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Tree peony (Paeonia sect. Moutan) is widely cultivated worldwide. However,

conventional propagation methods such as sowing, division, and grafting are

constrained by low reproduction rates and long reproductive cycles. Thus,

micropropagation technology is a viable alternative to advance the tree peony

industry. However, the industrial production of tree peony through this

technique is largely limited by shoot apical dormancy in in vitro plantlets, and

its molecular mechanism remains unclear. In this study, changes in endogenous

hormone content during adventitious root formation were investigated in

Paeonia × lemoinei ‘High Noon’. Transcriptome sequencing was carried out at

four stages of root induction (0 d, 10 d, 20 d, 30 d) using Illumina HiSeq. The

results showed that a decrease in trans-zeatin riboside (ZR) and gibberellic acid

(GA3) content induced shoot apical dormancy. In contrast to previous studies,

high levels of abscisic acid (ABA) were not the dominant factor inducing

dormancy in in vitro tree peony plantlets. The accumulation of indole-3-acetic

acid (IAA) in shoot apices promoted dormancy by activating the ABA signaling

pathway without enhancing ABA levels. A total of 92.07 Gb of clean data were

obtained, and 121,843 unigenes were assembled. The regulation of shoot apical

dormancy is governed by core metabolic pathways, including plant hormone

signal transduction, starch and sucrose metabolism, and phenylpropanoid

biosynthesis. In these pathways, 27, 18, and 17 differentially expressed genes

(DEGs) were identified, respectively. Based on the endogenous hormone content

in the apical shoot and RNA-seq data collected during shoot apical dormancy, a

preliminary model was constructed to illustrate how endogenous hormones

regulate in vitro shoot apical dormancy in tree peony. These results provide rich

gene resources for investigating the molecular mechanism underlying in vitro

plantlet dormancy and will significantly contribute to advancing the tree peony

industry by improving the transplant survival rate of micropropagation.
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1 Introduction

Tree peony (Paeonia sect. Moutan) is a precious woody plant

renowned for its ornamental value, medicinal use, and edible oil

production. Native to China, it is now well-received by consumers

worldwide. Currently, traditional propagation methods for tree

peonies—such as seeding, division, and grafting—are inefficient and

unable to meet the increasing market demand. Micropropagation

serves as an efficient tool for the rapid and large-scale multiplication

of plants and has been extensively adopted to address the

shortcomings of traditional propagation methods. Nevertheless, a

low survival rate has hindered the industrial application of this

technology in tree peony, largely due to in vitro shoot apical

dormancy induced during root induction (Wen et al., 2020).

In tree peony, in vitro shoot apical dormancy was first reported

by Bouza et al. (1992), who found that the mitotic index in shoot

apices significantly reduced during root induction, accompanied by

endogenous abscisic acid (ABA). Without breaking dormancy,

rooted shoots failed to grow and gradually died after transplanting.

Since then, several studies have addressed shoot apical dormancy

(Bouza et al., 1992). Thereafter, copious research was reported about

the apical dormancy cultivation (Beruto et al., 2004; Wang et al.,

2016; Wen et al., 2016a, Wen et al., 2018; Xin et al., 2019). Currently,

many studies have attempted to break the in vitro shoot apical

dormancy of tree peony by chilling treatment. It was found that

although some growth could be achieved in plantlets due to raised

mitotic index and reduced ABA production, after two months of ex

vitro establishment, they would again enter dormancy and eventually

die (Bouza et al., 1992, Bouza et al., 1994; Wen et al., 2016b; Wang

et al., 2016). In conclusion, the in vitro shoot apical dormancy

remains a major bottleneck in the industrial application of tree

peony micropropagation, and chilling treatments have proven

ineffective. Given the limitations of previous cytological and

physiological studies in elucidating the underlying mechanisms,

there is an urgent need to investigate the regulatory pathways of

shoot apical dormancy from a molecular perspective. The molecular

study started fairly late in the dormancy mechanism of tree peony.

