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Predictive prioritization of
genes significantly associated
with biotic and abiotic
stresses in maize using
machine learning algorithms
Anjan Kumar Pradhan1, Prasad Gandham1,
Kanniah Rajasekaran2 and Niranjan Baisakh 1*

1School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center,
Baton Rouge, LA, United States, 2Southern Regional Research Center, USDA-ARS, New Orleans,
LA, United States
Both biotic and abiotic stresses pose serious threats to the growth and

productivity of crop plants, including maize worldwide. Identifying genes and

associated networks underlying stress resistance responses in maize is

paramount. A meta-transcriptome approach was undertaken to interrogate

39,756 genes differentially expressed in response to biotic and abiotic stresses

inmaize were interrogated for prioritization through sevenmachine learning (ML)

models, such as support vector machine (SVM), partial least squares discriminant

analysis (PLSDA), k-nearest neighbors (KNN), gradient boosting machine (GBM),

random forest (RF), naïve bayes (NB), and decision tree (DT) to predict top-most

significant genes for stress conditions. Improved performances of the algorithms

via feature selection from the raw gene features identified 235 unique genes as

top candidate genes across all models for all stresses. Three genes such as

Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 expressed as

bZIP transcription factor 68, glycine-rich cell wall structural protein 2, and

aldehyde dehydrogenase 11 (ALDH11), respectively were commonly predicted

as top-most candidates between abiotic stress and combined stresses and were

identified from a weighted gene co-expression network as the hub genes in the

brown module. However, only one gene Zm00001eb038720 encoding RNA-

binding protein AU-1/Ribonuclease E/G, predicted by the PLSDA algorithm, was

found commonly expressed under both biotic and abiotic stress. Genes involved

in hormone signaling and nucleotide binding were significantly differentially

regulated under stress conditions. These genes had an abundance of

antioxidant responsive elements and abscisic acid responsive elements in their

promoter region, suggesting their role in stress response. The top-ranked genes

predicted to be key players in multiple stress resistance in maize need to be

functional validated to ascertain their roles and further utilization in developing

stress-resistant maize varieties.
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Introduction

Plants are constantly subjected to various biotic and abiotic

stresses that have negative effects on the growth, development, and

productivity of economically important crops including maize (Zea

mays L.) (Ramegowda and Senthil-Kumar, 2015). Maize is a main

grain, forage, and energy crop as well as a genetic model plant

(Farooqi et al., 2022). It is one of the most important cereal crops

cultivated worldwide, mainly in Africa and South America

(Kimotho et al., 2019). After wheat and rice, maize is the most

frequent cereal food in Mexico (Nazari et al., 2023). United States

remains the largest producer of maize. According to USDA, corn

production for the 2024/25 marketing year is projected to be around

377.63 million metric tons, a 1% reduction than last year, which is

attributed to extreme drought and heat during the 2024 crop year

(https://www.fas.usda.gov/data/production/commodity/0440000).

Abiotic stresses such as drought, cold, submergence, salinity,

waterlogging, heavy metal contamination, or nutrient deficiency

can reduce crop yield by more than >50% (Mallikarjuna et al.,

2020). Similarly, biotic stresses, caused by living organisms such as

bacteria, viruses, fungi, or nematodes, negatively affect the

productivity of maize by approximately 10% (Nazari et al., 2023).

Plants undergo genome-wide transcriptome reprogramming in

response to external stressors, which leads to induction and/or

repression of genes associated with various mechanisms at whole

plant, organellar, cellular, and molecular levels. Recent advances in

various omics technologies have accelerated the identification of

genes and biological processes controlling stress responses in plants.

Analysis of transcriptomes has made it possible to identify genes

overexpressed/repressed under specific stress (Sharma et al., 2013).

However, in field conditions, plants are repeatedly exposed to

multiple stresses simultaneously, which requires the plants to

exercise efficient molecular mechanisms to recognize a host of

signals to effectively respond to more than one stress (Sharma

et al., 2013). Both biotic and abiotic stress factors and their various

combinations in natural conditions elicit modified stress responses

in plants. In addition to several genes, transcription factors (TFs)

are known to be significantly involved in stress response in plants

(Zhu, 2002). Many TFs from AP2/IREP, bZIP, MYB, NAC, and

WRKY families have been found to improve stress resistance by

regulating the expression of other stress-responsive genes in plants

(Qin et al., 2011). Thus, the identification and characterization of

key genes that are co-expressed in plants’ response to both abiotic

and biotic stresses would provide targets for genetic strategies to

improve stress tolerance.
Abbreviations: ML, machine learning; AI, artificial intelligence; SVM, support

vector machine; PLSDA, partial least squares discriminant analysis; KNN, k-

nearest neighbors; GBM, gradient boosting machine; RF, random forest; NB,

naïve bayes; DT, decision tree; BE, batch effect; DEGs, differentially expressed

genes; VarImp, Variable importance; REF, recursive feature elimination; ROC,

receiver operating characteristic; AUC, area under the curve; MCC, Mathews

correlation coefficient; VIP, variable importance in projection; WGCNA,

weighted gene co-expression network analysis; ME, module eigengene; GS,

gene significance; CREs, cis-regulatory elements.
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Over the years, several stress-regulated genes have been identified

in maize using both microarray and RNA-seq approaches (Hayford

et al., 2024). However, deciphering unique genes responding to

specific or multiple stresses requires significant computational

maneuvers. Meta-analysis is recognized as a reasonable yet

statistically powerful approach where the results from multiple

independent studies can be combined to eliminate the challenges

due to variations between individual studies (Ramasamy et al., 2008;

Keel and Lindholm-Perry, 2022). Meta-analysis has been used

successfully on transcriptomic data of several crops including maize

to identify potentially top candidate genes that are regulated in plants

to cope with stress (Baisakh et al., 2023; Hayford et al., 2024; Wang

et al., 2022; Nazari et al., 2024).

The multidimensionality of RNA-seq and microarray data

owing to the high number of variables and genes with minimal

sample size necessitates a gene selection technique to find the most

informative, expressed genes and remove the redundancy in the

original space (Mahendran et al., 2020). Machine Learning (ML),

which is a subset of artificial intelligence, focuses on training the

algorithms based on available datasets thus enabling models to learn

to make decisions on their own from data without explicit

programming. ML uses feature extraction and selection as a

reduction technique for classification performance to make

decisions on the top features (Kira and Rendell, 1992). In this

study, we conducted a meta-analysis for integrating RNA-seq data

across independent studies on biotic and abiotic stresses in maize to

predictably identify the top-most significantly differentially

expressed genes using ML tools. Furthermore, we compared the

results from multiple ML models and integrated gene co-expression

network analysis to identify the most useful stress-responsive genes.
Materials and methods

RNA-seq data collection and feature
counts

All RNA-seq datasets related to both biotic and abiotic stresses

in maize (Supplementary Table 1) were searched online using the

publicly available sequence repository database i.e., NCBI Gene

Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra). Raw

sequence reads were subjected to quality control and filtering

following the method described earlier (Bedre et al., 2015). Clean

sequence reads were mapped against the B73 reference genome

NAM 5.0 using HISAT2 (Kim et al., 2019) with default parameters.

