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Foundation models in plant
molecular biology: advances,
challenges, and future directions
Feng Xu, Tianhao Wu, Qian Cheng, Xiangfeng Wang
and Jun Yan*

Frontiers Science Center for Molecular Design Breeding, State Key Laboratory of Maize Bio-breeding,
National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural
University, Beijing, China
A foundation model (FM) is a neural network trained on large-scale data using

unsupervised or self-supervised learning, capable of adapting to a wide range of

downstream tasks. This review provides a comprehensive overview of FMs in plant

molecular biology, emphasizing recent advances and future directions. It begins by

tracing the evolution of biological FMs across the DNA, RNA, protein, and single-

cell levels, from tools inspired by natural language processing (NLP) to

transformative models for decoding complex biological sequences. The review

then focuses on plant-specific FMs such as GPN, AgroNT, PDLLMs, PlantCaduceus,

and PlantRNA-FM, which address challenges that are widespread among plant

genomes, including polyploidy, high repetitive sequence content, and

environment-responsive regulatory elements, alongside universal FMs like

GENERator and Evo 2, which leverage extensive cross-species training data for

sequence design and prediction of mutation effects. Key opportunities and

challenges in plant molecular biology FM development are further outlined, such

as data heterogeneity, biologically informed architectures, cross-species

generalization, and computational efficiency. Future research should prioritize

improvements in model generalization, multi-modal data integration, and

computational optimization to overcome existing limitations and unlock the

potential of FMs in plant science. This review serves as an essential resource for

plant molecular biologists and offers a clear snapshot of the current state and

future potential of FMs in the field.
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Introduction

In recent years, large language models (LLMs) based on Transformer architecture, such

as BERT and GPT, have revolutionized NLP (Vaswani et al., 2017; Radford et al., 2018;

Devlin et al., 2019). LLMs use self-supervised learning (SSL) to learn semantic patterns and

contextual relationships from massive text datasets (Hou et al., 2024). Many employ a two-

stage pre-training and fine-tuning process, which enables remarkable generalization, often
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eliminating or substantially reducing the need for the task-specific

feature engineering typical of traditional machine learning

approaches (Hou et al., 2024). The self-attention mechanism in

LLMs efficiently captures long-range dependencies in sequential

data, supported by increased training speed through parallel

computing (Hou et al., 2024). Recently, LLMs have extended

beyond NLP into scientific domains reliant on sequential data,

such as biology, where they offer a new computational framework

for modeling biological sequences, inferring structure–function

relationships, and predicting the effects of genetic variation (Liu

et al., 2024; Zhang et al., 2025).

The sequences of biological macromolecules, including DNA,

RNA, and proteins, exhibit a hierarchical structure analogous to

natural language, making LLMs well-suited to advance biological

foundation models (FMs) (Liu et al., 2024). Most biological FMs are

built on LLMs due to their ability to effectively model the

hierarchical and context-dependent relationships in biological

sequences. Although alternative approaches exist, LLMs have

become the dominant framework for biological FMs because of

their exceptional performance in capturing complex patterns in

sequential data. However, most existing biological FMs are trained

on human or animal data, limiting their application in plant

sciences. Plant genomes often pose specialized challenges,

including polyploidy (e.g., hexaploid wheat) (Walkowiak et al.,

2020), extensive structural variation (Saxena et al., 2014), and a

high proportion of repetitive sequences and transposable elements

(e.g., over 80% in maize) (Stitzer et al., 2021), all of which introduce

ambiguity in sequence representation and increase noise in training

data, ultimately degrading model performance. In addition, plant

gene expression is dynamically regulated by environmental factors

(Ben Rejeb et al., 2014; Greenham and McClung, 2015), including

photoperiod, abiotic stresses (e.g., drought, salinity, and extreme

temperatures), and biotic stresses (e.g., pathogen infection and pest

damage). These conditions require broader model generalizability

to effectively capture the complex response mechanisms they

induce. Finally, the scarcity and limited diversity of plant datasets

further constrain the effective use of FMs in plant molecular biology

(Lam et al., 2024).

