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to salinity: impact on species-
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photosynthetic parameters,
and ion uptake
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Ornamental horticulture provides substantial economic and environmental

benefits, generating billions in annual sales and contributing to urban greening.

However, the increasing scarcity of freshwater resources necessitates the use of

alternative irrigation sources, such as reclaimed water. Reclaimed water typically

contains elevated salt levels that can induce salt stress. Salt stress adversely

affects multiple plant traits. Aesthetic quality declines, manifesting as leaf tip

burns, discoloration, and necrosis, reducing landscape value and commercial

appeal. Growth performance, including biomass production, plant height, and

leaf expansion, is limited by osmotic stress, ion toxicity, and nutrient imbalances.

Salinity also reduces chlorophyll content, leading to lower leaf greenness and

photosynthetic efficiency through impaired stomatal conductance and

transpiration. In addition, saline water disrupts ion uptake, increasing Na+ and

Cl- accumulation and disrupting the balance of essential nutrients like K+ and Ca2+.

These physiological and visual responses are species-specific. Therefore, this

review synthesizes current findings on the impact of salinity stress on

ornamental plants, with a focus on aesthetic value, growth performance,

photosynthetic traits, and ion homeostasis. It aims to inform sustainable

irrigation practices and species selection for nursery production and landscape

applications using alternative water sources with salinity concerns.
KEYWORDS

aesthetic performance, growth, leaf greenness, saline irrigation, ion imbalance,
photosynthetic parameter, ornamental
1 Introduction

Horticulture is a specialized branch of agriculture that encompasses both the art and

science of cultivating fruits, vegetables, and ornamental plants, including flowers, trees, and

shrubs. One of its primary divisions is ornamental horticulture, which focuses on the

production, management, and marketing of plants selected for their aesthetic value (Jaskani
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and Khan, 2021). The economic significance of ornamental plants

in horticulture is substantial. In 2022, sales of floriculture, nursery,

and greenhouse plants reached approximately $21.3 billion,

representing a 31.9% increase from 2017 levels (US Department

of Agriculture, National Agricultural Statistics Service, 2020).

Ornamental horticulture represents a thriving sector within

agriculture, driven not only by its substantial economic returns,

but also by its growing relevance in urban ecological planning. As

cities expand and green infrastructure becomes increasingly

prioritized, ornamental plants are recognized not just as

commodities but as integral components of sustainable urban

ecosystems. Research has shown that urban horticulture,

including ornamental plants, can reduce carbon dioxide (CO2)

emissions (Ohyama et al., 2008). For example, in United States,

urban green spaces sequester around 22.8 million tons of annually,

equivalent to 83.6 million tons of CO2 (Nowak and Crane, 2002;

Zhang et al., 2024). Furthermore, ornamental plants contribute to

humidity and temperature regulation, abating the urban heat island

(Francini et al., 2008). They also enhance resource efficiency by

conserving water, fertilizers, and energy inputs (Ohyama

et al., 2008).

However, the growing impact of climate change is beginning to

challenge the ability of these green spaces to flourish and has the

impact has been obvious especially in parts of Africa, South Asia,

and the American Southwest (Neha et al., 2025; Shrivastava and

Kumar, 2014). Rising temperature and reduced precipitation,

increases evapotranspiration and can bring salt and other

minerals to soil surface thus, increasing soil salinity (Cook et al.,

2018; Rengasamy, 2006). Climate change is also reducing frequency

and increasing intensity of precipitation which causes intermittent

drought and flooding conditions and is detrimental to plant growth

(Thakre and Bisen, 2023). For instance, floriculture in Kenya is

grappling with prolonged drought due to climate change (Neha

et al., 2025). United States has experienced widespread drought

conditions in recent two decades, with 54.8% of the country affected

in 2012, marking one of the most extensive drought periods (US

Drought Monitor, 2025). In response, recycled or reclaimed water,

defined as water that has already been used, has emerged as a critical

alternative water resource for irrigation, especially in arid and semi-

arid regions (Chaudhary et al., 2019; Niu and Cabrera, 2010). This

approach addresses water scarcity by repurposing wastewater for

landscape use. For instance, in Florida, reclaimed water irrigates

56,000 acres of golf courses (approximately 227 million square

meters), 201,465 residences, 572 parks, and 251 schools in 2005

(Haering et al., 2009). However, significant concerns exist regarding

the environmental impacts of reclaimed water, with salinity

representing one of the most severe challenges (Nackley

et al., 2015).

Cabrera et al. (2018) found that municipal reclaimed water in

Texas contained sodium (Na+) and chloride (Cl-) concentrations of

90–280 mg·L-1 and 135–340 mg·L-1, respectively, exceeding the

recommended thresholds for landscape irrigation water (70 mg·L-1

and 110 mg·L-1, respectively) (Table 1). Electrical conductivity (EC),

measured in deciSiemens per meter (dS·m-1), serves as an indicator

of dissolved salts and ions in water (Ezlit et al., 2010). Bauder et al.
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(2011) and Fipps (2003) reported that water with EC below 0.75

dS·m-1 is generally suitable for irrigation, while with EC above 2

dS·m-1 can pose risks to plants and soil, whereas EC in Texas

reclaimed water ranged from 0.9 to 1.9 dS·m-1 (Cabrera et al., 2018).

Under suboptimal management, low-quality reclaimed water can

exacerbate soil salinity issues. As shown in Table 2, a study by

Huang et al. (2011) demonstrated the progressive soil EC increase

during 120 days of irrigation with water at EC of 1.2, 2.6, and 7.0

dS·m-1. When irrigating water at an EC of 2.6 and 7.0 dS·m-1, soil

EC rose significantly in both 0–30 cm (to 5.0 and 7.6 dS·m-1,

respectively) and 30–60 cm soil layers (to 4.3 and 6.3 dS·m-1,

respectively). Conversely, irrigation with water at an EC of 1.2

dS·m-1 maintained relatively stable soil EC, with the 0–30 cm layer

around 3.2 dS·m-1 and a slight decrease to 3.0 dS·m-1 in 30–60 cm

layer. Generally, soil with EC levels exceeding 4 dS·m-1 is classified

as saline soil (Zaman et al., 2018; Singh, 2022). These findings

suggest that even moderately saline water can lead to soil

salinization over time. Therefore, the use of reclaimed water,

particularly under poor management, should be carefully

regulated to prevent long-term soil degradation and salinity-

induced stress in landscape plants.

Soil salinity can arise not only from anthropogenic sources but

from natural sources as well. Globally, 25%-30% of cultivated and

irrigated lands are saline and commercially unproductive due to

natural cause (Zaman et al., 2018). Natural causes include mineral

weathering, salt-rich groundwater, high evaporation, and volcanic

activity (Majeed and Muhammad, 2019; Stavi et al., 2021). Beyond

poor irrigation practices, human-induced soil salinization can result

from imbalanced fertilization, soil degradation, inadequate

drainage, deforestation, and mining activities (Majeed and

Muhammad, 2019; Tanji, 2002). Under challenging saline

conditions, nature demonstrates resilience: halophytes, which are

the plant species that can grow at salinities over 250 mM sodium

chloride (NaCl, ~ 25 dS·m-1) (Tuteja, 2007). The salt-resistance

mechanisms of halophyte’s are often classified as salt tolerance and

salt avoidance. Salt tolerance enables plants to maintain

protoplasmic viability while accumulating ions inside cells,

whereas salt avoidance involves minimizing salt concentrations in

potentially toxic plant parts (Aslam et al., 2011). However, most

plants species remain sensitive to salt stress, with only around 2% of

angiosperm species being halophytes (Turcios et al., 2021). For

example, although the families Asteraceae, Fabaceae, and Poaceae

include a considerable number of halophytes, these account for less
TABLE 1 Reclaimed water quality and recommended values for sodium,
chlorine and electrical conductivity.

Water
quality

Observed
values

Recommend
threshold

Reference

Sodium 90–280 mg·L-1 70 mg·L-1

Bauder et al. (2011);
Cabrera et al. (2018),
and Fipps (2003)

Chloride
135–340
mg·L-1

110 mg·L-1

Electricity
conductivity

(EC)
0.9-1.9 dS·m-1 0.75 dS·m-1
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than 5% of their total species (Aslam et al., 2011; Turcios et al.,

2021). Consequently, it is critical to assess the responses of

ornamental species under saline conditions to determine their

adaptation, identify salt-tolerant candidates for landscape use, and

guide appropriate plant selection and management practices in salt-

affected areas.

Saline soil and irrigation water severely impair plant

performance through three critical mechanisms (Figure 1). Firstly,

the osmotic effect reduces water potential, preventing plant water

absorption as salt in the soil solution creates barriers to water

uptake (Atta et al., 2023; Singh et al., 2014). Secondly, the ion-excess

effect occurs when excessive salt enters the transpiration stream,

damaging leaf cells and further compromising plant growth

(Parihar et al., 2015). Thirdly, excessive Na+ levels can disrupt ion

uptake through cation competition, potentially reducing the

absorption of critical ions like potassium (K+), calcium (Ca2+),

and magnesium (Mg2+), which may lead to nutrient deficiencies

(Atta et al., 2023). These detrimental effects induce significant

morphological and physiological responses of plants. Initially,

reduced leaf and shoot growth are the earliest response when

non-halophytes plants are exposed to salinity, from water deficit

or specific salt toxicity (Munns and Termaat, 1986; Negrão et al.,
Frontiers in Plant Science 03
2017). Empirical evidence supports these effects, as severe

reductions in growth and biomass have been observed in species

like Nasturtium officinale and coleus under saline irrigation

(Kaddour et al., 2013; Kotagiri and Kolluru, 2017).

Another salt-induced effect is the reduction in aesthetic value, a

critical component of ornamental plants that should be taken into

consideration (Cassaniti et al., 2013). The visual performance of

plants under saline stress varies significantly among species. Some,

like Albizia julibrissin and Sophora japonica, showed no visible salt

damage at EC 5 dS·m-1, while others, such as Zinnia spp., exhibited

significant flower reduction and leaf necrosis even under lower

salinity levels of 2.6-4.5 dS·m-1 (Devitt and Morris, 1987; Paudel

and Sun, 2022; Villarino and Mattson, 2011). Saline stress

negatively impacts leaf greenness, which researchers measure

through chlorophyll content, Soil Plant Analysis Development

(SPAD) index, or maximum quantum yield of photosystem II

(Fv/Fm) (Negrão et al., 2017). Studies across various species

demonstrate diverse responses to salt exposure. For example,

while Penstemon spp. and Japanese spiraea showed significant

declines in SPAD values, the leaf greenness of Ageratum

conyzoides, Nasturtium officinale, and Osteospermum spp. did not

affected by saline irrigation (Paudel and Sun, 2024; Pavlova et al.,
FIGURE 1

Three mechanisms of salt stress impacting plant.
TABLE 2 Impacts of saline irrigation on soil electricity conductivity (EC).

Treatment (dS·m-1, 120 days) Soil depth (cm) Soil EC (dS·m-1) Saline soil threshold (dS·m-1) Reference

1.2
0-30 3.2

4 Huang et al. (2011)

30-60 3.0

2.6
0-30 5.0

30-60 4.3

7.0
0-30 7.6

30-60 6.3
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2021; Sun et al., 2012; Valdés et al., 2015; Wang et al., 2019a).

Reduced stomatal conductance was also commonly observed and,

along with declined leaf greenness, contributed to the suppression

of photosynthesis. This photosynthetic inhibition has been

documented in multiple species, including Cercocarpus ledifolius,

Euphorbia milii, Glaucium flavum, Rosa spp., Sophora secundiflora,

and Viburnum (Cai et al., 2014a; Chen et al., 2020; Cambrollé et al.,

2011; Niu et al., 2010a; Paudel and Sun, 2022; Santos et al., 2022).
2 Research methodology

This goal of this review is to identify ornamental species of both

economic and horticultural importance for evaluating salinity

tolerance. Species selection for this review was initially guided by

the 2019 Census of Horticultural Specialties, published by the

USDA National Agricultural Statistics Service (NASS), which

provides national-level production and sales data. This census

served as the foundation to prioritize ornamental species that are

widely cultivated, economically significant, and commonly used in

nursery production and landscape design. Plus, peer-reviewed

publications were chosen to evaluate physiological and

morphological responses of more ornamental species under saline

stress, with a focus on research conducted by Texas A&M AgriLife

Research Center and Utah State University. These institutions,

showing significant contributions to salinity studies, provided

robust experimental data through greenhouse and field research

involving a wide range of ornamental species. In addition to peer-

reviewed journal platforms, relevant extension bulletins and

technical reports were also included to supplement applied

horticultural insights.