Mapped reads were then counted for genomic features such as

genes, chromosomal locations, etc. using the FeatureCounts

program (Liao et al., 2014).
Read counts preprocessing and merging

Gene expression data are often associated with high inconsistency

due to noise and pieces attributed to the differences in sample

numbers, labels, experimental conditions, etc. To correct these
frontiersin.org
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biases caused by non-biological conditions, data were normalized

using “normalize.quantiles” in R package preprocessCore version

1.56.0 following Schadt et al. (2001). However, normalization

procedures do not adjust the sample data for batch effects (BE)

when merging batches of data from multiple experiments that

contain large batch-to-batch variation. Therefore, BE correction was

performed using the ‘ComBat’ function within the SVA package in R

as described earlier (Zhang et al., 2022), which uses empirical Bayes

method that estimates the LS parameters (mean and variance) for each

gene and merges information from multiple genes with similar

expression attributes in each batch.
Machine learning gene selection
approaches

Gene expression data in the form of classified attributes with

feature counts of several thousands of genes with expression

patterns from multiple stress samples were analyzed to identify

the most important genes, which required extraction and selection

of features with discriminating ability. For ML, 80% of the data was

used as a training set and the remaining 20% as the test/validation

set. The classification of maize samples for the gene expression

under control and (a)biotic stress was used to select the ML models

that can best identify the top stress-responsive genes. We used seven

ML algorithms (i.e., SVM, support vector machine; PLSDA, partial

least squares discriminant analysis, KNN: K-nearest neighbors,

GBM, gradient boosting machine; RF, random forest; NB, naïve

bayes; and DT, decision tree) for the identification of most

informative genes from the differentially expressed genes (DEGs).

Variable importance (VarImp) evaluation functions were grouped

with and without the model information. A model-based approach

is more closely tied to its performance, which can integrate the

correlation structure between the predictors (genes in this case) into

the importance calculation. Each gene is assigned a separate variable

importance for each class in classification models where all

importance measures are scaled at minimum and maximum

values of 0 and 100, respectively. The area under the receiver

operating characteristic (ROC) curve (AUC) values for each gene

was obtained using the “filterVarImp” function.

The SVM algorithm was used to identify top genes with R

package e1071 version 1.7–6 using the function of SVM-radial and

default code: RFE (x = data, y = as.numeric (as.factor (group)), sizes =

c (seq (2, 40, by = 2)), RFE-Control = rfeControl (functions =

caretFuncs, method = “cv”), methods = “svmRadial”). Another

model, Random Forest (version 4.6–14), was implemented using

the RF algorithm with the following parameters: ntree = 100–500 and

mtry = 1 – 8 (Kim et al., 2022). The relevance score and ranking of the

genes in RF and SVM were determined following the recursive

feature elimination (REF) method as per the program manual.

The PLS-DA method was implemented in R package PLSDA

with PLS regression where Y is a set of binary response variables

describing the categories (control or stress) of a categorical variable

on X, where X is the gene expression matrix using the equation of

Pérez-Enciso and Tenenhaus (2003) that used the algorithm of
Frontiers in Plant Science 03
Wold et al. (1983) to allow for missing values. We identified the top

genes using variable importance in projection (VIP) for each gene

(Eriksson et al., 1999). GBM, an ensemble method (Hastie et al.,

2009) is also used for regression and classification methods with

reduced variance and bias in simple prediction models (Hastie et al.,

2009). The caret package in R was used with the GBM function for

selecting the top genes. The caret package was also used for KNN

model with 10-fold cross-validation and default parameter tune-

Length =10 to select the top-ranked genes for different stresses.

Similarly, the DT model used the R package Rpart to select the top

genes through mtree function. Another method, Naïve Bayes

version 0.9.7 was adopted for the NB algorithm with 10-fold

cross-validation for identifying the most important genes. The

performance of each ML model was determined by classification

metrics such as accuracy, precision, specificity, sensitivity (recall),

F1-score, Mathews correlation coefficient (MCC), and ROC derived

from the confusion matrix following the equations described in

Sabanci et al. (2022). The confusion matrix was prepared with the

maize gene under control labeled as 1 and stress as -1.
Gene co-expression network analysis

Weighted gene co-expression network analysis (WGCNA) is

used in systems biology to make clusters (modules) of highly

correlated genes based on the module eigengene (ME) and to

identify an intramodular hub gene. The expression values of

genes after normalization and batch effect correction were used in

the R package WGCNA version 1.66 (Langfelder and Horvath,

2008) for weighted co-expression network construction where the

similar matrix between each pair of genes across all samples was

evaluated based on the Pearson’s correlation values. Modules were

identified by the blockwiseModules function of the WGCNA

package with default parameters and a tree cut height of 0.4. The

modules were defined at a cut height of 0.98 and a size at 30. Similar

modules were merged when dissimilarity of module eigengenes was

<0.25. The function signedKME was used to calculate module

eigengene values (KME) based on the correlation of the module

eigengene (ME) with the corresponding gene. Modules with

correlation value (r) >0.8 between genes and P-value <0.01 were

considered as significant modules (de Silva et al., 2022). Gene

significance was calculated based on the p value of the linear

regression between the gene expression profile with multiple

stress conditions. The hub genes in a module were identified

based on gene significance value (GS) >0.5, module eigengene

(KME) >0.8, and with maximum connections with other genes

(Baisakh et al., 2023). Gene co-expression network was visualized

using Cytoscape (version 3.10.3) software in R (Shannon et al.,

2003; Baisakh et al., 2023).
Gene ontology and promoter analysis

The ontology of the genes was assigned by the singular

enrichment analysis within AgriGO version 2 (https://
frontiersin.org
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TABLE 1A Confusion matrices of machine learning algorithms used with gene expression values under biotic stress in maize.

