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Passion fruit pests are characterized by their high species diversity, small physical

size, and dense populations. Traditional algorithms often face challenges in

achieving high detection accuracy and efficiency when addressing the

complex task of detecting densely distributed small objects. To address this

issue, this paper proposed an enhanced lightweight and efficient deep learning

model, which is developed based on YOLOv5s, consists of the PLDIoU, four

CBAM modules, and one newAnchors, termed P4CN-YOLOv5s, for detecting

passion fruit pests. In P4CN-YOLOv5s, the Mosaic-9 and Mixup algorithms are

initially used for data augmentation to augment the training dataset and enhance

data complexity. Secondly, after analyzing the image set characteristics to be

detected in this research, the point-line distance bounding box loss function is

utilized to calculate the coordinate distance of the prediction box and target box,

and aimed at improving detection speed. Subsequently, a convolutional block

attention module (CBAM) and optimized anchor boxes are employed to reduce

the false detection rate of themodel. Finally, a dataset consisting of 6,000 images

of passion fruit pests is used to evaluate the performance of the proposedmodel.

The experimental data analysis reveals that the proposed P4CN-YOLOv5s model

achieves superior performance, with an accuracy of 96.99%, an F1-score of

93.99%, and a mean detection time of 7.2 milliseconds. When compared to other

widely used target detection models, including SSD, Faster R-CNN, YOLOv3,

YOLOv4, YOLOv5, P4C-YOLOv5s, and YOLOv7 on the same dataset, the P4CN-

YOLOv5s model demonstrates distinct advantages, such as a low false positive

rate and high detection efficiency. Therefore, the proposed model proves to be

more effective for detecting passion fruit pests in natural orchard environments.
KEYWORDS

passion fruit pests detection, lightweight deep learning algorithm, YOLOv5S, attention
module, pests detection
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1 Introduction

Passion fruit, which has a significant economic value, often

suffers from pest infestation during its growth, leading to a decline

in quality and yield. It causes losses not only to the farmers but also

to the agricultural economy (Pereira et al., 2023).

The prerequisite for pest control is the timely and accurate

detection of pests. Real-time pest detection in crops with the

application of scientific methods is a vital tool in the current

cultivation and management of crops. Initially, the researchers

used novel techniques for pest detection with positive

achievements. These novel techniques were effective in reducing

labor costs and increasing detection rates. Moreover, the novel

techniques also conserve resources to limit the negative impact on

the environment. However, these methods are ineffective in the

actual field environment (Cai et al., 2024).

The advancement of techniques in deep learning has achieved a

wide range of successful applications of models in computer vision

(CV) such as the convolutional neural network (CNN) and the

transformer. Applications such as traffic detection (Mahrez et al.,

2021), face recognition (Wang and Guo, 2021), and pedestrian

detection (Li et al., 2018) are included. Crop pest and disease

monitoring has gradually developed from traditional manual

monitoring to automation, informationization, and intelligence

(Juan et al., 2023). Deep learning technology provides new

solutions and opportunities for agriculture by utilizing big data

and powerful computing capabilities. Researchers have already used

CNN and deep learning techniques in agriculture to develop

intelligent agriculture. Intelligent agriculture can help agricultural

workers to improve productivity, reduce resource waste, and

promote sustainable agriculture (Xiaodong et al., 2021)

(Kartikeyan and Shrivastava, 2021). A popular intelligent method

currently used in pest detection is target detection (Ding and

Taylor, 2016; Qin et al., 2023). Being an image processing

technique, the target detection aims at identifying and localizing

specific objects from images or video streams. Target detection

provides fundamental support for computer vision applications,

where two-stage algorithms and single-stage algorithms are its

mainstream algorithms.

Two-stage algorithms are RCNN series algorithms (Girshick

et al., 2013; Girshick, 2015; Ren et al., 2017). These algorithmic

models have two main stages in detection. The first step is to

generate candidate regions on the to-be-detected image. The second

step is the objects are detected based on candidate regions with

CNN. A three-pest detection method for lychee with an accuracy of

more than 95% that is based on deep learning has been proposed by

Jin Y. et al (Jin et al., 2021). A multi-class pest detection method

called PestNet is proposed by Liu et al (Liu et al., 2019), which had

an average accuracy of 75.46% on the Multi-Class Pest Dataset 2018

(MPD2018). The mini-CNN structure proposed by (Rahman et al.,

2020). is a two-stage algorithm. This structure allows the model to

maintain 93.3% accuracy while reducing its size by 99%. It provides

timely crop disease detection for under-resourced devices.