Recent advances, such as the integration of high-resolution

plant omics data and innovative architectural designs, have driven

the development of FMs for plant molecular biology. These models

enable new approaches to genetic analysis, trait prediction, and

precision breeding in plants (Lam et al., 2024). This review

systematically examines the progress of biological FMs at multiple

molecular levels, highlights the latest advances in FMs for plant

molecular biology, discusses current research paradigms and

technical bottlenecks, and proposes future directions for FM-

driven research in plant science.
Multi-level research dynamics of
biological FMs

Biological FMs provide analytical frameworks that span DNA,

RNA, protein, and single-cell levels. By integrating sequence, structure,
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and multi-omics data, they enable cross-scale investigations ranging

from molecular mechanisms to system-wide processes. This progress

in biological FMs has been instrumental in advancing the

development of plant-specific FMs, offering critical insights into

how similar frameworks can be adapted to the unique challenges of

plant molecular biology.
DNA-level FMs

The development of DNA-level FMs has transformed genomic

research, from localized sequence analysis to holistic analysis of

entire genomes. Early models, such as DNABERT (Ji et al., 2021),

identify regulatory elements (e.g., promoters and enhancers) by

employing k-mer tokenization—a method that segments DNA

sequences into overlapping subsequences of length k—and the

Bidirectional Encoder Representations from Transformers (BERT)

architecture. DNABERT-2 (Zhou et al., 2023) improves both

efficiency and accuracy through Byte Pair Encoding (BPE) and

low-rank adaptation. Nucleotide Transformer (Dalla-Torre et al.,

2024) also adopts the Transformer architecture and supports a 6-kb

context window in its original version, with the recently released v2

extending support to 12-kb, further improving the modeling of

long-range dependencies in DNA. GROVER (Sanabria et al., 2024),

trained using BPE and a custom next k-mer prediction task,

constructs a “genomic grammar handbook” that models human

DNA sequence rules and excels in promoter identification and

protein–DNA binding tasks. More recent models, HyenaDNA

(Nguyen et al., 2023) and Evo (Nguyen et al., 2024), substantially

enhance genome design efficiency through innovations like the

Hyena operator and StripedHyena architecture, enabling the

processing of sequences spanning millions of base pairs and

uncovering cross-species co-evolutionary relationships. This

technological trajectory reflects a journey from analyses that

identify core elements to megabase-scale sequence interpretation,

cross-species generalization, and ultimately genome-scale

engineering. Additionally, GPN-MSA (Benegas et al., 2025)

represents a distinct type of FM by incorporating multi-species

alignment data to enhance the prediction of functional variants in

non-coding regions.
RNA-level FMs

RNA FMs are emerging as vital tools for unraveling the intricate

relationships among RNA sequences, structures, and functions.

RNABERT (Akiyama and Sakakibara, 2022) and RNA-FM (Chen

et al., 2022) provide the groundwork and set foundational

benchmarks in this field. Numerous models with distinct

strengths have been developed. SpliceBERT (Chen et al., 2024a)

and CodonBERT (Li et al., 2024b) improve splice-site prediction

and codon optimization, which enhance the accuracy of gene

expression analysis. DGRNA (Yuan et al., 2024) pushes the

boundaries further using the bidirectional Mamba2 architecture

to process long sequences, outperforming conventional models in
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tasks such as non-coding RNA classification and splice-site

prediction. RNA-MSM (Zhang et al., 2024b), a multiple sequence

alignment-based model, uses RNAcmap and an unsupervised

strategy to enhance RNA structure and function prediction

through evolutionary insights, whereas RiNALMo (Penić et al.,

2024), pre-trained on 36 million non-coding RNAs, excels in RNA

structure prediction and generalizes well to novel RNA families.

LAMAR (Zhou et al., 2024) uses large-scale pre-training to decode

RNA splicing and translational regulation, whereas GenerRNA

(Zhao et al., 2024a), a GPT-2-like generative model, designs

functional RNAs with predicted secondary structures, showing

promise for synthetic biology applications. RNAGenesis (Zhang

et al., 2024c) integrates a latent variable diffusion framework and

demonstrates strong performance in aptamer design and CRISPR

sgRNA optimization. These models illustrate the evolution of RNA

FMs from initial benchmarks to specialized task performance,

ultimately advancing both generative and integrative capabilities

in RNA biology research.
Protein-level FMs

Protein FMs, supported by massive training datasets, are

revolutionizing structural prediction, functional analysis, and

directed protein design. These models have evolved from

representations of single data types to multi-modal collaborative

frameworks, and are categorized as structure-guided, sequence-

driven, or multi-modal fusion models. Structure-guided models

focus on three-dimensional protein structures and spatial amino

acid interactions. For instance, GearNet (Zhang et al., 2022)

