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Plant functional traits, including chlorophyll content (CHL), equivalent water 
thickness (EWT), and leaf mass per area (LMA), are critical indicators for 
assessing ecosystem functioning, functional diversity, and their roles in the 
Earth system. Hyperspectral remote sensing serves as a pivotal tool for multi-

trait mapping; however, existing methods exhibit limited generalizability across 
ecosystems, land cover types, and sensor modalities. Challenges such as data 
heterogeneity, domain shifts, and sparse in situ measurements further hinder 
model generalization. To address these limitations, this study developed PPADA-
Net, a novel framework integrating PROSPECT-D radiative transfer modeling 
with adversarial domain adaptation for robust cross-ecosystem plant trait 
prediction. In a two-stage process, a residual network is pretrained on 
synthetic spectra from PROSPECT-D to capture biophysical links between leaf 
traits and spectral signatures, followed by adversarial learning to align source and 
target domain features, reducing domain shifts. The model’s performance is 
validated on four public datasets and one field-measured dataset. PPADA-Net 
outperforms traditional partial least squares regression (PLSR) and purely data-
driven models (e.g., ResNet), achieving mean R² values of 0.72 (CHL),0.77 (EWT), 
and 0.86 (LMA). Additionally, PPADA-Net demonstrates practical utility in a real-
world farmland dataset (D5), achieving high-precision spatial mapping with an 
nRMSE of 0.07 for LMA. By merging physical priors with adaptive learning, 
PPADA-Net enhances spectral-trait modeling under data scarcity, offering a 
scalable tool for ecosystem monitoring, precision agriculture, and 
climate adaptation. 
KEYWORDS 

hyperspectral, deep learning, plant phenotyping, adversarial domain adaptation, plant 
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1 Introduction 

Global climate change and the sustainable management of 
ecosystems are major concerns for the international community. 
The 2015 Paris Agreement set a clear goal of limiting the global 
temperature increase to below 1.5°C, identifying carbon neutrality 
as a crucial strategy to achieve this objective. In this context, 
accurately monitoring vegetation health and functional dynamics 
is critically important, as vegetation serves as a primary carbon sink 
in terrestrial ecosystems (Fatichi et al., 2019). Thus, there is an 
urgent need for efficient, reliable methods to quantify plant 
functional traits, supporting carbon sink assessments, vegetation 
restoration monitoring, and precision agriculture. 

Plant functional traits are critical indicators for understanding 
ecosystem dynamics, vegetation health, and biogeochemical cycles 
(Wright et al., 2004). For example, chlorophyll content (CHL), 
which quantifies leaf chlorophyll pigment concentration, directly 
reflects photosynthetic capacity and nitrogen status, making it vital 
for assessing plant productivity and stress responses (Meloni et al., 
2003). Equivalent water thickness (EWT), defined as the mass of 
water per unit leaf area, offers insights into plant water-use 
efficiency and drought resilience, thereby informing irrigation 
management and climate adaptation strategies (Hunt and Rock, 
1989). Leaf mass per area (LMA), representing the ratio of leaf dry 
mass to area, correlates with leaf longevity, carbon allocation, and 
environmental stress resistance, serving as a key parameter for 
modeling carbon sequestration and ecosystem functions (Poorter 
et al., 2009). Collectively, these traits underpin efforts to monitor 
global vegetation changes, predict agricultural yields, and mitigate 
climate impacts (Drenovsky et al., 2012). However, traditional 
measurement methods such as destructive sampling and 
laboratory analysis are labor-intensive, time-consuming, and low 
throughput, limiting their applicability across large spatial and 
temporal scales (Zhang et al., 2025b). Consequently, there is an 
urgent need for non-destructive, high-efficiency approaches to 
estimate plant traits rapidly and accurately, enabling real-time 
decision-making in precision agriculture, ecological conservation, 
and climate resilience initiatives. 

Hyperspectral remote sensing has emerged as a powerful tool 
for non-destructive and high-throughput estimation of plant traits 
(Angel and Shiklomanov, 2022), providing rich spectral 
information across hundreds of narrow bands to detect subtle 
biochemical and physiological variations (Sun et al., 2025). For 
instance, Hoeppner et al. (2020) leveraged hyperspectral data to 
predict CHL in forest ecosystems by analyzing reflectance features 
in the visible-red edge regions (680–780 nm), achieving robust 
correlations with ground-truth measurements. Similarly, Shu et al. 
(2022) demonstrated the utility of hyperspectral images in 
estimating EWT for crops, enabling real-time drought monitoring 
in precision agriculture. These studies underscore hyperspectral 
imaging’s capability to resolve trait-specific spectral signatures. 
However, existing approaches primarily focus on single ecosystem 
applications (forests or croplands), where models are trained and 
validated in homogeneous environments. This limits their 
generalizability to heterogeneous ecosystems, such as transitions 
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from controlled agricultural fields to natural grasslands or mixed 
forests, where spectral-trait relationships may vary significantly due 
to differences in species composition, canopy structure, and 
environmental stressors (Heidenreich and Richardson, 2020). 
Consequently, improving model transferability across ecosystems 
remains a critical challenge, necessitating frameworks that address 
spectral heterogeneity and domain shifts inherent to multi-

environment applications. 
Radiative transfer models (RTMs), such as the widely adopted 

PROSPECT model, offer a mechanistic framework for simulating 
vegetation reflectance spectra based on biophysical and biochemical 
properties (Haboudane et al., 2004). PROSPECT has been 
extensively used to retrieve key plant traits, including CHL, EWT, 
and LMA, by inversely linking observed hyperspectral data to 
simulated canopy reflectance (Jacquemoud and Baret, 1990). For 
example, Wang et al. (2015) demonstrated PROSPECT’s capability 
to estimate CHL, LMA and nitrogen content in leaves, leveraging its 
parameterization of leaf biochemistry and canopy architecture. This 
model enables researchers to disentangle complex interactions 
between light and vegetation, such as the influence of leaf dry 
matter on SWIR reflectance or water content on NIR absorption, 
thereby offering interpretable insights into spectral-trait 
relationships (Broge and Leblanc, 2001). However, PROSPECT’s 
practical application faces inherent limitations, most notably the ill-
posed inverse problem: multiple combinations of input parameters 
can generate nearly identical canopy reflectance spectra (Jing et al., 
2004), leading to non-unique solutions and heightened uncertainty 
in trait retrieval. Additionally, the model’s performance depends 
critically on accurate prior knowledge of species-specific 
parameters, which may vary significantly across ecosystems or 
under stress conditions. These challenges underscore the need for 
hybrid approaches that integrate physical models with data-driven 
techniques to enhance robustness and scalability in trait estimation. 

