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for rice yield estimation
by analyzing the dynamic
change of panicle coverage
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Jae-Ki Chang1, Nam-Jin Chung3 and Wan-Gyu Sang1*

1National Institute of Crop and Food Science, Rural Development Administration, Wanju-
gun, Republic of Korea, 2National Institute of Horticultural and Herbal Science, Rural Development
Administration, Muan-gun, Republic of Korea, 3Department of Agronomy, Jeonbuk National
University, Jeonju-si, Republic of Korea
Introduction: Rising global populations and climate change necessitate

increased agricultural productivity. Most studies on rice panicle detection using

imaging technologies rely on single-time-point analyses, failing to capture the

dynamic changes in panicle coverage and their effects on yield. Therefore, this

study presents a novel temporal framework for rice phenotyping and yield

prediction by integrating high-resolution RGB imagery with deep learning-

based semantic segmentation.

Methods: High-resolution RGB images of rice canopies were acquired over two

growing seasons. We evaluated five semantic segmentationmodels (DeepLabv3+,

U-Net, PSPNet, FPN, LinkNet) to effectively delineate rice panicles. Time-series

panicle coverage data, extracted from the segmented images, were fitted to a

piecewise function to model their growth and decline dynamics. This process

distilled key predictive parameters: K (maximum panicle coverage), g (growth rate),

d0 (time of maximum growth rate), a (decline rate), and d1 (transition point). These

parameters served as predictors in fourmachine learning regressionmodels (PLSR,

RFR, GBR, and XGBR) to estimate yield and its components.

Results: In panicle segmentation, DeepLabv3+ and LinkNet achieved superior

performance (mIoU > 0.81). Among the piecewise function parameters, K

showed the strongest positive correlation with Yield and Grain Number (GN) (r

= 0.87 and r = 0.85, respectively), while d0 was strongly negatively correlated

with the Filled Grain Ratio (FGR) (r = -0.71). For yield prediction, the RFR and

XGBR models demonstrated the highest performance (R2= 0.89). SHAP analysis

quantified the relative importance of each parameter for predicting

yield components.
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Discussion: This framework proves to be a powerful tool for quantifying rice

developmental dynamics and accurately predicting yield using readily available

RGB imagery. It holds significant potential for advancing both precision

agriculture and crop breeding efforts.
KEYWORDS

rice, phenotyping, deep learning, semantic segmentation, yield prediction, timeseries
analysis, piecewise function
1 Introduction

Agricultural research now prioritizes improving sustainable

productivity and efficiency to address the challenges posed by

population growth and climate change. Data-driven agriculture

supported by advanced technologies provides a novel means of

reconciling productivity and environmental effects (Benti et al.,

2024). Within data-driven agriculture, crop phenotyping via

imaging techniques has received considerable interest.

Phenotyping involves the detailed analysis of the morphological

and physiological traits of crops, thereby informing variety

selection, environmental adaptabil ity assessment, and

optimization of agricultural management (Jangra et al., 2021;

Vishal et al., 2020).

Deep learning, particularly convolutional neural networks

(CNNs), is fundamental to modern visual analytics. CNN, a type

of deep learning model that uses convolutional kernels to extract

features and classify images through multilayer neural networks

(Alzubaidi et al., 2021), is highly effective at handling intricate

visuals. CNNs are used for plant growth monitoring, pest detection,

and yield prediction (Liu and Wang, 2021; Srivastava et al., 2022;

Bak et al., 2024a, b). For major crops such as rice, quantitative

analysis of the growth and yield components is essential for

supporting food security and agricultural sustainability; deep

learning provides an effective avenue to perform such evaluations

(Kim et al., 2017).

Indeed, significant progress has been made in methods for

detecting and quantifying rice panicles using these technologies.

Foundational work has established high-quality public datasets for

panicle segmentation (Wang et al., 2021), and object detection

models, including advanced Vision Transformer-based

architectures, have been widely applied for panicle counting

(Wang et al., 2022; Wei et al., 2024; Lu et al., 2024). However,

these counting-based methods face significant challenges as the

canopy matures and panicles become occluded (Wang et al., 2022;

Lu et al., 2024; Wei et al., 2024). An approach focusing on the total

panicle area or coverage, rather than the count, may therefore offer a

more robust signal. Yet, whether based on counting or area, these

powerful methods predominantly rely on analysis at single or

discrete time-points. While a few advanced studies have

incorporated time-series analysis to track individual panicles
02
(Zhao et al., 2017), a research gap persists in modeling the

holistic dynamic change of the entire panicle canopy coverage

with a continuous function.

To address this gap, this study develops an integrated

framework. First, we leverage semantic segmentation to analyze

panicle coverage, a technique well-suited for area-based analysis of

complex crop structures (Lei et al., 2024; Madokoro et al., 2022;

Abourabia et al., 2024). We evaluated established models such as

DeepLabv3+ and U-Net to ensure precise pixel-level data extraction

(Liu and Wang, 2021). Second, building on the principle of

function-based time-series modeling successfully used in other

crops (Stepanov et al., 2022; Guo et al., 2021), we apply a

piecewise function to quantify the unique growth and decline

dynamics of the panicle coverage. Finally, the parameters derived

from this function are used as inputs for machine learning models

to accurately estimate yield. This complete framework provides a

novel method for leveraging canopy dynamics for data-driven rice

breeding and management.
2 Materials and methods

2.1 Image acquisition

Rice canopy images for panicle detection were gathered at the

fields of the National Institute of Crop Science (NICS) in Wanju-

gun, Republic of Korea, during the 2022 and 2023 growing seasons.

High-resolution RGB images were acquired using two imaging

systems: a fixed-position PTZ (Pan–Tilt–Zoom) camera (Hanwha

Vision XNP-8300RW, South Korea) and a handheld camera (Sony

DSC-RX0-M2, Japan). The experimental site and image acquisition

equipment are shown in Supplementary Figure S1.

The PTZ camera, mounted on a tower at a fixed height of 5 m,

was used for time-series imaging. While the camera has pan-tilt-

zoom capabilities, these were used only for initial framing of the

plot; for all subsequent data acquisition, the camera remained in a

fixed position to record nadir RGB images at 3840 × 2160 pixels,

ensuring consistent imaging geometry. The PTZ camera, using the

Wisenet WAVE (Hanwha Vision, South Korea) software, recorded

images twice daily at 09:00 and 16:00. In contrast, the handheld

camera captured images between 10:00 AM and 12:00 PM. This
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dataset, collected in 2022 and 2023, was used solely for training and

validating the deep learning-based semantic segmentation models.