Models Accuracy Specificity Sensitivity Precision F1-score MCC FP Rate ROC Area PRC Area

0.581 1.44 0.537

0.250 2.40 1.47

0.540 1.07 0.972

0.528 1.41 0.973

0.190 3.83 1.11

0.400 2.00 1.00

0.568 1.05 1.16

K-NN PLSDA

SE Genes AUC Genes
VIP-
score

03 Zm00001eb034620 100 Zm00001eb176300 3.597

95 Zm00001eb145370 99.23 Zm00001eb021020 3.484

3 Zm00001eb034390 99.09 Zm00001eb047030 3.404

7 Zm00001eb070640 94.85 Zm00001eb038720 3.316

7 Zm00001eb037820 94.61 Zm00001eb168410 3.269

6 Zm00001eb166710 91.05 Zm00001eb137800 3.267

7 Zm00001eb063720 90.73 Zm00001eb100490 3.203

1 Zm00001eb090610 90.54 Zm00001eb096510 3.193

8 Zm00001eb150630 86.82 Zm00001eb022830 3.182

6 Zm00001eb028560 86.76 Zm00001eb143050 3.149

1 Zm00001eb067440 86.22 Zm00001eb056920 3.135

1 Zm00001eb043810 85.91 Zm00001eb111400 3.134

1 Zm00001eb020250 85.57 Zm00001eb065380 3.13

Zm00001eb071760 84.86 Zm00001eb016660 3.124
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NB 57 0.418 0.837 0.45 0.585 0.318

KNN 63.7 0.75 0.601 0.885 0.716 0.299

DT 52.5 0.459 0.581 0.565 0.573 0.034

GBM 71.8 0.687 0.746 0.726 0.736 0.434

SVM 76.6 0.809 0.729 0.813 0.555 0.538

RF 73 0.6 0.8 0.8 0.8 0.4

PLSDA 54.9 0.431 0.602 0.702 0.648 0.212

TABLE 1B Performance matrices of top genes predicted under biotic stress in maize.

Naive Bayes GBM DT RF SVM

Genes AUC Genes rel.inf Genes rel.inf Genes AUC Genes RM

Zm00001eb034620 100 Zm00001eb024180 2.749 Zm00001eb110400 15.767 Zm00001eb088840 100 Zm00001eb019130 13.

Zm00001eb019590 95.14 Zm00001eb034330 1.932 Zm00001eb087410 13.015 Zm00001eb034620 97.71 Zm00001eb034390 10.

Zm00001eb136760 94.34 Zm00001eb164530 1.601 Zm00001eb097390 12.867 Zm00001eb158600 97.7 Zm00001eb090610 8.9

Zm00001eb071870 90.04 Zm00001eb071760 1.547 Zm00001eb034390 12.142 Zm00001eb090610 95.54 Zm00001eb181690 3.9

Zm00001eb145370 88.4 Zm00001eb068730 1.537 Zm00001eb088150 9.324 Zm00001eb034390 71.42 Zm00001eb088150 3.5

Zm00001eb150630 87.8 Zm00001eb029780 1.48 Zm00001eb160330 8.25 Zm00001eb042770 57.97 Zm00001eb115060 3.4

Zm00001eb067180 87.11 Zm00001eb084520 1.434 Zm00001eb019620 8.097 Zm00001eb151510 55.2 Zm00001eb110450 3.4

Zm00001eb103210 86.27 Zm00001eb046720 1.405 Zm00001eb171130 7.986 Zm00001eb010720 54.44 Zm00001eb184360 2.8

Zm00001eb050760 85.22 Zm00001eb027600 1.38 Zm00001eb034620 7.939 Zm00001eb078220 53.74 Zm00001eb100260 2.7

Zm00001eb157100 85.19 Zm00001eb103260 1.373 Zm00001eb053690 7.351 Zm00001eb002660 51 Zm00001eb109670 2.5

Zm00001eb143200 84.91 Zm00001eb075780 1.365 Zm00001eb034330 7.005 Zm00001eb144000 48.32 Zm00001eb146780 2.3

Zm00001eb097950 84.9 Zm00001eb156230 1.321 Zm00001eb034490 7.005 Zm00001eb088150 45.85 Zm00001eb167510 2.2

Zm00001eb156230 84.7 Zm00001eb061490 1.307 Zm00001eb043550 6.274 Zm00001eb143200 44.58 Zm00001eb167230 2.0

Zm00001eb088150 84.59 Zm00001eb155370 1.263 Zm00001eb015830 5.476 Zm00001eb063710 42.95 Zm00001eb097390 2.0
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systemsbiology.cau.edu.cn/agriGOv2/) and gene ontology

enrichment was performed using Fisher’s t-test (P<0.05) and FDR

correction by the Hochberg method. Metabolic pathway

enrichment analysis was performed using the DAVID tool

version 6.7 (https://davidbioinformatics.nih.gov/tools.jsp). The top

genes common between two or more models were used to extract

2000 bp upstream flanking region of sequence using the Ensembl

Plants database (http://plants.ensembl.org). Promoter prediction

and identification of cis-regulatory elements (CREs) within a

promoter were performed using PlantCARE (https ://

bioinformatics.psb.ugent.be/webtools/plantcare/html/).
Results and discussion

DEGs under biotic and abiotic stress

Raw sequence reads of a total of 3,052 samples, which included

976 from biotic (bacteria, fungus, insect, nematode, and weed) and

2,076 from abiotic (drought, heat, cold, waterlogging, salt, nutrient,

and mechanical wounding) stresses, were obtained from 52 RNA-

seq studies conducted with 12 stress conditions of which five were

biotic and seven were abiotic (Supplementary Table 1). Finally,

39,756 differentially expressed genes from 1,452 samples (451 from

biotic and 1001 from abiotic) and 22 of 52 studies after

normalization and batch effect correction, respectively were used

in ML models sets to identify the topmost significant genes.
Identification of top stress-responsive
genes by ML models

Identifying top stress-responsive DEGs was conducted for

biotic or abiotic stress individually and in combination to identify

top genes unique to a specific stress category and common between

the stress categories.
Prediction of top genes under biotic stress
Based on the confusion matrix (Supplementary Table 2) of the

seven ML models, SVM performed the best with the highest average

accuracy of 76.6% followed by RF (73.0%) and GBM (71.8%)

whereas NB, KNN, DT, and PLSDA performed very poorly with

an average accuracy of 57% (Table 1A). SVM also had the highest

specificity (0.81) and MCC (0.54) with precision (0.81) behind

KNN (0.84) and sensitivity (0.73) behind NB (0.83), RF (0.80), and

GBM (0.75). Interestingly, SVM had the lowest F1-score (0.56).