Data-driven approaches, particularly machine learning (ML) 
and deep learning (DL), have gained prominence in plant trait 
estimation by leveraging spectral data to establish empirical 
relationships between reflectance and biochemical properties (Sun 
et al., 2024; Zhang et al., 2021). Traditional ML methods, such as 
partial least squares regression (PLSR) and random forest (RF), 
have been successfully used to predict traits like LMA by integrating 
spectral reflectance and vegetation indices. For instance, Helsen 
et al. (2021) explored the potential of hyperspectral leaf reflectance-
based PLSR model to predict LMA and EWT at the intraspecific 
level for two herbs and two shrubs. Similarly, Yin et al. (2023) 
employed RF to map CHL in crops by combining multispectral 
features with environmental covariates, demonstrating the 
flexibility of ML in handling high-dimensional data. However, 
these models often fail when applied to novel environments, 
where trait-spectra relationships differ substantially. Deep 
learning offers a promising alternative by automating hierarchical 
feature extraction and capturing nonlinear interactions. For 
example, Yue et al. (2024) developed a convolutional neural 
network (CNN) to estimate leaf chlorophyll content using 
hyperspectral reflectance data, while the CNN excels at prediction 
in each individual growth stage. Despite these advances, DL models 
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face two critical challenges: (1) training robust networks requires 
extensive field measurements, which are labor-intensive to collect 
for traits like LMA or EWT, and (2) spectral features extracted from 
one ecosystem may misalign with those from another, degrading 
prediction accuracy in cross-domain scenarios. These limitations 
underscore the need for adaptive frameworks that integrate data-
driven learning with domain-invariant representations to enable 
reliable trait estimation across heterogeneous environments. 

Transfer learning is a paradigm that leverages knowledge from 
source domains to improve model performance in target domains with 
limited labeled data, offers a transformative solution to address domain 
shifts in spectral-trait modeling (Pan and Yang, 2010). Traditional trait 
estimation models, including physically based radiative transfer models 
(RTMs) such as PROSPECT, and empirical data-driven approaches 
like PLSR and RF, have shown effectiveness within homogeneous 
ecosystems but face significant challenges in cross-ecosystem 
applications. RTMs suffer from the ill-posed inverse problem and 
rely heavily on accurate species-specific parameterization, which is 
often unavailable or inaccurate across diverse environments, resulting 
in ambiguous and uncertain trait retrieval. Similarly, data-driven 
models tend to perform poorly when spectral-trait relationships vary 
due to differences in species composition, canopy structure, and 
environmental conditions, limiting their generalizability and practical 
applicability across heterogeneous landscapes. By reusing pre-trained 
features or aligning feature distributions across domains, transfer 
learning reduces dependency on large target-domain datasets while 
enhancing generalization (Radford et al., 2021). For example, 
adversarial domain adaptation, a subfield of transfer learning, 
employs domain-discriminative networks to reduce discrepancies 
between source and target feature spaces. Ganin et al. (2016) 
demonstrated this approach’s efficacy in computer vision through 
Domain-Adversarial Neural Networks (DANN), where adversarial 
training aligned image features across disparate datasets, achieving 
20% higher accuracy in cross-domain tasks. In plant trait estimation, 
such techniques hold promise for bridging spectral heterogeneity 
across ecosystems. Bhadra et al. (2024) proposed a transfer learning 
approach combined with PROSAIL simulated data to achieve accurate 
prediction of CHL and average leaf angle based on UAV hyperspectral 
imagery. However, their application remains underexplored, 
particularly in scenarios where spectral signatures diverge due to 
variations in species composition, canopy structure, or 
environmental conditions. For example, while models trained on 
agricultural crop spectra may struggle to generalize to forest 
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ecosystems, adversarial learning could theoretically align domain-

invariant traits to mitigate such discrepancies (Amirkolaee et al., 2024). 
Despite this potential, few studies have systematically evaluated 

transfer learning’s capacity to enhance cross-ecosystem trait 
prediction, leaving critical gaps in understanding how to optimize 
domain adaptation for vegetation monitoring, limiting their 
applicability across ecosystems with varying species composition, 
canopy structures, and environmental conditions. Existing data-
driven models often function as black boxes, providing limited 
interpretability and performing poorly under data scarcity, which 
restricts their applicability across ecosystems with varying species 
compositions, canopy structures, and environmental conditions. In 
contrast, physical models such as PROSPECT-D are grounded in 
well-established biophysical principles but suffer from issues of 
non-uniqueness and sensitivity to prior assumptions, particularly in 
heterogeneous landscapes. These complementary strengths and 
limitations suggest a promising direction: integrating physical 
modeling with adversarial domain adaptation. Specifically, 
pretraining on synthetic spectra–trait pairs generated by 
PROSPECT-D introduces biophysical priors into the model, while 
adversarial learning facilitates the alignment of cross-domain 
representations, thereby enhancing generalization under spectral 
heterogeneity. In summary, the primary objectives of this study are: 
(1) to evaluate the effectiveness of integrating data-driven models 
and physical models for plant trait prediction using hyperspectral 
data; (2) to develop a transfer learning framework based on 
adversarial domain adaptation to improve model generalization 
and transferability across heterogeneous environmental conditions; 
(3) to validate the proposed models and methodologies on real-
world crop datasets, assessing their practical applicability and 
robustness across diverse field conditions. 
2 Materials and methods 

2.1 Dataset collection 

This study employs five independent datasets (Table 1) from 
distinct ecosystems, each containing measurements of CHL, EWT, 
LMA, and corresponding leaf reflectance spectra. All spectral data 
were acquired using a high-resolution spectroradiometer (1 nm 
resolution). The LMA, CHL, and EWT values in each dataset were 
determined following standardized protocols, with LMA calculated 
TABLE 1 Statistical description of the dataset. 

Dataset Instrument Spectral range No. species Number of samples 

D1 ASD FieldSpec3 350-2500 5 212 

D2 Perkin Elmer Lambda-19 400-2400 6 356 

D3 SVC HR 1024i 350-2500 2 178 

D4 ASD FieldSpec 400-2450 2 251 

D5(ours) ASD FieldSpec3 350-2500 3 490 
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as the ratio of leaf dry mass to projected area. Dataset 1 (D1) 
comprises data from five forest plant species predominantly 
distributed in temperate regions. Dataset 2 (D2) contains six 
tropical plant species spanning subtropical and tropical 
ecosystems. Dataset 3 (D3) includes two herbaceous species 
cultivated under controlled laboratory conditions. Dataset 4 (D4) 
incorporates two xerophytic plant species adapted to arid 
environments with water-limited growth conditions. These four 
datasets (D1–D4) are publicly available and can be accessed through 
the EcoSIS (Ecological Spectral Information System) platform at 
https://ecosis.org. 

Dataset 5 (D5) was collected from an agricultural research 
station in Xinxiang, Henan Province, China (113°45′40″E, 35°8′ 
11″N) (Figure 1a), and comprises three crop species: potato, 
soybean, and maize. Among these, soybean and maize were part 
of breeding trials and were planted in separate plots, with each plot 
corresponding to a unique cultivar, including 36 cultivars for maize 
and 151 for soybean (Figure 1b). Notably, maize was sown in two 
separate batches, 28 days apart, resulting in distinct growth stages 
between the two groups of maize plots (Figure 1d). All crops were 
managed according to local agricultural practices, with optimal 
fertilization, pest control, and field maintenance applied. Spectral 
measurements were conducted on fresh leaves using standardized 
protocols to ensure data quality and comparability. 

Spectral measurements were conducted using an ASD 
FieldSpec3 spectroradiometer (Analytical Spectral Devices Inc., 
Boulder, CO, USA) (Figure 1c), which operates over a spectral 
range of 350–2500 nm with a 1 nm sampling interval. Prior to data 
collection, the instrument was calibrated with a Spectralon white 
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reference panel to ensure accurate reflectance measurements. All 
measurements were performed between 10:00 AM and 2:00 PM 
local time under clear-sky conditions to minimize the effects of solar 
angles and atmospheric variability. For each crop species, fully 
expanded, healthy leaves were selected from the upper canopy to 
maintain consistency and physiological relevance. The adaxial 
surface of each leaf was positioned perpendicular to the optical 
fiber probe, and a leaf clip equipped with an internal light source 
was used to provide stable illumination and reduce ambient light 
interference. For each leaf, three replicate spectral measurements 
were acquired and averaged to reduce noise and enhance 
signal reliability. 

