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architecture for precision
vegetable disease detection
advancing agricultural new
quality productive forces
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and Dugang Guo1
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and Technology, Weifang, China, 2School of Computer, Sichuan Technology and Business University,
Chengdu, Sichuan, China, 3The Industry-Education Integration Office, Sichuan Technology and
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In the context of advancing agricultural new quality productive forces, addressing

the challenges of uneven illumination, target occlusion, and mixed infections in

greenhouse vegetable disease detection becomes crucial for modern precision

agriculture. To tackle these challenges, this study proposes YOLO-vegetable, a

high-precision detection algorithm based on improved You Only Look Once

version 10 (YOLOv10). The framework incorporates three innovative modules.

The Adaptive Detail Enhancement Convolution (ADEConv) module employs

dynamic parameter adjustment to preserve fine-grained features while

maintaining computational efficiency. The Multi-granularity Feature Fusion

Detection Layer (MFLayer) improves small target localization accuracy through

cross-level feature interaction mechanisms. The Inter-layer Dynamic Fusion

Pyramid Network (IDFNet) combines with Attention-guided Adaptive Feature

Selection (AAFS) mechanism to enhance key information extraction capability.

Experimental validation on our self-built Vegetable Disease Dataset (VDD, 15,000

images) demonstrates that YOLO-vegetable achieves 95.6% mean Average

Precision at IoU threshold 0.5, representing a 6.4 percentage point

improvement over the baseline model. The method maintains efficiency with

3.8M parameters and 18.6ms inference time per frame, providing a practical

solution for intelligent disease detection in facility agriculture and contributing to

the development of agricultural new quality productive forces.
KEYWORDS

agricultural new quality productive forces, deep learning, vegetable disease detection,
YOLO, precision agriculture, greenhouse cultivation, attention mechanism
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1 Introduction

With the intensification of global population growth and climate

change challenges, developing new quality productive forces in

agriculture has become a strategic choice for ensuring food security

and promoting sustainable agricultural development. New quality

productive forces in agriculture emphasize the construction of

efficient, green, and sustainable modern agricultural production

systems through technological innovation, digital transformation,

and intelligent upgrading. Against this backdrop, intelligent

agricultural disease detection and recognition technology, as a core

component of digital agriculture, is becoming a key technological

support for driving agricultural productivity transformation.

Intelligent detection and recognition of agricultural diseases is a

key technology for ensuring agricultural production and food

security. With the rapid development of facility agriculture,

greenhouse cultivation has become an important mode of

modern agricultural production, representing a typical application

of new quality productive forces in facility agriculture. Although

greenhouse environments provide better disease control conditions

compared to open fields, the enclosed conditions and high plant

density can still facilitate rapid disease transmission when outbreaks

occur, making early and accurate detection crucial for preventing

significant yield losses. Statistics show that greenhouse vegetable

diseases alone cause 20-30% global yield losses annually (Wójcik

Gront et al., 2024). Traditional manual inspection methods are

inefficient and susceptible to subjective factors in complex

greenhouse environments, making it difficult to meet the

monitoring needs of large-scale facility agriculture, urgently

requiring revolutionary changes in detection methods through

artificial intelligence technology.

Deep learning, particularly Convolutional Neural Networks

(CNNs), has revolutionized computer vision with excellent

feature extraction capabilities (Chowdhury et al., 2020). Classic

architectures like VGG and ResNet show strong performance in

disease recognition, while recent object detection advances provide

new pathways for intelligent disease detection (Bonora et al., 2021;

Bao et al., 2023; Mathieu et al., 2024; Jian et al., 2025). Recent

advancements in Vision Transformers (ViTs), such as CrossViT

(Chen et al., 2021) and DaViT (Ding et al., 2022), have

demonstrated strong performance in image classification tasks.

However, in greenhouse vegetable disease detection, these

transformer-based architectures face significant limitations. Their

computational complexity scales quadratically with input

resolution, making them resource-intensive for real-time
Abbreviations: YOLO, You Only Look Once; ADEConv, Adaptive Detail

Enhancement Convolution; MFLayer, Multi-granularity Feature Fusion

Detection Layer; IDFNet, Inter-layer Dynamic Fusion Pyramid Network;

AAFS, Attention-guided Adaptive Feature Selection; VDD, Vegetable Disease

Dataset; mAP, mean Average Precision; IoU, Intersection over Union; CNN,

Convolutional Neural Network; PAFPN, Path Aggregation Feature Pyramid

Network; BiFPN, Bi-directional Feature Pyramid Network; FPN, Feature

Pyramid Network; SPPF, Spatial Pyramid Pooling – Fast; PSA, Position-

Sensitive Attention.
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applications. While transformers excel at capturing global context,

they often struggle with the fine-grained features essential for

identifying small disease lesions under variable greenhouse

lighting and occlusion conditions. Our proposed YOLO-vegetable

model addresses these limitations through adaptive convolutional

mechanisms specifically optimized for greenhouse environments.

Among various deep learning architectures, YOLO (You Only

Look Once) series networks have become important models for

disease detection in greenhouse environments due to their excellent

real-time performance and detection accuracy. The YOLO series

object detection algorithms have continuously evolved since their

introduction in 2016, experiencing multiple significant upgrades from

YOLOv1 to YOLOv10, achieving remarkable progress in detection

accuracy, real-time performance, and resource consumption (Alif and

Hussain, 2024). The recently proposed YOLOv10 further improves

model detection performance in complex scenarios through optimized

backbone network architecture and feature extraction strategies

(Wang et al., 2024). However, existing YOLO variants face

fundamental limitations in greenhouse applications due to three

critical gaps: feature preservation challenges during downsampling

operations, inadequate multi-scale adaptation for disease

manifestations ranging from macro-level patterns to micro-level

changes, and lack of dynamic feature fusion mechanisms for

varying greenhouse environmental conditions.

YOLOv10 was selected as our baseline architecture for several

key reasons: (1) It represents the latest advancement in the YOLO

series with optimized dual-head design eliminating non-maximum

suppression during inference, reducing computational overhead;

(2) YOLOv10n provides the optimal balance between parameter

efficiency (2.2M parameters) and detection capability, making it

suitable for resource-constrained agricultural deployment

scenarios; (3) Its backbone architecture incorporates modern

design principles including attention mechanisms and efficient

feature extraction, providing a solid foundation for our

agricultural-specific modifications; (4) Extensive benchmarking

shows YOLOv10 outperforms YOLOv8 and earlier versions in

both accuracy and inference speed, establishing it as the current

state-of-the-art for real-time object detection applications.