The current research mainly focus on the activation of the gibberellin

signal transduction pathway and the mechanisms of bud dormancy

release. These include the molecular cloning and functional

prediction of genes such as PsGA20ox (Appleford et al., 2006),

PsSOC1 (Wang et al., 2015), PsSERK2 (Gao et al., 2018), and

PsGAI (Chi et al., 2021). Other efforts have characterized

microRNAs involved in chilling-induced dormancy release (Zhang

et al., 2018a), conducted transcriptome analyses, and screened

relevant ERF transcription factors (Zeng, 2022), Under natural

conditions, tree peony dormancy is broken after exposure to low

winter temperatures. However, chilling treatment is ineffective in

breaking in vitro shoot apical dormancy (Bouza et al., 1994).

suggesting that the mechanisms of natural and in vitro dormancy

may differ. At present, the molecular mechanisms underlying in vitro

shoot apical dormancy in tree peony are poorly understood, with only

two studies addressing this issue. Xu (2021) conducted a

comprehensive analysis of the transcriptome, endogenous

phytohormone concentrations, phenolic compound levels,
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carbohydrate contents, and enzyme activities in the leaves and

stems of in vitro plantlets. In this study, key genes showing

differential expression were screened, however, there was a lack of

analysis of gene regulatory network structure. Similarly, Fu et al.

(2021) carried out comparable work using peony stems and leaves.

Nevertheless, both studies overlooked the potential influence of

different sampling sites on the results and thus were unable to

provide a precise elucidation of the mechanism underlying in vitro

shoot apical dormancy in tree peony. Therefore, the regulatory

network governing in vitro shoot dormancy in tree peony shoot

apices needs to be further investigated.

Paeonia × lemoinei ‘High Noon’ is an inter-subsectional hybrid

known for its ornamental value and stress resistance. It has strong

potential for use as a potted flower, cut flower, scented tea, and

landscaping plant. Although an efficient micropropagation protocol

has been developed for this cultivar (Wen et al., 2016b, Wen et al.,

2016c, Wen et al., 2018), in vitro shoot apical dormancy continues to

limit its commercial propagation. To elucidate the molecular

mechanisms underlying this dormancy, we used shoot apices from

Paeonia × lemoinei ‘High Noon’ at four root induction stages (0, 10,

20, and 30 days) as experimental materials. First, we analyzed the

endogenous hormone levels in the shoot apices during adventitious

root formation. Then, we conducted transcriptome sequencing using

Illumina HiSeq to identify dormancy-related genes and regulatory

networks. This research provides a foundation for regulating shoot

apical dormancy in in vitro tree peony plantlets and will contribute

significantly to improving transplant survival rates—thus advancing

the industrial development of the tree peony industry.
2 Materials and methods

2.1 Plant material

According to the rooting protocol we previously reported (Wen

et al., 2016a, Wen et al., 2021), in vitro shoots of Paeonia × lemoinei

‘High Noon’ in good growth conditions were transferred to half-

strength Murashige and Skoog medium (MS; Murashige and Skoog,

1962) with all microelements at half-strength. The medium contained

1.0 mg·L-¹ indole-3-butyric acid (IBA), 1.0 mg·L-¹ putrescine (PUT),

30.0 g·L-¹ sucrose, and 6.0 g·L-¹ agar. PUT was filter-sterilized using a

0.22 mm filter and added to the medium after autoclaving (120°C, 101

kPa, 20 min). The cultures were grown at 24 ± 1 °C in the dark for 30

days to induce rooting. During this process, the shoot apices entered a

dormant state. Therefore, shoot apices (0.5 cm) were harvested at

four stages (0d, 10d, 20d, 30d) of root induction and designated as R0,

R10, R20, and R30. Each treatment was repeated three times. Samples

were immediately frozen in liquid nitrogen and stored at -80°C for

subsequent experiments.
2.2 Measurement of endogenous hormone
content

The methods for extraction and purification of trans-Zeatin-

riboside (ZR), gibberellin acid (GA3), indole-3-acetic acid (IAA),
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and abscisic acid (ABA) followed those described by Bollmark et al.