Scientific literature was sourced using journal databases and

publisher platforms, including ScienceDirect, SpringerLink, and

Wiley Online Library, as well as search tools such as Google

Scholar and Multidisciplinary Digital Publishing Institute (MDPI)

open-access portal. The search strategy incorporated combinations

of keywords such as “salinity tolerance”, “ornamental plants”,

“visual quality”, “growth”, “photosynthesis”, and “ion uptake”,

along with specific plant names. Inclusion criteria were defined to

ensure consistency: (1) saline treatments must be clearly defined

and controlled; (2) results must include clear description or

quantitative data on aesthetic performance, growth parameters,

photosynthetic performance, or leaf ion content. Studies lacking

such data were excluded; (3) only studies that induced saline stress

through saline irrigation water were considered. This criterion

ensured consistency across experiments, as salinity was applied in

a controlled manner using solutions with specified EC levels.

Unlike general reviews that broadly examine morphological,

biochemical, and physiological traits across a random selection of

plants, this review takes a more focused and practical approach. It

aims to identify salt-tolerant and salt-sensitive ornamental species

based on their widespread cultivation and economic value. By

assessing species-specific responses to saline irrigation, this review

evaluates key traits such as aesthetic performance, growth

characteristics, photosynthetic activity, and ion uptake. The goal
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is to provide a practical and evidence-based list of ornamental

plants suitable for nursery production and landscape use under

varying levels of salinity. In doing so, the review offers actionable

insights and management recommendations that support the

selection and use of salt-tolerant ornamentals, promoting water-

wise landscaping practices in arid and semi-arid environments.
3 The effects of salt stress on
ornamental plants

The severity of salt stress experienced by ornamental plants is

determined by several key factors, including taxa, saline level, and

duration of exposure. Firstly, different taxa or even cultivars within

a species vary in their responses to salt stress due to genetic

differences in ion exclusion, compartmentalization, and osmotic

adjustment mechanisms (Guo et al., 2022; Niu et al., 2013; Sun et al.,

2020). Secondly, saline level, which can be quantified using EC of

irrigation water, directly affects plant performance. High EC levels

are typically associated with higher salt concentration and greater

osmotic stress and ion toxicity, which can impair visual quality,

stunt growth, and disrupt ionic balance (Guo et al., 2022; Sun et al.,

2020). Thirdly, prolonged duration of exposure to saline stress

allows salts to accumulate in the root zone and plant tissues,

intensifying injury symptoms over time (Niu et al., 2013; Sun

et al., 2020). In addition, environmental factors, such as

temperature and humidity, plant developmental stage, growing

season and substrate characteristics can further influence plant

responses to salt stress.
3.1 Visual quality/aesthetic performance

To assess the salt tolerance of ornamental plants, it is crucial to

evaluate their visual quality since ornamentals are primarily valued

for their aesthetic nature and display values (Kumar, 2023; De

Oliveira et al., 2018). Sensory analysis stands out as a method to

gauge aesthetic performance, capturing plant quality through

overall appearance and consumer preference. De Oliveira et al.

(2018) conducted sensory analysis by 352 volunteers where they

rated four ornamental species on a scale from 1 (extremely disliked)

to 9 (extremely liked), followed by consumer purchasing

preferences. In addition, Santagostini et al. (2014) utilized trained

assessors to rank photos of rosebush varieties based on flower

quantity, open flower area, and flowering quality for sensory

evaluation. Eye-tracking offers another approach to assess natural

aesthetic values, revealing visual attention and movement patterns

which were used to rate ornamental plants in urban green spaces

(Scott et al., 2020; Zheng et al., 2022).

While sensory analysis provides a rapid and non-destructive

means to diagnose salt-induced leaf damage, it requires substantial

labor. Under salt stress, toxicity manifests when toxic ions like Na+

and Cl- accumulate excessively in the rhizosphere (Cassaniti et al.,

2013). Slight bronzing and yellowing at leaf tips are initial

symptoms of Cl- toxicity, which may progress to tip death and
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necrosis. In contrast, Na+ toxicity typically begins with marginal

yellowing and advances to progressive necrosis (Cassaniti et al.,

2013; Saeed et al., 2020). Researchers have observed chlorosis,

browning, wilting, and foliage death in various ornamental

species under salt stress conditions which lower aesthetic value of

the plant (Gerber et al., 2011; Niu et al., 2012b; Rauter et al., 2021;

Roozbahani et al., 2020; Villarino and Mattson, 2011). Thus, foliage

appearance serves as a critical criterion for assessing ornamental

plant responses to salinity. Precise visual evaluation of salt injuries

remains challenging without universal standardized scales.

Consequently, methodologies based on percentage of foliage

damage and detailed plant appearance descriptions have been

developed and widely used to rate visual quality of ornamental

plants (Table 3) (Cai et al., 2014b; Moore et al., 2019; Salachna,

2024; Sun et al., 2015b; Valdez-Aguilar et al., 2011).

While the factors that reduce aesthetic quality are generally well

understood, the responses of ornamental plants to saline irrigation

vary widely among species due to the unique characteristics of each

plant taxon. Supplementary Table 1 summarizes the aesthetic

performance of 131 ornamental species from 34 botanical families

under varying levels of saline irrigation. For instance, Achillea

millefolium was unaffected by salinity treatments at EC 5.4 dS·m-1

for 103 days and EC 4 dS·m-1 for 10 weeks (Niu and Rodriguez,

2006a; Niu et al., 2007). In contrast, Echinacea purpurea exhibited

unacceptable performance when irrigated at EC 2 dS·m-1 for 10

weeks (Niu and Rodriguez, 2006a). Furthermore, certain species

demonstrated tolerance to saline irrigation in term of visual

performance at EC between 10–12 dS·m-1 for 8–12 weeks, such as

Dicliptera suberecta, Gazania rigens, Ruellia brittoniana, three

sedum species (Sedum telephium, S. reflexum, and S. rupestre),

and three zoysia species (Zoysia matrella, Z. minima, and Z.

japonica) (Hooks et al., 2022; Hooks and Niu, 2019; Niu and

Rodriguez, 2006b; Sun et al., 2015a; Wu et al., 2016a). Other

species maintained good quality with minimal damage at EC ~5

dS·m-1 for 4–8 weeks but suffered severe damage (50%-90%) at EC

10 dS·m-1, such as Arctostaphylos uva-ursi, Festuca glauca,
Frontiers in Plant Science 05
Hydrangea quercifolia, Melampodium leucanthum, Perovskia

atriplicifolia, and Tagetes lemmonii (Paudel and Sun, 2023; Niu

et al., 2020; Wu et al., 2016c; Xing et al., 2021). Conversely, some

ornamental species, such as Diervilla rivularis, Lantana camara,

Physocarpus opulifolius, Ranunculus asiaticus, and Zinnia

angustifolia, were highly sensitive to saline irrigation, showing

extensive salt injury even at EC 5 dS·m-1 or lower (Bañón et al.

2011; Chen et al. 2019a; Liu et al., 2017; Rauter et al. 2021; Villarino

and Mattson 2011). In addition, different species within the same

genus exhibited varied responses under identical salt treatments.

For example, Viburnum dilatatum suffered more than 90% foliage

damage at EC 5 dS·m-1, whereas other six viburnum species

maintained high quality (Sun et al., 2020). Similarly, among rosa

cultivars irrigated at EC 6.4 dS·m-1 for 10 weeks, ‘Belinda’s Dream,’

‘Caldwell Pink,’ and ‘Quietness’ showed good to excellent quality

with minimal foliage damage, while ‘Carefree Beauty,’ ‘Folksinger,’

and ‘Winter Sunset’ experienced more than 90% leaf burn (Niu

et al., 2013).

Besides genetic differences, salinity-induced injury in

ornamental plants is influenced by salinity levels. For instance,

Viburnum dentatum and V. nudum exhibited good quality with

minimal damage at EC 5 dS·m-1 for 8 weeks but suffered more than

90% foliage damage at EC 10 dS·m-1 (Sun et al., 2020). Similarly,

three penstemon species displayed good foliage quality with

minimal or slight damage at EC 5 dS·m-1 for 8-week irrigation

yet experienced 90% or more foliage damage when the salinity

increased to EC 10 dS·m-1 (Nepal et al., 2024; Paudel and Sun,

2024). The duration of saline irrigation is another critical factor

affecting plant visual performance. For example, Spiraea japonica

maintained good quality at EC 3 dS·m-1 for 8 weeks but showed 50%

leaf damage after 11 weeks of treatment (Chen et al., 2019a; Wang

et al., 2019a). Notably, the same species may exhibit different

responses depending on the experimental period. Hibiscus

syriacus was unaffected by EC 6.5 dS·m-1 for 11-week irrigation

but exhibited more than 50% foliage damage at EC 5 dS·m-1 for 8-

week treatment (Chen et al., 2019a; Liu et al., 2017). The
TABLE 3 Some aesthetic quality rating scales for evaluating salt damage on the ornamental plants.

Rating/marks
Considered
attributes

References

1 = over 50% foliar damage; 2 = moderate (25% to 50%) foliar damage; 3 = slight (less than 25%) foliage damage; 4 =
good quality with little foliar damage (acceptable as landscape

performance); and 5 = excellent without foliar damage

Percentage of foliage
damage, including burning,
discoloring, and leaf death

Cai et al., 2014b

1 = plants dead; 2 = wilted plants with significant necrosis; 3 = plants wilted with necrosis; 4 = plants with slight
wilting, no necrosis; and 5 = plants not wilted and no visible necrosis

Leaf wilting and necrosis
Moore

et al., 2019

1 = low attractiveness, expressed in poor foliage, growth, and habit, and insufficient tolerance to salinity stress, 2 =
moderate foliar damage, 3 = slight foliage damage, 4 = good quality with minimal foliar salt damage (acceptable as

landscape performance) and 5 = maximum decorative effect, expressed in even growth, attractive habits, healthy foliage,
and very good tolerance to salinity

Foliage damage and
overall growth

Salachna, 2024

0 = dead; 1 = severe (over 90%); 2 = moderate (50% to 90%); 3 = slight (less than 50%); 4 = good quality with minor
foliar damage; and 5 = excellent with no visible foliar damage

Percentage of visible foliage
damage, including leaf edge

burn, necrosis,
and discoloration

Sun
et al., 2015a

1 (poor quality, leaf bronzing higher than 75% or dead
plants) to 5 (best quality, no leaf bronzing)

Percentage of leaf bronzing
and death

Valdez-Aguilar
et al., 2011
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discrepancy may be attributed to seasonal differences, as Chen et al.

(2019a) conducted their experiment from Oct to Nov, whereas Liu

et al. (2017) performed theirs from March to May.
3.2 Growth and vigor

Under salt stress, the water absorption ability is reduced,

leading to water stress and toxic effects that inhibit growth

(Munns and Tester, 2008; Garcı ́a-Caparrós and Lao, 2018).

Growth measurement is a common tool used by horticulturists

and landscape planners to assess the salt tolerance of ornamental

plants. Evaluating plant quality typically involves traditional growth

measurements, including height, flower, shoot and leaf number

(Kumar, 2023). Miyamoto et al. (2004) established plant tolerance

thresholds based on EC of soil saturation extract (ECe), defining

critical values at which 25% foliage injury or growth reduction

occurs. According to this classification, the plants species are

classified into five categories: sensitive (0–3 dS·m-1), moderately

sensitive (3–6 dS·m-1), moderately tolerant (6–8 dS·m-1), tolerant

(8–10 dS·m-1), and highly tolerant (> 10 dS·m-1) (De Oliveira et al.,

2018; Miyamoto et al., 2004). Supplementary Table 2 summarizes

the growth responses of 177 species from 46 botanical families

under varying levels of salt stress. Although the EC treatments in

Supplementary Table 2 represent saline irrigation rather than ECe,

these findings still provide valuable insights into selection of salt-

tolerant plants.