Vegetable disease detection in greenhouse environments faces

several unique challenges. Although greenhouse environments

provide more stable and controllable conditions compared to open

fields, computer vision systems must still handle varying lighting

conditions due to natural light changes throughout the day,

reflections and scattering caused by glass or film covering materials,

and shadows created by structural elements, all of which can affect

image quality and detection accuracy. Dense planting leads to

frequent occlusion of disease targets, increasing detection difficulty.

Additionally, disease symptoms in greenhouse environments

manifest in diverse forms and are often accompanied by mixed

infections (Vásconez et al., 2024). These characteristics make

methods that perform well in laboratory environments often

struggle to achieve expected results in practical greenhouse

applications. The transition from controlled laboratory settings to

complex greenhouse environments highlights fundamental

challenges that most existing approaches fail to address adequately.
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Critical analysis of existing approaches reveals three

fundamental research gaps that this work addresses: First, the

feature preservation gap - most methods prioritize overall

detection accuracy but fail to preserve the fine-grained visual

details essential for early-stage disease detection when symptoms

are subtle. Second, the scale adaptation gap - current architectures

inadequately handle the multi-scale nature of disease

manifestations, from macro-level patterns visible to human

observers to micro-level changes detectable only through careful

feature analysis. Third, the environmental adaptation gap - existing

feature fusion strategies lack dynamic mechanisms to handle the

varying visual complexity introduced by greenhouse environmental

factors such as condensation on covering materials, structural

shadows, and plant growth density variations.

However, existing research still has the following limitations:

First, most methods are developed for disease images with single

backgrounds under laboratory conditions, without fully considering

the unique characteristics of greenhouse environments; Second,

existing models perform poorly when dealing with complex

situations like occlusion and lighting variations in greenhouse

environments; Third, the balance between real-time performance

and accuracy remains unresolved. As Bouni et al. (2024) and

Abdalla et al. (2024) point out, developing detection systems

adapted to complex greenhouse environments remains a

challenging problem requiring urgent solutions.

To address these issues, this study proposes a vegetable disease

detection method YOLO-vegetable based on improved YOLOv10

for greenhouse environments. Our experiments are validated on

disease image datasets collected from multiple real greenhouse

environments. The experimental data includes vegetable disease

images under different lighting conditions, planting densities, and

growth stages, fully reflecting the characteristics of greenhouse

environments. Through comparative experiments with existing

mainstream methods, we validate the superiority of our proposed

method in greenhouse environments.
2 Literature review

Deep learning technology has made significant progress in

agricultural applications, particularly demonstrating great

potential in plant disease detection and recognition. Accurate

recognition and early warning of vegetable diseases are crucial for

ensuring agricultural production and food security. With the rapid

development of computer vision and deep learning technologies,

image-based automatic vegetable disease detection methods have

gradually become a research hotspot (Paul et al., 2025). Deep

learning methods have shown excellent performance in disease

recognition tasks, mainly benefiting from their powerful feature

extraction and representation capabilities. Many scholars have

conducted in-depth research from different perspectives,

proposing various deep learning methods based on Convolutional

Neural Networks (CNNs) and object detection networks like the

YOLO series (Upadhyay et al., 2025; Ali et al., 2024). Currently,

research in this field mainly focuses on object detection network
Frontiers in Plant Science 03
design, feature extraction optimization, data augmentation

strategies, and multi-modal fusion.
2.1 Innovative strategies in object
detection network design

In object detection network design, researchers have proposed

multiple improvement strategies. With the development of deep

learning technology, object detection networks continue to evolve.

The Pruned-YOLO v5s+Shuffle model proposed by Xu et al. (2022)

employs channel pruning method, achieving 93.2% detection

accuracy in complex backgrounds. The Yolov5-ECA-ASFF network

proposed by Zhang et al. (2024) enhances detection performance by

integrating ECA and ASFF modules. Lin et al. (2024) optimized the

YOLO model through combining mixed data augmentation and

osprey search strategy, realizing tomato biotic stress detection. The

WCG-VMamba model developed by Wang et al. (2024) introduces

wavy vision Mamba network, effectively capturing semantic

correlations between image features and text features, further

improving detection performance in complex backgrounds. The

cross-domain dynamic attention mechanism designed by Mo and

Wei (2024) effectively solves uneven illumination problems. Mhala

et al. (2025) addressed class imbalance issues through model

compression and knowledge distillation techniques, achieving

efficient model deployment. These studies indicate that object

detection network design is evolving towards better adaptation to

complex environments and higher accuracy.

Despite promising results in agriculture, existing YOLO-based

methods still face fundamental limitations in greenhouse

applications: (1) Standard strided convolutions in YOLO

backbones sacrifice spatial resolution for computational efficiency,

but disease symptoms often manifest as subtle texture changes

requiring preservation of fine-grained details; (2) Traditional

feature pyramid networks inadequately handle the extreme scale

variation of disease symptoms, from macro-level leaf discoloration

spanning hundreds of pixels to micro-level lesions occupying fewer

than 20 pixels; (3) Fixed feature fusion weights in existing

architectures cannot adapt to the dynamic visual complexity of

greenhouse environments where lighting conditions, plant density,

and background complexity vary significantly. Our ADEConv

module specifically addresses the feature preservation challenge

while maintaining computational efficiency.
2.2 Breakthrough progress in feature
extraction optimization

In feature extraction optimization, the introduction of various

innovative mechanisms has led to significant breakthroughs. Liu

et al. (2021) proposed region and loss reweighting methods,

providing new insights for feature extraction optimization. The

EFDet model developed by Liu et al. (2024) improves detection

effects in complex backgrounds by fusing features from different

levels. Yan et al. (2024) proposed an adaptive deep transfer learning
frontiersin.org
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framework for mixed subdomains, significantly improving cross-

species disease diagnosis performance. Notably, Kang et al. (2024)

proposed a cascade framework combining detector and tracker,

significantly reducing computational complexity while maintaining

high accuracy, providing a feasible solution for practical application

scenarios. Sun et al. (2025) proposed a new tomato disease recognition

method based on the DeiT model, significantly improving detection

accuracy in complex environments through improved feature

extraction and multi-scale feature fusion mechanisms.