The single-stage algorithms are Single Shot MultiBox Detector

(SSD) algorithm (Liu et al., 2016) and You Only Look Once
Frontiers in Plant Science 02
(YOLO) series algorithms (Jocher et al., 2020; Redmon et al.,

2016; Redmon and Farhadi, 2017; Redmon and Farhadi, 2018;

Bochkovskiy et al., 2020). These methods do not generate candidate

regions at the time of detection but solve the problem of localizing

and classifying the target in a regression approach. It means that the

model can get the final detection result directly after only one stage.

In 2022, (Zhang et al., 2022). proposed a lightweight model, called

AgriPest-YOLO model, with better accuracy than the classical

detection model, and it can detect 24 categories of pests with a

mean precision of 71.3%. (Hu et al., 2023). proposed the YOLO-

GBS model by merging the global context (GC) attention module,

which can recognize the insect dataset of Crambidae in complex

backgrounds with mAP of 79.8%. Zhang and Ma et al (Zhang et al.,

2022). proposed a modified YOLOX model that adds efficient

channel attention (ECA), replaces the activation function with the

Swish function, and works with the Focal Loss function. These

modifications improved the YOLOX model’s performance in

detecting cotton pests and diseases, and its average accuracy

reached 94.60%.

Although the two-stage algorithm performs well in localization

and classification, it requires two stages to output the results, which

is time-consuming and cannot meet the requirement of immediacy.

By contrast, the single-stage algorithm directly outputs the

detection rate and the positional coordinates of the target through

a single detection, which is faster. However, some of the single-stage

algorithms are also flawed. SSD (Liu et al., 2016) is weak in

recognizing small objects. YOLOv1 (Redmon et al., 2016)

localizes prediction boxes and classifies them directly at the

output layer, but it recognizes dense objects and small objects

very poorly with low accuracy. Though YOLOv2 (Redmon and

Farhadi, 2017) uses high-resolution images to build a classification

network, improving detection speed, accuracy, and classification

number, its prediction of overlapping or small objects is poor.

YOLOv3 (Redmon and Farhadi, 2018) speeds up the computation.

It can be used to quickly identify objects under complex situations

such as small objects and similar backgrounds. On the contrary, its

training speed is slow and its generalization is poor. Although

YOLOv4 (Bochkovskiy et al., 2020) improves the model outcome by

balancing detection accuracy and speed, it has a high false detection

rate. YOLOv5 (Jocher et al., 2020), proposed by Jocher et al. in 2020,

performs well in target detection applications with low false-

detection rate and high performance, and its pre-trained model is

very small, only about 10% of the YOLOv4 model. It is also

applicable to various application scenarios such as multi-image,

video and real-time monitoring. YOLOv5 has small (s), medium

(m), large (l), and extra-large (x) model structures, namely

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. It improves

model robustness and inference speed on the input layer with

Mosaic data augmentation, adaptive adjustment of anchor box,

and adaptive image scaling. Its Backbone layer includes the Cross

Stage Partial Network (CSP) and Spatial Pyramid Pooling-Fast

(SPPF) module. The CSP network structure optimizes the CNNs

in the model, which not only further improves the capability of

learning, but also maintains the accuracy. The SPPF network

structure enables models to simplify calculations, reduce training
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time and optimize training results without loss of accuracy. The

Feature Pyramid Networks (FPN) (Lin et al., 2017) and Path

Aggregation Network (PAN) (Liu et al., 2018) in the neck layer

fuse the feature maps from different stages to further improve the

detection results.

For the above reasons, the YOLOv5s is suitable for passion fruit pest

detection with its lightweight and deployable features. The recognition

methods described above have low accuracy or are mostly limited to

specific images and regions. None of them are suitable for the detection

and identification of passion fruit pests. To optimize the identification

and localization of passion fruit pests, a P4CN-YOLOv5s model based

on our previous research (P4C-YOLOv5s) (Zhang et al., 2018; Selvaraju

et al., 2017) is proposed. The P4CN-YOLOv5s model offers a lower false

detection rate and shorter detection time, making the following

innovative improvements in this study.
Fron
1. Dataset Reprocessing and Anchor Boxes Optimization: In

this study, we introduce a novel approach to dataset

enhancement by collecting real pest data and applying

the Mosaic-9 and Mixup algorithms at the input layer of

the model. This reprocessing technique not only increases

data complexity and the number of small objects but also

significantly improves the model’s robustness and

prediction performance. Additionally, we optimize anchor

box values by employing the K-means clustering algorithm,

which enhances the model’s accuracy.