However, MCC, which considers all four parameters in the

confusion matrix, is considered a better performance matrix as

compared to F1-score, which only considers precision/recall. DT

had the worst performance in terms of accuracy (53.5%), sensitivity

(0.58), and MCC (0.03), although it had a slightly better specificity

over PLSDA and NB, higher precision than NB, and higher F1-

score than SVM. DT was the least sensitive algorithm correctly

detecting only 0.58 for positive samples.
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TABLE 2A Confusion matrices of machine learning algorithms used with gene expression values under abiotic stress in maize.

Models Accuracy (%) Specificity Sensitivity Precision F1-score MCC FP Rate ROC Area PRC Area

0.107 6.30 1.20

0.397 2.34 0.531

0.198 3.64 0.911

0.104 8.34 0.925

0.058 12.93 1.15

0.111 7.56 0.940

0.146 4.41 1.08

K-NN PLSDA

SE Genes AUC Genes
VIP-
score

.770 Zm00001eb160470 100 Zm00001eb133500 4.406

56 Zm00001eb176940 99.94 Zm00001eb027100 4.332

22 Zm00001eb012040 99.62 Zm00001eb130760 4.200

61 Zm00001eb126900 99.05 Zm00001eb117220 4.158

24 Zm00001eb050500 98.94 Zm00001eb099850 3.991

11 Zm00001eb044020 98.60 Zm00001eb104530 3.899

16 Zm00001eb176680 97.59 Zm00001eb068620 3.884

54 Zm00001eb179190 97.43 Zm00001eb090990 3.824

04 Zm00001eb146690 96.90 Zm00001eb115290 3.776

03 Zm00001eb151430 95.77 Zm00001eb149960 3.769

77 Zm00001eb041030 95.20 Zm00001eb037980 3.763

80 Zm00001eb076550 95.17 Zm00001eb046590 3.754

4 Zm00001eb058820 95.05 Zm00001eb000340 3.747

9 Zm00001eb112930 94.89 Zm00001eb114240 3.745
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NB 80.30 0.893 0.675 0.813 0.748 0.589

KNN 80.00 0.767 0.932 0.495 0.647 0.580

DT 77.33 0.801 0.721 0.657 0.688 0.511

GBM 88.60 0.895 0.868 0.803 0.834 0.600

SVM 87.50 0.939 0.750 0.864 0.803 0.716

RF 87.00 0.897 0.840 0.790 0.984 0.725

PLSDA 78.10 0.853 0.644 0.697 0.695 0.507

TABLE 2B Performance matrices of top genes predicted under abiotic stress in maize.

Naive Bayes GBM DT RF SVM

Genes AUC Genes rel.inf Genes rel.inf Genes AUC Genes RM

Zm00001eb012040 100 Zm00001eb146690 5.456 Zm00001eb012040 134.264 Zm00001eb112930 100 Zm00001eb012040 164

Zm00001eb146690 98.30 Zm00001eb058820 5.212 Zm00001eb112930 96.502 Zm00001eb021010 88.00 Zm00001eb160470 72.

Zm00001eb176680 97.50 Zm00001eb012040 4.980 Zm00001eb160470 94.104 Zm00001eb012040 83.00 Zm00001eb176680 52.

Zm00001eb021010 97.50 Zm00001eb044020 4.689 Zm00001eb098220 91.107 Zm00001eb176680 80.30 Zm00001eb201180 33.

Zm00001eb160470 96.80 Zm00001eb176680 4.590 Zm00001eb050500 88.710 Zm00001eb146690 78.30 Zm00001eb146690 20.

Zm00001eb044020 96.40 Zm00001eb176940 2.674 Zm00001eb179190 86.312 Zm00001eb058820 76.40 Zm00001eb248930 20.

Zm00001eb112930 95.50 Zm00001eb021010 2.138 Zm00001eb151430 18.992 Zm00001eb160470 74.10 Zm00001eb192710 19.

Zm00001eb050500 95.50 Zm00001eb075250 1.858 Zm00001eb072870 16.477 Zm00001eb044020 66.90 Zm00001eb238010 16.

Zm00001eb176940 95.20 Zm00001eb030400 1.591 Zm00001eb065100 13.599 Zm00001eb098220 65.60 Zm00001eb203690 15.

Zm00001eb151430 95.00 Zm00001eb151430 1.478 Zm00001eb156020 10.218 Zm00001eb176940 55.00 Zm00001eb050500 14.

Zm00001eb058820 94.50 Zm00001eb156510 1.329 Zm00001eb171000 8.514 Zm00001eb018700 53.50 Zm00001eb176940 14.

Zm00001eb179190 92.90 Zm00001eb119820 1.320 Zm00001eb143640 7.682 Zm00001eb076550 51.80 Zm00001eb021010 10.

Zm00001eb126900 92.10 Zm00001eb050500 1.267 Zm00001eb076250 7.622 Zm00001eb151430 50.10 Zm00001eb250120 8.2

Zm00001eb041030 91.10 Zm00001eb074930 0.945 Zm00001eb019280 7.414 Zm00001eb179190 49.80 Zm00001eb017550 7.6
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The top 20 genes predicted by each model resulted in a total of

111 unique top significantly differentially regulated genes by all

seven models (Table 1B). Of these, 16 genes were predicted by at

l e a s t two mode l s . Fou r g en e s , Zm00001 eb034390 ,

Zm00001eb088150, Zm00001eb042770, and Zm00001eb097390

predicted as top genes by two or more models including the two

high-performing models, SVM and RF, were considered the most

significantly differentially expressed genes under biotic stress.
Prediction of top genes under abiotic stress
The confusion matrix (Supplementary Table 2) for the abiotic

stress responsive genes revealed that the highest average accuracy of

88.6% was obtained by GBM, closely followed by SVM (87.5%) and

RF (87.0%) algorithms (Table 2A). RF had the highest MCC value

(0.72) followed by SVM at 0.71 and GBM (0.6). SVM had the

highest specificity (0.94) followed by RF at 0.89 and precision (0.86).

Altogether, 68 unique genes were identified as most informative by

all seven models. Twenty-one genes were consistently predicted as

top abiotic stress-related genes by at least two models of which 12

were common in four or more models, which included GBM, SVM,

RF and KNN models that had higher accuracy and/or model

performance matrices compared to other models (Table 2B).