dynamically encodes residue-level geometric features using multi-

relational graph convolution; SaProt (Su et al., 2023) improves

function prediction by incorporating residue types and discretized

structural tokens representing 3D interactions; Chroma (Ingraham

et al., 2023) and RFDiffusion (Watson et al., 2023) enable precise

folding control through topologically constrained diffusion

processes. In contrast, sequence-driven models use large-scale

evolutionary data to analyze the complex interplay between

sequence, structure, and function. The ESM (Lin et al., 2022) and

ProtTrans (Elnaggar et al., 2021) series capture long-range

dependencies to improve function and folding predictions,

whereas ProGen2 (Nijkamp et al., 2023) and ProteinBERT

(Brandes et al., 2022) are pre-trained via SSL on large-scale

sequence data to enhance function prediction, with ProGen2

additionally supporting protein design. Multi-modal fusion

models integrate diverse data types to enhance performance:

ProtST (Xu et al., 2023) and ProteinAligner (Zhang et al., 2024a)

combine structural data with biomedical texts to refine function

classification; AlphaFold3 (Abramson et al., 2024) extends structure

prediction to complexes involving DNA/RNA and post-

translational modifications; Chai-1 (team et al., 2024) supports

unified structure prediction of proteins, small molecules, and

DNA/RNA with a focus on drug discovery; and ESM3 (Hayes

et al., 2025) enables multi-modal molecular modeling by jointly

generating sequence, structure, and function. This progression
Frontiers in Plant Science 03
highlights the increasing integration of diverse data modalities to

build robust tools for protein research and applications.
Single-cell-level FMs

Single-cell FMs are revolutionizing systems biology by bridging

cellular mechanisms with tissue-level phenotypes, primarily in

transcriptomic and epigenetic modeling. In transcriptomics,

models have evolved from basic gene expression prediction and

cell type annotation to multi-task modeling and cross-species

generalization. Pioneering models such as scBERT (Yang et al.,

2022) and Geneformer (Theodoris et al., 2023) use Transformer

architectures for context-aware gene expression prediction and cell

type classification. Subsequent models, including scGPT (Cui et al.,

2024) and scFoundation (Hao et al., 2024), pre-trained on larger

datasets, achieve enhanced generalizability and improved accuracy

in multiple tasks. scLong (Bai et al., 2024) incorporates a Performer

encoder and Gene Ontology information to improve predictions of

genetic perturbation outcomes. scMulan (Bian et al., 2024)

introduces a multi-task generative framework capable of

simultaneously performing cell type annotation, gene expression

prediction, and generation of specific cell subpopulations.

GeneCompass (Yang et al., 2024) further improves cross-species

generalizability by integrating large-scale single-cell datasets with

prior biological knowledge, such as gene co-expression

relationships. In contrast, epigenetic modeling has progressed

from basic associations between chromatin accessibility and gene

expression to more advanced capabilities such as detailed analysis of

cell heterogeneity and cross-modal data integration. EpiAgent

(Chen et al., 2024b) demonstrates strong performance in

perturbation response and noise-resistant annotation by

emphasizing cell heterogeneity modeling. GET (Fu et al., 2025)

accurately predicts gene expression across cell types using

chromatin accessibility and gene sequence data, whereas

EpiFoundation (Wu et al., 2025a) improves gene activity

prediction through supervised learning across multiple data types.

Collectively, single-cell FMs are enabling deeper data integration,

finer characterization of cell heterogeneity, and more efficient cross-

modal processing, thereby expanding our understanding of

complex biological systems.

Biological FMs have also shown significant potential in a wide

range of additional tasks, including methylation prediction [e.g.,

MethylGPT (Ying et al., 2024), CpGPT (de Lima Camillo et al.,

2024)] and antibody design [e.g., SyntheMol (Swanson et al., 2024)].

These advances highlight the transformative potential of FMs in

biological research. However, their application in plant sciences

remains underexplored, particularly in areas other than DNA and

RNA analysis. For comprehensive updates on biological FMs,

readers are referred to recent reviews (Li et al., 2024a; Guo et al.,

2025b; Khan et al., 2025). The following sections delve into the

current state and future prospects of plant-specific FMs,

emphasizing their potentially critical role in addressing unique

challenges in plant molecular biology and beyond (Table 1).
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https://doi.org/10.3389/fpls.2025.1611992
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


TABLE 1 Specific and universal FMs for plant molecular biology.