2. Neck Layer Optimization with CBAM: We propose an

innovative enhancement to the neck network by

incorporating the Convolutional Block Attention Module

(CBAM). This module adapts the convolutional neural

network to focus more effectively on the target by

increasing attention to relevant features. The CBAM also

allows for the decomposition of original features into more

refined representations, offering the model richer

contextual information and enabling more accurate data

understanding and categorization.

3. Introduction of the PLDIoU Loss Function: A novel

bounding box regression loss function, Point Line

Distance Intersection over Union (PLDIoU), is introduced

to improve localization accuracy. PLDIoU reduces

redundant computations and accelerates the localization

process by effectively representing the distance between

predicted and target box coordinates, contributing to

more efficient and accurate bounding box predictions.
2 Data collection and optimization

2.1 Data collection

The passion fruit pest dataset used in this study consists of a

combination of a self-collected dataset and a publicly available

dataset from PaddlePaddle. After filtering, a total of 2,811 high-

quality images were retained. To enhance the dataset, we expanded
tiers in Plant Science 03
it to 6,000 images by randomly sampling from the original set and

applying selected data augmentation techniques. A total of 12 data

augmentation methods were employed in this process, including

size scaling, grayscale conversion, center cropping, random

cropping, random cropping with scaling, edge padding, random

rotation, horizontal flipping, vertical flipping, color dithering, and

affine transformation. The dataset was initially divided into 10 equal

parts, with 8 parts allocated for training and validation, and the

remaining 2 parts used for testing. Subsequently, the training-

validation set was further divided into 10 parts, where 7 parts

were used for training and 3 parts for validation. As a result, the

training set contained 3,360 images, the validation set contained

1,440 images, and the test set consisted of 1,200 images.

A total of 12 pests are included in the dataset, which are

Bactrocera dorsalis (Bd), elater, Epicauta ruficeps (Er),

Halyomorpha halys (Hh), Prodenia litura-Adult (PlA), Prodenia

litura-Larva (PlL), Red spider (Rs), Scarab beetle (Sb), Sympiezomia

citre (Sc), slug, snail and thrips. There are approximately 500 images

of each pest. Detailed data of the dataset is presented in Table 1.

LabelImg is a graphical image labeling tool that is often used in

data annotation for object detection. Before training, the dataset is

labeled with the LabelImg software, and the label information is

saved as Extensible Markup Language (XML) files in PASCAL VOC

2007 format. The XML file records the original image information,

object name, and object coordinates in detail. Besides, the labeling

information of this format file is also supported for the training of

YOLO series models, SSD algorithm, and R-CNN series algorithm

models. It is convenient for comparison experiments.

Meanwhile, Figure 1 provides the corresponding data

distribution of the pest labeling data. Figure 1a shows the amount

of labels for each type of pest. Figure 1b shows the coordinate

distribution of each label and the labels are mostly concentrated in

the middle of the image. Figure 1c shows the size share of the label

box in the image. It can be seen that the largest proportion is small

object pests, indicating that the model should focus on small

object pests.
2.2 Dataset reprocessing

The Mosaic-9 algorithm and the Mixup algorithm are added to

the model input layer to improve data complexity and model

robustness and increase the number of object pests.

Mosaic-9. The mosaic algorithm helps in scaling up the training

data size and increasing the data diversity, thus improving the

training results. It has two main key steps. The first is to pick four

images from the training dataset. Then all 4 images are randomly

cropped with a small part and the cropped images are stitched into a

new image wsith a certain ratio. And the Mosaic algorithm will

calculate the data of four images when performing the

normalization operation. Therefore, the memory consumption of

the model is reduced. Figure 2 presents a simplified demo of the

mosaic algorithm. N is the batch size.

We upgrade the Mosaic method from randomly stitching 4

images to randomly stitching 9 images to get the Mosaic-9 online
frontiersin.org
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data augmentation algorithm. Compared with the Mosaic

algorithm, the Mosaic-9 algorithm makes the dataset more

complex and increases the percentage of small targets, which

makes the model more stable. Figure 3 shows an example

operation of the Mosaic-9 algorithm.