Water osmotic withdrawal from enlarging cells could cause

turgor pressure dropping below the stress threshold needed for cell

expansion (Meloni et al., 2001). As a result, the most immediate

response to saline irrigation is a decrease in the leaf expansion rate,

manifested as reduced leaf area (Hassan, 2024). A substantial

reduction in leaf area was observed in most species under saline

irrigation in Supplementary Table 2. However, species such as

Ageratum conyzoides, Juncus effusus, and Leymus arenarius

showed little change in leaf area when irrigated with EC 9.7 dS·m-

1 for 20 days, EC 5 dS·m-1 for 8 weeks, and EC 10 dS·m-1 for 18

weeks, respectively, indicating high salt tolerance (Sun et al., 2012;

Sun and Palmer, 2018). For species moderately sensitive to saline

irrigation, such as Acorus gramineus, Albizia julibrissin, Aquilegia

canadensis, Carex vulpinoidea, Catharanthus roseus, Parthenocissus

quinquefolia, Penstemon davidsonii, Stachys coccinea, and

Viburnum plicatum, reductions in leaf area were less than 50%

when irrigated with EC ranging from 2.5–10 dS·m-1 for 6 weeks to 4

months (Liu et al., 2017; Mohammadi Kabari et al., 2024; Nepal

et al., 2024; Paudel and Sun, 2022; Sun and Palmer, 2018; Sun et al.,

2020; Wu et al., 2016a, c; Xing et al., 2021). In contrast, species such

as Diervilla rivularis, Lobelia cardinalis, and Penstemon strictus

exhibited more than 90% reduction in leaf area after 8 weeks of

irrigation at EC 2.5–10 dS·m-1 (Liu et al., 2017; Paudel and Sun,

2024; Wu et al., 2016a).

When plants are subjected to saline irrigation, another typical

symptom is a reduction in height due to decreased water absorption

and the toxic accumulation of salts (Hao et al., 2021; Liu et al.,

2024). Therefore, species that maintain height under saline
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conditions are considered to be more salt-tolerant. For example,

Begonia hiemalis, Echinacea purpurea, Ipomoea tricolor, Juncus

effusus, and Pelargonium graveolens maintained height growth

under irrigation with EC ranging from 4-12.9 dS·m-1 for 3–10

weeks (Chrysargyris et al., 2021; Niu and Rodriguez, 2006a; Mircea

et al., 2023; Sun and Palmer, 2018; Villarino and Mattson, 2011).

Similarly, although stunted height was observed in Acorus

gramineus, Anisacanthus quadrifidus, Dicliptera suberecta, Salvia

farinacea, and Schizachyrium scoparium, the reductions were less

than 30% after saline irrigation for periods ranging from 8 weeks to

95 days at EC 10 dS·m-1, suggesting that these species could still be

utilized in landscapes irrigated with low-quality water (Sun et al.,

2015a; Xing et al., 2021; Wang et al., 2019b; Wu et al., 2016a).

Meanwhile, some species exhibit high sensitivity to saline irrigation.

Paudel and Sun (2024) reported a 92% reduction in height for

Penstemon barbatus under EC 10 dS·m-1 irrigation for 8 weeks.

A decrease in dry weight (DW) and fresh weight (FW) has been

consistently observed in all plant parts, such as leaf, shoot, and root,

under salt stress, with the most noticeable reductions occurring in

the aerial parts (Acosta-Motos et al., 2017; Mohammadi Kabari

et al., 2024; Pavlović et al., 2019). These reductions in DW and FW

are primarily due to decreases in leaf area and plant height (Acosta-

Motos et al., 2017; Garcıá-Caparrós and Lao, 2018). For instance,

while saline irrigation had no significant impact on the height and

shoot DW of Echinacea purpurea and Pelargonium graveolens,

Viburnum pragense exhibited a similar reduction (~56-63%) in

height, leaf area, and shoot DW (Chrysargyris et al., 2021; Niu and

Rodriguez, 2006a; Sun et al., 2020). Similar to leaf area and height,

reductions in DW and FW vary among species under salt stress, as

recorded in previous reviews. Greenway and Munns (1980)

reported a 40% reduction in DW for salt-sensitive soybean plants

after 14 days in 10 mM NaCl (~0.64 dS·m-1). In contrast, some

halophytes, such as Puccinellia peisonis, can accumulate up to 200

mM Na+ (~12.9 dS·m-1) in their shoots without significant damage.

Similar trends have been observed in ornamental species, as

summarized in Supplementary Table 2.

In floriculture, flower number reductions due to salt stress can

negatively affect crop sales, making flower responses under saline

irrigation an important consideration for ornamental plant

evaluation (Acosta-Motos et al., 2017). Supplementary Table 2

indicates that flowers are generally more adversely affected by

saline irrigation than leaf area and height. In several species, a

100% reduction in flower number was observed (Devitt and Morris,

1987; Don et al., 2010; Wu et al., 2016c). In addition, only two

species in Supplementary Table 2, Petunia hybrid and Portulaca

grandiflora, exhibited no significant reduction in flower number

under saline irrigation (Devitt and Morris, 1987; Fornes et al.,

2007). It is important to note that the number of flowers is not

equivalent to their quality, as other parameters, such as color,

fragrance, texture, shape, and flowering stage, are also crucial for

assessing ornamental value (Hůla and Flegr, 2016; Kumar, 2023).

As a result, comprehensive rating scales for flower quality are

necessary. For example, Valdez-Aguilar et al. (2013, 2014)

reported that Lisianthus spp. maintained remarkable flower

quality under saline irrigation with EC levels below 7 dS·m-1.
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However, flower quality scales are not as commonly employed to

evaluate salt tolerance, in contrast to the more widely used leaf salt

damage ratings.
3.3 Ion uptake/plant nutrient

Na+ is the sixth most abundant element in the Earth’s crust,

comprising approximately 2.6-2.8%, and its widespread presence

contributes to Na+ accumulation in soils (Cramer, 2002;

Kronzucker et al., 2013; Subbarao et al., 2003). Consequently,

salinity has become a common abiotic stress in agriculture. While

excessive Na+ is widely recognized as a major factor limiting plant

growth in salt-affected soils, some studies have reported its

beneficial effects. For instance, Na+ has been associated with

improved growth and yield in Avena sativa when applied as

sodium nitrate (NaNO3), potentially by partially replacing K+ in

plant functions (Harmer and Benne, 1945). In addition, the

halophyte Atriplex portulacoides exhibited enhanced growth at

external Na+ concentrations up to 200 mol·m-3 (~20.2 dS·m-1)

and maintained some growth even at higher salinity levels

(Redondo-Gómez et al., 2007). Despite these potential benefits,

Na+ toxicity remains a major constraint on plant productivity,

particularly in non-halophytic species. Excess Na+ disrupts ion

homeostasis, leading to physiological stress and reduced growth

across large terrestrial areas (Blumwald et al., 2000; Munns and

Tester, 2008; Kronzucker et al., 2013). NaCl is the most soluble and

widespread salt contributing to soil salinity, and its detrimental

effects on plants include growth inhibition and decreased

productivity (Ashrafi and Rezaei Nejad, 2018; Bezerra et al., 2020;

Blumwald et al., 2000; Gholamzadeh Alam et al., 2022; Munns and

Tester, 2008). One of the earliest visible symptoms of Na+ toxicity is

foliar damage, which begins in the oldest leaves and manifests as tip

and marginal burn, scorch, and necrosis, which are factors that

significantly diminish the ornamental value of landscape plants

(Cassaniti et al., 2009, 2013; Villarino and Mattson, 2011). Table 4

summarizes ion content responses in the leaves of 128 ornamental

species across 40 botanical families under varying levels of saline

irrigation. In most studies, NaCl was introduced through irrigation

water to simulate saline conditions, leading to a general increase in

leaf Na+ content. However, in some species, including Ipomoea

purpurea, Ranunculus acris, Rosa ×fortuniana, Sophora japonica,

and Viburnum opulus, Na+ accumulation was not significantly

affected by saline irrigation (Niu et al., 2008; Mircea et al., 2023;

Paudel and Sun, 2022; Sun et al., 2020; Wala et al., 2023). A

particularly striking case is Viburnum opulus, where Na+ content

increased 36-fold after 8 weeks of saline irrigation at EC 10 dS·m-1,

though this increase was not statistically significant (Sun et al.,

2020). Conversely, Sophora japonica exhibited no significant change

in Na+ content under the same treatment, suggesting that salt-

tolerant species may possess mechanisms to restrict Na+ uptake or

transport (Paudel and Sun, 2022). Similarly, Na+ content for

Ipomoea purpurea and Ranunculus acris suggests the presence of

mechanisms that block long-distance Na+ transport, confining

excess Na+ to the roots (Mircea et al., 2023; Wala et al., 2023). In
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addition, Rosa ×fortuniana has been reported to possess an effective

Na+ exclusion mechanism, further highlighting the species-specific

nature of Na+ regulation under saline stress (Niu et al., 2008).

Cl- is an essential micronutrient for higher plants, playing a

crucial role in various physiological processes (Broyer et al., 1954;

Johnson et al., 1957). It functions as a major osmotically active

solute and counter anion, contributing to the regulation of turgor

pressure, intracellular pH gradients, and electrical excitability

(White and Broadley, 2001). Moreover, Cl- is involved in enzyme

activation and is essential for photosynthesis (Geilfus, 2018; Raven,

2017). Cl- deficiency leads to reduced leaf growth and wilting,

followed by symptoms such as chlorosis, bronzing, and necrosis

(White and Broadley, 2001). For example, Broyer et al. (1954) and

Johnson et al. (1957) found that Cl- deficiency caused severe growth

inhibition and physiological stress, with Lactuca sativa (lettuce) and

Solanum lycopersicum (tomato) being particularly sensitive.

However, Cl- deficiency is seldom observed under natural

conditions, except in inland continental regions distant from the

coast, where it becomes more pronounced in sandy soils (Geilfus,

2018; Yan et al., 2018). In non‐saline conditions, glycophytes

actively uptake Cl- and accumulate it in their leaves at

concentrations comparable to those of other macronutrients, such

as K+ and NO3
-, thereby improving water relations, growth, and

carbon (C), nitrogen (N), and energy metabolism, enhancing

drought tolerance (Franco-Navarro et al., 2016; 2019, 2021;

Peinado-Torrubia et al., 2023). In a saline context, similar to Na+,

excessive Cl- accumulation in plant tissues can lead to growth

reduction and physiological stress (Cassaniti et al., 2013; Eaton,

1942; Geilfus, 2018). It is important to emphasize that Cl- is the

predominant anion in salinized soils (Geilfus, 2018). Cl- toxicity

symptoms typically begin with leaf discoloration, followed by

necrotic lesions and leaf-tip burn, which can significantly impact

the aesthetic value of ornamental plants (Cassaniti et al., 2009;

Garcıá-Caparrós and Lao, 2018; Geilfus, 2018; Villarino and

Mattson, 2011). As summarized in Table 4, most ornamental

species exhibit significantly increased Cl- content under saline

conditions. However, Panicum virgatum appears to be an

exception. Sun et al. (2018a) reported that after four weeks of

saline irrigation at EC 10 dS·m-1, P. virgatum maintained Cl-

concentrations similar to that of control plants. This suggests that

switchgrass possesses mechanisms to limit Cl- accumulation in

shoots, potentially contributing to its salinity tolerance.

As a key macronutrient, K+ is the most abundant cation in plant

cells and the second most abundant nutrient in plant leaves after N

(Prajapati and Modi, 2012; Sardans and Peñuelas, 2015). It plays a

vital role in plant growth and metabolism, including enzyme

activation, protein synthesis, stomatal regulation, ion absorption

and transport, photosynthesis, respiration, and long-distance

nutrient translocation (Mengel, 2016; Prajapati and Modi, 2012).