Computing
Parameter
sizes

Resource
consumption
level of
inference

Innovations

65 million Medium

- The first DNA language model for
plants, using CNN to learn genomic
sequences
- Optimized loss weights improve
prediction for non-repetitive regions
- Unsupervised zero-shot variant effect
prediction; excellent at rare
variant identification

1 billion High

- The first Transformer pre-training
model focused on edible plants
- Assesses mutation effects and enables
variant prediction via simulated
mutagenesis
- Constructs PGB evaluation datasets

89 million ~
152 million

Medium

- Enables efficient training and
inference on consumer-grade GPUs
- Fine-tuned 198 specialized models for
nine downstream tasks
- Reduces technical barriers by
providing open-source code, pre-
trained weights, and a web platform

20 million ~
225 million

Low, Medium

- Single-nucleotide bidirectional context
modeling based on Caduceus and
Mamba architectures
- Enhances cross-species prediction of
translation initiation and termination
sites and deleterious mutations
- Improvements in parameter efficiency

35 million Low

- The first plant RNA interpretable FM
combining RNA sequences, structures,
and functions
- Learned to understand the grammar
and regulatory logic of RNA sequences
and structures
- Systematically reveals structural
principles and positional effects of
translation-related RNA motifs
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X
u
e
t
al.

10
.3
3
8
9
/fp

ls.2
0
2
5
.16

119
9
2

Fro
n
tie

rs
in

P
lan

t
Scie

n
ce

fro
n
tie

rsin
.o
rg

0
4

Model
name

Model type
Model
architecture

Pre-
training
strategy

Training data Task types
resources
used for
training

GPN
Plant DNA
model

CNN MLM

Reference genome
assemblies for
Arabidopsis and seven
Brassicaceae species

Genomic functional
element identification,
variant effect
prediction, etc.

Four days with four
NVIDIA A100–80
GB GPUs

AgroNT
Plant DNA
model

Transformer MLM
10.5 million genomic
sequences across 48
edible plant species

Eight tasks, including
polyadenylation site
prediction, splice-site
prediction, chromatin
accessibility
prediction, etc.

Google TPU-V4–
1024 machine
containing
512 devices

PDLLMs
Plant DNA
model

Hybrid
architecture with
tokenization
strategies

MLM,
CLM

22 reference genomes
from 14 kinds of
plant species

Nine tasks, including
promoter prediction,
chromatin accessibility
recognition, cross-
species lncRNA
prediction, etc.

One NVIDIA
RTX4090 GPUs

PlantCaduceus
Plant DNA
model

Caduceus,
Mamba

MLM
Genomes from 16
angiosperm species

Cross-species genomic
element prediction,
deleterious mutation
identification,
evolutionary
conservation
analysis, etc.

Not mentioned

PlantRNA-FM
Plant RNA
model

Transformer MLM

25 million RNA
sequences, annotations,
and structural
prediction data from
1,124 plant species

RNA secondary
structure prediction,
gene region annotation,
translation efficiency
prediction, etc.

Over three weeks
on four NVIDIA
A100 GPUs
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TABLE 1 Continued

a Task types

Computing
resources
used for
training

Parameter
sizes

Resource
consumption
level of
inference

Innovations

otides
aryotes

Genomic element
prediction, protein
family DNA sequence
design, enhancer
design, etc.

368 hours on 32
NVIDIA
A100 GPUs

1.2 billion High

- Performs long-context modeling by
integrating multi-scale biological
sequences
- Uses a “gene sequence training”
scheme
- Generates protein-coding sequences
and performs regulatory
element engineering

ning all

a,
i,

Genome design,
mutation pathogenicity
prediction, gene
expression prediction,
non-coding DNA
functional modeling, etc.

Not mentioned
1 billion,
7 billion,
40 billion

High,
Extremely High

- The largest biological FM to date
- Models a one million-nucleotide
context window at single-nucleotide
resolution
- Models co-evolutionary relationships
between coding and non-coding
sequences
- Supports feature interpretation from
molecular to genomic scales
- Comprehensively predicts and
generates sequences across all domains
of life

, Convolutional Neural Network; PGB, Plant Genomic Benchmark; FM, Foundation Model. The classification of inference resource consumption level is based on
lion), and Extremely High (>5 billion).
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GENERator
Universal DNA
model

Transformer NTP
386 billion nucle
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Evo 2
Universal DNA
model