CHL was determined using a solvent extraction method with 
95% ethanol, and pigment concentrations were quantified 
spectrophotometrically based on absorbance at 649 nm and 665 
nm, following established protocols. Leaf fresh weight and area were 
measured using an electronic balance and a leaf area meter, 
respectively. Samples were then oven-dried at 65°C for 48 hours 
to determine dry mass. LMA was calculated as the ratio of dry mass 
to leaf area, while EWT was computed as the difference between 
fresh and dry mass, normalized by leaf area. A total of 490 leaf 
samples were collected for analysis, and the proportion of samples 
across different crops is shown in Figure 1b. 
2.2 Statistical description of plant traits 

The distribution patterns of CHL, EWT, and LMA are 
illustrated in Figure 2. CHL exhibited significant variation among 
FIGURE 1 

(a) Experiment location of this study, (b) proportion of three crop samples measured on site (c) spectral acquisition instrument, (d) field images of 
three crops. 
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the datasets, with the highest mean value observed in D5 and the 
lowest in D4. A similar pattern was observed for EWT, where D5 
showed the highest values, while D1 and D4 had comparatively 
lower values. In contrast, LMA exhibited a distinct distribution 
trend, with D4 showing the highest values and D3 the lowest, 
indicating substantial variability in LMA across datasets. 
Additionally, the correlation coefficients among the traits differ: 
EWT and LMA exhibit a strong positive correlation (0.66), CHL 
and LMA demonstrate a moderate negative correlation (-0.31), and 
CHL and EWT show a relatively weak negative correlation (-0.15). 
2.3 Radiative transfer model 

This study proposes a PROSPECT Pre-training Adversarial 
Domain Adaptation Network (PPADA-Net), which employs a 
two-stage training strategy for plant trait prediction (Figure 3). 
The core idea is to fully leverage large-scale simulated spectral data 
generated by the PROSPECT physical model for pretraining, 
followed by adaptive fine-tuning across domains using a limited 
number of target-domain samples. 
Frontiers in Plant Science 05 
The PROSPECT radiative transfer model (version PROSPECT
D) has been employed to generate high-fidelity leaf spectral 
simulation data (Feret et al., 2017). Based on physical optics 
principles, the PROSPECT model simulates leaf reflectance and 
transmittance spectra across 400–2400 nm by coupling anatomical 
structure parameters with biochemical parameters. Through 
radiative transfer equations in layered media, this model 
quantitatively characterizes multiple scattering and absorption 
effects within leaves, effectively capturing the nonlinear influence 
of various plant traits on spectral responses. A full-spectrum 
simulation dataset was established using the PROSPECT-D model 
to generate 20,000 synthetic spectral-trait pairs for pre-training. The 
model simulates leaf reflectance and transmittance across 400–2400 
nm at 1 nm resolution, based on biophysical parameters: CHL (0.1– 
100 μg/cm²), leaf water depth (0.01–0.05 cm), and dry matter 
content (0.004–0.009 g/cm²), with additional modulators like total 
anthocyanin content (1.2-1.8) and leaf structure index (1.0–1.9). 
Leaf water depth and dry matter content can be converted to EWT 
and LMA, respectively, enabling direct mapping between physical 
parameters and functional traits. A Latin hypercube sampling 
strategy ensured uniform parameter sampling, covering 
FIGURE 2 

(a-c) Distribution of chlorophyll content (CHL), equivalent water thickness (EWT) and leaf mass per area (LMA) for each dataset, (d) Pearson 
correlation coefficient between traits. 
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biologically plausible ranges (Table 2). Each sample comprises a 
reflectance spectrum (400–2400 nm) paired with corresponding 
CHL ,  EWT ,  and  LMA  v a l u e s ,  mim i ck i n g  d i v e r s e  
ecosystem conditions. 
2.4 Proposed PPADA-net 

The simulated spectra are fed into a ResNet-based encoder 
network to extract high-level spectral features (Figure 4). The 
architecture processes spectral inputs through a hierarchical feature 
extraction pipeline. The hyperspectral reflectance data consisted of 
2000 bands (400–2400 nm at 1 nm resolution). To enable 
compatibility with ResNet, the 1D spectra were reshaped into 2D 
arrays of size 224×224 and duplicated across three channels to form 
224×224×3 tensors. This operation preserves spectral information 
and allows the use of 2D convolutional layers, which are effective in 
capturing local and hierarchical patterns. This transformation is 
purely structural and preserves the original spectral information. 
The network commences with a 7×7 convolutional layer (64 filters, 
stride=2) followed by 3×3 max-pooling, establishing preliminary 
Frontiers in Plant Science 06
spatial-spectral representations. Subsequent residual blocks employ 
bottleneck structures with cascaded 1×1 and 3×3 convolutions, 
progressively expanding channel dimensions from 64 to 1024 
through four major stages. Each stage contains multiple identity-
short cut blocks where 1×1 convolutions perform channel dimension 
matching, while 3×3 convolutions extract spatially invariant features. 
Notably, the architecture implements channel scaling factors of ×4 
between stages (64→256→512→1024), maintaining computational 
efficiency through bottleneck compression. The deep stack of 21 
convolutional layers leverages residual connections to preserve 
gradient flow, with feature map spatial resolution systematically 
reduced through stride convolutions in transitional blocks. This 
design enables effective learning of multiscale spectral-spatial 
correlations while mitigating vanishing gradient issues inherent to 
deep networks. At this stage, a fully connected regression head is 
appended to the encoder output. The final encoder outputs high-
dimensional latent representations suitable for downstream 
regression tasks through attached task-specific heads. We optimize 
the network by minimizing the mean squared error (MSE) loss 
function (LeCun et al., 2015) to predict LMA, EWT, and CHL 
values, with gradient backpropagation throughout the network to 
FIGURE 3 

PPADA-Net framework for plant traits prediction. The pre-trained encoder in Phase 1 undergoes supervised fine-tuning in Phase 2. MLP, Multilayer 
Perceptron; MSE loss, Mean Squared Error loss; DA loss, Domain Adaptation loss; ACL, Adversarial Contrastive Loss. 
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learn latent representations strongly correlated with plant traits from 
the large-scale simulated data. The MSE LOSS function is defined in 
Equation 1. 

1 M= − ̂ )2 (1) Lm M oi=1(yi,m yi,m

where m represents the trait index, and M represents the 
number of samples. The loss for combining all traits is defined in 
Equation 2. 