(1988). Fresh tissue samples (0.3 g) were homogenized using a pre-

chilled mortar with 10 mL of 80% methanol (v/v) extraction

solution supplemented with 1 mM butylated hydroxytoluene as

an antioxidant. Following a 4-hour incubation at 4°C, the

homogenate was centrifuged at 4,000 rpm for 15 min at 4°C. The

resulting supernatant was filtered through Chromosep C18

columns (C18 Sep-Park Cartridge, Waters Corp., Milford, MA),

which had been preconditioned sequentially with 10 mL of absolute

methanol and 5 mL of 80% methanol (v/v). The hormone fractions

were eluted using 10 mL of absolute methanol followed by 10 mL of

diethyl ether, then evaporated under nitrogen gas and reconstituted

in 2 mL of phosphate-buffered saline (PBS, pH 7.5) containing 0.1%

Tween 20 (v/v) and 0.1% gelatin (w/v) for ELISA analysis. The

quantification of GA3, IAA, ZR, and ABA was performed using

enzyme-linked immunosorbent assay (ELISA) kit, as described by

(Yang et al., 2001). ELISA reagents—including mouse monoclonal

antigens/antibodies against ZR, IAA, GA3, and ABA, and

horseradish peroxidase (HRP)-conjugated IgG—were provided by

the Phytohormones Research Institute (China Agricultural

University). Color development in each well was detected using

an ELISA Reader (model EL310, Bio-TEK, Winooski, VT) at an

optical density of A490. The contents of ZR, IAA, GA3, and ABA

were calculated according to Weiler et al. (1981), and all experiment

were performed in triplicate.
2.3 RNA extraction, library construction,
and sequencing

Total RNA was extracted from three biological replicates of

shoot apices using the EASYspin Plus Plant RNA Kit (Aidlab,

China). RNA integrity was assessed via 1.2% agarose gel

electrophoresis, while RNA quantification and purity were

determined using a Nanodrop spectrophotometer. After

confirming RNA quality, cDNA library construction and

transcriptome sequencing were conducted by Nuohe Zhiyuan

Technology Co., Ltd. (Beijing, China). Library purification, PCR

enrichment, and quality assessment were performed using the

AMPure XP system. Sequencing was carried out on the Illumina

HiSeq platform after successful library inspection. Additional

quality control was performed using the Agilent Bioanalyzer 2100

system (Agilent Technologies, CA, USA) and the NanoPhotometer

spectrophotometer (IMPLEN, CA, USA).
2.4 De novo assembly and unigene
functional annotation

Clean reads were obtained by removing raw reads containing

adapters, more than 10% poly-N, or low-quality sequences. The

percentages of bases with Phred scores >20 (Q20) and >30 (Q30),

GC content, and sequence duplication levels were calculated. Clean

reads were assembled de novo into contigs using Trinity (Grabherr

et al., 2011). Hierarchical clustering was performed using Corset
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(Nadia and Alicia, 2014) to obtain high-quality single-gene

sequences were obtained. The assembled unigenes were annotated

using BLASTx alignment (E-value < 1×10−5) to seven databases,

including NCBI non-redundant protein (NR), nucleotide (NT),

Pfam, Clusters of Orthologous Groups (KOG/COG), Swiss-Prot,

Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene

Ontology (GO) databases. Estscan (3.0.3) was used to decide the

sequence direction of unigenes with no match in the database or

marched unknown sequences.
2.5 Analysis of differentially expressed
genes

The number of mapped clean reads for each unigene was

quantified using RNA-seq by Expectation Maximization (RSEM)

(Li and Dewey, 2011) and normalized into fragments per kilobase

per million fragments (FPKM). Transcriptomes comparisons across

experimental conditions were performed using the DESeq R

package (v1.10.1). P-value adjustments were implemented

following the Benjamini–Hochberg procedure to control the false

discovery rate. Genes with P-value < 0.05 and absolute log2 fold-

change > 1 were considered significantly differentially expressed.

Gene Ontology (GO) enrichment analysis was conducted using the

GOseq R package (Young et al., 2010), and KOBAS (Mao et al.,

2005) was used to assess KEGG pathway enrichment. KEGG

pathways with FDR ≤ 0.05 were considered significantly enriched.

In addition to global DEG enrichment analysis, DEGs were also

analyzed separate ly accord ing to their upregulat ion

or downregulation.
2.6 Gene expression validation by qRT-PCR

Total RNA derived from RNA sequencing was reverse-

transcribed into cDNA using the Novozan HiScript II First

Strand cDNA Synthesis Kit. Four genes with high expression

levels and strong annotation support were randomly selected for

validation. Primers were designed using Oligo 7 software

(Supplementary Table S1) and synthesized by Shanghai Jierui

Bioengineering Corporation. Primer specificity was verified using

Novozan 2x Rapid Taq Master Mix. Real-time fluorescence

quantitative PCR was performed using ChamQ Universal SYBR

qPCR Master Mix as the fluorescent dye on a StepOne Real-Time

PCR System (Applied Biosystems, Foster City, CA, USA). Each

reaction was conducted using three biological replicates, each with

three technical replicates. Relative gene expression levels were

calculated using the 2-DDCT method and normalized to Ubiquitin

as the internal reference gene (Wang et al., 2012).
2.7 Statistical analyses

The data were collated using Excel 2020 (Microsoft

Corporation, Redmond, WA, USA). SPSS 26.0 (SPSS Inc.,
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Chicago, IL, USA) was used for single-factor completely