While attention-based approaches show promise, most existing

methods apply static attention weights. Chang et al. (2024)

improved wheat disease recognition through DenseNet

modifications, but their approach lacks the dynamic adaptability

required for greenhouse environmental variations. The AAFS

mechanism differs fundamentally from existing attention

approaches: Unlike SE-Net which focuses solely on channel

attention through global average pooling, AAFS integrates both

channel and spatial attention through parallel pathways. Compared

to CBAM which applies channel and spatial attention sequentially,

our approach enables simultaneous processing and dynamic weight

fusion. Unlike ECA-Net’s 1D convolution for channel attention,

AAFS employs adaptive group convolution with channel shuffling

for enhanced feature interaction.
2.3 Innovative development in data
augmentation strategies

In data augmentation strategies, researchers have proposed a

series of innovative methods to address the unique challenges in

greenhouse environments. The multi-scale feature enhancement

strategy proposed by Tian et al. (2022) significantly improved the

model’s recognition ability for disease regions. Karantoumanis et al.

(2024) developed a strategic data augmentation method achieving a

37% accuracy improvement in legume crop disease detection.

Zhang et al. (2024) proposed feature transfer and small target

oversampling methods based on CycleGAN, effectively improving

sample imbalance issues and successfully achieving precise

recognition of early eggplant wilt disease. Johri et al. (2024)

combined deep transfer learning with data augmentation,

achieving significant results in small sample scenarios, providing

new ideas for solving data insufficiency problems.
2.4 Exploration in multi-modal fusion

In multi-modal fusion, researchers have gradually begun to focus

on the synergistic use of multi-source information. Yang et al. (2024)

innovatively proposed a language-vision fusion framework,

demonstrating excellent performance in tomato disease

segmentation tasks. Hu et al. (2024) achieved deep fusion of spectral

information and RGB images, significantly improving disease

detection accuracy. Zhao et al. (2025) successfully implemented

complementary fusion of healthy and diseased leaf information
Frontiers in Plant Science 04
using Double Generative Adversarial Networks (DoubleGAN),

providing new ideas for disease detection in small sample scenarios.
2.5 Small object detection challenges in
complex backgrounds

Regarding small target localization and detection recognition in

complex backgrounds, the unique characteristics of greenhouse

environments bring distinct challenges to disease detection. Barbedo

(2019) research showed that disease recognition faces challenges of

small target size, blurred target features, and occlusion problems. Toda

and Okura (2019) revealed the decision mechanism of CNNs in plant

disease diagnosis under complex environments. Kumar et al. (2023)

proposed a bidirectional feature attention pyramid network, effectively

enhancing the model’s detection capability for targets of different

scales. Zhou et al. (2023) innovatively introduced weakly supervised

learning into disease feature segmentation, providing new approaches

for small target detection. Ye et al. (2024) proposed an adaptive small

target detection framework, significantly improving detection

performance in low-light environments by integrating

EnlightenGAN networks. Hari and Singh (2025) proposed an

adaptive knowledge transfer method based on federated deep

learning, significantly improving model convergence and accuracy

through intelligent weight transfer technology optimizing knowledge

integration between parent and child entities.

However, existing research still faces severe challenges in

complex, unstructured greenhouse environments. First, image

acquisition in greenhouse environments suffers from serious

quality degradation issues, including image blur, noise

interference, and uneven illumination, leading to significant false

detections and missed detections in practical applications. Second,

vegetable disease symptoms often manifest as small local areas of

pathological changes, and these subtle features are easily lost during

feature extraction, making them difficult to capture accurately

(Qing et al., 2023). Furthermore, feature expression and multi-

scale feature fusion mechanisms under complex background

interference remain unresolved (Castillo-Girones et al., 2025).

To address these issues, this study proposes a high-precision

localization and detection algorithm (YOLO-vegetable) for

vegetable disease targets in greenhouse environments, based on

the computationally efficient YOLOv10n single-stage object

detection network. The algorithm contains three core innovative

modules: First, we design the Adaptive Detail Enhancement

Convolution (ADEConv) module, which significantly improves

fine-grained feature retention capability while maintaining

computational efficiency through dynamic adjustment of

convolution kernel parameters; Second, we construct the Multi-

granularity Feature Fusion Detection Layer (MFLayer), which

achieves precise localization of small targets through hierarchical

integration of feature information at different scales; Finally, we

propose the Inter-layer Dynamic Fusion Pyramid Network

(IDFNet), combining with Attention-guided Adaptive Feature

Selection (AAFS) mechanism, significantly enhancing the model’s
frontiersin.org
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key information extraction capability by establishing dynamic

association weights between feature layers.
3 Materials and methods

3.1 YOLO-vegetable model for vegetable
disease detection

Based on the characteristics of vegetable disease targets

requiring detection, this study proposes a detection algorithm

model YOLO-vegetable targeting greenhouse environments.

Taking YOLOv10n, which has the smallest parameter count in

the detection-performance-excellent YOLOv10 series, as the

baseline model, we redesigned the backbone network and neck

network of the original model. The structure of YOLO-vegetable is

shown in Figure 1.
Frontiers in Plant Science 05
The diagram illustrates the complete network structure with

backbone (left), neck network with IDFNet (center), and detection

heads (right). Red boxes highlight our proposed modules:

ADEConv modules replace traditional strided convolutions in the

backbone, MFLayer provides multi-granularity feature fusion for

small target detection, and AAFS mechanisms enable adaptive

feature selection throughout the neck network. Input images

(640×640) flow through the backbone for feature extraction, then

through IDFNet for multi-scale feature fusion, finally reaching dual

detection heads for classification and regression outputs.

3.1.1 Design of ADEConv
Convolutional Neural Networks (CNNs) are widely applied in

computer vision tasks. In YOLOv10 algorithm, CNN is a core part

of its architecture. In traditional CNN design, strided convolution is

typically used for downsampling operations to extract spatial

features, with common convolution kernel sizes of 3×3 or larger.
FIGURE 1

YOLO-vegetable network architecture.
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Strided convolution achieves downsampling by setting stride

greater than 1 during convolution operations, meaning the

convolution kernel moves multiple pixels at a time rather than

pixel by pixel. For example, when stride is set to 2, the convolution

kernel moves 2 pixels each time, where only one out of every two

pixels in the input feature map is covered by the convolution kernel,

thus halving the output feature map dimensions. Because strided

convolution skips some input data, important local information

may not be captured. Although this feature downsampling can

aggregate contextual information and achieve dimension reduction,

it comes at the cost of losing detail information, challenging the

model’s ability to recognize and learn small target features.

Traditional pooling layers can also reduce feature map

resolution and computational cost, but during this process,

information about small objects may be excessively compressed

or completely lost, leading to decreased detection performance.

Therefore, when using these modules for downsampling, details of

vegetable disease targets are inevitably lost, affecting the network’s

ability to extract fine details of small disease spots. Moreover,

diseased areas in vegetable images occupy extremely small areas,

and uneven lighting in greenhouse environments makes it necessary

for the network to extract more detailed information to improve

small target recognition ability.