Unlike the traditional Mosaic algorithm, the Mosaic-9

algorithm selects 9 images randomly and then intercepts portions

from the 9 images respectively with specific rules. Eventually, the

intercepted 9 images are merged into a new image by the same rules.

Repeat this several times to get several new images.

Mixup. The Mixup algorithm is used to mix two randomly

selected images in a ratio to create new data with labeled

information. It can complicate and expand the dataset (Liu

et al., 2018).

Figure 4 is a simple step of the Mixup algorithm execution. The

Mixup algorithm improves model stabilization and prevents
Frontiers in Plant Science 04
overfitting. It is insensitive to noisy samples and improves the

model’s ability to learn the hidden regularities behind the data with

improved generalization. Its best feature is that it is readily available

and has a negligible impact on memory.
2.3 Anchor boxes optimization

As an important part of object detection, anchors may vary on

different datasets. A suitable anchor can substantially improve the

effectiveness of the model. In practical applications, anchors need to

be reselected according to specific datasets. During the training

process, we found that the function of YOLOv5 to automatically

calculate the anchor values did not take effect. To get suitable

anchors, we recalculated them with the K-means clustering

algorithm. The values of the new anchors (newAnchors) are
FIGURE 1

The diagram of the pest labeling data (a) number of labels for various pests, (b) labels distribution, (c) label length and width distribution.
TABLE 1 The statistics of passion fruit pest dataset.

Labels Number of collection
Number for

data augmentation
Number for training Number for test

Bd 158 342 272 110

elater 269 231 282 89

Er 279 221 280 109

Hh 111 389 279 117

PlA 163 337 262 105

PlL 169 331 284 87

Rs 198 302 298 95

Sb 366 134 287 90

Sc 279 221 271 100

slug 286 214 269 99

snail 275 225 278 104

thrips 258 242 298 95
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https://doi.org/10.3389/fpls.2025.1612642
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tan et al. 10.3389/fpls.2025.1612642
[(41,43), (92,77), (123,172)], [(210,124), (216,229), (335,192)] and

[(255,350), (469,261), (442,405)].
3 The proposed method

YOLOv5 continues to undergo updates, and its structural

diagrams may vary across different publications. In this study, the

YOLOv5 architecture is based on version 6. The authors of YOLOv5

have developed the YOLOv5 family with an emphasis on

streamlined and efficient module packaging, resulting in code that

is highly readable and easy to implement. The YOLOv5 architecture

mainly comprises four components: the input layer (Input), the

backbone layer (Backbone), the neck layer (Neck), and the

prediction layer (Prediction).
3.1 P4CN-YOLOv5s

Since most passion fruit pests are small and the dataset is not very

enough, the traditional YOLOv5 model is generally effective in
Frontiers in Plant Science 05
detecting them. In this paper, the P4CN-YOLOv5s model, based

on pyramid pooling for contextual networks is proposed for passion

fruit pests detection and identification. As Figure 5 shows it is the

proposed P4CN-YOLOv5s model schematic. The specific design is as

follows: Firstly, the training dataset is reprocessed. The input layer is

added with the Mosaic-9 algorithm and the Mixup algorithm to

enrich training datasets, enhance image complexity and the number

of objects, as well as strengthen model robustness and generalization.

Secondly, the anchor boxes are optimized. The anchor boxes are

readjusted that match the dataset of this study to improve the model

performance and localization. Thirdly, the neck network layer is

optimized. Four CBAM attention modules are added to the neck

layer. This improvement provides the model with the ability to

concentrate more on the target object, get its key information and

features, and effectively reduce the interference of invalid

information. Finally, a new PLDIoU loss function is introduced.

Instead of YOLOv5’s original loss function, we propose a PLDIoU

loss function to reduce unnecessary computations and speed up the

detection. The dataset reprocessing and anchor boxes optimization

are described in subsections 2.2 and 2.3. The next subsections 3.2 and

3.3 will focus on neck layer optimization and PLDIoU.
FIGURE 3

An example diagram of the Mosaic-9 data augmentation algorithm.
FIGURE 2

A simple flowchart of the Mosaic data augmentation algorithm.
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3.2 Neck layer optimization

In visual tasks, each image contains regions that attract varying

levels of attention, and not all pixels contribute equally to the

model’s decision-making. Attention modules help address this by

enabling the network to automatically learn a set of weighting

factors, which are then applied dynamically to emphasize important
Frontiers in Plant Science 06
regions while suppressing less relevant ones. By integrating

attention modules into neural network models, the network can

better capture key features, thereby enhancing its focus and

overall performance.