randomized statistical analysis of variance, and the LSD method

was used to test the significant differences of the experimental data

(p < 0.05). Figures were generated via Origin 2021 and Adobe

Illustrator 2020 (Adobe Inc., San Jose, CA, USA).
3 Results

3.1 Hormone changes of shoot apices
during adventitious root formation

The contents of endogenous GA3, ABA, ZR, IAA, and their ratios

to ABA varied significantly during in vitro rooting of Paeonia ×

lemoinei ‘High Noon’ (Figure 1). GA3 content decreased gradually

and was negatively correlated with rooting progression. IAA content

showed a trend of decreasing, then increasing, and finally decreasing,

reaching a low of 13.40 ng/g on the 10th day and peaking at 37.37 ng/

g on day 20. ZR content initially increased and then declined, peaking

on the 10th day. In contrast, ABA content showed a sharp decline

during the first 10 days but showed no significant difference between

days 10 and 30 on rooting medium. The trends in the ratio of the

three hormones (GA3, IAA, and ZR) to ABA first increased and then

decreased; all ratios were higher than those at day zero during in vitro

rooting (Figure 1). The ratios of GA3, IAA, and ZR to ABA first

increased and then decreased, with all ratios higher than those at day

0. The GA3/ABA and IAA/ABA ratios peaked on day 20, while the

ZR/IAA ratio peaked on day 10. These elevated hormone-to-ABA

ratios during root culture stages may contribute to plantlet dormancy

after rooting” for improved logical flow.
3.2 Analysis of transcriptome sequencing
data and unigene functional annotation

In this study, cDNA libraries were constructed from shoot

apices of Paeonia × lemoinei ‘High Noon’ at 0, 10, 20, and 30

days during adventitious root formation. Approximately 7G of

clean reads were obtained, with an error rate of 0.03%. Q20 and

Q30 scores reached at least 96.6% and 91.3%, respectively. A total of

263,543 contigs ≥200 bp were obtained and further assembled into

121,843 single genes. The average unigene length was 1,003 bp, with

an N50 of 1,387 bp. Data from the same sampling time points

exhibited good reproducibility (Figure 2A). As shown in Figure 2B,

there were 77,000 unigenes with length ≥ 500 bp and 12,525

unigenes with length ≥ 2000 bp, with the highest proportion

(36.8%) between 301 and 500 bp—indicating that the data were

of high quality for downstream analysis.

Using BLASTx analysis, 85,174 unigenes (69.9%) were annotated

against seven databases (NR, NT, KEGG, SwissProt, PFAM, GO, and

COG/KOG) (Table 1). Based on the annotation information from the

NR database, GO functional annotation was conducted using

Blast2GO (Supplementary Figure S1A; Supplementary Table S3),

assigning 60,033 unigenes to 56 branches across three main

categories: biological processes, molecular functions, and cellular
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19,390 unigenes to 132 pathways across five categories and 19

branches (Supplementary Figure S1; Supplementary Table S4).
3.3 Analysis of DEGs at different stages of
rooting induction

To explore differentially expressed genes (DEGs) involved in

shoot apical dormancy, 13,020 DEGs were identified across four

comparison groups: R0 vs R10, R0 vs R20, R0 vs R30, and R20 vs

R30 (adjusted P < 0.05 and |log2FoldChange| >1 (Figure 3). The

largest number of DEGs (8,908) occurred in R0 vs R10 comparison

and the number of DEGs in R20 vs R30 comparison (1,302) was

lowest, indicating that the in vitro shoot apical entered dormancy at

30 days of root induction, and gene expression began to stabilize.

Notably, 54.48% of DEGs were downregulated in R0 vs R10, while

42.99% and 42.56% were downregulated in R0 vs R20 and R0 vs

R30, respectively, indicating suppression of shoot apical activity

around day 10 (Figure 3A). Across all comparisons, 453 DEGs were

expressed in all four stages (Figure 3B), including 173 upregulated

(Figure 3C) and 236 downregulated genes (Figure 3D). In

comparison between R0 and R10, 3,703 distinctive DEGs were

observed, while fraction of unique DEGs were identified in R0 vs

R20 (543), R0 vs R30 (1656) and R20vsR30 (94) comparisons,

indicating that genes undergo drastic transcriptional level changes

in the stem tip tissue at 10 days of root induction.
3.4 Functional classification and
enrichment of DEGs