To address the aforementioned issues, this study replaces the

traditional strided convolution modules in YOLOv10’s backbone

network with ADEConv modules, which improve small object

detection performance by preserving fine-grained information

and avoiding excessive compression of image features. The

replacement process is shown in Figure 2.

The ADEConv module primarily consists of a Space-to-depth

Module and a Non-strided Ghost Convolution Block (Han et al.,
Frontiers in Plant Science 06
2020), replacing all strided convolution blocks in YOLOv10’s

backbone network. The Space-to-depth Module first performs

pixel-wise division and rearranges pixels from each block into

depth channels, achieving spatial compression of the input feature

map. This reorganization not only halves the feature map’s spatial

dimensions but also preserves all original information of the

processed pixels, effectively avoiding potential detail loss that might

occur during traditional strided convolution’s spatial compression

process. The module’s main structure is shown in Figure 3.

Here, Xin denotes the ADEConv module’s input feature map, S

represents the spatial dimension width/height value of the input

feature map, C1 is the input feature map’s channel number, Xspd is

the Space-to-depth Module’s output feature map, C2 is the output

feature map’s channel number, and Xout is the ADEConv module’s

output feature map.

The first operation of the Space-to-depth Module is feature map

slicing, with its formula being:

fh,w = X½h : S : scale,w : S : scale� (1)

where X denotes the input feature map, h and w are the starting

indices for feature map height and width respectively, S is the input

feature map dimension, and scale is the slicing stride. When

scale=2, extracting values every 2 elements yields the following

four feature maps:

f0,0 = X½0 : S : 2, 0 : S : 2�
f0,1 = X½0 : S : 2, 1 : S : 2�
f1,0 = X½1 : S : 2, 0 : S : 2�
f1,1 = X½1 : S : 2, 1 : S : 2�

8>>>>><
>>>>>:

(2)
FIGURE 2

Backbone network architecture comparison. Left: Original YOLOv10n backbone using standard strided convolutions (Conv) and SCDown modules.
Right: Our improved backbone with ADEConv modules replacing all downsampling operations. The ADEConv modules preserve fine-grained
features while achieving the same spatial dimension reduction, addressing the information loss problem inherent in traditional strided convolutions.
Each P1-P5 represents feature maps at different scales (1/2, 1/4, 1/8, 1/16, 1/32 of input resolution respectively).
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Finally, channel concatenation is performed:

Xspd = Concat½f0,0 : f0,1 : f1,0 : f1,1� (3)

where Concat[] represents the Channel-wise Concatenation

operation. While preserving detail information, the Space-to-

depth Module reduces the feature map’s spatial dimensions.

Subsequently, the Non-strided Ghost Convolution Block reduces

channel numbers, with its formula being:

Xout = Concat½GC5�5(FC2=2(Xspd)) : FC2=2(Xspd)� (4)

where GC5�5 represents group convolution operation with a

5×5 kernel size, FC2=2 represents a 1×1 convolution transformation

function using channel size of C2=2. Through these operations, the

ADEConv module can achieve downsampling operations while

maximally preserving all detail information from the original

image without significantly increasing computational cost.

3.1.2 Design of MFLayer
In traditional YOLO series network design, the Path

Aggregation Feature Pyramid Network (PAFPN) adopts a

structure of downsampling followed by upsampling then

downsampling again, combined with skip connections to enhance

information exchange between feature maps. Feature maps are

divided into five levels from P1 to P5 based on their spatial

reduction ratio relative to the input image (1/2, 1/4, 1/8, 1/16, 1/32).

After multiple downsampling operations, some low-level

features may gradually be lost. Although skip connections

between feature maps of the same level during downsampling and

upsampling help recover detail information lost due to consecutive

convolutions and pooling operations, for extremely small targets,

the original structure’s restoration of details remains insufficient

after five downsampling operations followed by only two

upsampling operations, affecting network detection performance.

To address this issue, we introduce the MFLayer in the neck

network to preserve extremely small target detail features. We fuse

the P2 feature layer with downsampling factor of two from the

backbone network and the P2 feature layer obtained after three
Frontiers in Plant Science 07
upsampling operations from the P5 feature layer, and directly use it

as input for the small target detection head. This design aims to

enhance the model’s localization and recognition capability for

extremely small-sized objects by preserving sufficient low-level

features. The principle of the MFLayer is shown in Figure 4.

As shown in Figure 4, (a) Original Network: Traditional YOLO

architecture processes features through standard downsampling

and upsampling paths, with P2-P5 representing feature pyramid

levels. (b) With MFLayer: Our enhanced architecture introduces

additional connections (red arrows) that preserve high-resolution

P2 features and directly integrate them with upsampled deep

features. This strategy of combining low-level detail features with

high-level semantic features not only helps improve detection

effects for small targets but can also maintain the model’s

computational efficiency to some extent. Through this approach,

the model can more accurately capture and identify small objects in

images. The MFLayer design offers significant advantages over

traditional feature fusion approaches by establishing direct

connections between high-resolution and low-resolution feature

maps. This capability directly addresses one of the most

significant challenges in greenhouse disease detection, where

early-stage symptoms often manifest as subtle lesions easily lost

during conventional feature downsampling.
3.1.3 Design of IDFNet
Traditional YOLO series networks use PAFPN as their neck

network structure, where there is no information exchange between

each feature map layer and the backbone, potentially leading to loss

of some detail features. The preservation of detail features is crucial

for small target recognition. The Bi-directional Feature Pyramid

Network (BiFPN) adds cross-scale fusion layers compared to

PAFPN (Tan et al., 2020), achieving feature flow from top-down

and bottom-up, and optimizing the feature fusion process by

adding weights to each feature input, which helps preserve more

useful information. Since BiFPN introduces dynamic weights, these

weights are optimized through backpropagation during network

training, which might increase the network’s computational burden
FIGURE 3

ADEConv module architecture.
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and potentially lead to training instability in early stages due to

uncertainty in initial weight values.

To address these issues, this study redesigns the original neck

network, proposing the IDFNet. This network introduces a

feature propagation path from backbone to downsampling

path to reduce the loss of small target features during

propagation. By introducing cross-layer feature propagation

paths, we establish direct connections between the backbone

network and feature pyramid network, significantly reducing

information loss of fine-grained features during multiple

downsampling processes. The output layers from the feature

extraction network are fed into P3 layer (low-level features), P4

layer (mid-level features), and P5 layer (high-level features), and

BiFPN fusion method is repeated 3 times between P3, P4, and P5

layers, implementing multi-scale feature fusion. Each fusion can

extract higher-level, more abstract features based on existing

foundations, improving detection accuracy. The overall

architecture of IDFNet is shown in Figure 5.
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As shown in Figure 5, (a) FPN: Basic top-down feature fusion.