StripedHyena 2 NTP

Over 9.3 trillion
nucleotides span
domains of life,
including archae
prokaryotes, fun
protists, plants,
and animals

MLM, Masked Language Model; CLM, Causal Language Modelling; NTP, Next-token Prediction; CNN
model parameter size: Low (0–50 million), Medium (50 million–500 million), High (500 million–5 bi
t
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FMs designed for plant molecular
biology

Genomic pre-trained network (GPN)

GPN (Benegas et al., 2023), the first DNA LLM specifically tailored

for plants, incorporates CNNs and a masked language model (MLM)

pre-training strategy to model functional constraints and sequence

patterns, using training data from Arabidopsis and seven other

Brassicaceae genomes. By adjusting the loss weights for repetitive

regions, it improves prediction accuracy in non-repetitive functional

regions such as coding sequences (96% accuracy), introns, and non-

coding RNAs, outperforming traditional k-mer-based methods. GPN

excels in variant effect prediction, with its score showing a stronger

correlation with rare alleles than phyloP and phastCons (Pollard et al.,

2010), which rely on whole-genome alignments of 18 closely related

species. Notably, it enables unsupervised cross-species promoter motif

identification without requiring functional genomics data or multi-

species alignment. GPN provides an efficient, unsupervised approach

to variant effect prediction, enabling more precise fine mapping of

genome-wide association study loci and multi-gene risk assessment

in plants.
Agronomic nucleotide transformer
(ArgoNT)

AgroNT (Mendoza-Revilla et al., 2024) is pre-trained on 10.5

million genomic sequences from 48 edible plant species through MLM

using fixed-size k-mer tokenization and a parameter-efficient fine-

tuning method (IA3). By replacing the model’s head layer, AgroNT

enables zero-shot transfer learning across various tasks, delivering

robust performance in downstream applications such as regulatory

feature identification and gene expression prediction. It also supports

mutation effect evaluation and variant characterization through large-

scale simulated saturation mutagenesis. In addition, AgroNT

introduces the Plant Genomic Benchmark (PGB), a plant-specific

dataset designed to assess performance across eight tasks, offering

standardized criteria for model evaluation in plant genomics.
Plant DNA large language models
(PDLLMs)

PDLLMs (Liu et al., 2025) are optimized DNA LLMs designed to

address the challenges of plant genomic analysis. They are built on a

combination of multiple foundational model architectures (i.e.,

Mamba, BERT, GPT, Gemma, and Nucleotide Transformer) and

tokenization strategies (i.e., single nucleotide, k-mer, and BPE), and

pre-trained using either MLM or causal language modelling (CLM)

strategies. Key strengths include: 1) enhanced detection of plant-

specific regulatory elements, enabled by pre-training on 14 plant

genomes; 2) broad adaptability, achieved through fine-tuning on 10

additional plant datasets to create 198 models specialized for nine

downstream tasks, such as predicting core promoters and sequence
Frontiers in Plant Science 06
conservation; 3) a lightweight design suitable for training and inference