Interestingly, only one gene Zm00001eb038720, predicted by

PLSDA, was consistent between the biotic and abiotic

stress conditions.
Prediction of top genes under combined stress
conditions

When the genes responsive to biotic and/or abiotic stress

conditions based on the datasets in the literature were

combinedly used for prediction by seven models, RF

outperformed others with the highest accuracy (81.7%) and other

performance matrices except for sensitivity (0.75), which was

behind SVM (0.80) and GBM (0.77) (Table 3A; Supplementary

Table 2). SVM predicted the top 20 genes with the highest

sensitivity, an accuracy of 81.0%, F1-score (0.77) and MCC (0.61)

second to only RF. GBM also performed good with 79.0% accuracy,

nearly equal specificity and same sensitivity as SVM. NB was the

worst predictor algorithm with the lowest values recorded for

accuracy as well as other parameters. A total of 83 unique top

significant genes were reported for combined stress by the seven

models of which 11 genes were commonly predicted by four or

more models. Among biotic and combined stress conditions, 23

genes were found common. On the other hand, only two genes were

found within biotic and combined stress conditions (Table 3B).

Taken together, SVM, RF, and GBM were identified as the best

models in predicting top significant (a)biotic stress responsive genes

with high accuracy in our study. However, Nazari et al. (2023)

found KNN (82.0%) and Ensemble (85.7%) to be more accurate for

predicting biotic stress tolerance genes while modeling gene

expression data from microarray studies in maize. Interestingly,

none of the significant genes identified by these authors matched

the top genes selected by the seven models used in our study.
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TABLE 3A Confusion matrices of machine learning algorithms used with gene expression values under combined stress conditions in maize.

Models Accuracy (%) Specificity Sensitivity Precision F1-score MCC FP Rate ROC Area PRC Area

0.319 1.85 0.788

0.275 2.58 0.755

0.220 3.05 1.02

0.185 4.17 0.975

0.184 4.36 0.929

0.134 5.63 1.07

0.158 4.36 1.10

K-NN PLSDA

SE Genes AUC Genes
VIP-
score

83 Zm00001eb050500 100 Zm00001eb130760 1.935

83 Zm00001eb176940 95.78 Zm00001eb163120 1.931

72 Zm00001eb146690 94.84 Zm00001eb162400 1.926

40 Zm00001eb160470 93.99 Zm00001eb104530 1.925

28 Zm00001eb112930 92.88 Zm00001eb113530 1.924

24 Zm00001eb176680 92.58 Zm00001eb177670 1.922

02 Zm00001eb058820 89.88 Zm00001eb165700 1.921

00 Zm00001eb179190 88.72 Zm00001eb149960 1.921

70 Zm00001eb154060 88.22 Zm00001eb050770 1.920

67 Zm00001eb041030 86.33 Zm00001eb028190 1.918

49 Zm00001eb156130 84.24 Zm00001eb028490 1.918

69 Zm00001eb146500 81.84 Zm00001eb089070 1.918

51 Zm00001eb038010 81.69 Zm00001eb138650 1.917

43 Zm00001eb033200 81.28 Zm00001eb154420 1.917

(Continued)
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NB 65.10 0.680 0.591 0.466 0.523 0.232

KNN 72.00 0.725 0.711 0.537 0.612 0.401

DT 73.40 0.779 0.672 0.689 0.658 0.453

GBM 79.00 0.814 0.772 0.753 0.763 0.584

SVM 81.00 0.815 0.803 0.746 0.773 0.612

RF 81.70 0.865 0.755 0.813 0.783 0.627

PLSDA 78.00 0.840 0.690 0.760 0.720 0.549

TABLE 3B Performance matrices of top genes predicted under combined stress conditions in maize.

Naive Bayes GBM DT RF SVM

Genes AUC Genes rel.inf Genes rel.inf Genes AUC Genes RM

Zm00001eb050500 100 Zm00001eb112930 3.789 Zm00001eb176940 142.216 Zm00001eb076550 100 Zm00001eb050500 2.

Zm00001eb146690 99.32 Zm00001eb179190 3.317 Zm00001eb018700 108.111 Zm00001eb179190 99.66 Zm00001eb176680 2.

Zm00001eb176940 98.20 Zm00001eb050500 3.109 Zm00001eb041030 105.736 Zm00001eb050500 96.40 Zm00001eb176940 2.

Zm00001eb112930 96.84 Zm00001eb126900 3.048 Zm00001eb126900 105.736 Zm00001eb160470 95.19 Zm00001eb126900 2.

Zm00001eb058820 94.47 Zm00001eb176680 2.789 Zm00001eb050500 103.741 Zm00001eb176940 92.86 Zm00001eb041030 2.

Zm00001eb176680 93.17 Zm00001eb176940 2.208 Zm00001eb075230 99.466 Zm00001eb126900 85.99 Zm00001eb018700 2.

Zm00001eb160470 92.55 Zm00001eb146690 1.650 Zm00001eb012040 25.994 Zm00001eb112930 80.01 Zm00001eb001220 1.

Zm00001eb179190 90.05 Zm00001eb058820 1.326 Zm00001eb071400 21.751 Zm00001eb176680 73.21 Zm00001eb003440 1.

Zm00001eb033200 87.67 Zm00001eb154060 1.006 Zm00001eb005840 21.107 Zm00001eb018700 73.05 Zm00001eb050470 1.

Zm00001eb154060 87.42 Zm00001eb160470 0.982 Zm00001eb116880 20.899 Zm00001eb146690 65.41 Zm00001eb160470 1.

Zm00001eb041030 87.23 Zm00001eb021720 0.841 Zm00001eb021010 20.275 Zm00001eb037690 63.90 Zm00001eb058820 1.

Zm00001eb018180 85.09 Zm00001eb054980 0.833 Zm00001eb031210 20.275 Zm00001eb058820 62.44 Zm00001eb146690 1.

Zm00001eb156130 84.54 Zm00001eb042770 0.828 Zm00001eb155430 20.067 Zm00001eb012040 60.49 Zm00001eb093590 1.