For the handheld camera, a specific visual alignment protocol

was implemented to minimize human-induced variability. The

camera was wirelessly tethered to a smartphone using the

‘Imaging Edge’ mobile application for real-time monitoring of the

field of view. Four poles were used to clearly mark the corners of the

1 m² target quadrat within each plot. During image acquisition, the

operator manually adjusted the camera’s position until the on-

screen auxiliary gridlines visually aligned with the four corner poles

of the quadrat. This procedure was repeated for every shot between

10:00 AM and 12:00 PM to ensure that the camera’s height,

distance, and near-nadir viewing angle were kept as consistent as

possible, resulting in a highly consistent pixel resolution of the

target area across all images.

The entire dataset, collected from four rice cultivars

(Nampyeong, Shindongjin, Dongjin-1, and Saeilmi), was used
Frontiers in Plant Science 03
solely for training and validating the deep learning-based

semantic segmentation models.
2.2 Image preprocessing

All acquired images underwent preprocessing for semantic

segmentation training. OpenCV 4.9.0 (a Python-based image

processing library) cropped the images to 512 × 512 pixels,

improving computational efficiency and model performance. The

rice panicle regions were then manually annotated as a single class

using the LabelMe tool (Russell et al., 2008), after the heading stage.

These annotations were converted into binary masks, in which 0

encoded background and 1 encoded panicles (Figure 1). Image

augmentation techniques (Shorten and Khoshgoftaar, 2019),

including resizing, Gaussian noise addition, and random

brightness and contrast adjustments (Figure 1), were applied to
FIGURE 1

Panicle Segmentation Model Development and Yield Prediction Framework. Schematic overview of the entire research methodology. The left panel
details the development pipeline for the deep learning-based panicle segmentation model, including image acquisition, data augmentation, training,
and model selection using the ‘22-’23 dataset. The right panel illustrates the application of the selected model for time-series analysis and yield
prediction using the ‘23-’24 dataset, covering panicle coverage extraction, parameter derivation, and machine learning-based prediction.
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improve model generalization and robustness. Specifically, the

images were augmented with random brightness and contrast

adjustments between 0.8 and 1.2, and were then upscaled (1.1–

2.0) or downscaled (0.6–0.9) to vary size. This tripled the original

dataset from 867 to 2,601 labeled images, producing greater

diversity. This augmentation strategy simulated real-world

variations in lighting, noise, and contrast, such as those caused by

cloudy skies, shadows, and variable camera exposure, thereby

enhancing model robustness at inference. Finally, the augmented

dataset was divided into training, validation, and testing sets at a

ratio of 7:2:1 to enable objective evaluation.
2.3 Deep learning architecture for rice
panicle segmentation

This study evaluated the rice panicle segmentation performance

with two backbone networks and five established semantic-

segmentation architectures. The backbone networks, ResNet-50

and ResNet-101 (Supplementary Table S1), were selected for their

capacity to extract hierarchical features and mitigate the vanishing

gradient problem through residual learning. These pre-trained

networks act as foundational feature extractors, providing rich,

multi-scale representations essential for accurate pixel-level

classification (He et al., 2016). The use of both ResNet-50 and

ResNet-101 enabled comparison of the feature representation

depth, with ResNet-101 potentially capturing finer details at the

cost of increased computational resources. Five distinct semantic

segmentation models were evaluated: DeepLabv3+ (Chen et al.,

2018), U-Net (Ronneberger et al., 2015), PSPNet (Zhao et al., 2017),

FPN (Lin et al., 2017), and LinkNet (Chaurasia and Culurciello,

2017) (Supplementary Figure S2). These models were selected to

represent a range of architectural designs and feature-processing

strategies commonly employed in pixel-level classification,

particularly in agricultural image analysis. DeepLabv3+ was

chosen for its capacity to capture long-range contextual

information via atrous convolution and the Atrous Spatial

Pyramid Pooling (ASPP) module. U-Net, with its encoder–

decoder structure and skip connections, was included for its

success in biomedical image segmentation and adaptability to

diverse image analysis tasks. PSPNet, which utilizes a pyramid

scene parsing network, was assessed to examine how global

context affects segmentation accuracy. FPN was incorporated to

evaluate the benefits of multi-scale feature representations for

improved object delineation. Finally, LinkNet, known for its

efficiency and real-time applicability, was used to explore the

potential for computationally efficient segmentation. By

systematically combining each of the five segmentation models

with both ResNet-50 and ResNet-101, this study sought the optimal

deep learning configuration for accurate and efficient rice panicle

segmentation under field conditions.

Training parameters were tuned to standardize the input data

and ensure stable learning. The image size was fixed at 512 × 512

pixels, the batch size was set to 8 to balance memory usage with

optimization stability, and each model was trained for 200 epochs
Frontiers in Plant Science 04
with a learning rate of 0.0001 to ensure gradual, stable

improvement. Training was conducted on a system featuring an

NVIDIA Quadro RTX 5000 GPU (16 GB), an Intel Xeon Gold

6226R CPU, and 256 GB of RAM. The operating system was

Windows 11, with CUDA 12.5 for GPU acceleration, Python 3.9,

and PyTorch 2.2.2 serving as the deep-learning framework

(Table 1). Model validation and testing were conducted on the

same system to ensure consistency.
2.4 Evaluation of training accuracy

To evaluate the rice panicle detection performance, an

independent evaluation dataset, separate from the training set,

was used. Various metrics, including pixel accuracy, precision,

recall, F1 score, and intersection over union (IoU), were used to

assess the performance of the model comprehensively of the model

comprehensively (Equations 1-5). Pixel accuracy denotes the

proportion of correctly classified pixels among all pixels for

evaluating the overall accuracy of the model. Precision is the

proportion of actual panicle pixels among those predicted as

panicles by the model, thus indicating the panicle prediction

accuracy of the model. Recall is the proportion of actual panicle

pixels correctly identified by the model; it is used to evaluate the

panicle detection capability of the model. The F1 score, which is the

harmonic mean of the precision and recall, combines both metrics.

IoU is the ratio between the intersection area and the union area of

the actual and predicted panicle regions, thus indicating the

accurate segmentation ability of the model. These metrics are
TABLE 1 Training parameters, models, and hardware specifications used
for the semantic segmentation tasks.

Category Specification

Architectures and backbones

Semantic segmentation models
DeepLabv3+, U-Net, FPN,

LinkNet, PSPNet

Backbone networks used ResNet-50, ResNet-101

Training hyperparameters

Image input size 512 × 512 pixels

Batch size 8

Epochs 200

Optimizer Adam

Learning rate 0.0001

System specifications

CPU Intel Xeon Gold 6226R

GPU NVIDIA Quadro RTX 5000 (16 GB)

RAM 256 GB

Operating system Windows 11

Framework and libraries Python 3.9, PyTorch 2.2.2, CUDA 12.5
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crucial to evaluating the rice panicle detection performance of the

model from various aspects and determining its applicability to

real-world environments. The equations for the metrics are as

follows:

Pixel accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score =
2

1
Recall +

1
Precision

(4)

IoU =
TP

TP + FP + FN
(5)

where TP (true positive) denotes the number of pixels correctly

classified as panicle, FP (false positive) denotes pixels incorrectly

classified as panicle, FN (false negative) signifies panicle pixels

incorrectly classified as background, and TN (true negative)

represents background pixels correctly classified as background.