Despite its importance, K+ availability in groundwater is generally

low, as it is more easily leached than N and phosphorus (P),

resulting in limited sources for plant uptake (Arienzo et al., 2009;

Prajapati and Modi, 2012; Sardans and Peñuelas, 2015). K+

deficiency symptoms first appear in older leaves, manifesting as

yellow scorching, chlorosis, and necrosis along the leaf margins
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TABLE 4 Effects of saline irrigation on nutrient concentrations in leaves in different ornamental species.

Botanical
family

Species Salt treatments Ca Cl Na K References

Acanthaceae Anisacanthus quadrifidus 10 dS·m-1 i, 8 weeksii –iii ↑iv ↑ – Wu et al., 2016a

Acanthaceae Dicliptera suberecta 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↓v Wu et al., 2016a

Acanthaceae Ruellia brittoniana 10 dS·m-1, 8 weeks – ↑ ↑ ↓ Sun et al., 2015a

Adoxaceae Viburnum×burkwoodii 10 dS·m-1, 8 weeks ↑ ↑ ↑ –
Chen et al., 2020; Sun

et al., 2020

Adoxaceae Viburnum cassinoides 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Sun et al., 2020

Adoxaceae Viburnum dentatum 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑ Sun et al., 2020

Adoxaceae Viburnum dilatatum 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑ Sun et al., 2020

Adoxaceae Viburnum×’NCVX1’ 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑
Chen et al., 2020; Sun

et al., 2020

Adoxaceae Viburnum nudum 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑
Chen et al., 2020; Sun

et al., 2020

Adoxaceae Viburnum opulus 10 dS·m-1, 8 weeks ↑ ↑ – – Sun et al., 2020

Adoxaceae Viburnum plicatum 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Sun et al., 2020

Adoxaceae Viburnum pragense 10 dS·m-1, 8 weeks ↑ ↑ ↑ –
Chen et al., 2020; Sun

et al., 2020

Adoxaceae Viburnum×rhytidophylloides 10 dS·m-1, 8 weeks ↑ ↑ ↑ –
Chen et al., 2020; Sun

et al., 2020

Adoxaceae Viburnum trilobum 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Sun et al., 2020

Apocynaceae Catharanthus roseus 4.7 dS·m-1, 4 months ↓ ↑ ↑ ↓ Mohammadi Kabari et al., 2024

Apocynaceae Catharanthus roseus 8.1 dS·m-1, 50 days ↓ vi ↑ ↓ Cartmill et al., 2013

Asteraceae Calendula officinalis ~4.7 dS·m-1, 137 days ↑ ↑ Swaefy and El-Ziat, 2020

Asteraceae Calendula officinalis 9.7 dS·m-1, 4 weeks – ↑ ↑ – Kozminska et al., 2017

Asteraceae Calendula officinalis 12.5 dS·m-1, 70 days – ↑ ↑ ↓ Fornes et al., 2007

Asteraceae Chrysactinia mexicana 10 dS·m-1, 5 weeks ↑ ↑ ↑ ↓ Wu et al., 2016b

Asteraceae Eupatorium greggii 10 dS·m-1, 5 weeks ↑ ↑ ↑ ↓ Wu et al., 2016b

Asteraceae Gazania rigen 12 dS·m-1, 12 weeks ↓ ↑ ↑ Niu and Rodriguez, 2006b

Asteraceae Gazania splendens 7.5 dS·m-1, 60 days ↑ ↑ Garcıá-Caparrós et al., 2016

Asteraceae Gerbera jamesonii ~4.6 dS·m-1, 5 months ↑ ↓ Don et al., 2010

Asteraceae Leucanthemum ×superbum 10 dS·m-1, 5 weeks ↑ ↑ ↑ ↓ Wu et al., 2016b

Asteraceae Melampodium leucanthum 5–10 dS·m-1, 5 weeks ↑ ↑ ↑ Wu et al., 2016b

Asteraceae Osteospermum hybrida 5 dS·m-1, 82 days ↑ ↑ ↓ Valdés et al., 2015

Asteraceae Rudbeckia fulgida 16.1 dS·m-1, 6 weeks ↑ ↑ Gerber et al., 2011

Asteraceae Santolina chamaecyparissus 10 dS·m-1, 5 weeks ↑ ↑ ↑ ↓ Wu et al., 2016b

Asteraceae Senecio cineraria 13 dS·m-1, 30 days ↑ – Saito et al., 2015

Asteraceae Symphyotrichum oblongifolium 10 dS·m-1, 5 weeks ↑ ↑ ↑ Wu et al., 2016b

Asteraceae Tagetes lemmonii 5–10 dS·m-1, 5 weeks ↑ ↑ ↑ Wu et al., 2016b

Asteraceae Tetraneuris scaposa 10 dS·m-1, 5 weeks ↑ ↑ ↑ ↓ Wu et al., 2016b

Asteraceae Viguiera stenoloba 10 dS·m-1, 5 weeks ↑ ↑ ↑ ↓ Wu et al., 2016b

Asteraceae Wedelia texana 10 dS·m-1, 5 weeks ↑ ↑ ↑ Wu et al., 2016b

(Continued)
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TABLE 4 Continued

Botanical
family

Species Salt treatments Ca Cl Na K References

Asteraceae Zinnia maritima 3-4.2 dS·m-1, 26 days – ↑ ↑ – Niu et al., 2012c

Asteraceae Zinnia marylandica 4.2 dS·m-1, 26 days ↑/– ↑ ↑ ↑/– Niu et al., 2012c

Aizoaceae Delosperma cooperi 12 dS·m-1, 12 weeks – ↑ ↑ Niu and Rodriguez, 2006b

Balsaminaceae Impatiens walleriana 3.1 dS·m-1 ↑ ↑ ↑ ↓ Kuehny and Morales, 1998

Begoniaceae Begonia semperflorens ~3.6 dS·m-1, 12 weeks ↓ ↑ Çiçek, 2023

Brassicaceae Nasturtium officinale 9.7 dS·m-1, 21 days ↑ ↑ ↓ Kaddour et al., 2013

Caryophyllaceae Dianthus chinensis 7.8 dS·m-1, 39 days ↓ ↑ ↓ Zhang et al., 2019

Cannaceae Canna indica 5–20 dS·m-1, 20 days ↑ ↑ Chen et al., 2019b

Campanulaceae Lobelia cardinalis 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↓ Wu et al., 2016a

Campanulaceae Lobelia erinus 2 dS·m-1, 60 days ↓ ↑ ↑ ↓ Escalona et al., 2013

Caprifoliacea Diervilla rivularis 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑ Liu et al., 2017

Caprifoliaceae Lonicera japonica 5.4 dS·m-1, 103 days Niu et al., 2007

Caprifoliaceae Scabiosa columbaria 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↓ Wu et al., 2016a

Cleomaceae Cleome gynandra ~6.9 dS·m-1, 5 weeks Mwai et al., 2002

Convolvulaceae Evolvulus glomeratus 5–10 dS·m-1, 8 weeks ↓ ↑ ↑ ↓ Hooks and Niu, 2019

Convolvulaceae Ipomoea purpurea ~12.9 dS·m-1, 3 weeks – ↑ – – Mircea et al., 2023

Convolvulaceae Ipomoea tricolor ~12.9 dS·m-1, 3 weeks ↑ ↑ ↑ ↑ Mircea et al., 2023

Cornaceae Cornus alba 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑ Liu et al., 2020

Crassulaceae Sedum telephium 10 dS·m-1, 8 weeks ↓ ↑ ↑ ↓ Hooks and Niu, 2019

Crassulaceae Sedum reflexum 10 dS·m-1, 8 weeks – ↑ ↑ ↓ Hooks and Niu, 2019

Crassulaceae Sedum rupestre 10 dS·m-1, 8 weeks ↓ ↑ ↑ ↓ Hooks and Niu, 2019

Elaeagnaceae Shepherdia ×utahensis 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↓ Paudel and Sun, 2023

Ericaceae Arctostaphylos uva-ursi 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Paudel and Sun, 2023

Euphorbiaceae Euphorbia lathyris
10.3-43.5 dS·m-1,

20 days
– ↑

↑,
then ↓

Yang et al., 2013

Euphorbiaceae Jatropha curcas 9 dS·m-1, 54 days ↑ ↑ Niu et al., 2012b

Fabaceae Albizia julibrissin 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑ Paudel and Sun, 2022

Fabaceae Cercis canadensis 3–6 dS·m-1, 167 days ↑ ↑ Niu et al., 2010a

Fabaceae Sophora japonica 5–10 dS·m-1, 8 weeks ↑ ↑ – – Paudel and Sun, 2022

Fabaceae Sophora secundiflora 3–6 dS·m-1, 194 days ↑ ↑ Niu et al., 2010a

Gentianaceae Lisianthus spp.
12 dS·m-1,

until flowering
↑ ↑ Valdez-Aguilar et al., 2013

Gentianaceae Lisianthus spp.
12 dS·m-1,

until flowering
↑ ↑ Valdez-Aguilar et al., 2014

Gentianaceae Lisianthus spp. 8.5 dS·m-1, 70 days ↓ ↑ ↑ ↓ Ashrafi and Rezaei Nejad, 2018

Geraniaceae Pelargonium ×hortorum 6.5 dS·m-1, 88 days ↑ ↑ Valdés et al., 2015

Geraniaceae Pelargonium graveolens 8.5 dS·m-1, 30 days ↑ ↑ ↓ Chrysargyris et al., 2021

Hydrangeaceae
Dichroa febrifuga

×Hydrangea macrophylla
10 dS·m-1, 52 days ↑ ↑ ↑ ↓/– Sun et al., 2022
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TABLE 4 Continued

Botanical
family

Species Salt treatments Ca Cl Na K References

Hydrangeaceae Hydrangea macrophylla 10 dS·m-1, 4 weeks ↑ ↑ ↑ ↑/↓/– Niu et al., 2020

Hydrangeaceae Hydrangea macrophylla 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Liu et al., 2017

Hydrangeaceae Hydrangea paniculata 10 dS·m-1, 4 weeks ↑/– ↑ ↑/– ↑/– Niu et al., 2020

Hydrangeaceae Hydrangea quercifolia 10 dS·m-1, 4 weeks ↑ ↑ ↑ ↑ Niu et al., 2020

Hydrangeaceae Hydrangea serrata 10 dS·m-1, 4 weeks ↑ ↑ ↑ ↑ Niu et al., 2020

Hydrangeaceae Hydrangea serrata ×macrophylla 10 dS·m-1, 4 weeks ↑ ↑ ↑ ↓ Niu et al., 2020

Juncaceae Juncus effusus 5–10 dS·m-1, 8 weeks Sun and Palmer, 2018

Lamiaceae Agastache cana 4 dS·m-1, 10 weeks Niu and Rodriguez, 2006a

Lamiaceae Ajuga reptans 10 dS·m-1, 6 weeks ↑ ↑ ↑ ↓ Wu et al., 2016c

Lamiaceae Caryopteris ×clandonensis 10 dS·m-1, 8 weeks ↓ ↑ ↑ ↑ Wu et al., 2016a

Lamiaceae Lamium maculatum 10 dS·m-1, 6 weeks ↑ ↑ ↑ – Wu et al., 2016b

Lamiaceae Perovskia atriplicifolia 10 dS·m-1, 6 weeks ↑ ↑ ↑ ↓ Wu et al., 2016c

Lamiaceae Poliomintha longiflora 10 dS·m-1, 6 weeks ↑ ↑ ↑ – Wu et al., 2016c

Lamiaceae Salvia farinacea 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Sun et al., 2015a

Lamiaceae Salvia leucantha 5–10 dS·m-1, 8 weeks ↑ ↑ ↑ – Sun et al., 2015a

Lamiaceae Scutellaria suffrutescens 10 dS·m-1, 6 weeks ↑ ↑ ↑ – Wu et al., 2016c

Lamiaceae Stachys coccinea 10 dS·m-1, 6 weeks ↑ ↑ ↑ ↓ Wu et al., 2016c

Lamiaceae Teucrium chamaedrys 12 dS·m-1, 12 weeks – ↑ ↑ Niu and Rodriguez, 2006b

Lythraceae Cuphea hyssopifolia 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑ Wu et al., 2016a

Malvaceae Hibiscus syriacus 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑ Liu et al., 2017

Malvaceae Malvaviscus arboreus 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↓ Sun et al., 2015a