Attention mechanisms are typically categorized into three types:

channel attention, spatial attention, and hybrid (or mixed) attention

modules. The channel attention mechanism assigns importance

weights to different feature channels based on learned information,

allowing the network to enhance critical features and suppress less

informative ones. In contrast, the spatial attention mechanism

directs the model’s focus toward specific spatial regions within

the image. It uses spatial transformations to re-encode the spatial

information while preserving key content, subsequently generating

spatial weights to highlight target regions.

However, the channel attention module finds it easy to ignore

the information exchange within the space, and the spatial attention

module finds it easy to ignore the information exchange between

the channels. The mixed attention module is created by the

combination of the channel attention module and the spatial

attention module with parallel or series connections. It balances

both channel and spatial information exchange and has the

advantages of both channel attention modules and spatial

attention modules. The convolutional block attention module

(CBAM) (Woo et al., 2018) is a mixed attention module. Its
FIGURE 5

P4CN-YOLOv5s network structure diagram.
FIGURE 4

Example of mixup.
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schematic is shown in Figure 6. The CBAM links the channel

attention module and the spatial attention module in series to adjust

the input feature maps, from which the detailed feature maps

are output.

At first, the input feature map F ∈ RC�H�W (C denotes

channel, H denotes height, and W denotes width.) is adjusted by

the channel attention module in the CBAM module. Two one-

dimensional vectors are created after F is pooled by max-pooling

and average-pooling. After that, the two vectors are passed to a

multilayer perceptron (MLP). The MLP outputs a one-dimensional

channel attention graph Mc ∈ RC�1�1. Mc is multiplied with the

initial input F to output the feature map F’.

After the channel attention module outputs the F’, the spatial

attention module will immediately adjust F’. In the spatial attention

module, F’ will be pooled for the first time. The pooling sequence is

max pooling first and average pooling last. Two 2-dimensional

vectors are output after F’ is pooled. These two vectors will be input

to a standard convolutional layer for convolutional operation,

which outputs the 2D spatial attention Ms ∈ R1�H�W . Ms and

the original input F’ are multiplied to output the final refined feature

map F”.

The formulas for the CBAM output of the refined feature map

are given below (Equations 1–3).
Frontiers in Plant Science 07
F0 = Mc(F)⊗ F,

F00 = Ms(F
0)⊗ F0 (1)

Mc(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F)))

= s (W1(W0(F
c
avg)) +W1(W0(F

c
max)))

(2)

Ms = s (f 7�7(½AvgPool(F);MaxPool(F)�))
= s (f 7�7(½Fs

avg ; F
s
max�))

(3)

where c denotes the channel attention module. s denotes the

spatial attention module. ⊗ denotes element-wise multiplication. s
denotes the sigmoid function. AvgPool is the average pooling

method. MaxPool is the max pooling method. W0 and W1 are the

weights of the MLP. Fx
avg is the feature map after average pooling.

Fx
max is the feature map after maximum pooling. x can be taken as c

or s. f 7�7 denotes a 7� 7 convolution.

The optimization of the neck layer and the location of the added

CBAM modules are shown in Figure 7. In this optimization, a total

of 4 attention modules are added. The purpose is to use the

advantages of the attention modules to improve the model’s

ability to work with feature maps and feature information. This

improvement is called 4CBAM.
FIGURE 6

The CBAM module simplified diagram.
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3.3 PLDIoU

The PLDIoU (Li et al., 2023) loss is proposed to represent the

distance from the predicted box coordinates to the target box

coordinates. PLDIoU is calculated from the distance between the

prediction box, the target box, and the smallest enclosing box which

covers both boxes.

PLDIoU adds a penalty term RPLDIoU to simplify the calculation

of the distance between three boxes by using the point-line distance

formula to improve the IoU loss. l is defined as the line from the

centroid of the prediction box to the centroid of the target box. After

that, the distance d between the center point of the minimum

enclosing box and the straight line l is calculated. Finally, we make

RPLDIoU = d2. Figure 8 is a sample PLDIoU diagram. As shown in

Figure 8, C denotes the prediction box, G denotes the target box,

and A is the minimum enclosing box that covers C and G. Cctr is the

center point coordinate of C. Gctr is the center point coordinate of

G. Actr denotes the position of the center of A.

The equations for calculating PLDIoU are as follows (Equations

4–11):

a = y2 − y1 (4)

b = x2 − x1 (5)
Frontiers in Plant Science 08
l = x2 ∗ y1 − x1 ∗ y2 (6)