These metrics offer a comprehensive evaluation of the overall

segmentation performance of the models.
2.5 Experimental design for time-series
panicle coverage analysis

To apply the trained segmentation models and build a yield

prediction framework, separate time-series panicle coverage

experiments were conducted in 2023 and 2024 at the National

Institute of Crop Science (NICS), Republic of Korea, under both

field and soil–bin conditions. Field transplantation occurred on

June 7 and June 26, 2023, and on June 8, 2024. The transplantation

on June 26, 2023, was designated late transplantation (LT). Soil bins

(1 m × 1 m × 0.5 m) were placed outdoors, and transplantation

occurred on June 9, 2023, and June 10, 2024. The primary cultivar

was Nampyeong, with Dongjin-1, Shindongjin, and Saeilmi

included in the 2024 experiments. Nitrogen was applied at three

rates (0, 98.8, and 197.6 kg ha-¹), with treatments varying by year,

environment (field or soil bin), and cultivar. Nitrogen was split into

three doses following the Korean standard cultivation method in

Korea: 50% as a basal dressing before transplantation, 20% as a

tillering fertilizer 20 days after transplanting, and the final 30% as a

panicle fertilizer at the panicle formation stage. Each experimental

unit consisted of a 1 m² plot containing 28 hills. To analyze the

relationship between the time-series panicle coverage and yield

components, post-harvest measurements of the panicle number

(PN), grain number (GN), number of grains per panicle (GNP),
Frontiers in Plant Science 05
1000-grain weight (TGW), and filled grain ratio (FGR)

were conducted.
2.6 RGB image collection and
preprocessing for yield component
estimation

This section details the first step of our yield prediction

framework: RGB image collection and preprocessing. The overall

process, described in the following sections, involved (1) extracting

panicle coverage from these images, (2) fitting the time-series data

to a piecewise function to derive dynamic parameters (Section 2.7),

and (3) using these parameters as inputs for machine learning

models to predict final yield (Section 2.8). High-resolution RGB

images were captured at intervals of 3–7 days throughout the

growing season using a Sony DSC-RX0-M2 camera to document

all key growth stages. For this study, which focuses on panicle

coverage, the images taken from the heading onwards were used, as

panicles are the primary subject of segmentation. The images were

acquired between 10:00 AM and 12:00 PM, with the camera aimed

at the center of the yield survey plot and leveled with the ground to

minimize distortion. The captured RGB images were cropped to

encompass a 1 m² area demarcated by the four corner poles within

the plot, ensuring consistency in yield component measurements

and reducing variability from inconsistent sampling. These cropped

images were then resized to 1536 × 1536 pixels, nine times the

model input size of 512 × 512 pixels, to ensure dataset uniformity

(Figure 1). For the yield estimation study, an aggregate of 1,956

time-series images was acquired over multiple observation dates.

These images were collected from 152 distinct plots (20 field plots in

2023, and 132 plots, including 80 field and 52 soil-bin plots in 2024).

Panicle coverage was calculated by dividing each 1536 × 1536 image

into nine 512 × 512 pixel tiles. The deep learning model then

processed each sub-image to estimate the panicle coverage for that

segment. The overall panicle coverage was determined by dividing

the estimated panicle area by the total image area as (Equation 6).

PC( % ) =  
PA

PA + BA
(6)

where PC denotes the panicle coverage (%), PA represents the

panicle area of the image, and BA denotes the background area of

the image. The estimated panicle coverage values from all nine

segments were averaged to derive coverage per unit area

(Figure 1). Representative resized images after the 2023 and

2024 treatments appear in Supplementary Figure S3 to

demonstrate the structure and quality of the dataset. Based on

the performance evaluation presented in Section 3.2, the

DeepLabv3+ model with a ResNet-101 backbone, which

achieved the highest mIoU (0.82), was selected as the final

model. This model was then used to segment all time-series

images for the subsequent yield prediction analysis.
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2.7 Fitting time-series data to a piecewise
function

The time-series panicle coverage data obtained from the

segmented images were fit to a piecewise function (Equation 7)

designed to model the growth and decline phases of the rice

panicles, as shown in Figure 2. The function comprises a

sigmoidal growth phase and a quadratic decline phase, seamlessly

connected at the transition point. The function is expressed below.

f (x) =

K
(1+e−g(x−d0 ))

   if  x ≤ d1

K
(1+e−g(d1−d0 ))

− a(x − d1)
2    if  x > d1

8<
:

9=
; (7)

where K represents the maximum panicle coverage observed

during the growth phase; g determines the growth rate, influencing

the steepness of the sigmoidal curve. The parameter d0 defines the

point of maximum growth rate (inflection point), and d1 marks the

transition point between the growth and decline phases. Lastly, a

controls the curvature of the quadratic decline, dictating how

rapidly the panicle coverage decreases after d1. This piecewise

function enables precise modeling of rice panicle dynamics,

capturing the rapid increase during the heading stage and

subsequent decline during senescence. The parameters derived

from this model (K, g, d0, d1, and a) provide quantitative insights

into panicle development under varying environmental and

experimental conditions. These fitted parameters served to

compare treatment effects on rice growth and yield. The

parameters of this piecewise function for each experimental plot

were determined by fitting the model to the time-series panicle

coverage data using the non-linear least squares method. The

optimization was performed using a scientific computing library

(e.g., the curve_fit function from the SciPy library in Python). A key

step in this process was providing robust initial guesses for the

parameters to ensure stable convergence of the algorithm; these

were estimated from the observed data trends for each plot. The

goodness-of-fit for each resulting curve was then evaluated using

the coefficient of determination (R²).
2.8 Machine learning model development
for rice yield estimation

Machine learning models were developed for predicting the rice

yield and its components using five parameters (K, g, d0, a, d1)

extracted from a piecewise function fitted to the time-series panicle

coverage data collected in 2023 and 2024. The models included

partial least squares regression (PLSR), XGBoost regressor (XGBR),

random forest regressor (RFR), and gradient boosting

regressor (GBR).

The models were selected based on their documented

performance in similar predictive modeling tasks in agricultural

research. PLSR captures the linear relationship between the input

and output variables, exhibiting stable predictive performance even

under multicollinearity (Wold et al., 2001). RFR is an ensemble
Frontiers in Plant Science 06
model that enhances the predictive performance by combining

multiple decision trees (Breiman, 2001), whereas GBR and XGBR

are boosting-based ensemble models that increase predictive

accuracy by sequentially training weak learners (Friedman, 2001;

Chen and Guestrin, 2016). The scikit-learn library serves primarily

for model training and prediction.