Malvaceae Pavonia lasiopetala 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Wu et al., 2016a

Oleaceae Forsythia ×intermedia 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑ Liu et al., 2017

Papaveracea Glaucium flavum ~38.6 dS·m-1, 60 days ↓ ↑ ↑ Cambrollé et al., 2011

Plantaginaceae Angelonia angustifolia 7.4 dS·m-1, 122 days ↑ ↑ Niu et al., 2010a

Plantaginaceae Antirrhinum majus ~5.2 dS·m-1, 76 days ↑ ↑ ↓ El-Attar, 2017

Plantaginaceae Antirrhinum majus 14 dS·m-1, 42 days ↑ ↑ ↑ ↓ Carter and Grieve, 2008

Plantaginaceae Bacopa monneiri ~7.4 dS·m-1, 20 days ↑ ↑ Khaliel et al., 2011

Plantaginaceae Penstemon barbatus 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Paudel and Sun, 2024

Plantaginaceae Penstemon davidsonii 2.5–10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑ Nepal et al., 2024

Plantaginaceae Penstemon eatonii 12 dS·m-1, 10 weeks Niu and Rodriguez, 2006b

Plantaginaceae Penstemon heterophyllus 2.5–10 dS·m-1, 8 weeks ↑ ↑ ↑ – Nepal et al., 2024

Plantaginaceae Penstemon strictus 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↓ Paudel and Sun, 2024

Plumbaginaceae Ceratostigma plumbaginoides 6.4 dS·m-1, 12 weeks – ↑ ↑ Niu and Rodriguez, 2006b

Poaceae Eragrostis spectabilis 10 dS·m-1, 65 days ↑ ↑ ↑ ↓ Wang et al., 2019b

Poaceae Miscanthus sinensis 10 dS·m-1, 65 days ↑ ↑ ↑ – Wang et al., 2019b

Poaceae Panicum virgatum 10 dS·m-1, 65 days ↑ ↑ ↑ ↓ Wang et al., 2019b

Poaceae Panicum virgatum 10 dS·m-1, 4 weeks ↑/– – –/↑ –/↓ Sun et al., 2018a
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(Prajapati and Modi, 2012; Mengel, 2016). Affected plants often

exhibit slow growth and poorly developed root systems (Mengel,

2016). High salinity exacerbates nutrient imbalances, particularly by

limiting K+ uptake due to competition with other monovalent

cations, such as Na+ (Arif et al., 2020; Chérel et al., 2014). Salt-

induced osmotic and ionic stresses impair K+ uptake efficiency, as
Frontiers in Plant Science 11
Na+ competes for K+ binding sites, ultimately leading to chlorophyll

degradation and protein dysfunction (Kumari et al., 2021). Under

saline irrigation, 35.9% of ornamental species listed in Table 4

experienced a significant decline in leaf K+ content (Cartmill et al.,

2013; Don et al., 2010; Fornes et al., 2007; Kaddour et al., 2013; Sun

et al., 2015a; Valdés et al., 2015; Zhang et al., 2019). Conversely,
TABLE 4 Continued

Botanical
family

Species Salt treatments Ca Cl Na K References

Poaceae Pennisetum americanum 20 dS·m-1, 4 weeks ↑ ↑ ↑ ↑ Ashraf and McNeilly, 1987

Poaceae Schizachyrium scoparium 10 dS·m-1, 65 days ↑ ↑ ↑ ↓ Wang et al., 2019b

Poaceae Zoysia matrella 10 dS·m-1, 8 weeks ↑ ↑ Hooks et al., 2022

Poaceae Zoysia minima 10 dS·m-1, 8 weeks ↑ ↑ Hooks et al., 2022

Poaceae Zoysia japonica 10 dS·m-1, 8 weeks ↑ ↑ Hooks et al., 2022

Polemoniaceae Phlox paniculata 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↓/– Sun et al., 2015a

Ranunculaceae Aquilegia canadensis 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Wu et al., 2016c

Ranunculaceae Ranunculus asiaticus 6 dS·m-1, 88 days ↓ ↓ Valdez-Aguilar et al., 2009

Ranunculaceae Ranunculus acris 5.8 dS·m-1, 48 days – – – Wala et al., 2023

Ranunculaceae Ranunculus sceleratus 15.6 dS·m-1, 5 weeks ↑ ↑ Ievinsh et al., 2022

Rosaceae Cercocarpus ledifolius 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Paudel and Sun, 2023

Rosaceae Cercocarpus montanus 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Paudel and Sun, 2023

Rosaceae Chaenomeles speciosa 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↑/– Liu et al., 2017

Rosaceae Rosa fortuniana 9 dS·m-1, 15 weeks ↑ – Niu et al., 2008

Rosaceae Rosa ×hybrida 8 dS·m-1, 54 days ↑ ↑ Cai et al., 2014b

Rosaceae Rosa multiflora 9 dS·m-1, 15 weeks ↑ ↑ Niu et al., 2008

Rosaceae Rosa odorata 9 dS·m-1, 15 weeks ↑ ↑ Niu et al., 2008

Rosaceae Rosa spp. 6.4 dS·m-1, 7 weeks – ↑ ↑ ↓/– Niu et al., 2013

Rosaceae Rosa spp. 6.4 dS·m-1, 10 weeks ↓/– ↑ ↑ ↓/– Niu et al., 2013

Rosaceae Rosa spp. 10 dS·m-1, 43 days Cai et al., 2014a

Solanaceae Capsicum annuum 8.1 dS·m-1, 57 days ↑ ↑ ↑ ↓ Niu et al., 2012a

Solanaceae Capsicum annuum 4.1 dS·m-1, 74 days – ↑ ↑ ↓ Niu et al., 2010b

Solanaceae Cestrum spp. 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↓ Wu et al., 2016a

Solanaceae Nicotiana rustica 6.4 dS·m-1, 100 days ↑ ↓ Cusido et al., 1987

Solanaceae Petunia hybrid 12.5 dS·m-1, 30 days – ↑ ↑ ↓ Fornes et al., 2007

Verbenaceae Lantana camara 5.1 dS·m-1, 175 days ↑ ↑ Bañón et al., 2011

Verbenaceae Verbena ×hybrida 10 dS·m-1, 8 weeks ↑ ↑ ↑ ↓ Sun et al., 2015a

Verbenaceae Verbena officinallis 8.5 dS·m-1, 30 days – ↑ ↑ Chrysargyris et al., 2021

Violaceae Violax ×Wittrockiana 3.1 dS·m-1, 8 weeks ↑ ↑ ↑ ↓ Kuehny and Morales, 1998

Vitaceae Parthenocissus quinquefolia 10 dS·m-1, 8 weeks ↑ ↑ ↑ – Liu et al., 2017
ithe electricity conductivity (EC) of saline irrigation.
ii the duration of saline irrigation.
iii no significant change observed on nutrition content.
iv ↑, nutrition content significantly increased.
v ↓, nutrition content significantly decreased.
vi no data collected.
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17.9% of species exhibited an increase in K+ content under saline

conditions, suggesting potential adaptive mechanisms for K+

retention or enhanced uptake (Ashraf and McNeilly, 1987;

Garcıá-Caparrós et al., 2016; Ievinsh et al., 2022; Liu et al., 2017;

Niu et al., 2020). Due to the simultaneous increase in Na+ and

decrease in K+, most non-halophytic species exhibit a reduced K+/

Na+ ratio under saline conditions. The ability to maintain K+

homeostasis and regulate the Na+/K+ ratio is crucial for salinity

tolerance, as it helps mitigate the detrimental effects of salt stress

and supports plant survival (Kumari et al., 2021; Sun et al., 2015b).

Ca²+ plays a vital role in maintaining ecosystem structure and

function (Cramer, 2002; Luo et al., 2023). Although Ca²+ deficiency

is generally rare as it is the fifth most abundant element in the

Earth’s crust, soil Ca²+ can be lost due to water or wind erosion,

leading to deficiency symptoms such as poor root development, leaf

necrosis and curling, and blossom-end rot (Hepler, 2005; Luo et al.,

2023; Thor, 2019; White and Broadley, 2003). As an essential

macronutrient, Ca2+ serves both structural and signaling

functions in plants. It plays a crucial role in cell wall and

membrane stability, contributing to rigidity and overall plant

integrity (Hepler, 2005; Thor, 2019). Plus, Ca2+ acts as a critical

intracellular messenger, regulating numerous developmental and

physiological processes (Thor, 2019; White and Broadley, 2003). A

complex Ca2+ response network, consisting of Ca2+-integrated

proteins, phytohormones, osmolytes, receptors, and other

signaling factors, mediates cellular responses to abiotic stresses,

including salinity (Bachani et al., 2022). Under saline stress, an

increase in Ca2+ concentration often inhibits plant growth (Bressan

et al., 1998; Porcelli et al., 1995). In roots, high extracellular NaCl

triggers Ca2+ influx, elevating cytosolic Ca2+ levels as a secondary

messenger in stress signaling pathways (Laohavisit et al., 2013).

Several studies have demonstrated that supplementing Ca2+

effectively alleviates NaCl-induced stress, improving plant

resilience to salinity (Nepal et al., 2024). As summarized in

Table 4, 59.0% of ornamental plants exhibited a significant

increase in Ca²+ content when irrigated with saline water,

suggesting a compensatory mechanism in response to saline

stress. In contrast, only 10.2% of species showed a significant

decline in Ca²+ content, highlighting the generally protective role

of Ca²+ in maintaining plant function under saline conditions.
3.4 Photosynthetic characteristics

3.4.1 Chlorophyll
Chlorophyll is crucial component of ornamental plants as it

enhances leaf greenness, which improves their aesthetic appeal, and

plays a pivotal role in converting sunlight into chemical energy

through photosynthesis (Xiong et al., 2015). Both biotic and abiotic

stresses have impacts on content and efficiency of leaf

photosynthetic pigments, including chlorophylls, carotenoids, and

anthocyanins, which often lead to changes specifically in

chlorophyll content (Percival et al., 2008). Environmental stress,

for instance, can inhibit chlorophyll synthesis while also triggering

its degradation (Taïbi et al., 2016). As a result, reduced chlorophyll
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content became a typical indicator of oxidative stress and leaf

senescence in plants (Kräutler, 2009; Taïbi et al., 2016).

Consequently, “leaf greenness” serves as a robust indicator of

plant vitality and stress levels (Percival et al., 2008).

Table 5 summarizes the leaf greenness responses of 72

ornamental species across 28 botanical families under varying levels

of saline irrigation. Cleome gynandra exhibited an 80% reduction in

chlorophyll content when exposed to saline irrigation at EC 6.9 dS·m-1

for 5 weeks (Mwai et al., 2002). In contrast, species like Begonia

semperflorens, Calendula officinalis, and Catharanthus roseus

experienced decreases of less than 50% in chlorophyll content when

irrigated with saline solutions at EC ranging from 3.6 to 12.5 dS·m-1

(Çiçek, 2023; Fornes et al., 2007; Mohammadi Kabari et al., 2024).

Some species, such as Ageratum conyzoides, Ipomoea tricolor, and

Ranunculus acris, maintained similar chlorophyll content under

saline stress, with reductions of less than 6% after irrigation periods

of 20 to 48 days at EC between 5.8 to 12.9 dS·m-1 (Mircea et al., 2023;

Sun et al., 2012;Wala et al., 2023).While saline stress typically reduces

chlorophyll content, certain studies have reported increased levels

under such conditions (Gómez et al., 2003; Shah et al., 2017). For

example, Petunia hybrid exhibited enhanced chlorophyll content

when subjected to saline irrigation at EC 12.5 dS·m-1 for 30 days,

likely because it accumulated more N and Mg2+, which are essential

components of chlorophyll molecules, demonstrating high salt

tolerance (Fornes et al., 2007).

Measuring chlorophyll content in vitro is considered more

accurate but involves complex, destructive, and resource-intensive

procedures (Nagaoka, 2022; Shah et al., 2017; Uddling et al., 2007).