Zm00001eb138530 83.53 Zm00001eb140230 0.772 Zm00001eb166600 17.528 Zm00001eb154060 59.43 Zm00001eb004630 1.
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Significant modules and potential hub
genes

The weighted gene co-expression network analysis based on a

height cut-off at 0.25 to merge the modules, detected four modules

of which Turquoise and Brown modules with 438 and 14 genes,

respectively were significant with r >0.8 and GS (P-value¾0.01)

(Supplementary Table 3; Figure 1a). Three significant hub genes,

Zm00001eb176680, Zm00001eb176940, and Zm00001eb179190 with

KME>0.8, were identified in the brown module (Figure 1b) for

abiotic stress and one gene Zm00001eb150630 (turquoise model) for

biotic stress (Figure 1c) that were predicted by two or more models.
Functional involvement of the top highly
significant genes

GO analysis of top genes representing conserved up and down-

regulation under stress conditions identified 47 and 3 significant

GO terms (p-value<0.001; FDR <0.05) for abiotic and biotic stress,

respectively whereas 17 significant GO terms were identified for

combined stress (Supplementary Table 4). The most significantly

enriched molecular function with the highest number of genes was

associated with nucleotide binding for biotic stress whereas binding

followed by response to stimulus were the most enriched processes

under abiotic stress. On the other hand, cell communication,

cellular response to alcohol, lipid, external stimuli, and abscisic

acid, and hormone signaling were the two most enriched biological

processes under combined stress conditions. The biological

pathways involving the top-most significant genes involved are

presented in Supplementary Table 5. In biotic stress, genes involved

in calcium ion binding were the most enriched whereas genes in

abscisic acid activated signaling pathway, cation binding and

myosin phosphate activity were the most significant in abiotic

stress. Genes associated with seed nutrient storage activity, cation

binding, and plant hormone signal transduction were significant

under combined, biotic and abiotic stresses.

Of the four top-most significant genes associated with biotic

stress response and predicted by the two high-performing models

SVM and RF, Zm00001eb034390 (GO:0005509) coding for EF-hand

1 calcium binding protein (1.23-fold), Zm00001eb088150

(GO:0098754) for UDP-glucuronosyl/UDP-glucosyltransferase

(0.74-fold), Zm00001eb042770 (GO:0005634) for ribonuclease 3-

like protein 3 (0.23) were significantly upregulated, whereas gene

Zm00001eb097390 (GO:0006457) encoding GrpE nucleotide

exchange factor was downregulated (-0.14) under fungal infection

(Supplementary Table 6) (Shu et al., 2017; Kebede et al., 2018; Shi

et al., 2018; Han et al., 2020; Lambarey et al., 2020; Musungu et al.,

2020; He et al., 2021; Liu et al., 2021; Schurack et al., 2021).

Zm00001eb088150 has been shown to be involved in the

detoxification of several exogenous and endogenous compounds,

and it plays multiple roles in plant responses to biotic as well as

abiotic stresses (Gharabli et al., 2023) providing protection against

mycotoxins (Wetterhorn, 2018), pathogens, drought, heat, cold,

and salinity (Van Aken, 2008; Meale et al., 2015). UDP-
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glucuronosyl/UDP-glucosyltransferase was found to be one of the

26 genes commonly regulated between maize, peanut, and cotton in

response to Aspergillus flavus, and it was upregulated in both

pericarp and seed tissues of cotton (Mehanathan et al., 2018).

Among the 12 most-significant genes predicted by SVM, RF,

and GBM for abiotic stress, eight were upregulated under drought

(Kakumanu et al., 2012; Song et al., 2017; Li et al., 2017;

Thirunavukkarasu et al., 2017; SkZ et al., 2018; Yang et al., 2019;

Danilevskaya et al., 2019; Zenda et al., 2019; Jia et al., 2020; Li et al.,

2021; Kim et al., 2021; Maheswari et al., 2021; Bai et al., 2022), cold

(Sobkowiak et al., 2014; Mao et al., 2017; Goering, 2017; Li et al.,

2017; Avila et al., 2018; Waititu et al., 2021; Li et al., 2021), heat (Li

et al., 2014; Shi et al., 2017; Li et al., 2017 and Zhao et al., 2019), and

salt (Zhang et al., 2015; Du et al., 2017; Li et al., 2017; Chen et al.,

2020; Zhang et al., 2021; 2022) stress of which four were

downregulated under waterlogging condition (Supplementary

Table 6) (Arora et al., 2017; Yao, 2021). Also, eight of the genes

were commonly predicted between abiotic and combined stresses.

Of the four genes specifically uniquely predicted for abiotic stress,

Zm00001eb012040 (GO:0006470) is expressed as a PPM-type

phosphatase protein and was upregulated in all but waterlogging

conditions whereas Zm00001eb160470, which also codes for a
Frontiers in Plant Science 10
protein phosphatase, was upregulated under drought, heat and

salt but downregulated under cold and waterlogging conditions

(Supplementary Table 6). These genes are known to

dephosphorylate serine/threonine in stress responsive genes in

maize, thus impacting its response to multiple stresses (drought,

salt) via hormone signal transductions (He et al., 2019). On the

other hand, Zm00001eb021010 (cysteine-rich and transmembrane

domain-containing protein WIH1) was downregulated in all abiotic

stresses except slight upregulation under waterlogging conditions.

Several members of the cysteine-rich peptide family have been

shown to respond extensively to various abiotic stresses in different

plants including maize (Xu et al., 2018). Zm00001eb050500

(GO:0009653), a top gene under abiotic as well as combined

stress, encodes expansin, which plays an important role in stress

relaxation of (arabino) xylan-cellulose networks within the cell wall

(Yennawar et al., 2006). bZip-transcription factors (e.g.,

Zm00001eb058820) have been extensively studied for their critical

roles in regulating plants response to abiotic stresses through

morphological adaptations (Guo et al., 2024). In maize, a member

of bZIP family positive regulated stress resistance through ABA-

dependent signaling (He et al., 2024). Zm00001eb044020 (a P-loop

containing nucleoside triphosphate hydrolase), which was
FIGURE 1

The gene significance values (P-value=8.9e-124) across co-expression network modules (a). Brown (b) and Turquoise (c) significant modules
showing three and six potential hub genes, respectively.
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moderately upregulated under cold and waterlogging conditions,

but highly upregulated in response to drought, heat and salt, was

also identified to be induced by proline under low water potential

(Verslues et al., 2014) and was located within the genomic region

associated with heat stress (Bashir et al., 2025). Only one gene

Zm00001eb038720, expressed as Ribonuclease E/G, was found

commonly predicted between biotic and abiotic stress, although it

was not identified as one of the top-most significant genes by the

two or more high-performing accurate models. Ribonuclease E/G

are chloroplastic endoribonuclease that play crucial roles in plant’s

response to biotic and abiotic stresses because of their involvement

in cleavage-mediated RNA homeostasis (Schein et al., 2008). The

RNase E/G enzymes influence RNA modifications in plant

adaptation to stresses by controlling mRNA stability and

subsequent translation of genes (Cai et al., 2025).