Hyperparameter optimization was conducted for each model

using GridSearchCV. Specifically, the PLSR model was set to

n_components = 3, the RFR model with n_estimators = 100, and

both the GBR and XGBR models with n_estimators = 100 and

learning_rate = 0.05. The model performance was assessed using

leave-one-out cross-validation (LOOCV). The root mean squared

error (RMSE) and coefficient of determination (R²) served as

evaluation as evaluation metrics (Equations 8, 9). Tree SHapley

Additive exPlanations (Tree SHAP) analysis was performed to

clarify the RFR and boosting-based models (XGBR, GBR). The

RMSE equals the square root of the mean squared difference

between the predicted and actual values, calculated as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2o
n
i=1(ŷ i − yi)

2,

r
(8)

where yi denotes the actual values, ŷ i denotes the predicted

values, and n is the number of data points. The coefficient of

determination (R²) is the proportion of the variance in the actual

values that is predictable from the predicted values, calculated as

R2 = 1 −  o
n
i=1(yi − ŷ )2

on
i=1(yi − �y)2

(9)

where �y represents the mean of the actual values.
2.9 Statistical analysis

To assess the effects of the experimental factors on the

parameters derived from the piecewise function (K, g, d0, a, and

d1), an analysis of variance (ANOVA) was performed using the

statsmodels library in Python. Due to differences in the

experimental design between the two years, the data for each year

were analyzed separately. For the 2023 data, a one-way ANOVA

was used to test the effect of the different treatment levels, which

included nitrogen rates and transplantation dates. For the 2024

data, a three-way ANOVA was conducted to test the main effects of

nitrogen, cultivar, and location, as well as their two-way interaction

effects. All effects were considered statistically significant at p < 0.05.
2.10 Overall research framework

The comprehensive methodology, visually summarized in

Figure 1, is structured into two main components. The left panel

details the development and validation of the deep learning model

for panicle segmentation, while the right panel illustrates how this

trained model is subsequently applied within a time-series analysis

pipeline to extract dynamic growth parameters and, ultimately, to
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predict rice yield and its components using machine

learning regression.
3 Results

3.1 Model training and validation

The training and validation performance of five semantic

segmentation models—DeepLabv3+, PSPNet, U-Net, FPN, and

LinkNet—was evaluated using two different backbone

architectures, ResNet-50 and ResNet-101. Both training loss and

validation accuracy were monitored over 200 epochs to analyze the

convergence trends (Supplementary Figure S4).

Across all models and backbones, the training loss consistently

decreased, whereas the validation accuracy increased and

subsequently stabilized as epochs increased. Models using

ResNet-101 generally exhibited a slightly higher validation

accuracy than ResNet-50, reflecting the enhanced feature

extraction capabilities of the deeper backbone. Although the

convergence patterns varied across the models, all achieved stable,

low validation loss by the end of training. U-Net demonstrated the

fastest initial stabilization, whereas other models, such as PSPNet,

required more epochs to achieve similar final loss values.

This analysis confirms that all five segmentation models with

both ResNet-50 and ResNet-101 backbones successfully converged,

exhibiting decreasing training loss and stable validation accuracy.

These results emphasize the effectiveness of these architectures in

segmenting rice panicle images, with variations in convergence

speed and final accuracy depending on the specific model and

backbone combination.
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3.2 Model performance comparison

To evaluate the performance of the models trained with two

backbones (ResNet-50 and ResNet-101) and five semantic

segmentation models (U-Net, FPN, LinkNet, PSPNet, and

DeepLabv3+), the performance metrics were calculated using a

test image set (Table 2). These metrics included the pixel accuracy,

precision, recall, F1-score, and mean IoU (mIoU), offering a

comprehensive overview of the segmentation quality and

performance of each model.

Among the models with the ResNet-50 backbone, DeepLabv3+

attained the highest mIoU (0.81), F1-score (0.88), and pixel

accuracy (0.99). LinkNet also scored well with an mIoU of 0.81

and an F1-score of 0.87. PSPNet had the lowest mIoU (0.61) among

the models employing ResNet-50. Among the models with the

ResNet-101 backbone, DeepLabv3+ again recorded the highest

mIoU (0.82) and an F1-score of 0.88. LinkNet ranked second

with an mIoU of 0.81 and an F1-score of 0.88. Across all models,

the use of ResNet-101 generally resulted in a modest improvement

in the recall and mIoU over that of ResNet-50, although the

magnitude of this improvement varied.

A visual inspection of the segmentation results (Supplementary

Figure S5) showed that despite these differences in the numerical

metrics, the qualitative performance of panicle detection was

generally high across all models. All models segmented the

panicle regions, with DeepLabv3+ and LinkNet showing slightly

better quantitative results, particularly in terms of the mIoU.

These findings indicate that although the numerical

performance metrics highlight subtle differences between the

models, practical model selection may depend on the

computational efficiency, task-specific requirements, or hardware
FIGURE 2

Piecewise function for modeling panicle coverage dynamics. A representative example of the piecewise function fit to time-series panicle coverage
data. The figure illustrates the key parameters derived from the model: K (maximum panicle coverage), g (growth rate), d0 (time of maximum growth
rate), a (curvature of the decline phase), and d1 (transition point between growth and decline phases).
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constraints rather than significant differences in the segmentation

capability. DeepLabv3+ and LinkNet emerge as strong candidates

due to their consistently high performance across both backbones.

Future research should prioritize evaluating the robustness of these

models across diverse datasets and environmental conditions to

optimize their application to real-world tasks.

3.3 Analysis of parameter values by
treatment

Table 3 lists the fitted parameters (K, g, d0, a, d1) for various

treatment conditions in 2023 and 2024. Through analysis of

variance (ANOVA), we confirmed that factors such as nitrogen

level, transplantation date, and rice variety had a statistically

significant effect on the dynamics of panicle development, as

quantified by these parameters (Supplementary Table S2).

Across both years, K (maximum panicle coverage) generally

increased with higher nitrogen levels, affirming the critical role of

nitrogen. For instance, in the 2023 field experiment, K increased

from 0.2512 under no nitrogen (23-F-0N) to 0.3060 with nitrogen

addition (23-F-9N). The parameter g (growth rate) also tended to

rise with nitrogen application in most cases, such as in the 2024

Nampyeong variety field experiment, where it rose from 0.3098

(0N) to 0.3667 (9N), indicating accelerated growth.

The timing of key developmental stages also shifted. The time of

maximum growth rate (d0) advanced under higher nitrogen levels,

shifting from 9.94 days (23-F-0N) to 8.67 days (23-F-9N) in the

2023 field data. Similarly, the start of the decline phase (d1) was

advanced in parallel, occurring at 27.01 days compared to 28.07

days. The curvature of the post-peak decline (a) showed varied

responses, though it marginally increased with higher nitrogen in

some treatments.