In contrast, non-destructive methods such as handheld meters, such

as the SPAD-502 meter, are gaining popularity. This SPAD-502

device calculates SPAD readings based on the differential

absorption of red (650 nm) and infrared (940 nm) light by

chlorophyll in plant tissue (Percival et al., 2008; Xiong et al.,

2015). Table 5 also highlights species that maintained unaffected

SPAD readings under saline irrigation, including Capsicum

annuum, Gaillardia aristata, and Muhlenbergia capillaris (Niu

et al., 2007, 2010c; Sun and Palmer, 2018). Conversely, species

like Antirrhinum majus, Anisacanthus quadrifidus, Pelargonium

×hortorum, and Ruellia brittoniana experienced a less than 20%

reduction in SPAD readings after exposure to saline solutions

ranging from 5 to 10 dS·m-1 for periods of 8 weeks to 88 days

(El-Attar, 2017; Sun et al., 2015a; Valdés et al., 2015; Wu et al.,

2016a). However, some species showed significant declines in SPAD

readings, up to 71% and 73%, as reported by Liu et al. (2017) and

Paudel and Sun (2024), respectively, under similar saline

treatments. The relationship between chlorophyll content and

SPAD readings varies among species and is influenced by factors

such as leaf orientation, sensor type, and measurement protocols

(Xiong et al., 2015; Uddling et al., 2007). Furthermore, the

interaction of SPAD readings and abiotic stresses, including

salinity, have received little attention (Shah et al., 2017).

3.4.2 Quantum efficiency
The Fv/Fm ratio provides an estimate of the maximum quantum

efficiency of photosystem II (PSII) photochemistry. It also offers a
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TABLE 5 Effects of leaf greenness parameters, including chlorophyll content, soil plant analysis development (SPAD), and the maximum quantum
efficiency of photosystem II (Fv/Fm) in different ornamental species.

Botanical
family

Species
Salt

treatments
Leaf greenness observation References

Acanthaceae Anisacanthus quadrifidus
5–10 dS·m-1 i,

8 weeksii
SPAD reduction of 11%-17% Wu et al., 2016a

Acanthaceae Dicliptera suberecta
5–10 dS·m-1,
8 weeks

SPAD reduction of 5% Wu et al., 2016a

Acanthaceae Ruellia brittoniana
5–10 dS·m-1,
8 weeks

SPAD reduction of 4% Sun et al., 2015a

Amaranthaceae Celosia argentea ~7.7 dS·m-1 Significant reduction on chlorophyll a content
Gholamzadeh Alam

et al., 2022

Apocynaceae Catharanthus roseus
4.7 dS·m-1,
4 months

Chlorophyll content reduction on 40%
Mohammadi Kabari

et al., 2024

Asteraceae Ageratum conyzoides ~1.6 dS·m-1, 4 weeks Chlorophyll content reduction of 30% Putri et al., 2024

Asteraceae Ageratum conyzoides
~1.6-9.7 dS·m-1,

20 days
Chlorophyll content not affected Sun et al., 2012

Asteraceae Calendula officinalis
~4.7 dS·m-1,
137 days

SPAD reduction of 36% Swaefy and El-Ziat, 2020

Asteraceae Calendula officinalis 9.7 dS·m-1, 4 weeks
Chlorophyll a and b content reductions of 50% and

40%, respectively
Kozminska et al., 2017

Asteraceae Calendula officinalis 12.5 dS·m-1, 70 days Chlorophyll content reduction of 24% Fornes et al., 2007

Asteraceae Gaillardia aristata 5.4 dS·m-1, 103 days SPAD not affected Niu et al., 2007

Asteraceae Gerbera jamesonii
~12.9 dS·m-1,
10 hours

Significant reduction on chlorophyll content Uzma et al., 2022b

Asteraceae Gerbera jamesonii
~12.9 dS·m-1,

20 days
Significant reduction on chlorophyll content Uzma et al., 2022a

Asteraceae Melampodium leucanthum 10 dS·m-1, 5 weeks SPAD reduction of 28% Wu et al., 2016b

Asteraceae Osteospermum hybrida 5 dS·m-1, 82 days SPAD not affected Valdés et al., 2015

Asteraceae Tagetes erecta 3–6 dS·m-1, 8 weeks SPAD reduction of 19%-61% Sun et al., 2018b

Asteraceae Tagetes lemmonii
5–10 dS·m-1,
5 weeks

SPAD reduction of 46% Wu et al., 2016b

Asteraceae Wedelia texana 10 dS·m-1, 5 weeks SPAD reduction of 26% Wu et al., 2016b

Balsaminaceae Impatiens walleriana 3.9 dS·m-1 Chlorophyll reduction of 41% Roozbahani et al., 2020

Begoniaceae Begonia semperflorens
~3.6 dS·m-1,
12 weeks

Chlorophyll reduction of 38% Çiçek, 2023

Brassicaceae Brassica oleracea
~3.2-51.5 dS·m-1,

15 days
SPAD reduction of 58% Salachna et al., 2017

Brassicaceae Nasturtium officinale 2.8 dS·m-1, 19 days Chlorophyll content not affected Pavlova et al., 2021

Brassicaceae Nasturtium officinale 9.7 dS·m-1, 21 days
Chlorophyll a and b content reductions of 64% and

48%, respectively
Kaddour et al., 2013

Cannaceae Canna indica
5–10 dS·m-1,

20 days
Significant reduction on chlorophyll Chen et al., 2019b

Campanulaceae Lobelia cardinalis
5–10 dS·m-1,
8 weeks

SPAD reduction of 21%-25% Wu et al., 2016a

Caprifoliacea Diervilla rivularis 5 dS·m-1, 8 weeks SPAD reduction of 24%-47% Liu et al., 2017

Caprifoliaceae Lonicera japonica 5.4 dS·m-1, 103 days SPAD not affected Niu et al., 2007
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TABLE 5 Continued

Botanical
family

Species
Salt

treatments
Leaf greenness observation References

Caprifoliaceae Scabiosa columbaria
5–10 dS·m-1,
8 weeks

SPAD reduction of 2%-8% Wu et al., 2016a

Cleomaceae Cleome gynandra ~6.9 dS·m-1, 5 weeks Chlorophyll reduction up to 80% Mwai et al., 2002

Convolvulaceae Ipomoea purpurea
~12.9 dS·m-1,

3 weeks
Significant reduction on chlorophyll a content Mircea et al., 2023

Convolvulaceae Ipomoea tricolor
~12.9 dS·m-1,

3 weeks
Chlorophyll a content not affected Mircea et al., 2023

Cyperaceae Carex morrowii 10 dS·m-1, 95 days SPAD reduction of 36% Xing et al., 2021

Gentianaceae Lisianthus spp. 8.5 dS·m-1, 70 days Chlorophyll reduction of 18%
Ashrafi and Rezaei

Nejad, 2018

Geraniaceae Pelargonium ×hortorum 6.5 dS·m-1, 88 days SPAD reduction of 13% Valdés et al., 2015

Geraniaceae Pelargonium graveolens 8.5 dS·m-1, 30 days Fv/Fm and SPAD reductions of 5% and 24%, respectively Chrysargyris et al., 2021

Hydrangeaceae
Dichroa febrifuga

×Hydrangea macrophylla
10 dS·m-1, 52 days Significantly reduced on SPAD Sun et al., 2022

Hydrangeaceae Hydrangea macrophylla
5–10 dS·m-1,
8 weeks

SPAD reduction of 10%-21% Liu et al., 2017

Lamiaceae Caryopteris ×clandonensis
5–10 dS·m-1,
8 weeks

SPAD reduction of 26% Wu et al., 2016a

Lamiaceae Lamium maculatum
5–10 dS·m-1,
6 weeks

SPAD reduction of 14% Wu et al., 2016c

Lamiaceae Salvia farinacea 10 dS·m-1, 8 weeks SPAD reduction of 12% Sun et al., 2015a

Lamiaceae Salvia leucantha
5–10 dS·m-1,
8 weeks

SPAD reduction of 6%-23% Sun et al., 2015a

Lamiaceae Scutellaria suffrutescens 5 dS·m-1, 6 weeks SPAD reduction of 26% Wu et al., 2016c

Malvaceae Hibiscus syriacus 6.5 dS·m-1, 11 weeks SPAD reduction of 35% Chen et al., 2019a

Malvaceae Hibiscus syriacus
5–10 dS·m-1,
8 weeks

SPAD reduction of 14%-73% Liu et al., 2017

Malvaceae Malvaviscus arboreus
5–10 dS·m-1,
8 weeks

SPAD reduction of 4%-6% Sun et al., 2015a

Malvaceae Pavonia lasiopetala
5–10 dS·m-1,
8 weeks

SPAD reduction of 1%-8% Wu et al., 2016a

Oleaceae Forsythia ×intermedia
5–10 dS·m-1,
8 weeks

SPAD reduction of 2%-17% Liu et al., 2017

Papaveracea Glaucium flavum
~19.3 dS·m-1,

60 days
Chlorophyll reduction of 50% Cambrollé et al., 2011

Plantaginaceae Antirrhinum majus ~5.2 dS·m-1, 76 days SPAD reduction of 10% El-Attar, 2017

Plantaginaceae Bacopa monneiri ~7.4 dS·m-1, 20 days Chlorophyll significantly reduced Khaliel et al., 2011

Plantaginaceae Penstemon barbatus
5-7.5 dS·m-1,

8 weeks
SPAD reduction of 28%-71% Paudel and Sun, 2024

Plantaginaceae Penstemon heterophyllus
5-7.5 dS·m-1,

8 weeks
SPAD reduction of 26%-40% Nepal et al., 2024

Poaceae Bouteloua gracilis
5–10 dS·m-1,
18 weeks

SPAD not affected Sun and Palmer, 2018

Poaceae Eragrostis spectabilis 10 dS·m-1, 65 days SPAD reduction of 2% Wang et al., 2019b

(Continued)
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rapid and accurate method to assess plant health and stress

tolerance (Li et al., 2006; Lucena et al., 2012). For instance,

Pelargonium graveolens, Rosa spp., and Verbena officinallis

exhibited substantial declines in Fv/Fm under saline irrigation (Cai

et al., 2014b; Chrysargyris et al., 2021). PSII is considered the most
Frontiers in Plant Science 15
heat-sensitive component of the photosynthetic apparatus (Čajánek

et al., 1998; Zhou et al., 2015). Therefore, the significant fluctuation

in canopy temperature, which is a consequence of stomatal closure

under saline stress, can lead to reductions in Fv/Fm (Acosta-Motos

et al., 2017; Khasanov et al., 2023).
TABLE 5 Continued

Botanical
family

Species
Salt

treatments
Leaf greenness observation References

Poaceae Leymus arenarius
5–10 dS·m-1,
18 weeks

SPAD not affected Sun and Palmer, 2018

Poaceae Miscanthus sinensis 10 dS·m-1, 65 days SPAD reduction of 3%-10% Wang et al., 2019b

Poaceae Muhlenbergia capillaris 10 dS·m-1, 18 weeks SPAD not affected Sun and Palmer, 2018

Poaceae Panicum virgatum 10 dS·m-1, 65 days SPAD reduction of 6%-9% Wang et al., 2019b

Poaceae Panicum virgatum 10 dS·m-1, 4 weeks SPAD reduction of 17% Sun et al., 2018a

Poaceae Schizachyrium scoparium 10 dS·m-1, 65 days SPAD reductions of 3%-5% Wang et al., 2019b

Poaceae Sporobolus heterolepis
5–10 dS·m-1,

95 days
SPAD reductions of 20% Xing et al., 2021

Ranunculaceae Aquilegia canadensis
5–10 dS·m-1,
8 weeks

SPAD reduction of 16%-25% Wu et al., 2016c

Ranunculaceae Ranunculus acris 5.8 dS·m-1, 48 days Chlorophyll reduction of 6% Wala et al., 2023

Rosaceae Chaenomeles speciosa 5 dS·m-1, 8 weeks SPAD reduction of 32%-33% Liu et al., 2017

Rosaceae Physocarpus opulifolius
4.6-6.5 dS·m-1,

11 weeks
SPAD reduction of 21% Chen et al., 2019a

Rosaceae Spiraea japonica 3–6 dS·m-1, 8 weeks SPAD reduction of 11%-27% Wang et al., 2019a