(b) PAFPN: Bidirectional feature fusion with additional bottom-up

pathway. (c) BiFPN: Weighted bidirectional fusion with cross-scale

connections. (d) IDFNet (Ours): Enhanced architecture with

additional backbone-to-neck connections (green arrows) and

dynamic fusion weights.

Simultaneously, we design the AAFS mechanism as the core

feature fusion strategy. Unlike traditional BiFPN using fixed weight

allocation methods, the AAFS mechanism dynamically calculates

fusion weights by comprehensively analyzing channel-dimension

and spatial-dimension correlations of feature maps, enabling the

network to adaptively enhance features crucial for detection tasks.

This strategy based on feature correlation adaptive selection not

only improves the model’s detection sensitivity to subtle disease

features but also enhances feature expression’s discriminative ability

across different scales. The principle of AAFS is shown in Figure 6.

Let X be the feature map input, obtaining its channel-dimension

and spatial-dimension features:
FIGURE 5

Comparison of feature pyramid network architectures. (a) FPN: Basic top-down feature fusion with unidirectional information flow from high-level
to low-level features. (b) PAFPN: Bidirectional feature fusion with additional bottom-up pathway enabling information exchange between different
pyramid levels. (c) BiFPN: Weighted bidirectional fusion with cross-scale connections and learnable fusion weights. (d) IDFNet (Ours): Enhanced
architecture with additional backbone-to-neck connections (green arrows) and dynamic fusion weights through AAFS mechanism for improved
feature propagation.
FIGURE 4

MFLayer schematic diagram. (a) Original Network: Traditional YOLO architecture processes features through standard downsampling and
upsampling paths, with P2-P5 representing feature pyramid levels at different scales. (b) With MFLayer: Our enhanced architecture introduces
additional connections (red arrows) that preserve high-resolution P2 features and directly integrate them with upsampled deep features, enabling
better small target detection through multi-granularity feature fusion.
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Wc = FC�1�1(max(0, FC
r= �1�1(X

C
GAP)   )) (5)

Ws = FC�7�7(½Xs
GAP ,X

s
GMP�) (6)

where Wc represents channel features, Ws represents spatial

features, FC�1�1 represents 1×1 convolution transformation

function with C channels, r is the channel reduction ratio, max

(0,·) represents the ReLU activation function, XC
GAP represents

global average pooling operation across spatial dimensions, Xs
GAP

and Xs
GMP represent global average pooling and global max pooling

operations across channel dimensions respectively.

Subsequently, the features from both dimensions are added and

concatenated with input X, followed by channel shuffling operation,

then passing through group convolution and Sigmoid operation to

obtain fusion weight W:
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W = s(GC7�7CS((Concat½X,Wc +Ws�))) (7)

where s represents Sigmoid operation, GC7�7 represents group

convolution operation with 5×5 kernel size, CS() represents channel

shuffle operation.

3.1.4 Variable definitions
Table 1 summarizes key variables, their symbols, definitions,

and numerical values/ranges used in the study.
3.2 Vegetable disease image dataset

To ensure the dataset encompasses diverse greenhouse

environments and meets the model’s requirements for handling

complex backgrounds, occlusion, blurred disease features, and

small target detection, this study employs our self-built Vegetable

Disease Dataset (VDD), comprising 15,000 images involving 3

major facility vegetables (tomato, cucumber, pepper) and their 15

common diseases along with healthy samples (Figure 7; Table 2).

Data collection was conducted in controlled greenhouse facilities

with temperature at 22-28°C (day) and 18-22°C (night), and

relative humidity at 60-75%. Images were captured using

professional high-resolution cameras at 30-50cm distance across

four growth stages (seedling, vegetative, flowering, fruiting) under

diverse weather conditions to ensure dataset robustness. The

dataset is annotated following YOLO format specifications.

Dataset annotation was performed by certified plant pathologists

following standardized protocols. Each disease instance was

annotated with precise bounding boxes. The dataset is divided

into training set, validation set, and test set in a 7:2:1 ratio.

This dataset contains vegetable disease targets under various

weather conditions.

Figure 7 showcases representative samples from our dataset,

illustrating the diversity of disease manifestations across different
TABLE 1 Variable definitions.

Symbol Definition
Value/
Range

Source

C1
Input channels
of ADEConv

C1=64
Backbone
network configuration

C2
Output channels
of ADEConv

C2=128 Equation 4

H,W
Height/Width of input
feature maps

H=W=640
Image
resolution setting

s Gaussian noise intensity
s∈[0.1,0.3]
s∈[0.1,0.3]

Noise
robustness
experiments

a
Learning rate
decay factor

a=0.95
Training
hyperparameters

r
Channel reduction ratio
in AAFS

r=4 Equation 5
FIGURE 6

AAFS module architecture.
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vegetable types and growth stages. The images demonstrate varying

symptom presentations, from early-stage subtle discolorations to

advanced necrotic lesions, captured under diverse lighting

conditions and viewing angles. This diversity ensures models

trained on our dataset develop robust generalization capabilities

applicable to real-world greenhouse scenarios.
4 Results and discussion

4.1 Experimental environment and
parameter configuration

The experimental platform uses Ubuntu22.04 as the operating

system, equipped with Intel(R) Xeon(R) Gold 5418Y processor with a

main frequency of 2.00 GHz. The system memory is 32GB, with an

Nvidia GeForce RTX 4090 graphics card having 24GB memory

capacity. The PyTorch framework version is 2.2.2+cu121, and

Python version is 3.10.0. Input image resolution is uniformly set to

640×640 to ensure the clarity of targets at different scales in feature

maps, adapting to the model’s requirements for small target detection.

During training, the model’s initial learning rate is set to 0.01, batch

size to 16, momentum to 0.937, weight decay coefficient to 0.0005, and

training epochs to 100. To further enhance the model’s robustness, all

experiments are conducted without any form of pre-trained weights,
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and all experiments use consistent hyperparameters for training and

validation to ensure comparability of experimental results.

Data augmentation techniques, including mosaic and mixup,

were applied to enhance dataset diversity. Our augmentation

pipeline also included random rotation (± 15°), horizontal and

vertical flipping, and adjustments to brightness (± 25%), contrast (±

20%), and saturation (± 15%) to simulate the variable lighting

conditions in greenhouse environments. To address class imbalance

issues, we employed oversampling for minority disease classes,

ensuring balanced representation during training while

maintaining authentic image characteristics.

