investigation, Writing -
review & editing. JY: Writing - review & editing. XZ: Writing -
review & editing. XA: Writing - review & editing. XL: Writing -
review & editing, Project administration, Supervision.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This research was
sponsored by Natural Science Foundation of Xinjiang Uygur
Autonomous Region project * Research on high-throughput
phenotypic analysis and control of mobile robots considering
cotton growth dynamics © (2024D01E02), the National Natural
Science Foundation of China Project  Research on bionic vision
and adaptive grasping method of Xinjiang long-staple cotton
humanoid picking robot ¢ (52265003).

References

Alhatemi, R., and Savas, S. (2024). A weighted ensemble approach with multiple pre-
trained deep learning models for classification of stroke. Medinformatics 1, 10-19.
doi: 10.47852/bonviewMEDIN32021963

Dai, J., Kong, X, Zhang, D, Li, W., and Dong, H. (2017). Technologies and
theoretical basis of light and simplified cotton cultivation in China. Field Crops Res.
214, 142-148. doi: 10.1016/j.fcr.2017.09.005

Du, X., and Zhou, Z. (2005). Cotton germplasm resources description specifications
and data standards (Beijing, China: China Agricultural Publishing House).

Fei, R, Wan, Y., Hu, B, Li, A,, Cui, Y., and Peng, H. (2025). Deep core node
information embedding on networks with missing edges for community detection. Inf.
Sci. 707, 122039. doi: 10.1016/j.ins.2025.122039

Fu, Y., Xue, H,, Hu, G., Chao, M., and Li, C. (2019). Research progress on genetics
breeding of plant architecture traits of cotton in China. Jiangsu Agric. Sci. 47 (5), 16-19.
doi: 10.15889/j.issn.1002-1302.2019.05.005

Frontiers in Plant Science

16

10.3389/fpls.2025.1610577

Acknowledgments

This is a short text to acknowledge the contributions of specific
colleagues, institutions, or agencies that aided the efforts of the authors.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1610577/
full#supplementary-material

Gao, X,, Li, M,, and Shen, S. (2024). Large-scale structure from motion: A survey. J.
Computer-Aided Design Comput. Graphics 36, 969-994. doi: 10.3724/
SP.J.1089.2024.2024-00132

Guo, W, Yang, Y., Wu, H,, Zhu, H., Miao, Y., and Gu, J. (2024). Big models in
agriculture: key technologies,Application and future directions. Smart Agric. 6, 1-13.
doi: 10.12133/j.smartag.SA202403015

Gurav, R, Patel, H., Shang, Z., Eldawy, A., Chen, ], Scudiero, E., et al. (2023). Can
SAM recognize crops? Quantifying the zero-shot performance of a semantic
segmentation foundation model on generating crop-type maps using satellite
imagery for precision agriculture. Available online at: https://ui.adsabs.harvard.edu/
abs/2023arXiv231115138G (Accessed November 01, 2023).

Han, X. F,, Jin, J. S.,, Wang, M. J,, Jiang, W., Gao, L., and Xiao, L. P. (2017). A review
of algorithms for filtering the 3D point cloud. Signal Processing-Image Communication
57, 103-112. doi: 10.1016/j.image.2017.05.009

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2025.1610577/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2025.1610577/full#supplementary-material
https://doi.org/10.47852/bonviewMEDIN32021963
https://doi.org/10.1016/j.fcr.2017.09.005
https://doi.org/10.1016/j.ins.2025.122039
https://doi.org/10.15889/j.issn.1002-1302.2019.05.005
https://doi.org/10.3724/SP.J.1089.2024.2024-00132
https://doi.org/10.3724/SP.J.1089.2024.2024-00132
https://doi.org/10.12133/j.smartag.SA202403015
https://ui.adsabs.harvard.edu/abs/2023arXiv231115138G
https://ui.adsabs.harvard.edu/abs/2023arXiv231115138G
https://doi.org/10.1016/j.image.2017.05.009
https://doi.org/10.3389/fpls.2025.1610577
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

Huang, L., Da, F., and Gai, S. (2019). Research on multi-camera calibration and point
cloud correction method based on three-dimensional calibration object. Optics Lasers
Eng. 115, 32-41. doi: 10.1016/j.0ptlaseng.2018.11.005

Kirkpatrick, D. G., and Seidel, R. (1986). The ultimate planar convex hull algorithm?
SIAM Journal on Computing 15 (1), 287-299. doi: 10.1137/0215021

Li, F., Huang, H., Guan, M., and Guan, C. (2023a). Research progress toward the ideal type
of rapeseed plant. Chin. J. Oil Crop Sci. 45, 4-16. doi: 10.19802/j.issn.1007-9084.2022210

Li, Y., Wang, D, Yuan, C, Li, H., and Hu, J. (2023b). Enhancing agricultural image
segmentation with an agricultural segment anything model adapter. 23 (18), 7884.
doi: 10.3390/523187884