Three genes that were commonly predicted as top-most candidates

between abiotic stress and combined stresses as well as identified as the

hub genes in the brown module, coded for a bZIP transcription factor

68 (Zm00001eb176680), glycine-rich cell wall structural protein 2

(Zm00001eb176940), and aldehyde dehydrogenase 11 (ALDH11;

Zm00001eb179190). bZIP transcription factor 68 showed a negative

response to cold stress in transgenic maize plants (Zeng et al., 2021).

bZIP68 interacts with mitogen-activated protein kinase 8, which is also

a negative regulator of the cold-stress response. A 358-bp indel in the

bZIP68 promoter region increased its expression resulting in decreased

cold tolerance in maize (Li et al., 2022). ZmbZIP4 was also shown to be

differentially stimulated by high salinity, drought, heat, cold, and

abscisic acid treatment in maize seedlings (Ma et al., 2018). Glycine-

rich cell wall structural proteins (GRCWSPs) are known to be involved

in plant’s response to abiotic stress, especially under osmotic stress

because of their roles in maintaining cell wall integrity during

dehydration by connecting the lignin rings to strengthen the cell wall

(Ryser et al., 2004). The GRCWSPs interact with cell-wall associated

kinases to initiate recognition of environmental stimuli and subsequent

signal transduction (Park et al., 2001). ALDH11 showed upregulation

under drought, cold, heat and salt and negative regulation under

waterlogging conditions. Several ALDH genes have been reported to

contribute to improving salt and drought tolerance in plants (Wang

et al., 2024).
Promoter motifs in the top significant
genes

Promoter regions corresponding to the top-most significantly

predicted genes for different stresses showed 19 different CREs. As

expected of the promoters, CAAT-box, TATA-box, and Unnamed_4

motifs existed in all promoters in high numbers (Supplementary

Table 7). While there was no overall pattern in the distribution of the

CREs among the promoters of the genes, the top biotic stress
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responsive genes, except Zm00001eb042770, had less overall total

CREs. For most of the abiotic and combined stress responsive genes,

the number of antioxidant responsive element (ARE) and ABRE

(abscisic acid responsive element) were higher than the biotic stress

responsive genes. The number of CREs were higher for two genes

Zm00001eb176940 (168) and Zm00001eb179190 (169) predicted

common between abiotic and combined stresses than the other

genes. The ABRE and G-Box were found in more abundance in

genes Zm00001eb012040, Zm00001eb058820, Zm00001eb112930,

Zm00001eb018700, Zm00001eb126900, Zm00001eb018700, and

Zm00001eb126900 that were identified as top-most significant

genes for abiotic and combined stresses.
Conclusion

The integration of a large volume of gene expression data from

several RNA-seq studies with machine learning methods increased

the generalizability and statistical power and allowed us to analyze the

stress responses of the genes to identify a set of top-most genes with

significant associations with (a)biotic stress in maize. The GO and

KEGG pathway enrichment analysis of top genes provided clues to

the mechanisms underlying maize’s response to both biotic and

abiotic stress conditions. Furthermore, the randomization

procedure used in WGCNA method led to the identification of the

hub genes validating their gene connectivity and possible interaction

with other genes. Some of the genes identified in this study through

ML were also found related toAspergillus flavus resistance inmaize in

previous studies. Further functional validation of the roles of the 19

unique top-ranked genes including hub genes, predicted by the high-

performing models, will lead to their utilization in developing

multiple stress-resistant maize varieties.
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Sobkowiak, A., Jończyk, M., Jarochowska, E., Biecek, P., Trzcinska-Danielewicz, J.,
Leipner, J., et al. (2014). Genome-wide transcriptomic analysis of response to low
temperature reveals candidate genes determining divergent cold-sensitivity of maize
inbred lines. Plant Mol. Biol. 85, 317–331. doi: 10.1007/s11103-014-0187-8

Song, K., Kim, H. C., Shin, S., Kim, K. H., Moon, J. C., Kim, J. Y., et al. (2017).
Transcriptome analysis of flowering time genes under drought stress in maize leaves.
Front. Plant Science. 8. doi: 10.3389/fpls.2017.00267

Thirunavukkarasu, N., Sharma, R., Singh, N., Shiriga, K., Mohan, S., Mittal, S., et al.
(2017). Genome wide expression and functional interactions of genes under drought
stress in maize. Int. J. Genomics 2017, .2568706. doi: 10.1155/2017/2568706

Van Aken, O. (2008). Methods and means for the production of plants with
improved stress resistance.

Verslues, P. E., Lasky, J. R., Juenger, T. E., Liu, T. W., and Kumar, M. N. (2014).
Genome-wide association mapping combined with reverse genetics identifies new
effectors of low water potential-induced proline accumulation in Arabidopsis. Plant
Physiology, 164(1), 144–159. doi: 10.1104/pp.113.224014

Waititu, J. K., Cai, Q., Sun, Y., Sun, Y., Li, C., Zhang, C., et al. (2021). Transcriptome
profiling of maize (Zea mays L.) leaves reveals key cold-responsive genes, transcription
factors, and metabolic pathways regulating cold stress tolerance at the seedling stage.
Genes. 12, 1638. doi: 10.3390/genes12101638

Wang, Y., Guo, H., Wu, X., Wang, J., Li, H., and Zhang, R. (2022). Transcriptomic
and physiological responses of contrasting maize genotypes to drought stress. Front.
Plant Science. 13. doi: 10.3389/fpls.2022.928897

Wang, J., Xing, C., Wang, H., Zhang, H., Wei, W., Xu, J., et al. (2024). Identification of key
modules and hub genes involved in regulating the feather follicle development of Wannan
chickens using WGCNA. Poultry Science. 103, 103903. doi: 10.1016/j.psj.2024.103903

Wetterhorn, K. M. (2018). Enzymatic inactivation of Trichothecene mycotoxins associated
with Fusarium head blight (Madison, WI: The University of Wisconsin-Madison).