TLdownstream tasks  = om=1Lm (2) 

Following pre-training, the second stage involves jointly feeding 
both the source domain (real-world dataset for training) and limited 
target domain (real-world dataset for prediction) into the pre-
trained encoder. This strategy leverages the spectral feature 
representation capabilities acquired from large-scale simulated 
data while enabling fine-tuning and domain alignment through 
limited target domain samples, thereby enhancing prediction 
accuracy in real-world target environments. To simultaneously 
address plant trait prediction and domain adaptation, we 
introduce two parallel task heads at the output of the pre-trained 
encoder: (1) A Multilayer Perceptron (MLP) for regressing three 
plant traits (LMA, EWT, and CHL) as the downstream task, 
optimized using MSE loss. (2) A Hierarchical Cross-Domain 
Feature Alignment (HCDFA) head, this module takes input 
feature maps from both the source domain and target domain and 
processes them through a two-step mechanism. First, a Contrastive 
Attention Module calculates the cosine similarity between the input 
feature maps, emphasizing shared patterns while suppressing 
domain-specific noise. This process generates weighted feature 
maps for both domains. Subsequently, an adversarial contrastive 
loss ACL is applied to refine these weighted feature maps, increasing 
the similarity between the aligned feature representations of the 
source and target domains. These similarity weights are applied to 
the source domain feature map, dynamically adjusting its feature 
distribution to produce the aligned source domain feature map. 
Simultaneously, the target domain features undergo adaptive 
mapping to generate the aligned target domain feature map. 
During forward propagation, the HCDFA acts as an identity 
transform, while in backward propagation it inverts gradients 
Frontiers in Plant Science 07 
from the DA loss, thereby encouraging the encoder to learn 
domain-invariant features through adversarial confusion. The 
composite objective function during this stage comprises two 
components is defined in Equation 3. 

L = l1LMSE + l2LDA (3) 

LMSE represents the MSE loss for plant trait regression, while 
LDA denotes the domain adaptation loss. l1 and l2 are 
hyperparameters that control the weighting of the two loss terms, 
and  their  optimal  balance  can  be  determined  through  
hyperparameter tuning on the validation set. 
2.5 Training parameters 

During network training, stochastic gradient descent is used to 
update the parameters of both the encoder and the two task heads in 
mini batches. The Few-shot learning strategy incorporates a small 
amount of labeled target-domain data into the network alongside 
source-domain data. A feature alignment mechanism mitigates 
domain shift, facilitating cross-domain knowledge transfer between 
datasets. Model training was conducted using a staged optimization 
strategy. In the first stage, pre-training was conducted using 
PROSPECT-D-generated spectral-trait pairs to initialize the 
ResNet-based encoder. The network, structured with a 7×7 
convolutional layer (64 filters, stride=2), 3×3 max-pooling, and 
residual blocks scaling channels from 64 to 1024, was trained for 
200 epochs with a batch size of 64. The Adam optimizer was used 
with an initial learning rate of 0.001 for rapid convergence, decaying 
by 1×10–5 in later stages to prevent overfitting. The MSE loss 
function guided optimization, enabling the encoder to learn spectral 
features strongly correlated with CHL, EWT, and LMA, forming a 
robust foundation for subsequent domain adaptation. In the second 
stage of transfer learning, under the integration of source and target 
domain data, the number of epochs was adjusted to 100 with a batch 
size of 32, and the initial learning rate was updated to 1×10^-4 to 
facilitate more refined fine-tuning and domain adaptation. 
2.6 Comparison of prediction models and 
verification strategies 

Four regression methodologies were systematically compared 
for CHL, EWT, and LMA prediction: (1) conventional multivariate 
PLSR, (2) data-driven ResNet, along with two ablated variants, (3) 
physics-enhanced ResNet-PROSPECT and (4) domain-adaptive 
ResNet-GRL. These were rigorously benchmarked against our 
proposed PPADA-Net to evaluate the incremental benefits of 
integrated physical-adversarial learning. 

As a conventional multivariate statistical approach, PLSR 
establishes linear relationships between hyperspectral reflectance 
(predictors) and plant traits (response variables) through latent 
variable decomposition. This model maps the relationship between 
spectral data and plant traits to a low-dimensional latent space, 
allowing PLSR to perform effective regression analysis while 
TABLE 2 Overview of the PROSPECT-D input variables of plants. 

Variable Name Symbol Unit Typical 
Range 

Leaf structure index N Unitless 1.0-1.9 

Chlorophyll a + b content Cab =LCC mg=cm 2 0.1-100 

Total carotenoid content Ccx mg=cm 2 1.0-25.0 

Total anthocyanin content Can mg=cm 2 1.2-1.8 

Brown pigments Cbp  Unitless 0.01-1.0 

Dry matter content Cm g=cm 2 0.004 – 0.009 

Leaf water depth Cw cm 0.01 - 0.05 
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maintaining low computational cost, representing traditional 
chemometrics methodology in spectral analysis (Wold et al., 2001). 

The standard ResNet18 architecture was adapted for spectral 
regression, employing residual blocks with 1D convolutions to 
capture hierarchical spectral features. Without any domain 
adaptation mechanisms, this deep learning baseline utilized raw 
spectral inputs (400–2400 nm) to directly predict trait values 
through fully connected regression layers, demonstrating pure 
data-driven modeling capability (Chen et al., 2022). 

ResNet-PROSPECT integrated physics-informed pretraining by 
initializing weights through simulated data generated from the 
PROSPECT-D radiative transfer model. The network first 
underwent 100-epoch pretraining on 10000 synthetic spectra-trait 
pairs covering the full parameter space, followed by fine-tuning on 
experimental datasets, testing the isolated effect of physical 
prior integration. 

The ResNet-GRL architecture implements domain adversarial 
learning without physical constraints by appending a GRL between 
the feature extractor and the domain classifier. This dual-objective 
network simultaneously minimizes trait prediction error and 
maximizes domain confusion through adversarial training (l = 
0.3), thereby evaluating the independent contribution of domain-

invariant feature learning. 
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2.7 Performance evaluation 

Two distinct validation paradigms were implemented to 
comprehensively assess model performance: (1) Aggregated 
Cross-Validation (Figure 5a): All samples from the five datasets 
(D1-D5) were pooled into a composite repository, followed by a 
stratified five-fold cross-validation scheme, where each fold 
maintained proportional representation of the original dataset 
distributions. In each iteration, 80% of the samples were allocated 
for training (with 15% reserved for internal validation to facilitate 
early stopping) and 20% for testing. This approach assessed general 
predictive accuracy under the assumption of homogeneous data 
distribution. (2) Cross-Dataset Validation (Figure 5b): To 
rigorously evaluate cross-domain transferability, leave-one
dataset-out experiments were conducted. In each trial, four 
datasets were used as the training set, while the remaining dataset 
was  held  out  for  independent  testing.  Spatial-spectral  
standardization was applied to each dataset using the respective 
training statistics to prevent information leakage. This protocol 
specifically quantified the model’s generalization capacity across 
heterogeneous data acquisition conditions. (3) Training on D1–D4 
with Testing on D5 (Figure 5c): Datasets D1–D4 were used as 
the training set, and the model’s predictive performance was tested 
FIGURE 4 

A schematic illustration of 2D ResNet-18 architectures used for yield prediction in this study. Each convolutional layer is followed by batch 
normalization and a ReLU. 
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on the independent, independently collected field dataset D5. 
This validation methodology is particularly valuable for assessing 
model robustness and practical applicability in real-world 
agricultural settings. 