For hyperparameter optimization, we conducted a systematic

grid search to identify optimal values. The learning rate was

initialized at 0.01 and adjusted using a cosine annealing scheduler

with warm restarts. Weight decay was set to 0.0005, and

momentum maintained at 0.937 throughout training. These

parameters were selected after evaluating 16 different

configurations, with the final values providing the best balance

between convergence speed and model generalization.
4.2 Evaluation metrics

To comprehensively evaluate YOLO-vegetable model’s

balanced performance in terms of speed and accuracy, this study
FIGURE 7

Selected samples of vegetable disease images.
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selects Precision, Recall, Average Precision (AP), Mean Average

Precision (mAP), Parameters, FLOPs, and Inference Time as

evaluation metrics. In object detection tasks, mAP@0.5 and

mAP@0.5:0.95 serve as primary evaluation metrics, capable of

comprehensively evaluating model performance. Specifically,

mAP@0.5 represents average precision at Intersection over Union
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(IoU) threshold of 0.5; mAP@0.5:0.95 reflects model stability under

different IoU thresholds. Meanwhile, through evaluating parameter

count and computational complexity, we provide important

references for practical deployment.
4.3 Experimental process

To significantly improve the accuracy and efficiency of vegetable

disease target detection, we propose YOLO-vegetable. The

experimental process includes three key phases, as shown in Figure 8.

To validate the effectiveness of the proposed model,

experiments were conducted on our self-built vegetable disease

dataset. The training and validation curves of the proposed model’s

box loss, dfl loss, classification loss, and other performance metrics

including precision, recall, mAP@0.5, and mAP@0.5:0.95 are

shown in Figure 9, with iteration count on the horizontal axis.

As shown in Figure 9, during the 100 training iterations, the loss

exhibit stable convergence patterns, gradually stabilizing as training

progresses. Similarly, the validation loss demonstrate consistent

convergence behavior, reaching steady states by the final epochs.

Observing the model’s mAP@0.5 and mAP@0.5:0.95 convergence

curves, performance metric curves begin to stabilize after 50

iterations. Finally, the model achieves excellent performance on the

test set: mAP@0.5 reaches around 95%, and mAP@0.5:0.95 reaches

approximately 60%. Meanwhile, the model demonstrates good

precision and recall performance, indicating strong generalization

ability and stability in vegetable detection tasks. The YOLO-vegetable

model achieves a parameter count of 3.8M and a computational

complexity of 14.7 GFLOPs, making it highly efficient for real-time

deployment in resource-constrained environments.
4.4 Experimental results

To comprehensively evaluate YOLO-vegetable model’s

performance in detecting various vegetable diseases, testing was
TABLE 2 Sample counts of vegetable disease types.

No. Disease type

Number of images

Training
set

Validation
set

Test
set

A1 Tomato health 700 200 100

A2 Tomato gray mold 700 200 100

A3 Tomato gray leaf spot 700 200 100

A4 Tomato black spot 700 200 100

A5 Tomato late blight 700 200 100

B1 Cucumber health 700 200 100

B2 Cucumber target spot 700 200 100

B3
Cucumber

powdery mildew
700 200 100

B4
Cucumber
angular spot

700 200 100

B5
Cucumber

downy mildew
700 200 100

C1 Pepper health 700 200 100

C2 Pepper leaf spot 700 200 100

C3
Pepper

powdery mildew
700 200 100

C4 Pepper black spot 700 200 100

C5 Pepper early blight 700 200 100

Total 10500 3000 1500
FIGURE 8

The flow chart of vegetable disease detection.
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conducted based on our self-built dataset. Table 3 shows the

detection results of YOLO-vegetable model for these different

types of diseases.

As shown in Table 3, YOLO-vegetable model achieves

Precision, Recall, and AP values above 90% for 15 vegetable

diseases and healthy samples, demonstrating high precision and
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recall rates. The model’s mAP reaches 95.6%, fully proving its

excellent performance in handling different types of vegetable

diseases. Additionally, the model’s outstanding performance in

healthy sample recognition helps reduce misdiagnosis and

unnecessary treatments.

Figure 10 presents the confusion matrix of our proposed

YOLO-vegetable model, showing the proportion of detection

results for each category. The horizontal axis represents predicted

class numbers, while the vertical axis represents annotated class

numbers. In the matrix, squares where predicted classes match

annotated classes represent correct algorithm predictions, while

other squares represent class confusion cases. From the prediction

results, the model demonstrates high detection accuracy with

minimal confusion overall, showing only a small proportion of

class confusion cases.

To comprehensively evaluate the detection performance of the

proposed YOLO-vegetable model compared to the baseline model,

we analyzed the Precision-Recall (PR) curves, which illustrate the

trade-off between precision and recall at different confidence

thresholds. Figure 11 presents the PR curves for both models.

The PR curve analysis reveals that the proposed YOLO-

vegetable model (Figure 11a) achieves superior performance with

an Average Precision (AP) of 0.956, representing a significant

improvement over the baseline model’s AP of 0.892 (Figure 11b).

The YOLO-vegetable model maintains higher precision values

across a wider range of recall values, indicating its ability to

identify disease instances correctly while minimizing false

positives. The enhanced performance demonstrated by the PR

curves further validates the effectiveness of our architectural

improvements—specifically the ADEConv module for preserving

fine-grained features, the MFLayer for accurate small target

localization, and the IDFNet for enhanced feature fusion. These

components collectively contribute to the model’s ability to

maintain high precision even at high recall thresholds, making it
FIGURE 9

Performance metrics of the proposed YOLO-vegetable model.
TABLE 3 Detection results for different disease types.

No. Disease type
Precision

(%)
Recall
(%)

AP50
(%)

A1 Tomato health 96.8 95.4 96.2

A2 Tomato gray mold 95.2 94.8 95.0

A3 Tomato gray leaf spot 94.6 93.9 94.3

A4 Tomato black spot 95.8 94.7 95.3

A5 Tomato late blight 96.2 95.1 95.7

B1 Cucumber health 97.1 96.3 96.8

B2 Cucumber target spot 95.4 94.6 95.1

B3 Cucumber
powdery mildew

94.8 93.9 94.4

B4 Cucumber angular spot 95.6 94.8 95.2

B5 Cucumber
downy mildew

96.4 95.2 95.9

C1 Pepper health 97.3 96.5 97.0

C2 Pepper leaf spot 95.7 94.9 95.3

C3 Pepper powdery mildew 94.9 94.2 94.6

C4 Pepper black spot 95.8 94.7 95.3

C5 Pepper early blight 96.1 95.3 95.8

Average 95.8 94.9 95.6
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well-suited for real-world greenhouse disease detection scenarios

with varying lighting conditions and complex backgrounds.
4.5 Ablation study

To systematically evaluate the performance contribution of each

core module in the YOLO-vegetable algorithm, this study uses

YOLOv10n as the baseline model, progressively introducing the

ADEConv, MFLayer , and IDFNet modules . Through

comprehensive analysis of model accuracy, computational

complexity, and inference time, we validate the optimization

effect of each module. Detailed experimental results are shown

in Table 4.