RPLDIoU =
(ax + by + l)2

a2 + b2 (7)

PLDIoU = IoU − hRPLDIoU (8)

LPLDIoU = 1 − IoU + hR
PLDIoU

= LIoU + hR
PLDIoU

(9)

C ∩ G = max (0,min (Cx2 ,Gx2 ) −max (Cx1 ,Gx1 )) �max (0,min (Cy2 ,Gy2 ) −max (Cy1 ,Gy1 ))

(10)

LIoU = 1 −
C ∩ G

(Cx2 − Cx1 )� (Cy2 − Cy1 ) + (Gx2 − Gx1 )� (Gy2 − Gy1 ) − C ∩ G

(11)

where (Cx1 ,Cy1 ) denotes the upper left corner coordinates of the

prediction box. (Cx2 ,Cy2 ) denotes the lower right corner coordinates

of the prediction box. (Gx1 ,Gy1 ) denotes the upper left corner

coordinates of the object box. (Gx2 ,Gy2 ) denotes the lower right

corner coordinates of the object box.

The result RPLDIoU is obtained by substituting point Cctr , point

Gctr and point Actr into formula (4) to formula (7). Then, the

PLDIoU loss function can be calculated by substituting RPLDIoU into

formula (8) and formula (9). The h is mainly used to adjust the

difference between the two loss function values. From the

experiments, it is known that the appropriate value of h is 10.
4 Experimental results and analysis

4.1 Implementation details

All the model training and validation in this paper were run on

GPU image workstations in our lab with the following

configurations and versions. Hardware: GPU image workstation
FIGURE 7

An illustration of 4CBAM’s position in the Neck.

FIGURE 8

Schematic of PLDIoU..
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with two NVIDIA GeForce RTX 3090 graphics cards; Operating

system: Ubuntu 20.04.3; Programming language and open source

libraries: Python 3.8, PyTorch v1.10.1, CUDA v11.3, cuDNN v8.0;

Hyperparameter settings: During the training process, the initial

learning rate of the model is 0.01. As the training is carried out, the

learning rate gradually increases and eventually reaches 0.1.

Intersection over Union (IoU) loss function coefficient is 0.05.

The mosaic algorithm works with a probability of 1. The

probability that the mixup method is executed, is 0.5.
4.2 Evaluation indicators

P4CN-YOLOv5s is a target detection model. It can be evaluated

with indicators of Mean Detection Time (mDT), F1-Score, and

Mean Average Precision (mAP). These indicators provide a detailed

description of the P4CN-YOLOv5s model’s performance with

accuracy, speed, and overall performance.

The mAP is a commonly used performance evaluation indicator in

target detection. It can be calculated by the arithmetic mean of the

Average Precision (AP) of all the categories to be detected. It considers

the model’s performance in each category in a comprehensive way,

which is a good overall performance evaluation indicator for multi-

category target detection. It takes values in the range [0,1]. AP is an

indicator of the model which is calculated by the area under the

Precision-Recall (P-R) curve. The AP value is very important for

evaluating the accuracy of the model in a specific category, and a

higher AP value indicates a better performance of the model in that

category. The P-R curve is shown in Figure 9.

The mDT refers to the average time the model takes from input

data to output detection results. It is used to assess the model’s

fulfillment of real-time requirements. The F1-score is a combination

of Precision and Recall, and their harmonic mean is calculated to

balance the precision and omission of the model. The F1 score is a

common metric evaluated when a model needs to balance precision

and recall. Themathematical formulas are shown below for Precision,

Recall, AP, mAP, F1-Score, and mDT (Equations 12–17).
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Pc =
TPc

FPc + TPc
(12)

Rc =
TPc

FNc + TPc
(13)

APc =o
Z 1

0
P(Rc)dR

c
(14)

mAP =
1
No

N

i=1
APi (15)

F1�Score ¼ 2� P � R
P + R

(16)

mDT ¼ 1
Mo

M

i=1
ti (17)

where P is the precision. R is the recall. c is the current detection

category. TP is True Positive, FN is False Negative, and FP is False

Positive. N is the total number of categories to be detected. M is the

total number of 1,200 pieces of data to be detected. t is the time for

detecting an image.
4.3 Ablation experiment

The ablation experimental data for the P4CN-YOLOv5s model

in Table 2 can be analyzed to indicate that each ablation model

presents optimistic results in the mAP, mDT, and F1 metrics. It

shows that modification of the model with different modules can

effectively improve the model output.