Through GO enrichment analysis revealed significant alterations

in biological functions related to in vitro shoot apical dormancy

during root formation (Figure 4). In R0 vs R10, DEGs were enriched

in protein modification, metabolism, and cell wall formation

(biological processes); cell wall and ubiquitin ligase complex

(cellular components); and protein kinase activity, heme binding,

and protein binding (molecular functions)—mostly dominated by

downregulated genes (Figure 4A; Supplementary Table S5). In R0 vs

R20, DEGs were enriched in the molecular function subclass of heme

binding, and the biological process subclass of protein

phosphorylation to the highest extent, and DEGs were enriched in

the defense response and biotic stimulus response, which were

dominated by upregulated genes (Figure 4B; Supplementary Table

S6). There was a certain similarity in the enriched terms between R0

vs R30 and R0 vs R10. Both comparisons were enriched highly in the

functional branches of protein modification such as protein

phosphorylation but less in cellular components, dominated by

upregulated genes (Figure 4C; Supplementary Table S7). Further

comparison between R20 and R30 revealed that DEGs were

significantly reduced compared to the other three groups, and most

of them were downregulated (Figure 4D; Supplementary Table S8).

By KEGG enrichment analysis showed that DEGs in R0 vs R10, R0

vs R20, R0 vs R30, and R20 vs R30 were enriched in 111, 101, 112, and
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79 pathways, respectively. We found that the major enriched pathways

were essentially the same (Figure 5). The DEGs of R0 vs R10, R0 vs

R20, and R0 vs R30 had the highest enrichment in the

phenylpropanoid biosynthesis, followed by higher enrichment in the

photosynthesis, plant hormone signal transduction, cutin, suberine and

wax biosynthesis, starch and sucrose metabolism, and plant–pathogen

interaction. pathways. Comparing the R20 and R30 groups showed
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that DEGs were mainly enriched in cuticles; suberine and wax

biosynthesis; phenylpropanoid biosynthesis; plant-pathogen

interaction; carotenoid biosynthesis; terpene biosynthesis; and starch

and sucrose metabolism pathways. There were significant differences in

the number of DEGs enriched in the same pathway at different periods

of root induction. At 10, 20, and 30 days of root induction, 93, 70, and

87 DEGs were enriched in the phenylpropanoid biosynthesis pathway,
FIGURE 1

Changes in endogenous hormone levels in shoot apices during the in vitro rooting of Paeonia × lemoinei ‘High Noon’. Different letters indicate
significant differences between samples at different rooting stages (p ≤ 0.05).
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while 72, 46, and 61 DEGs were enriched in plant hormone signal

transduction. These findings suggest that plant hormone signaling,

phenylpropanoid biosynthesis, starch and sucrose metabolism, and

pathogen response pathways play key roles in shoot apical dormancy

during adventitious root formation.
3.5 Screening of key dormancy-associated
DEGs

Based on KEGG analysis and expression profiling of related

pathways, a total of 62 shoot apical dormancy-associated DEGs

were identified in this study (Figure 6), including 27 DEGs related
Frontiers in Plant Science 06
to plant hormone signaling, 18 in phenylpropanoid biosynthesis,

and 17 in starch and sucrose metabolism. Among them, DEGs in

the plant hormone signal transduction pathway were mainly

involved in cytokinin (CTKs), gibberellin (GA), auxin (IAA),

abscisic acid (ABA), and ethylene (ET) signaling pathways

(Figure 7A). ARR-A and ARR-B were identified from the

cytokinin signal transduction pathway and encoded two-

component response regulators of the ARR family. The

gibberellin signaling pathway included the receptor gene GID1,

DELLA protein gene RGL1, GAI, GATA transcription factor

GATA12, F-box protein gene GID2, and transcription factors

PIF3 and PIF4. Six DEGs in the auxin signal transduction

pathway were identified, including YUCCA6 encoding indole-3-

pyruvate monooxygenase (YUC), AUX1 encoding auxin influx

carrier protein (AUX1), IAA4 and IAA17 encoding auxin-

responsive proteins (AUX/IAA), and ARF7 and ARF19 encoding

ARF transcription factors. Ten DEGs were identified from ABA

synthesis, signal transduction, and metabolic pathways, including

zeaxanthin epoxidase gene ABA1 ; 9-cis-epoxycarotenoid

dioxygenase genes NCED1 and NCED4 in ABA biosynthesis; 8’-

hydroxylase gene CYP707A1 in ABA catabolism; as well as ABA

receptor gene PYL4, protein phosphatase gene PP2C, serine/

threonine protein kinase gene SnRK2, and ABA response

element-binding factor genes ABI5 and ABI3 in the ABA

signaling pathway. Two key genes were identified in the ethylene

signal transduction pathway: ETR encoding the ethylene receptor

and ERF1 encoding the ethylene-responsive transcription factor.