on consumer-grade GPUs or CPUs, eliminating dependence on high-

performance hardware. In addition, PDLLMs are released with pre-

training codes and supported by a web-based platform, offering an

accessible and scalable tool for plant genomics and precision breeding,

especially in resource-constrained environments.
PlantCaduceus

PlantCaduceus (Zhai et al., 2024), built on the Caduceus (Schiff

et al., 2024) and Mamba architectures, incorporates a reverse-

complement-equivariant architecture to account for the double-

stranded nature of DNA. It addresses the high prevalence of

repetitive elements in plant genomes through optimized pre-

processing strategies, such as down-weighting repetitive elements and

balancing sampling from non-coding regions. Pre-trained with MLM

on 16 angiosperm genomes and fine-tuned with a minimal amount of

labeled Arabidopsis data, PlantCaduceus demonstrated high

transferability by accurately predicting translation initiation and

termination sites, as well as splice sites, in maize. It also predicts

evolutionary conservation and generalizes across species from single-

sequence inputs, outperforming traditional supervised models and

delivering zero-shot variant effect prediction with triple the sensitivity

of PhyloP (Pollard et al., 2010). Compared with baseline models like

GPN (Benegas et al., 2023) and AgroNT (Mendoza-Revilla et al., 2024),

PlantCaduceus demonstrates superior cross-species performance with

greater parameter efficiency.
PlantRNA-FM

PlantRNA-FM (Yu et al., 2024), the first RNA FM tailored for

plants, offers notable advantages in multi-modal RNA data processing

and functional interpretability. Pre-trained using MLM on a dataset

comprising 25 million RNA sequences (totaling 54 billion nucleotides),

annotations, and structural data from 1,124 plant species, it captures

the extensive diversity of plant transcriptome landscapes. The model

uses single-nucleotide resolution tokenization and rotary position

embedding, ensuring that RNA structural motifs are learned as

unified elements and reducing the embedding layer parameters by

30%. In tasks such as gene region annotation and translation efficiency

prediction, PlantRNA-FM achieves substantial improvements in

accuracy. Furthermore, through attention contrast matrices and

unsupervised hierarchical clustering, it can identify functional RNA

motifs, providing interpretable insights into plant RNA

regulatory networks.

Universal FMs applicable to plants

GENERator

GENERator (Wu et al., 2025b) is a generative genomic FM built

on a Transformer decoder architecture, featuring 1.2 billion

parameters and a context window of up to 98,000 bases in length.
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Pre-trained using a next-token prediction (NTP) strategy on a

cross-species eukaryotic DNA dataset containing 386 billion

nucleotides, including over 7 million genes and 30 billion bases

from plants, GENERator exhibits excellent cross-species

generalizability. Its key innovation, the “gene sequence training”

scheme, prioritizes functional gene regions and uses a 6-mer

tokenizer to optimize DNA sequence modeling, filtering out

evolutionarily redundant sequences to identify functional regions.

Despite its modest parameter size, GENERator can design coding

sequences structurally aligned with target protein families or create

synthetic promoters with user-specified activity levels, making it a

valuable tool for plant synthetic biology and genetic engineering.
Evo 2

Evo 2 (Brixi et al., 2025) represents a recent breakthrough in multi-

modal FMs, with up to 40 billion parameters pre-trained through NTP

on over 9.3 trillion nucleotides from species across all domains of life. It

uses the innovative StripedHyena2 architecture (Ku et al., 2025), which

combines convolutional and attention mechanisms to process

sequences up to one million bases long, effectively capturing long-

range regulatory dependencies within 3D genomic structures. While

designed as a general-purpose genomic FM, Evo 2 is extensively trained

on plant genomic data, enabling effective performance on plant-specific

tasks, such as rapid prediction of gene mutation effects to support

disease resistance breeding and genetic research. It also facilitates plant-

specific DNA sequence design and complex systems engineering,

driving advances in plant synthetic biology and biotechnology.
Opportunities and challenges in plant
FM construction

Currently, FMs in plant molecular biology primarily focus on

DNA and RNA levels. Notably, there is a significant gap in the

development of FMs for other critical areas of plant biology, such as

protein structure and function, single-cell dynamics, and epigenetic

regulation. Although general protein FMs (like the ESM series) can be

adapted for plant research, the complexity of plant-specific

environmental response mechanisms underscores the need for

specialized protein FMs. In the single-cell field, the limited amount

of training data is gradually being addressed by resources such as the

scPlantDB database (He et al., 2023), which includes 2.5 million cells

from 17 plant species, offering promising opportunities for the

development of plant-specific single-cell FMs. However, the

development of FMs for plant molecular biology continues to face

significant challenges.
Data heterogeneity and annotation
bottlenecks

Plant genomes exhibit remarkable diversity, with pronounced

differences across species in gene structures, regulatory elements,
Frontiers in Plant Science 07
and the functions of non-coding regions. For instance, promoters

may follow different patterns between monocots and dicots

(Kumari and Ware, 2013), necessitating training datasets that

include representative genomes from a broad phylogenetic

spectrum. However, high-quality annotated data are costly to

obtain, especially for experimental datasets related to epigenetic

modifications (e.g., H3K4me3, H3K27ac) (Holder et al., 2017) or

the functional validation of non-coding RNAs (Xu et al., 2021),

which limits model generalizability.
Biological adaptability of model
architectures

Current LLM architectures, such as BERT and GPT, were

primarily designed for human NLP and face semantic mismatch

challenges when directly applied to biological sequences. The

syntactic rules of DNA sequences, such as codon reading frames

and splice sites, differ fundamentally from linguistic syntax

(Sanabria et al., 2024; Theodoris, 2024), requiring strategies such

as tailored tokenization (e.g., k-mer and BPE) or specialized pre-

training. Research shows that single-nucleotide tokenization

performs better in regression tasks like promoter strength

prediction, whereas 6-mer tokenization is more effective for the

classification of regulatory elements (Liu et al., 2025), highlighting

the importance of task-specific architectural optimization.
Cross-species generalizability and
functional interpretability