The experimental results show that introducing the ADEConv

module improves mAP@0.5 from 89.2% to 94.3%, significantly

enhancing the network’s fine-grained feature extraction capability.

Although parameter count increases from 2.2M to 3.6M and

computational cost increases to 9.5 GFLOPs, it only brings a

0.5ms inference time delay (15.6ms to 16.1ms). While the

MFLayer module leads to computational cost increasing to 15.1

GFLOPs with a 2.6ms inference time increase, it performs

excellently in maintaining small target detail features, achieving

93.2% mAP@0.5 with only 2.8M parameters. The introduction of

IDFNet demonstrates superior feature fusion effects, achieving
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94.3% mAP@0.5 with just 2.7M parameters, while maintaining

comparable computational cost (8.3 GFLOPs) and inference

time (15.9ms).

Further research reveals that the combination of ADEConv and

MFLayer achieves 94.5% mAP@0.5, surpassing single-module

applications. Although computational cost increases to 16.7

GFLOPs, through reasonable parameter configuration (3.8M), the

inference time increase (20.1ms) remains acceptable. This result

demonstrates the synergistic effect between detail feature extraction

and feature preservation. Building upon this foundation,

introducing IDFNet to form the complete YOLO-vegetable model

not only further improves mAP@0.5 to 95.6% but also achieves

optimization in computational resource utilization: maintaining

parameter count at 3.8M, reducing computational cost to 14.7

GFLOPs, and controlling inference time to 18.6ms. This balance

between performance improvement and computational overhead

fully validates the necessity of innovative modules and their

excellent synergistic effects.

To more intuitively demonstrate the performance improvement

effects of different modules on the model, Figure 12 illustrates the

trends of model performance as different modules are introduced.

From the overall trends in Figure 12, the progressive introduction of

the three innovative modules shows steady performance

improvement, with balanced enhancement across all metrics,

demonstrating no significant degradation in any indicator while
FIGURE 10

Confusion matrix of the proposed YOLO-vegetable model.
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others improve. This balanced performance improvement validates

that our proposed improvement strategies are not only necessary

but can work collaboratively and mutually reinforce each other,

achieving overall optimization of model performance.

To better understand the model’s decision-making process, we

visualized the feature activation maps using Grad-CAM techniques

(Figure 13). These visualizations demonstrate that our YOLO-

vegetable model correctly focuses on disease-affected regions while

effectively filtering out background noise. For smaller lesions, the

model exhibits precise localization, confirming the effectiveness of

our detail-preserving modules. Comparative analysis of activation

maps between the baseline model and YOLO-vegetable reveals

distinct differences in feature focus. While the baseline model tends

to activate broadly across leaf surfaces with disease-like coloration

patterns, our model demonstrates more precise localization

specifically on the actual disease lesions. This is particularly evident

in the second row of Figure 13, where the baseline model shows

diffuse activation across multiple spots, while YOLO-vegetable

concentrates activation intensity precisely on the primary disease
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lesions. This improved focus significantly reduces false positives in

complex backgrounds with similar color patterns to diseases but

different textural features, a common challenge in greenhouse

environments with varying light conditions creating shadowing

effects that resemble disease symptoms.
4.6 Comparative experiments

Figure 14 presents the comparative experimental results

between the proposed YOLO-vegetable model and the baseline

model during the training process. The left subfigure (a) shows the

mAP@0.5 curves of YOLO-vegetable and the baseline model. From

the figure, it is evident that the proposed model achieves higher

mAP during training and converges faster, ultimately reaching

95.6% mAP, significantly outperforming the baseline model’s

89.2%. The right subfigure (b) displays the Loss curves of YOLO-

vegetable and the baseline model. The baseline model exhibits

higher Loss values, slower convergence speed, and ultimately
FIGURE 11

PR curves of the proposed YOLO-vegetable model compared to the baseline model. (a) YOLO-vegetable: Precision-Recall curve showing superior
performance with AP of 0.956, maintaining higher precision values across a wider range of recall thresholds. (b) Baseline: YOLOv10n baseline model
PR curve with AP of 0.892, demonstrating lower overall detection performance compared to our proposed method.
TABLE 4 Ablation study results.

Group ADEConv MFLayer IDFNet mAP (%) Parameters (M) FLOPs (G) Time (ms)

1 No No No 89.2 2.2 6.5 15.6

2 Yes No No 94.3 3.6 9.5 16.1

3 No Yes No 93.2 2.8 15.1 18.2

4 No No Yes 94.3 2.7 8.3 15.9

5 Yes Yes No 94.5 3.8 16.7 20.1

6 Yes No Yes 94.2 4.2 10.3 17.6

7 No Yes Yes 94.0 3.4 12.9 17.9

8 Yes Yes Yes 95.6 3.8 14.7 18.6
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higher final Loss values compared to the proposed model. This

indicates that the proposed YOLO-vegetable model not only

surpasses the baseline model in accuracy but also demonstrates

better convergence behavior and lower loss during training.

To comprehensively evaluate the performance of YOLO-

vegetable, we conducted extensive comparisons with mainstream

object detection models. The experimental results are summarized

in Table 5. On the same vegetable disease dataset, the proposed model

exhibits superior comprehensive performance. In terms of detection

accuracy, YOLO-vegetable achieves 95.6% mAP@0.5, significantly

exceeding the baseline model YOLOv10n (89.2%) and outperforming

other mainstream detection algorithms such as Faster-RCNN

(89.6%), SSD (94.2%), and YOLOv5s (93.9%). Notably, the

proposed model achieves comparable performance to YOLOv10s

(95.5%) while demonstrating superior resource efficiency.

From the perspective of model complexity, YOLO-vegetable

exhibits significant advantages. Compared to Faster-RCNN’s 63.2M

parameters, the proposed model requires only 3.8M parameters,

reducing storage demands by approximately 94%. In terms of

computational efficiency, YOLO-vegetable achieves 14.7 GFLOPs,

substantially lower than Faster-RCNN (370.0 GFLOPs) and SSD

(63.2 GFLOPs), and also outperforms YOLOv5s (23.8 GFLOPs)

and YOLOv8s (28.5 GFLOPs). This marked reduction in

computational cost makes the model more suitable for

deployment in resource-constrained practical applications.