The piecewise function demonstrated reliable performance in

capturing panicle dynamics across diverse conditions, with the

goodness-of-fit R² values remaining high, nearly all above 0.98.
Frontiers in Plant Science 08
3.4 Effects of nitrogen, transplantation
date, and crop variety on panicle coverage
dynamics

To investigate the influence of nitrogen, transplantation date,

and varietal factors on the panicle coverage dynamics, the time-

series changes in the panicle coverage were plotted under different

treatment conditions, and the data were fitted to the piecewise

function (Figure 3).

As confirmed by our ANOVA results, nitrogen treatment had a

statistically significant effect on panicle coverage dynamics

(Table 3), a trend visually represented in Figure 3A. Higher

nitrogen level (9N) led to a higher maximum panicle coverage

(K) of 0.2663 compared to 0.2220 under the no-nitrogen control

(0N). This suggests that nitrogen promotes panicle growth and

development. The quadratic curvature parameter (a), however,

showed only slight changes with nitrogen treatment, where it

remained constant (0.0003) across all treatments.

The effects of the transplantation date and nitrogen availability

were also apparent (Figure 3B). Late transplantation (LT) under no-

nitrogen conditions resulted in a lower maximum panicle coverage

(K), decreasing from 0.2512 (0N) to 0.2081 (0N-LT). Contrary to

the baseline treatment, the transition to the decline phase (d1) was

also earlier in the LT group. With sufficient nitrogen, the adverse

effect of late transplantation on K was offset, with K values of 0.3060

(9N) and 0.3078 (9N-LT) being nearly identical.

Significant differences in panicle coverage dynamics were

observed among cultivars, and these responses were influenced by

nitrogen availability, as indicated by the significant main effects of

cultivar and nitrogen (Table 3) and shown in Figures 3C, D. Under

the 9N condition, Saeilmi achieved one of the highest K values

(0.2782) but had a slower growth rate (g = 0.2695), whereas

Dongjin-1 showed the fastest growth rate (g = 0.4606) but a more

moderate K value (0.2500). These results underscore the intricate

interplay of genetics with management practices. These results
TABLE 2 Performance comparison of semantic segmentation models.

Model Backbone
Pixel
accuracy

Precision Recall F1-score mIOU

U-Net

ResNet-50

0.98 0.85 0.86 0.85 0.77

FPN 0.98 0.85 0.84 0.84 0.76

LinkNet 0.98 0.85 0.89 0.87 0.81

PSPNet 0.97 0.73 0.78 0.76 0.61

DeepLabv3+ 0.99 0.87 0.88 0.88 0.81

U-Net

ResNet-101

0.98 0.88 0.84 0.86 0.78

FPN 0.98 0.87 0.86 0.85 0.78

LinkNet 0.99 0.86 0.90 0.88 0.81

PSPNet 0.97 0.72 0.77 0.73 0.59

DeepLabv3+ 0.99 0.86 0.90 0.88 0.82
The table presents key performance metrics, including pixel accuracy, precision, recall, F1-score, and mean Intersection over Union (mIoU), for the five evaluated architectures using both
ResNet-50 and ResNet-101 backbones.
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reveal the complex interplay of nitrogen availability, transplantation

timing, and genetic factors in determining the panicle coverage

dynamics. The findings emphasize the importance of considering

these factors in optimizing nitrogen management and variety

selection for rice production.
3.5 Correlation between piecewise
function parameters and yield components

A Pearson correlation analysis was performed to investigate the

linear relationship between the five parameters derived from the

piecewise function (K, g, d0, a, and d1) and the key yield components

(Figure 4). The analysis identified several significant correlations.

Among the parameters, K (maximum panicle coverage) showed

the strongest positive correlation with Yield (r = 0.87, p < 0.001),

GN (grain number) (r = 0.85, p < 0.001), and PN (panicle number)

(r = 0.70, p < 0.001), highlighting its dominant role in determining

final crop yield. Interestingly, K displayed a significant negative

correlation with TGW (1000-grain weight) (r = -0.47, p < 0.001).
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The timing parameters also revealed strong relationships. The

time of maximum growth rate (d0) was strongly negatively

correlated with Yield (r = -0.62, p < 0.001) and especially with

FGR (filled grain ratio) (r = -0.71, p < 0.001). Similarly, the

transition point to the decline phase (d1) showed a strong

negative correlation with Yield (r = -0.57, p < 0.001) and FGR (r

= -0.69, p < 0.001). Taken together, these findings underscore the

intricate interplay between genetic factors (cultivar) and

management practices (nitrogen, transplantation timing) in

determining panicle coverage dynamics, emphasizing the

importance of an integrated approach for optimizing

rice production.
3.6 Regression analysis of yield
components using models evaluated with
LOOCV

Regression plots illustrated the predictive performance of the

four models (PLSR, RFR, GBR, and XGBR) in predicting the yield
TABLE 3 Fitted parameters of the piecewise function for rice panicle coverage under different treatment conditions in 2023 and 2024.