Li, J., Zhi, X., Wang, Y., and Cao, Q. (2021). Research on Intelligent recognition
system of Cotton apical Bud based on Deep Learning. J. Physics: Conf. Ser. 1820, 12134.
doi: 10.1088/1742-6596/1820/1/012134

Liu, K., Feng, M., Zhao, W., Sun, J., Dong, W., Wang, Y., et al. (2025). Pixel-level
noise mining for weakly supervised salient object detection. IEEE Trans. Neural
Networks Learn. Syst., 1-15. doi: 10.1109/TNNLS.2025.3575255

Lu, J., Huang, X, Li, C, Xin, R,, Zhang, S., and Emam, M. (2024). Multi-stage-based
siamese neural network for seal image recognition. CMES - Comput. Modeling Eng. Sci.
142, 405-423. doi: 10.32604/cmes.2024.058121

Lyu, W., Ke, W., Sheng, H., Ma, X., and Zhang, H. Y. (2024). Dynamic
downsampling algorithm for 3D point cloud map based on voxel filtering. Appl.
Sciences-Basel 14 (8). doi: 10.3390/app14083160

Ma, J., Lin, D., and Ling, G. (2017). Fast algorithm for generating two-dimensional
convex hull based on mass data. Comput. Technol. Dev. 7 (2). doi: 10.3969/j.issn.1673-
629X.2017.02.010

Schénberger, J. L., and Frahm, J. M. “Structure-from-motion revisited,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA,
4104-4113. doi: 10.1109/CVPR.2016.445

Schonberger, J. L., Zheng, E., Frahm, J.-M., and Pollefeys, M. “Pixelwise view
selection for unstructured multi-view stereo,” in Computer Vision-ECCV 2016: 14th
European Conference. Amsterdam, The Netherlands. October 11-14, 2016. 501-518.
doi: 10.1007/978-3-319-46487-9_31

Sha, X,, Guan, Z., Wang, Y., Han, J., Wang, Y., and Chen, Z. (2025a). SSC-Net: A
multi-task joint learning network for tongue image segmentation and multi-label
classification. Digit Health 11, 20552076251343696. doi: 10.1177/20552076251343696

Sha, X,, Si, X,, Zhu, Y., Wang, S., and Zhao, Y. (2025b). Automatic three-dimensional
reconstruction of transparent objects with multiple optimization strategies under limited
constraints. Image Vision Computing 160, 105580. doi: 10.1016/j.imavis.2025.105580

Sha, X,, Zhu, Y., Sha, X,, Guan, Z., and Wang, S. (2025¢). ZHPO-LightXBoost an
integrated prediction model based on small samples for pesticide residues in crops.
Environ. Model. Software 188, 106440. doi: 10.1016/j.envsoft.2025.106440

Song, Y., Ayiguzaili, Y., Wang, X., Zhao, M., Buayim, A., Zhang, L., et al. (2024).
Effects of planting density and varieties on the morphological structure of vegetative

Frontiers in Plant Science

17

10.3389/fpls.2025.1610577

organs and yield of machine-picked cotton in northern Xinjiang. Cotton Sci 36, 194—
210. doi: 10.11963/cs20230046

Tan, C,, Cao, Q,, Li, Y., Zhang, J., Yang, X., Zhao, H., et al. (2023). On the Promises
and Challenges of Multimodal Foundation Models for Geographical, Environmental,
Agricultural, and Urban Planning Applications. Available online at: https://ui.adsabs.
harvard.edu/abs/2023arXiv231217016T (Accessed December 01, 2023).

Wang, J., Wang, X,, Tian, Q., Ma, X,, Zhou, X,, Li, B,, et al. (2024). Association
analysis and exploration of elite alleles of plant architecture traits in gossypium
hirsutum L. Biotechnol. Bull. 40, 146-154. doi: 10.13560/
j.cnki.biotech.bull. 1985.2023-0746

Watanabe, R, Nonaka, K., Pavez, E., Kobayashi, T., and Ortega, A. “Graph-based
point cloud color denoising with 3-dimensional patch-based similarity,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Rhodes Island, Greece. p. 1-5. doi: 10.1109/ICASSP49357.2023.10095488

Wu, S., Wen, W, Xiao, B.,, Guo, X, Du, J., Wang, C,, et al. (2019). An accurate
skeleton extraction approach from 3D point clouds of maize plants. Front Plant Sci 10,
248. doi: 10.3389/fpls.2019.00248

Wu, S., Zhang, Y., Zhao, Y., Wen, W., Wang, C,, Lu, X,, et al. (2024). Using high-
throughput phenotyping platform MVS-Pheno to decipher the genetic architecture of
plant spatial geometric 3D phenotypes for maize. Comput. Electron. Agric. 225, 109259.
doi: 10.1016/j.compag.2024.109259