In the model evaluation, to measure the variability of the 
dependent variable and prediction error, the normalized root 
means square error (nRMSE) and the coefficient of determination 
(R2) are formulated in Equations 4, 5. 

n 
i=1(ŷ i − yi)

2 

R2 = 1  − o n y)2oi−1(yi −  

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
n 

1 1nRMSE  = (ŷ i − yi)
2 

n  y o 
i−1 

(4) 

(5) 
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where n is the number of samples; yi and ŷ i represent the 
measured and the predicted grain yield of sample i, respectively. A 
higher value of R2 and lower nRMSE values would indicate superior 
performance of the model. 
3 Results 

3.1 Statistical analysis of data 

Statistical analyses of spectral reflectance across the 400–2400 
nm range are illustrated in Figure 6a. Consistent patterns were 
observed across the five datasets, with all exhibiting identifiable 
spectral peaks and troughs. In the visible region (500–700 nm), 
mean reflectance values remained low and relatively stable, 
FIGURE 5 

Validation methodologies for plant trait prediction models. (a) Combined samples from five datasets (D1–D5) were subjected to stratified five-fold 
cross-validation. (b) Each dataset was used as the validation set in turn, with another single dataset used for training, ensuring robustness across 
independent datasets. (c) D5 was used as the testing set, and the remaining four datasets (D1–D4) were used as the training set. 
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reflecting strong pigment absorption. A sharp increase occurred in 
the near-infrared (NIR, 700–1300 nm), consistent with the high 
reflectance associated with internal leaf structure. This was followed 
by a fluctuating decline in the short-wave infrared (SWIR, 1300– 
2400 nm), where a pronounced dip was observed between 1900 and 
2100 nm—likely due to strong water absorption features. Inter
dataset differences were especially evident in specific spectral bands. 
For instance, the standard deviation of reflectance was notably 
higher in the visible spectrum, indicating greater variability among 
datasets in this region. Conversely, variability declined in the NIR 
and SWIR regions, particularly around 1000–1300 nm and 1900– 
2100 nm, as shown by the narrower spread in standard deviation 
and coefficient of variation (CV) curves. 

Figure 6b presents the Pearson correlation between spectral 
reflectance and plant traits. For CHL, the strongest correlations 
were found in the visible spectrum (400–700 nm), aligning with 
known pigment absorption features. Correlation strength 
diminished in the NIR and SWIR regions, generally falling below 
0.4 except in the 1900–2400 nm sub-region. In contrast, EWT 
exhibited weak associations in the visible range, but showed 
moderate to strong correlations (r > 0.5) throughout the 700– 
1900 nm range, underscoring its sensitivity to water-related 
absorption features in those bands. For LMA, positive 
correlations peaked in the 700–1400 nm range, suggesting a 
strong relationship between biomass-related traits and reflectance 
in this region. Trait–spectrum relationships also varied across 
datasets. For example, Dataset D2 exhibited higher LMA 
correlations in the NIR, while Dataset D5 consistently showed 
weaker correlations for EWT, reflecting the combined effects of 
biological variability and environmental conditions. These results 
emphasize the importance of accounting for both spectral region 
characteristics and dataset heterogeneity in trait modeling. 
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3.2 Comparison of models 

3.2.1 Visualization of learned representation 
A t-SNE visualization of feature distributions from multiple 

datasets is presented in Figure 7, comparing features extracted by 
ResNet with those processed by PPADA-Net using adversarial 
domain adaptation. The left panel displays ResNet-derived features, 
where color-coded data points from different datasets form distinct, 
well-separated clusters with minimal overlap. This sharp separation 
arises from domain-specific biases in  spectral  reflectance patterns, 
leading to distributional mismatches that hinder cross-dataset 
prediction accuracy in transfer learning. In contrast, the right panel 
illustrates features processed by PPADA-Net, where adversarial 
learning induces two key transformations: (1) inter-dataset 
boundaries become less distinct, with most data points forming 
mixed-region neighborhoods, and (2) previously compact clusters 
disperse into overlapping distributions, particularly in high-
dimensional manifolds associated with invariant spectral features. 
These structural adjustments indicate that PPADA-Net effectively 
mitigates  domain  shifts  by  learning  transfer-invariant  
representations,  enhancing  knowledge  transfer  across  
heterogeneous datasets. This alignment mechanism underpins 
PPADA-Net’s superior cross-domain generalization performance. 

3.2.2 Traits prediction performance 
To evaluate the impact of synthetic data volume, the model was 

pretrained using varying amounts of PROSPECT-generated spectra 
(2k, 4k, 6k,…, 20k). As shown in Figure 8, predictive accuracy 
increased with the size of the synthetic dataset. The improvement 
was particularly notable for CHL and EWT, indicating that 
PROSPECT provides informative priors related to canopy 
chlorophyll and water status. Although performance plateaued or 
FIGURE 6 

(a) Mean, standard deviation and coefficient of variation of spectral reflectance. (b) Pearson correlation coefficient between spectral reflectance and traits. 
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showed minor fluctuations beyond 10,000 samples for certain traits, 
this data volume represents a practical trade-off between model 
accuracy and computational efficiency. 

This study evaluates the performance of various spectral 
reflectance prediction models for three plant traits. As illustrated 
in Figure 9a, the models exhibit significant differences in R² and 
nRMSE. Overall, the traditional machine learning model PLSR 
demonstrates relatively low accuracy, with average R² values of 
0.59, 0.63, and 0.72 for CHL, EWT, and LMA, respectively. In 
contrast, the deep learning based ResNet improves the R² for CHL 
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to 0.63 (an increase of 6.8%) via nonlinear feature extraction, 
although its EWT prediction slightly degrades (R² = 0.61 versus 
0.63), underscoring the limitations of purely data driven, end to end 
training for cross trait generalization. Notably, incorporating 
physical priors and domain adaptation strategies significantly 
enhances model performance. For example, ResNet-PROSPECT, 
pretrained on simulated data generated by the PROSPECT radiative 
transfer model, attains R² values of 0.67, 0.74, and 0.80 for CHL, 
EWT, and LMA, respectively, which represents an average 
improvement of 8.3% over the basic ResNet and shows the most 
substantial error reduction in the EWT prediction (nRMSE = 0.09 
versus 0.15). Furthermore, ResNet-GRL employs adversarial 
learning to align features between the source and target domains, 
yielding a marginal improvement in CHL prediction (R² = 0.68 
versus 0.67) but slightly inferior LMA performance compared to 
ResNet-PROSPECT (R² = 0.78 versus 0.80), suggesting that 
pretraining with physically simulated data is more advantageous 
for certain traits, such as LMA. The dual strategy PPADA-Net, 
which integrates physical constraints and domain adaptation, 
achieves the best overall performance by increasing the R² values 
for CHL, EWT, and LMA to 0.72, 0.77, and 0.86, respectively, which 
represents an average enhancement of 5.1% over single strategy 
models and demonstrates balanced improvements across different 
traits. From the perspective of individual traits, LMA exhibits the 
highest prediction accuracy (PPADA-Net R² = 0.86), likely due to a 
more pronounced physical association between its spectral 
characteristics and dry matter content. The variation in 
prediction  performance across traits aligns with spectral-trait

correlations in Section 3.1. LMA exhibits the strongest 
correlations, especially in the NIR region (700–1400 nm), with 
stable reflectance and strong biomass associations. EWT displays 
moderate to strong correlations over a slightly narrower range 
(700–1900 nm). In contrast, CHL exhibits strong correlations 
only in the narrow visible range (400–700 nm). These correlation 
patterns explain why LMA consistently achieves the highest 
prediction accuracy, followed by EWT, with CHL showing the 
FIGURE 7 

t-SNE visualization of features extracted from different domain datasets. 
FIGURE 8 

Model performance on three plant traits (CHL, EWT, and LMA) with 
varying numbers of PROSPECT-simulated spectra used during pretraining. 
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lowest performance. This underscores the importance of intrinsic 
spectral sensitivity and the information content available for each 
trait in determining model accuracy. 