POD, COMT, CAD, CCoAOMT, PAL, 4CL, and CCR genes were

involved in the phenylpropanoid biosynthetic pathway (Figure 7B).

The DEGs identified in the starch and sucrose metabolism pathway

included b-fructofuranosidase gene INV, beta-glucosidase gene

BGLU/BGLX, sucrose synthase gene sacA, 1,4-a-glucan branching

enzyme gene GBE1 , and phosphatase genes TPS and

otsB (Figure 7C).
FIGURE 2

Sample sequencing results. (A) Sample correlation heat map. (B) Length distribution of assembled unigenes.
TABLE 1 Statistics of unigene function annotation.

Annotation
Number
of Genes

Percentage
(%)

NR 53,311 43.75

NT 63,453 52.07

KEGG 19,390 15.91

SwissProt 56,022 45.97

PFAM 60,033 49.27

GO 60,033 49.27

COG/KOG 17,139 14.06

All Databases 8,810 7.23

At least one Database 85,174 69.9

In NR, NT, PFAM, GO and
COG/KOG

12,255 10.06

Total Unigenes 121,843 100
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3.6 Validation of RNA-seq by qRT-PCR

To validate the reliability of the RNA-seq results, four DEGs

(Unigene-37121.37224, Unigene-37121.18476, Unigene-

37121.10140, Unigene-37121.11553) with high expression and

rich annotation information were randomly selected for qRT-

PCR validation during in vitro shoot apical dormancy (Figure 6).

The expression levels of Unigene-37121.18476 and Unigene-

37121.10140 were significantly downregulated after rooting

compared with before rooting, while the remaining two DEGs

were significantly upregulated. Although the fold changes

obtained from qRT-PCR did not exactly match the FPKM values

from transcriptome sequencing, they showed the same expression

trends, indicating that the RNA-seq data were accurate and reliable.
4 Discussion

Plant dormancy is regulated by multiple factors, including

endogenous hormones, carbohydrates, and phenolic acids, acting in a

coordinatedmanner (Rohde and Bhalerao, 2007). Among these, changes
Frontiers in Plant Science 07
in endogenous hormone levels are key factors influencing tree peony

dormancy (Zheng et al., 2009; Zhang et al., 2018b, Zhang et al., 2020).

Specifically, trans-Zeatin-riboside (ZR), gibberellin acid (GA3), indole-3-

acetic acid (IAA), and abscisic acid (ABA) interact synergistically to

regulate the dormancy in tree peony (Fu et al., 2021; Xu, 2021).
4.1 Regulation mechanism of endogenous
ZR

Studies have shown that ZR facilitator the release of tree peony

dormancy (Zheng et al., 2009; Liu et al., 2004). In this study, the ZR

content increased rapidly during days 0 to10, then decreased

significantly and remained low during days 10 to 30 of root

induction. These results were consistent with previous studies in tree

peony (Fu et al., 2021). Therefore, a reduction in endogenous ZR is

critical for inducing dormancy in the apical shoot of in vitro tree

peony plantlets.

Recent studies have reported molecular mechanisms by which

ZR regulates dormancy release. In Arabidopsis, type-B Arabidopsis

response regulator (B-ARR) activate the transcription of type-A
FIGURE 3

DEGs at different stages of rooting induction. (A) Number of upregulated and downregulated DEGs at each stage of rooting induction. (B) Venn
diagram of DEGs across dormancy stages. (C) Venn diagram of upregulated DEGs during different dormancy stages. (D) Venn diagram of
downregulated DEGs during different dormancy stages.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1610747
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2025.1610747
response regulator (A-ARR) which acts as a negative regulator of

CTK (Hutchison et al., 2006; Punwani et al., 2010; Punwani and

Kieber, 2010). This regulatory mode has also been observed in Zea

mays (Zeng et al., 2021), Oryza sativa (Gao et al., 2014), and Glycine

max (Le et al., 2011). In this study, A-ARR expression was

significantly upregulated, while B-ARR expression was

significantly downregulated during days 10 to 30 of root

induction. Therefore, we speculate that the upregulation of A-

ARR may be associated with suppression of B-ARR transcription

(Figure 8). This regulatory cascade may reduce ZR content in shoot

apices, ultimately inducing shoot apical dormancy.
4.2 Regulation mechanism of endogenous
GA3

Previous studies have shown that high level of GA3 levels promote

dormancy release during chilling in tree peony, while low GA3 levels

induce dormancy (Zhang et al., 2021; Zheng et al., 2009; Niu et al.,

2025). In this study, the GA3 content decreased rapidly after transfer

to the rooting medium and remained low, which was consistent

with Fu et al. (2021). This suggests that the maintained low levels of

GA3 are associated with the dormancy state.