From the data of YOLOv5+newAnchors in Table 2, the model

with the new anchor boxes has improved the mAP by 0.81%, the

mDT is reduced to 5.28 ms, and the F1 value is 93.88%. It is

determined that the new anchors are more suitable for the model

and dataset of this paper.
FIGURE 9

P-R curve. The area of the blue area in the figure is the AP value.
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When PLDIoU, 4CBAM, Mosaic-9, Mixup, and news anchors

are integrated into YOLOv5s, i.e., constructing the P4CN-YOLOv5s

model, the mAP of P4CN-YOLOv5s is improved by 1.81% to 96.99%

relative to the traditional YOLOv5s model. Meanwhile, the mDT and

F1 of P4CN-YOLOv5s are 7.2 ms and 93.99%, respectively, which are

both better than the traditional YOLOv5s model.

Furthermore, the iterative values of mAP for PLDIoU loss and

CIoU loss during training are shown in Figure 10. Its analysis shows

that the PLDIoU model is more stable than the CIoU model in the

whole training. Roughly 101 epochs later, the mAP value of the

PLDIoU model surpasses the mAP value of the CIoU model.

Figure 11 displays the outcome of the model using the PLDIoU

function and the model using the CIoU function for passion fruit pest

detection. Figure 11a shows the outcome of the model using PLDIoU
Frontiers in Plant Science 10
function. The red and yellow boxes in Figure 11b show that the CIoU

model has the problems of multiple boxes and oversized boxes. From

Figures 10, 11, and the data of YOLOv5+PLDIoU in Table 2, it is

clear that PLDIoU performs stably and helps to speed up the

convergence. Meanwhile, PLDIoU not only resolves the multi-box

and oversized box issues but also improves the accuracy of the model.

As a common visualization method in deep learning, Grad-

CAM (Zhang et al., 2018) highlights the interest regions by using

gradient computation. Figure 12 presents a comparison of the

visualization results of the 4CBAM integrated network (YOLOv5s

+4CBAM) and YOLOv5s. It shows that the 4CBAM integrated

network supports the model to improve the coverage of target

objects and output better and more accurate results. It reduces the

attention to unimportant information. 4CBAM is effective.
4.4 Comparison with other algorithms

A comparison is made between the P4CN-YOLOv5s model and

commonly used target detection models from which we can

objectively validate the proposed P4CN-YOLOv5s model. The

detailed results are summarized in Tables 3, 4, and Table 5.

The mAP value of the P4CN-YOLOv5s model is 96.99%, which

is 18.7%, 9.74%, 3.97%, 28.11%, 1.81%, 1.61% and 0.5% better than

SSD (Liu et al., 2016), Faster R-CNN (Ren et al., 2017), YOLOv3

(Redmon and Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020),

YOLOv5s (Jocher et al., [[NoYear]]), YOLOv7 (Wang et al., 2023)

and P4C-YOLOv5s (Li et al., 2023), respectively. The mDT value in

the P4CN-YOLOv5s model is 7.2 milliseconds, which is the shortest

detection time in the comparison experiment and meets the real-

time requirement. From the comparative experimental data, it is

clear that the P4CN-YOLOv5s model has improved in mAP, mDT

and F1, which meets the accuracy and real-time requirements. The

experiments prove that the P4CN-YOLOv5s model is effective in

passion fruit pest detection.
FIGURE 10

The mAP comparison between the PLDIoU and the CIoU.
TABLE 2 Ablation experimental data of P4CN-YOLOv5s.

Models
mAP
(%)

mDT
(ms)

F1
(%)

YOLOv5s 95.27 8.00 93.89

YOLOv5s+PLDIoU 95.50 6.04 94.21

YOLOv5s+4CBAM 95.6 7.25 94.50

YOLOv5s+Mosaic-9 94.63 8.38 93.85

YOLOv5s+Mixup 94.6 6.84 92.98

YOLOv5s+newAnchors 96.04 5.28 93.88

YOLOv5s+PLDIoU+4CBAM 96.00 7.90 94.34

YOLOv5s+PLDIoU+4CBAM+Mixup
(P4C-YOLOv5s)