The performance of each architecture under three settings: 
Baseline, PROSPECT pretraining, and with the HCDFA module 
was analyzed in Figure 9b. Overall, ResNet achieved the best 
prediction accuracy across the three target traits, followed closely 
by Transformer, while CNN showed a notable performance drop. 
In ablation analysis, both PROSPECT pretraining and the HCDFA 
module led to performance improvements across all architectures. 
When both modules were combined, further accuracy gains were 
observed, suggesting that PROSPECT provides beneficial physical 
priors, and the domain alignment strategy of HCDFA effectively 
mitigates cross-ecosystem trait heterogeneity. 
3.3 Transferability validation across 
different datasets 

The performance of the PLSR model and the proposed PPADA-
Net in predicting three plant traits was evaluated (Figure 10) across 
various training-testing dataset combinations (Tables 3, 4). 
PPADA-Net consistently outperformed the PLSR model across 
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most dataset combinations for all three traits. On average, 
PPADA-Net exhibited higher R² values and lower nRMSE values 
than PLSR. For instance, in predicting CHL, PPADA-Net achieved 
a mean R² of 0.53 and a mean nRMSE of 0.12 across all dataset 
combinations, whereas PLSR attained a mean R² of 0.18 and a mean 
nRMSE of 0.25. Similarly, PPADA-Net achieved an average R² of 
0.72 and an nRMSE of 0.10 in predicting LMA, whereas PLSR 
attained an R² of 0.46 and an nRMSE of 0.15. This indicates that 
PPADA-Net, which integrates simulated data pre-training with 
adversarial domain alignment, significantly enhances prediction 
accuracy and reliability. 

The model’s performance varied considerably across different 
dataset combinations. For example, in predicting LMA, when using 
D1 as the training set and D2 as the testing set, PPADA-Net 
achieved an R² of 0.68 and an nRMSE of 0.11, whereas PLSR 
recorded an R² of 0.34 and an nRMSE of 0.15. Similarly, for the D5– 
D4 combination, PPADA-Net attained an R² of 0.81 and an nRMSE 
of 0.07, in contrast to PLSR’s R² of 0.22 and an nRMSE of 0.22. 
These examples further highlight that the prediction accuracy of 
data-driven models is significantly influenced by the training set. 
Under these conditions, PPADA-Net demonstrated greater stability 
and adaptability across various dataset combinations. For example, 
in predicting EWT across different dataset combinations, PLSR 
FIGURE 9 

(a) Accuracy evaluation of the PLSR, ResNet, ResNet-PROSPECT, ResNet-GRL and PPADA-Net traits prediction models. The error bar represents the 
standard deviation of the validation. (b) uses horizontal bars to compare models like CNN, CNN-PROSPECT, CNN-HCDFA, and Transformers against 
metrics R² and nRMSE. CHL, Chlorophyll Content; EWT, Equivalent Water Thickness; LMA, Leaf Mass per Area. 
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FIGURE 10 

(a, c) Cross validation of the PLSR and PPADA-Net traits prediction models (R2 and nRMSE). D1–D2 means that Dataset 1 is the training set and 
Dataset 2 is the test set, (b, d) the kernel density estimate (KDE) of the trait-based metric dis tributions (R2 and nRMSE). 
TABLE 3 The performance results of plant traits prediction at five growth stages using PLSR and PPADA model. 

Group CHL-PLSR CHL-PPADA EWT-PLSR EWT-PPADA LMA-PLSR LMA-PPADA 

D1-D2 0.11 0.53 0.18 0.74 0.34 0.68 

D1-D3 0.05 0.58 0.27 0.81 0.29 0.76 

D1-D4 0.22 0.59 0.38 0.77 0.22 0.62 

D1-D5 0.21 0.58 0.3 0.69 0.23 0.67 

D2-D1 0.14 0.47 0.49 0.77 0.53 0.75 

D2-D3 0.02 0.54 0.56 0.81 0.42 0.74 

D2-D4 0.08 0.6 0.39 0.78 0.44 0.78 

D2-D5 0.12 0.59 0.35 0.7 0.41 0.77 

D3-D1 0.33 0.34 0.34 0.66 0.53 0.67 

D3-D2 0.41 0.43 0.42 0.59 0.63 0.61 

D3-D4 0.29 0.51 0.27 0.62 0.47 0.39 

D3-D5 0.28 0.53 0.36 0.53 0.46 0.55 

D4-D1 0.34 0.35 0.33 0.68 0.63 0.77 

D4-D2 0.5 0.51 0.46 0.68 0.65 0.82 

D4-D3 0.11 0.58 0.39 0.76 0.73 0.78 

D4-D5 0.11 0.6 0.33 0.69 0.58 0.79 

D5-D1 0.01 0.43 0.34 0.73 0.38 0.72 

D5-D2 0.04 0.54 0.37 0.8 0.51 0.83 

D5-D3 0.12 0.6 0.53 0.79 0.61 0.81 

D5-D4 0.11 0.62 0.58 0.82 0.22 0.81 

AVG 0.18 0.53 0.38 0.72 0.46 0.72 
F
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frontiersin.org 

https://doi.org/10.3389/fpls.2025.1612430
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1612430 
exhibited an R² range of 0.18–0.58 and an nRMSE range of 0.13– 
0.24. In contrast, PPADA-Net displayed an R² range of 0.53–0.82 
and an nRMSE range of 0.07–0.12, indicating that the integration of 
simulated data pre-training and adversarial domain alignment 
enables the model to better handle domain shifts and maintain 
consistent performance across diverse data sources, which is 
particularly valuable in cases of high data heterogeneity. Overall, 
among the three traits, CHL is generally more challenging to predict 
accurately compared to EWT and LMA. Although PPADA-Net 
achieved relatively high R² values for LMA in certain cases, some 
dataset combinations still yielded low R² values, suggesting that 
achieving high-precision transfer for CHL prediction across 
different datasets remains challenging. 
3.4 Performance evaluation in 
independently collected field dataset 

When training the model on D1–D4 and testing on the 
independently collected field D5 dataset, notable performance 
differences were observed across models. The PPADA model 
(Figure 11a) achieved high prediction accuracy for all three traits, 
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with R² values of 0.72 (CHL), 0.78 (EWT), and 0.87 (LMA), and 
corresponding nRMSE values of 0.08, 0.08, and 0.07. The scatter 
plots show strong linear agreement between predicted and observed 
values, especially for LMA, where most points closely align with the 
1:1 line, indicating superior predictive performance. CHL and EWT 
predictions were more concentrated in the low-to-mid value ranges, 
with slightly reduced agreement at higher values. In contrast, the 
PLSR model (Figure 11b) produced lower overall accuracy, with R² 
values of 0.53, 0.56, and 0.71 for CHL, EWT, and LMA, and nRMSE 
values of 0.10, 0.11, and 0.10, respectively. The scatter plots display 
greater dispersion, particularly for CHL and EWT, where deviations 
were more pronounced in the lower measurement ranges. Some 
improvement in agreement was observed at higher values. Among 
the three traits, LMA still yielded the best performance, but 
compared to PPADA, its R² was 0.16 lower and nRMSE was 
0.03 higher. 
3.5 Spatial mapping of plant traits 

Accurate mapping of plant functional traits serves as a pivotal 
tool for advancing crop breeding and precision agricultural 
TABLE 4 The performance results of plant traits prediction at five growth stages using PLSR and PPADA model. 