Year Treatment K g d0 a d1 R2

2023

23-F-0N 0.2512 0.2738 9.9412 0.0003 28.0717 0.9858

23-F-0N-LT 0.2081 0.2889 8.3847 0.0002 26.11 0.9825

23-F-9N 0.306 0.2681 8.6695 0.0003 27.0125 0.9876

23-F-9N-LT 0.3078 0.3712 7.7353 0.0001 25.7043 0.9958

23-S-0N 0.3272 0.2658 9.5009 0.0003 28.9899 0.9926

23-S-18N 0.3505 0.2649 8.2946 0.0003 27.4182 0.9932

23-S-9N 0.3455 0.2781 8.3295 0.0003 27.0919 0.9936

2024

24-F-0N-DJ 0.2067 0.3683 8.5425 0.0002 26.3238 0.9932

24-F-0N-NP 0.222 0.3098 10.311 0.0001 29.3876 0.9967

24-F-0N-SD 0.1574 0.2746 11.0649 0 31.9771 0.9918

24-F-0N-SI 0.211 0.2103 13.0975 0 34.027 0.9918

24-F-9N-DJ 0.25 0.4606 4.9593 0.0002 17.093 0.9672

24-F-9N-NP 0.2663 0.3667 7.5438 0.0002 23.7445 0.986

24-F-9N-SD 0.2102 0.3355 7.8603 0.0001 25.8459 0.9902

24-F-9N-SI 0.2782 0.2695 8.9365 0.0002 28.3735 0.9905

24-S-0N 0.193 0.198 17.6353 0.0002 40.1652 0.9932

24-S-9N 0.2293 0.2053 14.5728 0.0002 37.9843 0.9908

24-S-18N 0.2171 0.206 16.2943 0.0003 38.9029 0.9923

ANOVA

Nitrogen <0.001 <0.001 <0.001 5.10E-02 <0.001

Cultivar 8.66E-03 <0.001 <0.001 <0.001 <0.001

Transplanting <0.001 <0.001 <0.001 8.33E-02 <0.001
The parameters K (maximum panicle coverage), g (growth rate), d0 (inflection point/time of maximum growth rate), a (curvature of the decline phase), and d1 (transition point between growth
and decline phases) were estimated for each treatment. R² values indicate the goodness-of-fit of the piecewise function. Treatment codes: F, Field; S, Soil–bin; 0N, 0 kg ha-¹ nitrogen; 9N, 98.8 kg
ha-¹ nitrogen; 18N, 197.6 kg ha-¹ nitrogen; LT, Late transplantation; DJ, Dongjin-1; NP, Nampyeong; SD, Shindongjin; SI, Saeilmi. The number before the hyphen represents the year of the
experiment. The ANOVA results at the bottom of the table show the significance levels (p-values) for the effects of nitrogen, cultivar, and transplanting factors on each parameter.
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and yield components based on the five parameters derived from

the piecewise function (Supplementary Figure S6). The models were

evaluated using LOOCV; each plot shows the relationship between

the actual (x-axis) and predicted values (y-axis). The red diagonal

line represents the ideal 1:1 relationship (perfect prediction), and

the blue line represents the regression line fitted to the data.

The results demonstrate different accuracies depending on the

model and yield component. RFR and XGBR showed high

predictive performance for Yield and GN, with points clustered

closely around the 1:1 line, indicating good agreement between the

predicted and observed values. PLSR and GBR also showed

reasonably good predictions for Yield and GN, although with

slightly greater scatter. For PN, all models showed moderate

prediction accuracy, with RFR and XGBR performing marginally

better than PLSR and GBR. In contrast, the predictions for GNP

and TGW showed lower accuracy across all models, as evidenced by

the increased scatter around the 1:1 line. This reflects a greater

inherent variability in these traits, in addition to limitations in the

ability of the models to capture them based solely on the piecewise

function parameters. The FGR predictions showed moderate

accuracy, with RFR and XGBR again demonstrating slightly

better performances than those of PLSR and GBR.
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3.7 Coefficient of determination and RMSE
evaluation of yield estimation models

Table 4 summarizes the predictive performances of the four

regression models (PLSR, RFR, GBR, and XGBR) based on the R²

and RMSE values for the yield and yield components: GN, PN,

GNP, TGW, and FGR.

Regarding the R² values, RFR and XGBR consistently

demonstrated superior performance for the key components, such

as Yield (R² = 0.890 for both) and GN (R² = 0.870 and 0.820,

respectively). GBR also achieved strong results for Yield, GN, and

PN, with its performance comparable to that of RFR for these

components. PLSR performed relatively well for Yield (R² = 0.820)

and GN (R² = 0.750) but underperformed in components such as

the GNP (R² = 0.210) and TGW (R² = 0.440), highlighting its

limitations in capturing complex, nonlinear relationships.

Considering the RMSE values, RFR and XGBR recorded lower

RMSE values for Yield (RMSE = 60.83 and 61.16, respectively) and

GN (RMSE = 2527.82 and 2943.32, respectively), indicating their

reliability in reducing the prediction errors. Conversely, PLSR

displayed higher RMSE values across most components,

particularly GN (RMSE = 3521.43) and Yield (RMSE = 75.69),
FIGURE 3

Effects of agricultural treatments on the dynamics of panicle coverage. This figure shows how panicle coverage over time is influenced by different
management practices and genetic backgrounds, with each curve representing a fitted piecewise function. (A) The effect of nitrogen fertilization on
panicle coverage dynamics. (B) The effect of late transplantation on panicle coverage dynamics. (C) Comparison of panicle coverage dynamics
among four different rice varieties under the no-nitrogen (0N) treatment. (D) Comparison of panicle coverage dynamics among the same four
varieties under a high-nitrogen (9N) fertilization regime.
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reaffirming its limited predictive capability when compared with

that of the nonlinear models. GBR generally performed similarly to

XGBR in terms of the RMSE, particularly for Yield, GN, and PN.

These results emphasize the strengths of nonlinear models such

as RFR and XGBR in handling complex traits and achieving better

prediction accuracy for the yield components. However, traits such

as the GNP and TGW consistently recorded lower R² values and

higher RMSE across all models, suggesting the inherent difficulty in

predicting these components with the available data.

Figure 5; Supplementary Figure S7 presents the SHapley

Additive exPlanations (SHAP) value analysis for the RFR model,

detailing the contribution of each parameter in the piecewise

function (K, g, d0, a, d1) to the prediction of the yield and yield

components. Each point on the plot represents a single data point,

with its position on the x-axis indicating the SHAP value (effect on

the model output) and its color representing the feature value (red

for high, blue for low).

Regarding the yield prediction, K (maximum panicle coverage)

showed the greatest mean absolute SHAP value and therefore the

most significant overall influence, with high values of K (red points)

consistently associated with positive SHAP values (increased yield

prediction); d0 (time of maximum growth rate) was also found to be

essential for yield prediction.

Regarding the GN, K was again the dominant predictor,

followed by d0 and d1, whereas K and d1 were the most important

for the PN. The GNP was the most affected by d1 and K, whereas the

TGW was the most influenced by K, d1, and d0. The parameters d1
and d0 had the strongest influence on the FGR, with a higher value

of d1 (a delayed transition to the decline phase) and a lower value of
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d0 (delayed onset of the maximum growth rate) generally associated

with a higher FGR. The growth rate (g) and curvature of the decline

(a) consistently showed lesser importance across al l

yield components.

This SHAP analysis confirmed that the parameters derived

from the piecewise function, particularly K, d0, and d1, provide

valuable insights into the factors driving the yield and its

components. The visual representation of the feature importance

facilitates a more nuanced understanding of the predictions made

by the model than a simple examination of the overall model

performance metrics.
4 Discussion

This study demonstrated the effectiveness of a deep learning-

based approach integrating high-resolution RGB imagery, semantic

segmentation, and time-series analysis for accurately monitoring

the rice panicle coverage and predicting the yield components. The

framework achieves significant improvements in accuracy and

efficiency relative to traditional methods, highlighting its potential

for advancing precision agricultural practices in rice production.