Rosaceae Spiraea japonica 6.5 dS·m-1, 11 weeks SPAD reduction of 35% Chen et al., 2019a

Rosaceae Rosa ×hybrida 8 dS·m-1, 54 days Fv/Fm Significantly reduced Cai et al., 2014b

Rosaceae Rosa spp. 10 dS·m-1, 43 days SPAD reduction of 11%-28% Cai et al., 2014a

Solanaceae Capsicum annuum 4.1 dS·m-1, 74 days SPAD not affected Niu et al., 2010c

Solanaceae Cestrum spp. 10 dS·m-1, 8 weeks SPAD reductions of 7% Wu et al., 2016a

Solanaceae Petunia hybrid 12.5 dS·m-1, 30 days Chlorophyll content increase of 12% Fornes et al., 2007

Verbenaceae Glandularia canadensis
3.2-5.4 dS·m-1,

103 days
SPAD reductions of 7%-14% Niu et al., 2007

Verbenaceae Glandularia ×hybrida
3.2-5.4 dS·m-1,

103 days
SPAD not affected Niu et al., 2007

Verbenaceae Lantana montevidensis
3.2-5.4 dS·m-1,

103 days
SPAD reductions of 35%-47% Niu et al., 2007

Verbenaceae Lantana ×hybrida 5.4 dS·m-1, 103 days SPAD not affected Niu et al., 2007

Verbenaceae Verbena ×hybrida
5–10 dS·m-1,
8 weeks

SPAD reduction of 2%-10% Sun et al., 2015a

Verbenaceae Verbena macdougalii 5.4 dS·m-1, 103 days SPAD not affected Niu et al., 2007

Verbenaceae Verbena officinallis 3.9 dS·m-1, 12 weeks Chlorophyll reduction of 34% Çiçek and Yücedağ, 2023

Verbenaceae Verbena officinallis 8.5 dS·m-1, 30 days Fv/Fm and SPAD reductions of 7% and 33%, respectively Chrysargyris et al., 2021

Vitaceae Parthenocissus quinquefolia
5–10 dS·m-1,
8 weeks

SPAD reduction of 8%-15% Liu et al., 2017
ithe electricity conductivity (EC) of saline irrigation.
iithe duration of saline irrigation.
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3.4.3 Stomatal conductance
Stomata, which consists of pairs of guard cells, regulate gas

exchange and water loss by adjusting the size of the stomatal pore

through changes in turgor and volume. This process is primarily

controlled by K+ uptake, which is inhibited under salt stress

(Hedrich and Shabala, 2018). As a result, stomatal conductance

declines under saline conditions, making it a widely used parameter

for screening osmotic stress tolerance (Jiang et al., 2006; Rahnama

et al., 2010). The reduction of stomatal conductance varies across

species and salinity levels. For instance, Caryopteris ×clandonensis

and Phlox paniculata exhibited reductions ranging from 4-75% and

7-72%, respectively, when irrigated with saline water at EC between

5–10 dS·m-1 for 8 weeks (Sun et al., 2015a; Wu et al., 2016a).

Similarly, some species showed minimal changes, such as

Anisacanthus quadrifidus and Ruellia brittoniana, with reductions

of less than 15% (Sun et al., 2015a; Wu et al., 2016a). Conversely,

Parthenocissus quinquefolia exhibited a severe reduction of up to

92% under the same saline treatment (Liu et al., 2017). Table 6

summarizes the stomatal and photosynthetic responses of 60
Frontiers in Plant Science 16
ornamental species from 30 botanical families under different

levels of saline irrigation.

Transpiration is the primary process of water loss in plants, with

stomatal transpiration accounting for approximately 95% of the total

(Hedrich and Shabala, 2018; Sterling, 2005). A reduction in stomatal

conductance under salt stress leads to a decline in transpiration rate,

with responses varying across species and saline levels. For example, the

transpiration rate of Spiraea japonica decreased by 38% under saline

irrigation at EC 6 dS·m-1 but remained unchanged at EC 3 dS·m-1 over

the same 8-week period (Wang et al., 2019a). Acorus gramineus

showed no significant change in transpiration after 95 days of saline

irrigation at EC 10 dS·m-1 (Xing et al., 2021). In contrast, Albizia

julibrissin experienced a reduction of up to 73% when exposed to the

same saline conditions for 8 weeks (Paudel and Sun, 2022).

3.4.4 Photosynthesis
Photosynthesis is a fundamental process for plant growth and

development but is highly sensitive to environmental stresses, including

salinity (Li et al., 2006; Sudhir and Murthy, 2004; Zhang et al., 2011).
TABLE 6 Effects of saline irrigation on photosynthesis related parameters, including photosynthetic rate (Pn), stomatal conductance (gs), and
transpiration rate (Tr) in different ornamental species.

Botanical
family

Species
Salt

treatments
Photosynthesis related observations References

Acanthaceae Anisacanthus quadrifidus
5–10 dS·m-1 i,

8 weeksii
Pn, gs, and Tr reductions of 25%-54%, 7%-15%, and 16%-

31%, respectively
Wu et al., 2016a

Acanthaceae Dicliptera suberecta
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 10%-24%, 26%-33%, and 14%-
22%, respectively

Wu et al., 2016a

Acanthaceae Ruellia brittoniana
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 2-20%, 4%-8%, and 15%-18% Sun et al., 2015a

Acoraceae Acorus gramineus
10 dS·m-1,
95 days

Pn reductions of 56%; gs and Tr not affected Xing et al., 2021

Adoxaceae Viburnum×burkwoodii
5–10 dS·m-1,
8 weeks

Pn and gs reductions of 74% and 60%, respectively, at EC10; significant
reduction on Tr at EC5

Chen et al., 2020; Sun
et al., 2020

Adoxaceae Viburnum×’NCVX1’
10 dS·m-1,
8 weeks

Pn reduction of 85%
Chen et al., 2020; Sun

et al., 2020

Adoxaceae Viburnum nudum
5–10 dS·m-1,
8 weeks

Pn and gs reductions of 91% and 88%, respectively
Chen et al., 2020; Sun

et al., 2020

Adoxaceae Viburnum pragense 5 dS·m-1, 8 weeks Pn reduction of 59%
Chen et al., 2020; Sun

et al., 2020

Adoxaceae Viburnum×rhytidophylloides 5 dS·m-1, 8 weeks Pn reduction of 61%
Chen et al., 2020; Sun

et al., 2020

Amaranthaceae Celosia argentea ~7.7 dS·m-1 Significant reduction on Pn, gs, and Tr
Gholamzadeh Alam

et al., 2022

Asteraceae Ageratum conyzoides
~7.9 dS·m-1,
4 weeks

Stomatal density increased Putri et al., 2024

Brassicaceae Brassica oleracea
~3.2-51.5 dS·m-1,

15 days
gs reduction of 34% Salachna et al., 2017

Brassicaceae Brassica spp.
~12.9 dS·m-1,
24 hours

Pn reduction of 42%-67% Pavlović et al., 2019

Campanulaceae Lobelia cardinalis
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 18%-54%, 6%-39%, and 13%-
30%, respectively

Wu et al., 2016a

(Continued)
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TABLE 6 Continued

Botanical
family

Species
Salt

treatments
Photosynthesis related observations References

Caprifoliacea Diervilla rivularis 5 dS·m-1, 8 weeks
Pn, gs, and Tr reductions of 75%-91%, 58%-77%, and 43%-

67%, respectively
Liu et al., 2017

Caprifoliaceae Scabiosa columbaria
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 5%-30%, 27%-55%, 14%-27%, respectively Wu et al., 2016a

Cyperaceae Carex morrowii
10 dS·m-1,
95 days

Pn, gs, and Tr reductions of 69%, 50%, and 43%, respectively Xing et al., 2021

Elaeagnaceae Shepherdia ×utahensis
10 dS·m-1,
8 weeks

Pn and gs reductions of 52% and 85%, respectively; Tr not affected Paudel and Sun, 2023

Ericaceae Arctostaphylos uva-ursi 5 dS·m-1, 8 weeks Pn reduction of 52%; significant reduction on Tr Paudel and Sun, 2023

Euphorbiaceae Euphorbia milii 5 dS·m-1, 50 days Pn reduction of 74% Santos et al., 2022

Fabaceae Albizia julibrissin
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 44%-72%, 53%-73%, and 48%-
70%, respectively

Paudel and Sun, 2022

Fabaceae Sophora japonica
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 49%-66%, 75%, and 71%, respectively Paudel and Sun, 2022

Fabaceae Sophora secundiflora
3–6 dS·m-1,
194 days

Pn, gs, and Tr reductions of 30%, 38%, and 24%, respectively Niu et al., 2010a

Gentianaceae Lisianthus spp.
8.5 dS·m-1,
70 days

Pn, gs, and Tr reductions of 41%, 30%, and 34%, respectively
Ashrafi and Rezaei

Nejad, 2018

Geraniaceae Pelargonium ×hortorum
6.5 dS·m-1,
88 days

Pn and gs reductions of 81% and 52%, respectively Valdés et al., 2015

Goodeniaceae Scaevola sericea
15.6 dS·m-1,
8 weeks

Pn and gs reductions of 32% and 73%, respectively Goldstein et al., 1996

Hydrangeaceae
Dichroa febrifuga

×Hydrangea macrophylla
5–10 dS·m-1,

52 days
Pn, gs, and Tr reductions of 26%-63%, 32%-60%, and 26%-

50%, respectively
Sun et al., 2022

Hydrangeaceae Hydrangea macrophylla
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 80%-210%, 26%-77%, 37%-
61%, respectively

Liu et al., 2017

Lamiaceae Ajuga reptans 5 dS·m-1, 6 weeks Pn, gs, and Tr reduction of 19%, 32%, and 16%, respectively Wu et al., 2016c

Lamiaceae Caryopteris ×clandonensis
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reduction of 16%-60%, 4%-75%, and 1%-
54%, respectively

Wu et al., 2016a

Lamiaceae Lamium maculatum
5–10 dS·m-1,
6 weeks

Pn, gs, and Tr reduction of 29%-37%, 47%-48%, and 25%, respectively Wu et al., 2016c

Lamiaceae Perovskia atriplicifolia
10 dS·m-1,
6 weeks

gs and Tr reductions of 34% and 23%, respectively Wu et al., 2016c

Lamiaceae Salvia farinacea
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reduction of 6%, 10%-19%, and 2%-10%, respectively Sun et al., 2015a

Lamiaceae Salvia leucantha
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reduction of 26%-53%, 29%-42%, and 4%-
31%, respectively

Sun et al., 2015a

Malvaceae Hibiscus syriacus
6.5 dS·m-1,
11 weeks

Pn reduction of 52% Chen et al., 2019a

Malvaceae Hibiscus syriacus
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reduction of 47%-97%, 53%-87%, and 31%-
76%, respectively

Liu et al., 2017

Malvaceae Malvaviscus arboreus
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reduction of 6%-31%, 11%-45%, and 6%-
40%, respectively

Sun et al., 2015a

Malvaceae Pavonia lasiopetala
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reduction of 5%-8%, 11%-34%, and 9%-23%, respectively Wu et al., 2016a

Oleaceae Forsythia ×intermedia
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reduction of 28%-58%, 37%-53%, and 34%-
43%, respectively

Liu et al., 2017

(Continued)
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TABLE 6 Continued

Botanical
family

Species
Salt

treatments
Photosynthesis related observations References

Papaveracea Glaucium flavum
~38.6 dS·m-1,

60 days
Significant reduction on Pn and gs Cambrollé et al., 2011

Plantaginaceae Penstemon barbatus
2.5–5 dS·m-1,

8 weeks
Pn, gs, and Tr reduction of 30%-59%, 65%, and 48%, respectively Paudel and Sun, 2024

Plantaginaceae Penstemon heterophyllus
5-7.5 dS·m-1,

8 weeks
Pn, gs, and Tr reduction of 37%-53%, 78%, and 54%, respectively Nepal et al., 2024