Xiang, D., He, D., Sun, H,, Gao, P., Zhang, ], and Ling, J. (2025). HCMPE-Net: An
unsupervised network for underwater image restoration with multi-parameter
estimation based on homology constraint. Optics Laser Technol. 186, 112616.
doi: 10.1016/j.optlastec.2025.112616

Yang, D., Yang, H, Liu, D., and Wang, X. (2024). Research on automatic 3D
reconstruction of plant phenotype based on Multi-View images. Comput. Electron.
Agric. 220, 108866. doi: 10.1016/j.compag.2024.108866

Yu, S, Liu, X,, Tan, Q., Wang, Z., and Zhang, B. (2024a). Sensors, systems and
algorithms of 3D reconstruction for smart agriculture and precision farming: A review.
Comput. Electron. Agric. 224, 109229. doi: 10.1016/j.compag.2024.109229

Zhao, R,, Qian, J., Zhang, L., Chang, J., Gu, Q., and Huang, W. (2024b). Research
progress of crop ideal plant type. Jiangsu Agric. Sci. 52, 31-40. doi: 10.15889/
j.issn.1002-1302.2024.04.005

Zhao, J., Ying, W., Pan, Y., Yi, Z., Chen, C,, Hu, K, et al. (2024a). Exploring accurate
3D phenotyping in greenhouse through neural radiance fields. doi: 10.48550/
arXiv.2403.15981

Zhou, Q., Chen, C,, Ren, J., Hong, W., and Cen, J. (2024). Tie-positioning method
based on improved convex hull defect algorithm. J. Textile Res. 45, 212-219.
doi: 10.13475/j.fzxb.20230603701

Zou, X., Shi, Y., Xiong, M., Ren, D., Wu, L, Li, X, et al. (2024). Efficient three-
dimensional reconstruction and skeleton extraction for intelligent pruning of fruit trees.
Comput. Electron. Agric. 227, 109554. doi: 10.1016/j.compag.2024.109554

frontiersin.org


https://doi.org/10.1016/j.optlaseng.2018.11.005
https://doi.org/10.1137/0215021
https://doi.org/10.19802/j.issn.1007-9084.2022210
https://doi.org/10.3390/s23187884
https://doi.org/10.1088/1742-6596/1820/1/012134
https://doi.org/10.1109/TNNLS.2025.3575255
https://doi.org/10.32604/cmes.2024.058121
https://doi.org/10.3390/app14083160
https://doi.org/10.3969/j.issn.1673-629X.2017.02.010
https://doi.org/10.3969/j.issn.1673-629X.2017.02.010
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1007/978-3-319-46487-9_31
https://doi.org/10.1177/20552076251343696
https://doi.org/10.1016/j.imavis.2025.105580
https://doi.org/10.1016/j.envsoft.2025.106440
https://doi.org/10.11963/cs20230046
https://ui.adsabs.harvard.edu/abs/2023arXiv231217016T
https://ui.adsabs.harvard.edu/abs/2023arXiv231217016T
https://doi.org/10.13560/j.cnki.biotech.bull.1985.2023-0746
https://doi.org/10.13560/j.cnki.biotech.bull.1985.2023-0746
https://doi.org/10.1109/ICASSP49357.2023.10095488
https://doi.org/10.3389/fpls.2019.00248
https://doi.org/10.1016/j.compag.2024.109259
https://doi.org/10.1016/j.optlastec.2025.112616
https://doi.org/10.1016/j.compag.2024.108866
https://doi.org/10.1016/j.compag.2024.109229
https://doi.org/10.15889/j.issn.1002-1302.2024.04.005
https://doi.org/10.15889/j.issn.1002-1302.2024.04.005
https://doi.org/10.48550/arXiv.2403.15981
https://doi.org/10.48550/arXiv.2403.15981
https://doi.org/10.13475/j.fzxb.20230603701
https://doi.org/10.1016/j.compag.2024.109554
https://doi.org/10.3389/fpls.2025.1610577
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Research on cotton plant type identification method based on multidimensional vision
	1 Introduction
	2 Materials and methods
	2.1 Plant materials
	2.2 Data acquisition
	2.3 Three-dimensional reconstruction and data preprocessing method
	2.3.1 Three-dimensional reconstruction method of cotton plant
	2.3.2 Point cloud coordinate correction
	2.3.3 Point cloud denoising
	2.3.4 Point cloud down-sampling

	2.4 Identification method of cotton plant type
	2.4.1 Fast convex hull algorithm of cotton plant
	2.4.2 Identification method of cotton plant type

	2.5 Evaluating indicator

	3 Results
	3.1 Point cloud visualization
	3.2 Accuracy of three-dimensional reconstruction algorithm
	3.3 Plant type identification method analysis
	3.3.1 Algorithm evaluation
	3.3.2 Evaluation of plant type threshold
	3.3.3 Analysis of plant type threshold difference


	4 Discussion
	4.1 Three-dimensional construction
	4.2 Plant type identification

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