Specifically, the strong correlation between the predicted and

observed values (Table 4; Supplementary Figure S6) underscores

the practical applicability of this technology. Furthermore, the

ability to perform these analyses using readily available RGB

imagery, rather than specialized equipment, increases the

accessibility and potential for widespread adoption of this approach.
fi

FIGURE 4

Heatmap of Pearson correlation coef cients between piecewise function parameters and yield components. This heatmap visualizes the linear
relationships between the five dynamic parameters (K, g, d0, a, and d1) and six key yield components (Yield, GN, Grain Number; PN, Panicle Number;
GNP, Grains per Panicle; TGW, 1000-Grain Weight; FGR, Filled Grain Ratio). Red cells indicate a positive correlation, while blue cells indicate a
negative correlation. The intensity of the color corresponds to the strength of the correlation, with the correlation coefficient (r) value displayed in
each cell. Asterisks denote statistical significance levels: *p < 0.05, **p < 0.01, and ***p < 0.001. ‘ns’ indicates a non-significant correlation.
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Deep learning models, particularly CNNs, are adept at

extracting complex features from high-resolution images,

effectively addressing challenges such as partial occlusion and

variable lighting conditions that often hinder traditional image
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processing techniques (Lin et al., 2023; Mohammadzadeh Babr

et al., 2022; Lu et al., 2024). Our evaluations confirmed this, showing

robust performances across diverse environmental conditions

(Table 2). Notably, the high performance of DeepLabv3+ is

consistent with previous studies that have also identified it as a

robust model for rice panicle segmentation (Wang et al., 2021).

LinkNet also achieved a comparable mIoU to DeepLabv3+ in our

experiments, suggesting its suitability for this application.

However, we acknowledge that this level of performance (mIoU

< 0.85) indicates room for further optimization. This limitation is

likely attributable to the inherent complexity of the target objects

and the challenging field conditions. First, severe occlusion is

unavoidable as rice panicles grow and overlap with each other

and with leaves in a dense canopy, making it fundamentally difficult

for any model to delineate precise pixel-level boundaries. Second,

uncontrolled lighting conditions, such as shadows and direct

sunlight, can alter the appearance of panicles and obscure their

features obscure their features (Lin et al., 2023). Lastly, the texture

and color of panicles can become similar to those of senescing leaves

in later growth stages, potentially confusing the model.

Nevertheless, it is crucial to interpret this segmentation

performance within the context of our study’s primary objective:

predicting yield components from the temporal dynamics of panicle

coverage. The results demonstrate that our framework, even with an

mIoU of 0.82, was sufficiently robust to capture the overall trend of

panicle development. The high predictive power of the final yield

models (R² up to 0.89) strongly supports this, suggesting that
TABLE 4 Predictive performance of machine learning models for yield
and its components.

Yield
components

Metric PLSR XGBR RFR GBR

Yield

R2

0.82 0.89 0.89 0.88

GN 0.75 0.82 0.87 0.87

PN 0.61 0.66 0.80 0.80

GNP 0.21 0.27 0.39 0.40

TGW 0.44 0.67 0.70 0.63

FGR 0.57 0.71 0.73 0.73

Yield (kg/ha)

RMSE

75.69 61.16 60.83 61.46

GN (number/m2) 3521.43 2943.32 2527.82 2526.56

PN (number/m2) 53.86 49.91 38.69 38.05

GNP (GN/PN) 9.93 9.52 8.72 8.65

TGW (g) 1.91 1.46 1.40 1.53

FGR (%) 0.06 0.05 0.05 0.05
The coefficient of determination (R2) and root mean squared error (RMSE) are shown for four
regression models evaluated using leave-one-out cross-validation (LOOCV).
FIGURE 5

Feature importance analysis for yield prediction models using SHAP (SHapley Additive exPlanations). This figure details the contribution of each
piecewise function parameter to the predictions of the Random Forest Regressor (RFR) model for Yield, Grain Number (GN), and Panicle Number
(PN). For each yield component, the left plot is a SHAP summary plot, where each dot is a single data point. The color of the dot represents the
feature’s value (red for high, blue for low), and its position on the x-axis indicates its impact on the model’s output (positive or negative). The right
bar plot ranks the features by their mean absolute SHAP value, indicating their overall importance to the model’s prediction.
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capturing the holistic temporal pattern of the canopy is more

critical for yield prediction than achieving perfect segmentation of

every individual panicle.

While the selected models like DeepLabv3+ and LinkNet

provided robust performance for this study’s objectives, we

acknowledge that the field of deep learning is rapidly evolving.

Future research should therefore focus on improving segmentation

accuracy to an even higher standard. A critical next step would be to

significantly expand the current dataset to include more diverse

genetic backgrounds, environmental conditions, and growth stages.

The automated image acquisition platform based on a fixed tower,

as implemented in this study, offers an efficient and direct pathway

for building the large-scale, longitudinal datasets required to

effectively train and validate more advanced architectures.

Furthermore, exploring these advanced architectures, such as

Vision Transformers (ViT) which have shown promise in

handling occlusion (Lu et al., 2024), will be a key priority.

While conventional single-time-point analyses might offer a

snapshot correlation, for instance, between panicle number and

coverage at the heading stage, they cannot capture the temporal

dynamics of grain filling and senescence. The proposed framework,

by contrast, not only estimates maximum coverage (K) but also

quantifies the rates of growth (g) and decline (a). This allows for a

deeper understanding of how the entire developmental trajectory,

including the speed of maturation and senescence, impacts final

yield components like the filled grain ratio (FGR)—an insight

largely inaccessible through static measurements.

This study revealed that dynamic parameters derived from

time-series panicle coverage are powerful predictors for rice yield.

The maximum panicle coverage (K) emerged as the strongest

predictor for Yield and GN (r = 0.87 and 0.85, respectively). This

is physiologically sound, as a greater panicle area allows for a higher

number of spikelets and increased light interception, ultimately

boosting photosynthetic capacity and assimilate production, which

aligns with previous findings on the importance of canopy

architecture (Gu et al., 2018; Ji et al., 2023). Interestingly, K

showed a moderate negative correlation with TGW (r = -0.47),

which can be interpreted as the well-known “yield component

compensation effect”. This suggests that when a higher number of

grains is secured per unit area, the photosynthates distributed to

each grain become relatively limited, leading to a tendency for

reduced individual grain weight.

Critically, the introduction of a piecewise function to model the

temporal dynamics of panicle coverage provides valuable insights

into rice growth and development, allowing us to capture the

dynamic processes that influence yield. The strong negative

correlations between timing parameters (d0, d1) and FGR (r =

-0.71 and -0.69, respectively) provide critical insights. These results

imply that a faster progression to the peak growth and senescence

stages is beneficial for grain filling. This could be because rapid

panicle development allows the critical grain-filling period to occur

under optimal weather conditions, avoiding late-season stresses like

high temperatures or insufficient solar radiation that might

otherwise hinder full grain development. This highlights the
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potential of using temporal dynamic parameters to assess the

adaptation of the crop to environmental conditions.