96.51 7.70 95.54

YOLOv5s+PLDIoU+4CBAM+Mosaic-9+Mixup 96.01 7.21 93.78

YOLOv5s+PLDIoU+4CBAM+ Mosaic-9+Mixup
+newAnchors (P4CN-YOLOv5s)

96.99 7.20 93.99
Bolding indicates that the indicator is optimal.
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The trained P4CN-YOLOv5s model is validated with the test

dataset, and the results are shown in Figure 13. It is observed that

the P4CN-YOLOv5s model can accurately identify and locate the

object pests.
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5 Conclusion

This paper proposed a P4CN-YOLOv5s model for passion fruit

pest detection to improve the accuracy and speed of passion fruit pest
FIGURE 12

Shows the output of the Grad-CAM visualization.
FIGURE 11

Detection comparison of models using different IoU (a) model using the CIoU (b) model using the PLDIoU.
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detection. The Mixup algorithm and Mosaic-9 algorithm are added to

the input layer to improve the dataset complexity and model

robustness. Then, four CBAM modules are used on the neck layer to

make the model focus on the object and improve the accuracy. In

addition, the new PLDIoU loss function is used in the prediction layer

to reduce the false detection rate and speed up the localization. Finally,

the model’s anchor boxes are readjusted. The experimental results
Frontiers in Plant Science 12
show that the P4CN-YOLOv5s model has a mAP value of 96.99%, an

mDT value of 7.2 ms, and an F1 value of 93.99%, which meets the

requirements of accuracy and speed. Although the P4CN-YOLOv5

model’s accuracy and speed have been improved, it suffers frommissed

detection and decreased accuracy in dark environments. In addition,

no comparative experiments were conducted with loss functions like

CIoU or DIoU. Future work will focus on incorporating low-light
TABLE 4 The comparison results between P4CN-YOLOv5s and mainstream algorithms (Part 2).

Models
AP(%)

Bd Elater Er Hh PlA PlL

SSD 75 90.6 80.5 90.5 90.3 86.6

Faster R-CNN 81.91 96.72 90.42 97.84 98.59 93.32

YOLOv3 90.99 98.27 94.44 98.66 99.03 98.75

YOLOv4 68.76 69.57 69.44 92.16 97.72 85.31

YOLOv5s 93.6 99.3 95.1 99.2 98.5 96.4

P4C-YOLOv5s 90.2 99.2 97.3 99 99.5 98.2

YOLOv7 90.6 99.2 95.8 99 98.5 96.8

P4CN-YOLOv5s 92.7 99.3 96.3 99.1 98.4 97.4
TABLE 3 The comparison results between P4CN-YOLOv5s and mainstream algorithms (Part 1).

Models Input Size mAP(%) mDT(%) F1�Score (%)

SSD 300� 300 81.71 23.9 72.52

Faster R-CNN 600� 600 88.38 25 73.42

YOLOv3 416� 416 93.29 18.7 90.17

YOLOv4 416� 416 75.71 11.7 68.92

YOLOv5s 640� 640 95.27 8 93.89

P4C-YOLOv5s 640� 640 96.51 7.7 95.54

YOLOv7 640� 640 95.38 7.5 93.76

P4CN-YOLOv5s 640� 640 96.99 7.2 93.99
Bolding indicates that the indicator is optimal.
TABLE 5 The comparison results between P4CN-YOLOv5s and mainstream algorithms (Part 3).

Models
AP(%)

Rs Sb Sc Slug Snail Thrips

SSD 74.1 82.7 83 86.2 83.1 57.8

Faster R-CNN 80.64 87.11 92.33 90.19 87.86 63.57

YOLOv3 93.44 88.44 95.6 93.45 92.42 76.02

YOLOv4 88.85 69.88 66.02 71.2 70.91 58.67

YOLOv5s 94 92.9 98.5 94.2 95.1 86.4

P4C-YOLOv5s 97 95.3 96.3 94.6 94.7 96.8

YOLOv7 95.4 93 96.2 94.8 95.6 96.5

P4CN-YOLOv5s 96.5 95.2 98 97.8 96 97.2
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image enhancement techniques, such as image denoising and infrared

sensing, to improve model performance in challenging lighting

conditions. Additionally, we plan to conduct a thorough evaluation

comparing PLDIoU with these advanced loss functions to better

understand their respective impacts on detection accuracy and

efficiency, and to further refine the model’s performance. These

efforts will enhance the model’s robustness and generalizability,

ensuring its effectiveness in diverse real-world scenarios.
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The results of P4CN-YOLOv5s model detection.
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