Poaceae Calamagrostis ×acutiflora
5–10 dS·m-1,

95 days
Pn, gs, and Tr not affected Xing et al., 2021

Poaceae Eragrostis spectabilis
5–10 dS·m-1,

65 days
Pn, gs, and Tr reductions of 19%-48%, 34%-58%, and 20%-

34%, respectively
Wang et al., 2019b

Poaceae Miscanthus sinensis
10 dS·m-1,
65 days

Pn, gs, and Tr reductions of 31%-36%, 41%-44%, and 20%-
34%, respectively

Wang et al., 2019b

Poaceae Panicum virgatum
10 dS·m-1,
65 days

Pn, gs, and Tr reductions of 2%-35%, 6%-35%, and 20%-
34%, respectively

Wang et al., 2019b

Poaceae Panicum virgatum
10 dS·m-1,
4 weeks

Pn, gs, and Tr not affetced Sun et al., 2018a

Poaceae Schizachyrium scoparium
10 dS·m-1,
65 days

Pn, gs, and Tr reductions of 31%-59%, 37%-62%, and 20%-
34%, respectively

Wang et al., 2019b

Poaceae Sporobolus heterolepis
5–10 dS·m-1,

95 days
Pn, gs, and Tr reductions of 83%, 57%, 53%, respectively Xing et al., 2021

Polemoniaceae Phlox paniculata
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 6%-91%, 7%-72%, and 29%-
76%, respectively

Sun et al., 2015a

Ranunculaceae Aquilegia canadensis 5 dS·m-1, 8 weeks Pn, gs, and Tr reductions of 15%, 37%, and 24%, respectively Wu et al., 2016c

Rosaceae Cercocarpus ledifolius 5 dS·m-1, 8 weeks Pn reduction of 32%; significant reduction on Tr Paudel and Sun, 2023

Rosaceae Cercocarpus montanus
10 dS·m-1,
8 weeks

Pn reduction of 95%; significant reduction on Tr Paudel and Sun, 2023

Rosaceae Chaenomeles speciosa 5 dS·m-1, 8 weeks
Pn, gs, and Tr reductions of 37%-73%, 22%-61%, and 11%-

47%, respectively
Liu et al., 2017

Rosaceae Physocarpus opulifolius
4.6-6.5 dS·m-1,

11 weeks
Pn reduction of 21% Chen et al., 2019a

Rosaceae Spiraea japonica
3–6 dS·m-1,
8 weeks

Pn reduction of 41%-57% at EC10; gs and Tr not affected at EC3; gs
and Tr reductions of 14% and 38%

Wang et al., 2019a

Rosaceae Spiraea japonica
5.7 dS·m-1,
11 weeks

Pn reduction of 39% Chen et al., 2019a

Rosaceae Rosa ×hybrida 8 dS·m-1, 54 days gs reductions of 19%-36% Cai et al., 2014b

Rosaceae Rosa spp.
10 dS·m-1,
43 days

Pn, gs, and Tr reductions of 19%-43%, 29%-49%, and 25%-
26%, respectively

Cai et al., 2014a

Solanaceae Capsicum annuum
4.1 dS·m-1,
74 days

gs reduction of 46% Niu et al., 2010c

Solanaceae Cestrum spp.
10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 16%-27%, 28%, and 1%-7%, respectively Wu et al., 2016a

Verbenaceae Verbena ×hybrida
5–10 dS·m-1,
8 weeks

Pn and gs reductions of 3%-23% and 5%-9%, respectively; Tr
not affected

Sun et al., 2015a

Vitaceae Parthenocissus quinquefolia
5–10 dS·m-1,
8 weeks

Pn, gs, and Tr reductions of 12%-93%, 32%-92%, and 50%-
75%, respectively

Liu et al., 2017
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Under salt stress, a decrease in leaf area can limit photosynthetic area,

reducing growth and productivity (Paudel and Sun, 2022). Reduced

transpiration rate can mitigate water loss under salt stress, however, it

also limits CO2 diffusion into leaves, restricting photosynthetic

efficiency and increasing leaf temperature due to reduced evaporative

cooling (Farquhar and Sharkey, 1982; Zhu et al., 2022). At the early

stages of salt stress, stomatal closure is the primary limitation to

photosynthesis (Bose et al., 2017; Pan et al., 2021). Over time,

progressive salt accumulation in plant tissues further inhibits CO2

assimilation by disrupting chloroplast function and reducing

chlorophyll content, which is positively correlated with

photosynthetic rate (Li et al., 2006; Sudhir and Murthy, 2004). In

addition, salt stress disrupts enzymatic activity in photosynthetic

process, such as the function of RuBPCO carboxylase (Rubisco)

(Sudhir and Murthy, 2004; Zahra et al., 2022). The impact of salinity

on photosynthesis varies among species. Some, like Calamagrostis

×acutiflora and Panicum virgatum, exhibited no significant reduction

in photosynthesis when exposed to saline irrigation at EC between 5–

10 dS·m-1 for 4 weeks to 95 days (Sun et al., 2020; Xing et al., 2021).

Others, such as Pavonia lasiopetala and Scabiosa columbaria, showed

relatively mild reductions (less than 30%) under similar conditions

(Sun et al., 2015a; Wu et al., 2016a). However, more salt-sensitive

species, including Cercocarpus montanus, Diervilla rivularis, Hibiscus

syriacus, and Viburnum nudum, exhibited drastic reductions in

photosynthetic rate (over 90%) after 8 weeks of exposure to saline

irrigation at EC between 5–10 dS·m-1 (Chen et al., 2020; Liu et al., 2017;

Paudel and Sun, 2023). These findings highlight the species-specific
Frontiers in Plant Science 19
nature of photosynthetic responses to saline stress and the importance

of selecting salt-tolerant ornamentals for saline environments.
4 Conclusion

For nurseries, the most critical factors under saline conditions

include species-specific salt thresholds, exposure duration, and its

impacts on aesthetics, growth, plant nutrition and physiology. Early

signs such as chlorosis and reduced leaf expansion often suggest

substantial declines in their marketability. Growers should regularly

monitor irrigation water and soil EC, while selecting ornamental

species with documented salt-tolerance to minimize production

losses. Therefore, understanding species-specific responses to saline

irrigation is essential for selecting suitable ornamentals for

sustainable nursery production and landscape applications using

low-quality water resources. In Table 7, some species such as

Ageratum conyzoides, Santolina chamaecyparissus, Zoysia

matrella, and Z. japonica maintained high visual quality and

growth vigor at EC exceeding 9 dS·m-1, highlighting their

application potential in arid and semi-arid regions where

reclaimed or brackish water is commonly used. Meanwhile, other

species like Alyssum murale, Gazania rigens, and Glandularia

canadensis tolerated saline irrigation at EC ~3 dS·m-1, suggesting

that they can be used with moderately low-quality water. These

findings offer practical guidance for species selection and irrigation

planning under salinity constraints.
TABLE 7 Saline irrigation thresholds of ornamental species i.

Botanical
family

Species
Saline

threshold
Notes References

Adoxaceae
Viburnum
×’NCVX1’

5 dS·m-1, 8
weeks ii

High photosynthesis reduction indicates potential growth inhibition under
prolonged saline irrigation

Chen et al., 2020; Sun
et al., 2020

Asteraceae
Achillea

millefolium
5.4 dS·m-1,
103 days

Niu et al., 2007

Asteraceae
Ageratum
conyzoides

~9.7 dS·m-1,
20 days

Sun et al., 2012

Asteraceae Gazania rigen
3.2 dS·m-1,
12 weeks

Niu and
Rodriguez, 2006b

Asteraceae
Santolina

chamaecyparissus
10 dS·m-1,
5 weeks

Wu et al., 2016b

Asteraceae Senecio cineraria 13 dS·m-1, 30 days Saito et al., 2015

Brassicaceae Alyssum murale
~3.2 dS·m-1,
21 days

Comino et al., 2005

Caryophyllaceae
Dianthus
chinensis

4.5 dS·m-1,
8 weeks

High growth reduction was observed when irrigation EC increased to 7.8 dS·m-1

for 39 days.

Devitt and Morris,
1987; Zhang
et al., 2019

Cannaceae Canna indica 5 dS·m-1, 20 days
Substantial chlorophyll loss may precede visible damage and suggest future declines

in plant vitality under continued salt exposure
Chen et al., 2019b

Caprifoliaceae
Lonicera
japonica

5.4 dS·m-1,
103 days

Niu et al., 2007

(Continued)
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TABLE 7 Continued

Botanical
family

Species
Saline

threshold
Notes References

Convolvulaceae Ipomoea tricolor
~12.9 dS·m-1,

3 weeks
Mircea et al., 2023

Euphorbiaceae
Euphorbia
lathyris

18.7 dS·m-1,
20 days

Yang et al., 2013

Fabaceae
Sophora

secundiflora
3 dS·m-1, 194 days Niu et al., 2010a

Geraniaceae
Pelargonium
graveolens

8.5 dS·m-1,
30 days

Chrysargyris
et al., 2021

Lamiaceae
Caryopteris

×clandonensis
5 dS·m-1, 8 weeks Wu et al., 2016a

Lamiaceae
Rosmarinus
officinalis

5.4 dS·m-1,
103 days

Niu et al., 2007

Lamiaceae Salvia farinacea 5 dS·m-1, 8 weeks Sun et al., 2015a

Lythraceae
Cuphea

hyssopifolia
5 dS·m-1, 8 weeks Wu et al., 2016a

Malvaceae Hibiscus syriacus
6.5 dS·m-1,
11 weeks

High growth reduction was observed when irrigation EC increased to 10 dS·m-1 for
8 days.

Chen et al., 2019a;
Liu et al., 2017

Plantaginaceae
Penstemon
davidsonii

5 dS·m-1, 8 weeks Nepal et al., 2024

Poaceae
Bouteloua
gracilis

5 dS·m-1,
18 weeks

Sun and Palmer, 2018

Poaceae
Eragrostis
spectabilis

5 dS·m-1, 65 days
Marked reduction in stomatal conductance may limit CO2 uptake, potentially

affecting growth over extended saline periods
Wang et al., 2019b

Poaceae
Leymus
arenarius

10 dS·m-1,
18 weeks

Sun and Palmer, 2018

Poaceae
Miscanthus
sinensis

10 dS·m-1, 65 days Wang et al., 2019b

Poaceae
Schizachyrium
scoparium

10 dS·m-1, 65 days
High reductions in photosynthesis and stomatal conductance suggest limited

carbon assimilation and gas exchange, potentially leading to future
growth inhibition

Wang et al., 2019b

Poaceae Zoysia matrella
10 dS·m-1,
8 weeks

Hooks et al., 2022

Poaceae Zoysia japonica
10 dS·m-1,
8 weeks

Hooks et al., 2022

Portulacaceae
Portulaca
grandiflora

3.2-4.5 dS·m-1, 8
weeks to
3 months

Devitt and Morris,
1987; Gupta
et al., 2018

Ranunculaceae
Anemone
coronaria

4.5 dS·m-1,
8 weeks

Browning on the edge and the middle of leaves Rauter et al., 2021

Verbenaceae
Glandularia
canadensis

3.2 dS·m-1,
103 days

Foliage injuries observed Niu et al., 2007

Verbenaceae
Lantana
×hybrida

5.4 dS·m-1,
103 days

Niu et al., 2007

Verbenaceae
Verbena
×hybrida

5 dS·m-1, 8 weeks Sun et al., 2015a

Verbenaceae
Verbena

macdougalii
5.4 dS·m-1,
103 days

Niu et al., 2007
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ithreshold classification is defined as no more than 25% foliage injury or growth reduction observed, moderated from the method of Miyamoto et al. (2004).
iithe electricity conductivity (EC) and the duration of saline irrigation.
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It is noteworthy that the 2019 Census of Horticultural Specialties

includes numerous economically important ornamentals. However,

some, such as Pentas spp. and Thunbergia spp., have not yet been

studied for salinity tolerance in scientific literature. The absence of

empirical data on these widely cultivated species highlights a research

gap that warrants future investigation. Moreover, while flower quantity

is often measured, comprehensive evaluation of flower quality traits,

including color, fragrance, and texture, are rarely included in salt-

tolerance evaluations. Future studies should prioritize evaluating

untested but commercially relevant ornamentals and developing

standardized criteria for flower quality under saline conditions. In

addition, research should explore physiological mechanisms

underlying salinity resilience to support breeding and selection of

salt-tolerant species.
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