Wold, S., Martens, H., and Wold, H. (1983). The multivariate calibration problem in
chemistry solved by the PLS method. In A. Ruhe & B. Kågström (Eds.), Proceedings of
frontiersin.org

https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1089/cmb.2022.0123
https://doi.org/10.3390/app11094273
https://doi.org/10.7717/peerj.7211
https://doi.org/10.3390/plants9091112
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3389/fpls.2017.00290
https://doi.org/10.1111/pbr.12235
https://doi.org/10.1093/plcell/koac137
https://doi.org/10.1038/s41598-021-98907-8
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1186/s12870-021-02983-x
https://doi.org/10.1104/pp.18.00436
https://doi.org/10.3389/fgene.2020.603808
https://doi.org/10.3389/fgene.2020.603808
https://doi.org/10.1007/s12298-021-01003-4
https://doi.org/10.3390/plants9121812
https://doi.org/10.1016/j.cj.2017.03.005
https://doi.org/10.1007/s12298-018-0522-7
https://doi.org/10.3389/fmicb.2020.00853
https://doi.org/10.1038/s41598-023-42984-4
https://doi.org/10.1007/s12038-023-00392-w
https://doi.org/10.1074/jbc.M101283200
https://doi.org/10.1007/s00439-003-0921-9
https://doi.org/10.1093/pcp/pcr106
https://doi.org/10.1371/journal.pmed.0050184
https://doi.org/10.1016/j.jplph.2014.11.008
https://doi.org/10.1242/jcs.00966
https://doi.org/10.1007/s12161-022-02251-0
https://doi.org/10.1002/jcb.10073
https://doi.org/10.1111/tpj.15195
https://doi.org/10.1261/rna.907608
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/mp/sss147
https://doi.org/10.1186/s12870-017-0973-y
https://doi.org/10.1016/j.gene.2018.03.030
https://doi.org/10.1016/j.gene.2018.03.030
https://doi.org/10.3389/fpls.2017.02075
https://doi.org/10.1007/s13213-018-1341-3
https://doi.org/10.1007/s13213-018-1341-3
https://doi.org/10.1007/s11103-014-0187-8
https://doi.org/10.3389/fpls.2017.00267
https://doi.org/10.1155/2017/2568706
https://doi.org/10.1104/pp.113.224014
https://doi.org/10.3390/genes12101638
https://doi.org/10.3389/fpls.2022.928897
https://doi.org/10.1016/j.psj.2024.103903
https://doi.org/10.3389/fpls.2025.1611784
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pradhan et al. 10.3389/fpls.2025.1611784
the Conference on Matrix Pencils, 286–293. Springer-Verlag, Heidelberg. doi: 10.1007/
978-3-642-61794-2_29

Xu, Y., Yu, Z. P., Zhang, D., Huang, J. G., Wu, C. G., Yang, G. D, et al. (2018).
CYSTM, a novel non-secreted cysteine-rich peptide family, involved in environmental
stresses in Arabidopsis thaliana. Plant Cell Physiology, 59(2), 423–438. doi: 10.1093/
pcp/pcx204

Yang, M., Geng, M., Shen, P., Chen, X., Li, Y., and Wen, X. (2019). Effect of post-
silking drought stress on the expression profiles of genes involved in carbon and
nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiology
and Biochemistry, 135, 304–309. doi: 10.1016/j.plaphy.2018.12.025

Yao, Q. (2021). Crucial waterlogging-responsive genes and pathways revealed by
comparative physiology and transcriptome in tropical and temperate maize (Zea mays
L.) inbred lines. J. Plant Biol. 64, 313–325. doi: 10.1007/s12374-021-09298-2

Yennawar, N. H., Li, L.-C., Dudzinski, D. M., Tabuchi, A., and Cosgrove, D. J. (2006).
Crystal structure and activities of EXPB1 (Zea m 1), a b-expansin and group-1 pollen
allergen from maize. Proceedings of the National Academy of Sciences, 103 (40),
14664–14671. doi: 10.1073/pnas.0605979103

Zenda, T., Liu, S., Wang, X., Liu, G., Jin, H., Dong, A., et al. (2019). Key maize
drought-responsive genes and pathways revealed by comparative transcriptome and
Frontiers in Plant Science 14
physiological analyses of contrasting inbred lines. Int. J. Mol. Sci. 20, 1268. doi: 10.3390/
ijms20061268

Zeng, R., Li, Z., Shi, Y., Fu, D., Yin, P., Cheng, J., et al. (2021). Natural variation in a
type-A response regulator confers maize chilling tolerance. Nat. Commun. 12, 4713.
doi: 10.1038/s41467-021-25001-y

Zhang, M., Kong, X., Xu, X., Li, C., Tian, H., and Ding, Z. (2015). Comparative
transcriptome profiling of the maize primary, crown and seminal root in response to
salinity stress. PloS One 10, e0121222. doi: 10.1371/journal.pone.0121222

Zhang, X., Liu, J., Huang, Y., Wu, H., Hu, X., Cheng, B., et al. (2022). Comparative
transcriptomics reveal the molecular mechanism of the parental lines of maize hybrid
An’nong876 in response to salt stress. Int. J. Mol. Sci. 23, 5231. doi: 10.3390/ijms23095231

Zhang, X., Liu, P., Qing, C., Yang, C., Shen, Y., and Ma, L. (2021). Comparative
transcriptome analyses of maize seedling root responses to salt stress. PeerJ 9, e10765.
doi: 10.7717/peerj.10765

Zhao, Y., Hu, F., Zhang, X., Wei, Q., Dong, J., Bo, C., et al. (2019). Comparative
transcriptome analysis reveals important roles of nonadditive genes in maize hybrid
An’nong 591 under heat stress. BMC Plant Biol. 19, 1–17. doi: 10.1186/s12870-019-1878-8

Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev.
Plant Biol. 53, 247. doi: 10.1146/annurev.arplant.53.091401.143329
frontiersin.org

https://doi.org/10.1007/978-3-642-61794-2_29
https://doi.org/10.1007/978-3-642-61794-2_29
https://doi.org/10.1093/pcp/pcx204
https://doi.org/10.1093/pcp/pcx204
https://doi.org/10.1016/j.plaphy.2018.12.025
https://doi.org/10.1007/s12374-021-09298-2
https://doi.org/10.1073/pnas.0605979103
https://doi.org/10.3390/ijms20061268
https://doi.org/10.3390/ijms20061268
https://doi.org/10.1038/s41467-021-25001-y
https://doi.org/10.1371/journal.pone.0121222
https://doi.org/10.3390/ijms23095231
https://doi.org/10.7717/peerj.10765
https://doi.org/10.1186/s12870-019-1878-8
https://doi.org/10.1146/annurev.arplant.53.091401.143329
https://doi.org/10.3389/fpls.2025.1611784
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Predictive prioritization of genes significantly associated with biotic and abiotic stresses in maize using machine learning algorithms
	Introduction
	Materials and methods
	RNA-seq data collection and feature counts
	Read counts preprocessing and merging
	Machine learning gene selection approaches
	Gene co-expression network analysis
	Gene ontology and promoter analysis

	Results and discussion
	DEGs under biotic and abiotic stress
	Identification of top stress-responsive genes by ML models
	Prediction of top genes under biotic stress
	Prediction of top genes under abiotic stress
	Prediction of top genes under combined stress conditions

	Significant modules and potential hub genes
	Functional involvement of the top highly significant genes
	Promoter motifs in the top significant genes

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