Regarding real-time performance, YOLO-vegetable achieves an

average inference time of 18.6ms per frame, significantly

outperforming two-stage detectors such as Faster-RCNN

(114.8ms/frame) and single-stage detectors like SSD (22.2ms/

frame). Although there is a slight increase compared to the

baseline model YOLOv10n (15.6ms/frame), this latency

increment is acceptable given the substantial improvement in

detection accuracy (from 89.2% to 95.6%). Particularly, compared

to YOLOv10s (24.8ms/frame) and YOLOv11s (21.8ms/frame), the

proposed model achieves lower inference latency while maintaining
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comparable detection accuracy, which is crucial for real-time

disease monitoring in greenhouse environments.

Through comparisons with various YOLO series variants, it is

evident that YOLO-vegetable achieves an optimal balance between

performance and lightweight design. Compared to lightweight

models such as YOLOv10n (89.2%) and YOLOv11n (91.7%), the

proposed model achieves significant accuracy improvements with

only moderate increases in parameter count. When compared to

YOLOv10s (94.5%) and YOLOv11s (94.0%), it maintains

comparable accuracy while substantially reducing model

complexity and computational overhead. This balanced

performance fully validates the effectiveness of the proposed

improvement strategies and provides an efficient and practical

solution for vegetable disease detection in real-world applications.

To evaluate the robustness of the proposed model under noisy

conditions, we conducted experiments with Gaussian and salt-and-

pepper noise. The results demonstrate that YOLO-vegetable maintains

high detection accuracy, with mAP@0.5 above 90% in both noise

scenarios, highlighting its robustness in real-world applications.

Figure 15 presents representative detection results with

bounding boxes across various greenhouse scenarios, including

different lighting conditions, planting densities, and disease

severities. The visualizations demonstrate YOLO-vegetable’s

superior detection performance particularly in challenging cases

such as partially occluded leaves, early-stage disease symptoms, and

complex backgrounds with shadows. Compared to baseline models,

our approach shows notably fewer false positives on healthy plant

parts with similar color patterns to diseased regions, indicating

enhanced feature discrimination capabilities.
4.7 Generalization experiments

To validate the generalization capability of the proposed YOLO-

vegetable model, a public dataset downloaded from the Baidu
FIGURE 12

Performance contribution comparison of different modules.
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PaddlePaddle platform in China was selected for generalization

testing. This dataset contains 534 images and corresponding

annotation files, exhibiting strong scene diversity and challenges.

The download link is: https://aistudio.baidu.com/datasetdetail/

292158. Training was conducted under consistent hardware

conditions. The experimental results are shown in Table 6.

The experimental results demonstrate that YOLO-vegetable

exhibits excellent performance advantages on cross-scene datasets.

Compared to the baseline model, precision increased by 8.3% (from

86.5% to 94.8%), indicating that the improved model maintains

high detection accuracy in unknown scenarios. Recall increased by

9.4% (from 84.2% to 93.6%), proving that the model has a stronger

ability to detect diseases. The mean average precision (mAP@0.5)

increased by 8.8% (from 85.4% to 94.2%), demonstrating a

significant improvement in the model’s overall performance. This
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comprehensive performance enhancement fully validates the

effectiveness of the proposed improvement strategies.

In-depth analysis reveals that the superior generalization

performance of YOLO-vegetable is primarily attributed to its

enhanced feature representation capability. Through the adaptive

detail enhancement mechanism of the ADEConv module, the

model can better extract and retain fine-grained features of

diseases, enabling accurate recognition across different scenarios.

The multi-granularity feature fusion mechanism of the MFLayer

allows the model to adaptively handle disease targets of different

scales, effectively addressing the issue of target scale variation in

cross-scene data. Additionally, the dynamic feature fusion strategy

of the IDFNet significantly enhances the model’s adaptability to

complex backgrounds, ensuring stable detection performance under

varying lighting, angles, and occlusion conditions.
FIGURE 13

Feature activation maps using Grad-CAM technique.
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Qualitative analysis shows that YOLO-vegetable exhibits clear

advantages in handling complex scenarios (e.g., lighting variations,

partial occlusion, complex backgrounds), with both false detection

and missed detection rates lower than those of the baseline model.
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This fully demonstrates that the proposed improvement strategies

not only enhance the model’s detection accuracy but also improve

its generalization capability and environmental adaptability. The

experimental results indicate that the YOLO-vegetable model has
FIGURE 15

Detection results with bounding boxes.
FIGURE 14

Comparison results between the proposed YOLO-vegetable model and the baseline model during training process. (a) mAP@0.5 curves: YOLO-
vegetable (red line) achieves faster convergence and higher final performance (95.6%) compared to baseline model (blue line, 89.2%), demonstrating
superior learning capability. (b) Loss curves: YOLO-vegetable (red line) exhibits lower loss values and more stable convergence behavior compared
to baseline model (blue line), indicating more effective optimization and better model training dynamics.
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excellent generalization performance, maintaining stable detection

performance when faced with new, unseen data, laying a technical

foundation for the large-scale application of the model in practical

agricultural production.
5 Conclusions and future work

5.1 Conclusions

This study successfully addresses critical challenges in

greenhouse vegetable disease detection by developing YOLO-

vegetable, an enhanced deep learning architecture that

significantly improves detection accuracy while maintaining

computational efficiency. Our approach represents a substantial

advancement in applying AI technology to support agricultural new

quality productive forces.

The key contributions of this work include: (1) innovative

architectural designs that preserve fine-grained features while

enabling multi-scale detection; (2) comprehensive experimental

validation demonstrating superior performance across diverse

greenhouse conditions; and (3) practical deployment

considerations with optimized parameter efficiency. The proposed

method achieves state-of-the-art performance on our

comprehensive dataset while maintaining real-time capabilities

essential for practical applications.
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Experimental results validate the effectiveness of our approach,

with significant improvements in detection accuracy and

computational efficiency compared to existing methods. The

model’s robust performance across different disease types, growth

stages, and environmental conditions demonstrates its potential for

widespread adoption in intelligent greenhouse systems. This work

provides a foundation for advancing precision agriculture through

AI-driven disease monitoring and contributes to the development

of sustainable agricultural practices.
5.2 Future work

Future research directions include: (1) comprehensive cross-

regional validation to establish model generalizability across diverse

agricultural settings; (2) development of lightweight architectures

for edge computing deployment; (3) integration with IoT systems

for automated greenhouse monitoring; and (4) extension to

additional crop varieties and disease types. Long-term goals focus

on creating comprehensive agricultural AI platforms that support

large-scale implementation of intelligent disease management

systems in modern farming operations.
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