Plant FMs need to accurately support knowledge transfer across

species despite genomic differences. For instance, PDLLMs exhibit

different performance in histone modification prediction between

maize and Arabidopsis (Liu et al., 2025), underscoring the need to

integrate evolutionary context to improve generalizability. In

addition, the black-box nature of current models complicates

biological interpretation (Shen and Li, 2024), making the

development of methods to elucidate model decision-making

logic an ongoing challenge.
Computational efficiency and resource
limitations

Architectures like Mamba reduce computational complexity

using state space models (e.g., the PDLLM Plant-DNAMamba

outperforms AgroNT in multiple tasks with only 130 million

parameters (Liu et al., 2025)); however, processing long sequences

from plant genomes remains a challenge due to the high proportion

of repetitive sequences and widely dispersed regulatory elements

(Zhai et al., 2024). In addition, many plant research laboratories

lack access to high-performance computing resources, necessitating

models optimized for consumer-grade GPUs through improved

architectural design and parameter compression.
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Future prospects for plant molecular
biology FMs

Future research on plant molecular biology FMs should

prioritize the optimization of existing models and the exploration

of new frontiers in emerging fields, with emphasis on three main

areas: model generalizability, multi-modal integration and

interpretability, and computational efficiency and sustainability.
Model generalizability

Improving FM generalizability is essential to unlocking their

practical potential. Current researches often focus on model plant

species, but major agricultural crops like maize and wheat,

characterized by complex polyploidy and high repetitive content

(Garg et al., 2024), demand greater cross-species adaptability.

Future strategies could include multi-species joint training to

accommodate genomic diversity, and dynamic architectures such

as Mixture of Experts (MoE) (Shazeer et al., 2017) may enable sub-

models to be tailored to specific crop traits. In addition, using few-

shot or zero-shot learning alongside SSL (e.g., contrastive learning)

could facilitate functional element identification in non-model

crops (Zhao et al., 2024b), reducing dependence on large datasets.
Multi-modal integration and interpretability

Multi-modal integration and interpretability are vital for

addressing the complexity of biological systems. Current models,

often limited to single-modality inputs (Lam et al., 2024), underscore

the need to incorporate multi-omics data in plant biology. Evo 2, for

instance, successfully models and learns the information flow and

encoding rules of the central dogma of molecular biology through

cross-species multi-modal integration (Brixi et al., 2025), which could

be further enhanced with data from plant imaging and dynamic

growth sensors to predict plant development and environmental

responses. To address the black-box nature of increasingly

sophisticated models, interpretability techniques such as attention

visualization and feature attribution could help connect decision logic

to biological patterns (Huang et al., 2025). Future plant molecular

FMs could also integrate causal inference methods to identify key

gene regulatory network nodes, thereby providing interpretable

biological insights to inform experimental design.
Computational optimization and
sustainability

Optimizing computational efficiency is essential for the large-

scale deployment of FMs. Although large-scale models like Evo 2 and

ESM3 offer excellent performance, their massive parameter sizes

impose high training and inference costs, limiting their broader

adoption in plant science. Techniques such as model compression

(e.g., distillation, quantization, and pruning) can reduce resource

demands without substantially compromising performance. For
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instance, the DeepSeek team distilled a 671B-parameter model into

a 7B-parameter version for faster and cheaper inference (Guo et al.,

2025a), and PDLLMs use an optimized architecture for efficient

inference on consumer-grade GPUs (Liu et al., 2025). Future plant

molecular biology FMs could leverage these techniques, along with

hardware acceleration (e.g., TensorRT) and dynamic resource

allocation, to overcome technical barriers in plant research.

Furthermore, advances in federated learning could support

distributed training across institutions (Li et al., 2020), preserving

data privacy while enhancing generalizability and promoting global

collaboration in plant science and sustainable agriculture.

In summary, plant molecular biology FMs serve as a bridge

between artificial intelligence and plant science, offering powerful

tools to decode the intricacies of plant biology and paving the way

for smarter and more sustainable agriculture. As technological

capabilities advance, FMs are poised to assume a pivotal role in

shaping the future of plant and agricultural research, empowering

humanity to confront the ever-growing global climate challenges.
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