Furthermore, the parameters ‘g’ (growth rate) and ‘a’ (decline

rate) provide additional physiological insights. The growth rate ‘g’

likely reflects the initial vigor and uniformity of panicle exsertion,

with a higher ‘g’ value indicating efficient nutrient translocation at

the beginning of the reproductive stage. More intriguingly, the

decline rate ‘a’ can be interpreted as a proxy for the grain-filling

process. As grains successfully fill and accumulate weight, the

panicles begin to droop, which is a key visual indicator of a heavy

and well-developing sink. This physical change in canopy

architecture, specifically the change in panicle angle, reduces the

panicle area visible from the nadir-view camera. Therefore, a higher

value for ‘a’ may not represent degradation, but rather the positive

outcome of effective assimilate partitioning that leads to heavy

grains and successful ripening.

The results also demonstrated the significant influence of

environmental and genetic factors on panicle coverage dynamics

(e.g., Yang et al., 2022), as statistically confirmed by our analysis of

variance (Supplementary Table 3). As shown in Figure 3, nitrogen

fertilization levels, transplantation dates, and varietal differences

had a measurable statistically significant effect on the parameters of

the piecewise function, ultimately affecting the yield components.

This underscores the need for tailored management practices that

account for these interacting factors.

However, this study has several limitations. First, because the

data were collected over a relatively short period and from a single

experimental location, it may not adequately reflect the variability

introduced by various environmental factors such as weather, pests,

and diseases. Future research should consider this variability

through multi-environment and long-term studies. Second,

because only RGB images were used, additional research is

needed to integrate multispectral and thermal imaging to analyze

the physiological traits and stress responses (Gitelson et al., 1996;

Dorigo et al., 2007; Çolak et al., 2015; Park et al., 2021).

Additionally, 3D point cloud data, derived from drone imagery,

can provide comprehensive information on the canopy structure

and panicle architecture, potentially improving the accuracy of the

yield component predictions (Wu et al., 2022; Song et al., 2024).

Lastly, the model utilized in this study may be optimized for specific

varieties and cultivation conditions, requiring further research to

validate its generalization performance across diverse

production systems.

Beyond precision agriculture, this panicle coverage-based

framework holds promise for plant breeding applications. Drone-

based image analysis can facilitate large-scale phenotyping and the

identification of superior varieties with enhanced nitrogen use

efficiency or stress tolerance (Zhang and Kovacs, 2012; Guan

et al., 2019; Bak et al., 2023). Specifically, the ability to rapidly

and non-destructively estimate parameters such as K, g, d0, and d1
can accelerate the selection of genotypes with desirable

growth characteristics.

In conclusion, this study provides a robust and adaptable

framework for image-based rice phenotyping, with the potential
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to significantly improve both agricultural management and crop

improvement efforts. By combining deep learning with time-series

analysis, the proposed framework serves as a powerful tool for

understanding and predicting rice yield, paving the way for more

sustainable and efficient rice production.
5 Conclusions

This study established and validated a deep learning-based

framework for accurate rice panicle segmentation and yield

component prediction using time-series RGB imagery. The

combination of semantic segmentation (particularly with

DeepLabv3+ and LinkNet models) and a piecewise function to

characterize the panicle coverage dynamics demonstrated high

efficacy. The maximum panicle coverage (K) and time of

maximum growth rate (d0) derived from the piecewise function

were the key predictors of the yield and yield components.

Nonlinear regression models (RFR and XGBR) exhibited superior

predictive performance relative to PLSR. The proposed framework

offers a practical and easy-to-use approach for high-throughput

phenotyping of rice, with significant potential for application to

both precision agriculture (optimizing nitrogen management and

planting strategies) and plant breeding (by accelerating the

evaluation and selection of superior genotypes). Future research

will focus on expanding the framework to incorporate additional

environmental factors and imaging modalities and validating the

approach across multiple locations and growing seasons.
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SUPPLEMENTARY FIGURE 1

Image acquisition site and equipment. (A) An aerial view of the experimental

fields at the National Institute of Crop Science in Wanju-gun, Republic of

Korea. (B) The fixed tower-mounted camera used for time-series imaging. (C)
The handheld camera used for acquiring images for model training

and validation.

SUPPLEMENTARY FIGURE 2

Architectures of semantic-segmentation networks evaluated in this study. (A)
U-Net, (B) LinkNet, (C) PSPNet, (D) FPN, and (E) DeepLabv3+; each

architecture uses a distinct approach to feature extraction and processing.
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SUPPLEMENTARY FIGURE 3

Representative time-series RGB images of rice canopies under different
experimental treatments in 2023 (A) and 2024 (B). Images were taken on

various dates after transplantation, as indicated on the left. Treatments
include different nitrogen-fertilization levels (0N, 9N, 18N), late

transplantation (LT), and different cultivars (NP: Nampyeong, DJ: Dongjin-1,

SD: Shindongjin, SI: Saeilmi) under both field and soil-bin conditions. The “F”
and “S” prefixes denote field and soil-bin experiments, respectively. The

number before the hyphen represents the year.

SUPPLEMENTARY FIGURE 4

Model Training and Validation Curves. The plots show training loss, validation

loss, and validation accuracy over 200 epochs for all five evaluated semantic

segmentation models, each combined with ResNet-50 and ResNet-101
backbones. The consistent decrease in loss and stabilization of accuracy

indicate successful model convergence.

SUPPLEMENTARY FIGURE 5

Qualitative comparison of segmentation results from different models. The

representative input images (“Image”), ground truth segmentations (“GT”), and

segmentation outputs of U-Net, LinkNet, PSPNet, FPN, and DeepLabv3+ (all
using the ResNet-101 backbone) are shown.
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SUPPLEMENTARY FIGURE 6

Detailed Regression Analysis for Yield Prediction. Regression plots compare
the actual and predicted values for all yield and yield components using the

four regression models (PLSR, RFR, GBR, and XGBR). Each plot shows the
relationship between actual (x-axis) and predicted values (y-axis), with the red

line indicating a perfect 1:1 relationship and the blue line representing the

fitted regression.

SUPPLEMENTARY FIGURE 7

SHAP analysis for additional yield components. The figure shows the SHAP

(SHapley Additive exPlanations) value analysis for the Random Forest
Regressor (RFR) model, detailing the contribution of each piecewise

function parameter (K, g, d0, d1, and a ) to the prediction of the number of

grains per panicle (GNP), 1000-grain weight (TGW), and filled grain ratio
(FGR). For each component, the left plot is a SHAP summary plot where each

point represents a single observation, the x-axis indicates the impact on
model output, and the color represents the feature value (high=red,

low=blue). The right bar plot ranks the features by their mean absolute
SHAP value, indicating their overall importance to the model’s prediction.

SUPPLEMENTARY TABLE 1

Layer architecture of ResNet backbone networks.
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