Currently, a large number of studies have explored the

molecular mechanisms of GA in bud dormancy under natural

conditions. The classical GA-GID1-DELLA module mediates GA

signaling, with GA perception dependent on GA-INSENSITIVE

DWARF1 (GID1). Upon binding GA, GID1 interacts with DELLA
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proteins to form the GA-GID1-DELLA complex (Locascio et al.,

2013; Liu et al., 2015). Transcriptome-based analysis in this study

suggests that reduced GA3 in the apical shoot may inhibit GA-GID1

binding, upregulating DELLA protein gene RGL1, consistent with

the dormancy model by Gao et al. (2023). Meanwhile sustained

GID2 reduction may weaken DELLA protein ubiquitination,

thereby inhibiting PIF3 and PIF4 transcription (Zhang et al.,

2023) (Figure 8). This suppresses downstream GA pathway genes,

maintaining shoot apex dormancy.
4.3 Regulation mechanism of endogenous
IAA

Studies have shown that IAA and ABA act synergistically to inhibit

seed germination, and exogenous application of IAA effectively enhances

plant dormancy (Liu et al., 2013; Shuai et al., 2017). It was shown that

exogenous IBA significantly increased the content of endogenous IAA

(Wang et al., 2014). In this study, the rootingmediumwas supplemented

with IBA, which promoted IAA accumulation in the in vitro plantlets.

Ultimately, the accumulation of IAA in the apical shoots promoted in

vitro shoot apical dormancy in tree peony.

It has been shown that the YUCCA gene family maintains seed

dormancy by encoding flavin monooxygenase to regulate the synthesis

of IAA (Liu et al., 2017). When auxin levels are high, auxin-responsive

transcription factors ARF10 and ARF16 are released to activate ABI3

transcription, thereby enhancing ABA signaling transduction without

increasing ABA levels. This contributes to the maintenance of seed
FIGURE 4

Top 20 enriched GO terms of DEGs. (A), R0 vs R10, (B), R0 vs R20, (C), R0 vs R30, (D), R20 vs R30. Light blue bars represent upregulated DEGs, and
dark blue bars represent downregulated DEGs. GO terms are listed in ascending order of -log10Qvalue results. The top term had the highest
significance.
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dormancy (Liu et al., 2013). In this study, after 20 days of root

induction, the IAA content was significantly upregulated and

reached its peak. The expression of auxin response factor ARF7 and

ARF9 was significantly upregulated as the IAA content increased. It

might have promoted ABI3 transcription to activate the ABA signaling

pathway, and ultimately induced in vitro shoot apical dormancy in tree

peony. The result was also consistent with Fu et al. (2021) and Pan et al.

(2025). Notably, Sun et al. (2013) found that PIF4 increased IAA

content by activating the expression of auxin synthesis genes in a dark

environment. Meanwhile, the expression of PIF3 and PIF4 were

downregulated in the early stage of root induction, which negatively

regulated the key geneYUCCA6 for IAA synthesis, then in turn affected

the accumulation of IAA to promote shoot apical dormancy.
4.4 Regulation mechanism of endogenous
ABA

A high level of ABA content plays a dominant role in

establishing bud dormancy in tree peony under natural
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conditions, and dormancy release mainly depends on the GA/

ABA ratio (Mornya and Cheng, 2013). In in vitro tree peony

plantlets, Fu et al. (2021) also suggested that high levels of ABA

content determine dormancy. However, in contrast to previous

research, our study observed a sharp decrease in ABA content

during the root induction process of in vitro tree peony plantlets.

We attribute this phenomenon to two main factors. First, our

experimental material consisted of shoot apices, whereas previous

studies used stem and leaf tissues. Second, we employed a two-step

rooting method in which samples were frozen during the first 0 – 8

days of root induction. The initially high ABA level may be related

to enhanced resistance to low-temperature stress (Wang et al.,

2019). Therefore, we propose that ABA levels are not the

dominant factor inducing dormancy in in vitro tree peony plantlets.