Group CHL-PLSR CHL-PPADA EWT-PLSR EWT-PPADA LMA-PLSR LMA-PPADA 

D1-D2 0.21 0.11 0.16 0.09 0.15 0.11 

D1-D3 0.26 0.12 0.17 0.08 0.16 0.09 

D1-D4 0.23 0.12 0.14 0.08 0.17 0.1 

D1-D5 0.18 0.1 0.14 0.09 0.16 0.11 

D2-D1 0.24 0.14 0.14 0.09 0.12 0.09 

D2-D3 0.31 0.12 0.13 0.08 0.15 0.1 

D2-D4 0.26 0.11 0.13 0.08 0.12 0.08 

D2-D5 0.23 0.1 0.14 0.1 0.14 0.09 

D3-D1 0.21 0.16 0.16 0.12 0.13 0.11 

D3-D2 0.26 0.12 0.13 0.11 0.11 0.12 

D3-D4 0.23 0.13 0.14 0.11 0.12 0.13 

D3-D5 0.18 0.11 0.13 0.12 0.13 0.12 

D4-D1 0.21 0.16 0.21 0.11 0.11 0.09 

D4-D2 0.16 0.11 0.16 0.1 0.11 0.08 

D4-D3 0.22 0.12 0.22 0.09 0.1 0.09 

D4-D5 0.18 0.1 0.18 0.09 0.12 0.08 

D5-D1 0.41 0.15 0.24 0.1 0.21 0.1 

D5-D2 0.32 0.11 0.21 0.08 0.2 0.07 

D5-D3 0.33 0.12 0.22 0.09 0.19 0.09 

D5-D4 0.34 0.12 0.19 0.07 0.22 0.07 

AVG 0.25 0.12 0.17 0.09 0.15 0.10 
The metrics reported are nRMSE. 
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management. The PPADA model was trained using datasets D1-D4 
and subsequently applied to spatially visualize CHL, EWT, and 
LMA in 490 field samples from the independent test set D5, as 
shown in Figure 11. The results demonstrate a high degree of 
consistency between the spatial maps predicted by PPADA and the 
ground truth measurements, validating the robustness of the model 
in trait estimation. Among the three traits, LMA exhibited the 
highest spatial consistency, with prediction errors concentrated in 
the low-value range. For CHL and EWT, although most predictions 
closely matched the observed values, the model showed slight 
underestimation for samples with exceptionally high values. 
Overall, the PPADA model demonstrated its capability for high-
throughput,  spectral-based  trait  monitoring  and  field  
mapping applications. 
4 Discussion 

4.1 Comparison and analysis of models for 
plant traits estimation 

The use of spectral features, including reflectance data, 
vegetation indices, and spectral derivatives, for plant trait 
prediction has been widely applied in previous studies (Li et al., 
2024). For example, Aguirre-Gutierrez et al. (2021) demonstrated 
that key plant functional traits can be accurately predicted across 
the tropics using the high spatial and spectral resolution of Sentinel
Frontiers in Plant Science 15 
2 imagery in conjunction with climatic and soil information. While 
PLSR offers high interpretability and computational efficiency in 
plant traits estimation, it has several limitations. First, it does not 
support multi-task learning, requiring separate models for different 
traits, which results in fragmented workflows. Second, it struggles to 
capture complex spectral-trait relationships, especially in high-
dimensional or nonlinear contexts, such as SWIR interactions 
with leaf dry matter. As shown in our results, PLSR exhibited the 
lowest performance (mean R² = 0.59–0.72) and showed a significant 
decline in accuracy in cross-dataset scenarios (e.g., CHL R² = 0.18), 
highlighting its vulnerability to data heterogeneity. 

Deep neural networks, such as CNN, have improved traits 
prediction by enabling end-to-end multi-task learning and 
hierarchical feature extraction. Cherif et al. (2023) demonstrated 
that CNN-based architectures could simultaneously predict 
multiple traits with enhanced nonlinear modeling. While these 
models outperform traditional methods in single-domain settings, 
their heavy reliance on large, labeled datasets poses a challenge (Chen 
et al., 2023), as training robust models requires extensive field 
measurements, which are costly and scarce for certain traits. 
Furthermore, these models often exhibit poor cross-dataset 
generalizability due to domain shifts in spectral patterns (Zhang 
and Bao, 2022). Our results support these findings: ResNet showed 
inconsistent performance across traits (e.g., EWT R² = 0.61 vs. PLSR’s 
0.63) and experienced significant accuracy declines in transfer 
learning scenarios (e.g., LMA R² = 0.68 for D1-D2), highlighting its 
sensitivity to domain-specific biases. To overcome these limitations, 
FIGURE 11 

Comparison of prediction performance between the PPADA model (a) and PLSR model (b) for CHL, EWT and LMA. Each subplot shows scatterplots 
of estimated versus measured values, with marginal density distributions. The dashed gray line represents the 1:1 line of perfect agreement, and the 
solid gray line indicates the linear regression fit. The coefficient of determination (R²) and normalized root mean square error (nRMSE) are provided 
for each model. 
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PPADA-Net integrates physical priors from radiative transfer models 
(e.g., PROSPECT-simulated spectra) with adversarial domain 
adaptation, achieving dual benefits: physics-informed feature 
learning and robust cross-domain generalization. It outperformed 
all baseline models across traits (CHL: R² = 0.72; EWT: R² = 0.77; 
LMA: R² = 0.86), with accuracy gains of 5.1% to 22.4% over PLSR and 
ResNet. These results have practical implications for remote sensing-
based trait monitoring in real-world settings. PPADA-Net’s strong
performance in cross-dataset validation (e.g., LMA R² = 0.72 vs. 
PLSR’s 0.46) demonstrates its ability to mitigate domain shifts—a key  
challenge when applying models across regions, time periods, or 
sensors. This is particularly valuable for large-scale agricultural 
monitoring and ecosystem management, where collecting labeled 
data in every new condition is impractical. Furthermore, the 
Frontiers in Plant Science 16 
integration of physical priors reduces reliance on field data, 
potentially lowering the cost and labor of trait estimation. 
4.2 Model performance with PROSEPECT
D simulation data 

Physical models, such as the PROSPECT-D radiative transfer 
model, simulate spectral reflectance based on the biochemical and 
structural properties of plant leaves, providing mechanistic insights 
into light-matter interactions (Peters and Noble, 2020). For 
example, Bhadra et al. (2024) used PROSPECT to simulate 
hyperspectral responses under varying parameters, demonstrating 
its effectiveness in controlled experimental settings. While these 
FIGURE 12 

Spatial mapping comparison of plant traits between PPADA predictions and ground measurements. The three above are the measured CHL, EWT, 
and LMA, while the three below are the predicted values. 
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models offer a rigorous framework for understanding spectral-trait 
relationships, their standalone application is constrained by 
computational complexity, sensitivity to input parameter 
accuracy, and limited adaptability to real-world environmental 
variability. In contrast, purely data-driven models excel at 
capturing complex patterns from large datasets but often lack 
interpretability and struggle with generalization when data is 
scarce or subject to domain shifts (Hou et al., 2024). Integrating 
physical models with data-driven approaches has emerged as a 
promising strategy for improving plant trait estimation. 