Recent studies have revealed complex regulatory interactions

among ABA, IAA, and GA signaling pathways. The PYR/PYL/

RCAR–PP2C–SnRK2 cascade is the core ABA-mediated signaling

network, where ABA directly acts on the negative regulator PP2C

phosphatase and the positive regulator SnRK2 (Ma et al., 2009; Park

et al., 2009). PYL could positively regulate the plant responses to
FIGURE 5

Top 20 KEGG pathways enriched for DEGs related to in vitro shoot apical dormancy. (A) R0 vs R10, (B) R0 vs R20, (C) R0 vs R30, (D) R20 vs R30. The
Y-axis represents KEGG pathways; the X-axis shows the enrichment factor. The color of the dot corresponded to a different q-value. q-value (red =
more significant), and dot size indicates the number of DEGs in each pathway.
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FIGURE 6

qRT-PCR confirmed DEG expression levels, with error bars showing standard deviation from triplicate replicates. Expression patterns of four DEGs
associated with in vitro shoot apical dormancy were detected by qRT-PCR (blue bars) and RNA-Seq (red lines).
FIGURE 7

Heatmap of Z-score–normalized RPKM values for DEGs in significantly enriched pathways during shoot apical dormancy, including (A) plant
hormone signal transduction, (B) phenylpropanoid biosynthesis, and (C) starch and sucrose metabolism (C) during shoot apical dormancy period.
Heatmap colors represent RPKM levels: red for high expression, blue for low expression.
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extreme temperature through inducing the expression of

downstream genes in Arabidopsis (Zhang et al., 2019). In this

study, the expression of PYL4 was significantly upregulated

during the 0–10 day period of root induction. It is likely that

ABA bound to PYR/PYL receptors during this period, leading to

increased expression of resistance-related genes and enhanced plant

resistance to low-temperature stress. Sun et al. (2013) found that

PIF4 increases IAA levels by activating the expression of auxin

synthesis genes in dark environments. In our study, however, the

expression levels of PIF3 and PIF4 were downregulated at the early

stage of root induction. This downregulation may have negatively

regulated the key auxin biosynthesis gene YUCCA6, thereby

modulating IAA accumulation. As IAA levels increased, auxin-

responsive transcription factors ARF10 and ARF16 were released,

which in turn activated ABI3 transcription. This activation likely

promoted in vitro shoot apical dormancy in tree peony. Therefore,

we speculate that during the 10–30 day period of root induction,

GA3, and IAA synergistically activate the ABA signaling pathway,

which plays a regulatory role in inducing shoot apical dormancy in

in vitro tree peony plantlets (Figure 8).
5 Conclusion

In this study, Paeonia × lemoinei ‘High Noon’ shoot apices

were used as the experimental material to investigate the

mechanisms by which endogenous hormones affect in vitro

shoot apical dormancy in tree peony. ZR and GA3 were

identified as key hormones regulating apical shoot dormancy,

and the accumulation of IAA in shoot apices promoted dormancy.

ABA was not found to be a determinant of shoot apical dormancy,

but GA3 and IAA may synergize with ABA to regulate dormancy

in tree peony.

Transcriptome analyses revealed 27 key dormancy-regulated

genes in the plant hormone pathway, including ABA1, NCED1,

CYP707A1, PYL4, PP2C, RGL1, GATA12, YUCCA6, ARF7, ARF19,

ERF1, and others. Eighteen genes, including POD, COMT, CAD,
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HCT, etc., were identified in the phenylpropane biosynthetic

pathway. Seventeen genes, including INV, BGLU, BGLX, sacA,

GBE1, TPS, and others, were identified in the starch and sucrose

metabolic pathways. Based on these findings, a regulatory network

for shoot apical dormancy in tree peony centered on endogenous

ZR and GA3 was established.

In summary, this study comprehensively explored the

mechanism of endogenous hormone regulation of shoot apical

dormancy at multiple levels. The results contribute to a

comprehensive understanding of the molecular mechanisms

underlying shoot apical dormancy and provide a valuable

theoretical basis and practical guidance for improving the

transplanting survival rate of micropropagation, thereby promoting

industrial application of this technology in tree peony.

This study only covered the exploration of relevant genes

involved in the regulation of shoot apical dormancy by

endogenous hormones. In the future, key genes identified in this

study can be further investigated using model plants or through the

establishment of a genetic transformation system in tree peony,

thereby providing deeper insight into the molecular mechanisms

underlying in vitro shoot apical dormancy.
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