Integrating PROSPECT-D-generated simulations with empirical 
datasets mitigates these limitations by leveraging the complementary 
strengths of both approaches. Physical models enhance training data 
diversity by synthesizing spectra across a broad range of trait values 
and environmental conditions, reducing reliance on costly field 
measurements. Meanwhile, data-driven methods refine feature 
representations and optimize nonlinear mappings, compensating 
for the simplifications inherent in physical models. In this study, 
pretraining ResNet on PROSPECT-D-simulated spectra (ResNet-
PROSPECT) significantly improved prediction accuracy compared 
to the baseline ResNet. For instance, LMA prediction R² increased 
from 0.72 (ResNet) to 0.80 (ResNet-PROSPECT), while EWT 
accuracy improved by 17.7% (R²=0.74 vs. 0.63), highlighting the 
benefits of physics-informed initialization. These improvements 
result from two key mechanisms: (1) simulated data introduced 
reflectance variations under extreme or rare trait values, enhancing 
model robustness; (2) PROSPECT-D’s parameterization guided the 
network to focus on wavelengths critical for specific traits. The 
success of PROSPECT-D-enhanced models suggests a scalable 
approach for trait estimation in heterogeneous environments. By 
generating synthetic spectra for underrepresented conditions, 
physical models can pre-train networks to generalize beyond 
empirical dataset limitations. Future work could explore 
dynamically integrating physical simulations with domain 
adaptation, such as iteratively updating PROSPECT-D parameters 
based on field observations to refine synthetic data quality. Such 
advancements would further bridge the gap between theoretical 
modeling and empirical applications, fostering robust solutions for 
ecosystem monitoring under climate change. 
4.3 Transferability analysis 

The transferability of spectral-trait prediction models is crucial 
for real-world applications, as ecosystems exhibit substantial 
variability in spectral signatures and plant trait distributions due 
to differences in species composition, environmental conditions, 
and measurement protocols (Zhang et al., 2025a). Traditional 
machine learning and deep learning models often struggle to 
generalize across such heterogeneous datasets, limiting their 
effectiveness in large-scale monitoring. For instance, PLSR, while 
computationally efficient, demonstrates poor adaptability to 
spectral heterogeneity. In cross-dataset validation, PLSR achieved 
a mean R² of only 0.18 for CHL and 0.46 for LMA, with nRMSE 
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values reaching 0.25. Similarly, deep learning models such as 
ResNet, despite their capacity for multi-task learning, remain 
susceptible to domain-specific biases. 

Adversarial domain adaptation has emerged as a powerful 
strategy for aligning feature distributions across domains. For 
example, Ma et al. (2022) proposed a domain adaptation scheme 
named adversarial entropy optimization to learn domain-invariant 
features, achieving state-of-the-art performance across diverse 
domain adaptation tasks. In this study, PPADA-Net integrates 
this technique with physical priors to address spectral 
heterogeneity. The model achieved a mean R² of 0.53 for CHL, 
0.72 for LMA, and 0.65 for EWT across all dataset combinations, 
outperforming PLSR by 35–52% in R². Notably, PPADA-Net 
maintained stable performance even in challenging  scenarios,
such as the D5→D4 transfer for LMA (R²=0.81 vs. PLSR’s 0.22), 
demonstrating its robustness against domain-specific noise. The 
enhanced transferability arises from two synergistic mechanisms. 
First, PROSPECT-D-simulated spectra provides trait-specific 
spectral patterns, enabling the model to prioritize domain-

invariant biochemical signals over dataset-specific artifacts.

Second, by minimizing discrepancies between source and target 
domains in high-dimensional feature space, PPADA-Net mitigates 
overfitting to local spectral variations. Future research could extend 
this framework to dynamically adapt to emerging ecosystems or 
sensor types, further bridging the gap between controlled 
simulations and field applications. 
4.4 Performance on independently 
collected field datasets 

PPADA-Net demonstrated exceptional performance on the 
independently collected field dataset (D5), comprising potato, 
soybean, and maize crops under diverse cultivars and growth 
stages. The model achieved R² values of 0.72 (CHL), 0.78 (EWT), 
and 0.87 (LMA) with nRMSE reductions of 20%–30% compared to 
PLSR (Figure 10). Notably, LMA prediction exhibited the highest 
accuracy (R² = 0.87), likely due to its strong spectral-physical 
linkage with dry matter content, as captured by PROSPECT-D 
simulations. These results underscore the framework’s ability to 
generalize beyond controlled experimental conditions, addressing 
the critical challenge of domain shifts caused by cultivar diversity, 
growth stage variability, and field-specific environmental factors. 
From an agronomic perspective, the high accuracy of PPADA-Net 
in mapping LMA and EWT (Figure 12) holds significant promise 
for optimizing irrigation scheduling and nutrient management. For 
example, spatially resolved LMA estimates could guide breeders in 
selecting drought-tolerant cultivars, while EWT monitoring may 
improve water-use efficiency in water-scarce regions. However, 
slight underestimation of CHL in high-value ranges (Figure 10a) 
suggests that chlorophyll’s nonlinear spectral interactions under 
saturating conditions require further refinement. Future work 
should also validate the framework across broader agro-climatic 
zones and crop phenological stages to ensure scalability. 
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4.5 Limitations 

While PPADA-Net demonstrates significant advancements in 
plant trait estimation, its performance, like other machine learning 
methods, remains heavily dependent on the quality and quantity of 
training data. The framework’s effectiveness diminishes when training 
data are scarce or unrepresentative of target environments. For 
instance, PPADA-Net’s reliance on PROSPECT-D-generated 
simulations introduces biases if the radiative transfer model fails to 
capture extreme environmental conditions. In such cases, synthetic 
data may inadequately represent real-world spectral-trait relationships, 
limiting generalization. To mitigate this, future work should 
incorporate anthropogenic constraints into simulations, such as 
expanding parameter ranges for leaf structure and biochemical 
composition, to enhance the diversity and representativeness of 
synthetic datasets. This would ensure simulated spectra encompass 
greater information entropy, better aligning with the variability 
observed in field data. On the other hand, although adversarial 
learning in PPADA-Net effectively aligns feature distributions across 
datasets, its performance may degrade when domain discrepancies are 
extreme. While our results demonstrated robustness in most cross
dataset validations, scenarios involving stark domain shifts require 
careful hyperparameter tuning to stabilize adversarial training. In 
summary, by refining the constructive interaction between physically 
based simulation and adaptive learning, PPADA-Net can evolve into a 
reliable tool for precision agriculture. 
5 Conclusion 

This study presents the PROSPECT Pre-trained Adversarial 
Domain Adaptation Network (PPADA-Net), a novel framework that 
synergizes physical radiative transfer modeling with adversarial domain 
adaptation to address cross-ecosystem plant trait estimation. Rigorously 
validated across five datasets—including field experiments conducted at 
an agricultural research station in Xinxiang, China (D5)—the 
framework demonstrates robust performance in both controlled and 
real-world agricultural environments. PPADA-Net achieves state-of
the-art accuracy in predicting chlorophyll content (CHL: R² = 0.72), 
equivalent water thickness (EWT: R² = 0.78), and leaf mass per area 
(LMA: R² = 0.87) on the independently measured crop dataset (D5), 
significantly outperforming conventional PLSR with nRMSE reductions 
of 20%–30%. Notably, LMA prediction exhibited the highest robustness 
(nRMSE = 0.07), highlighting the model’s ability to generalize across 
heterogeneous field conditions, such as cultivar diversity, growth stage 
variability, and sensor-specific spectral biases. The integration of field-
collected hyperspectral data with adversarial domain adaptation proved 
critical for bridging synthetic simulations and practical applications. For 
instance, the hierarchical cross-domain alignment module effectively 
mitigated domain shifts between laboratory datasets (D1–D4) and real-
world agricultural data (D5), as evidenced by t-SNE visualizations of 
domain-invariant features. In summary, PPADA-Net harmonizes 
physics-driven priors with data-driven adaptability, offering a 
transformative  solution  for  plant  trait  estimation  in  
heterogeneous environments. 
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