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the Dubas insects
diseases in palm leaves
Theyazn H. H. Aldhyani1,2* and Hasan Alkahtani2

1Applied College, King Faisal University, Al-Ahsa, Saudi Arabia, 2College of Computer Science and
Information Technology, King Faisal University, Al-Ahsa, Saudi Arabia
Introduction: Agriculture has emerged as a crucial area of inquiry, presenting a

significant challenge for numerous experts in the field of computer vision.

Identifying and categorizing plant diseases at an early stage is essential for

mitigating the spread of these diseases and preventing a decline in crop yields.

The overall condition of palm trees, including their roots, stems, and leaves, plays

a crucial role in palm production, necessitating careful observation to ensure

maximum yield. A significant challenge in maintaining productive crops is the

widespread presence of pests and diseases that affect palm plants. The impact of

these diseases on growth and development can be significantly negative,

resulting in reduced productivity. The productivity of palms is intricately linked

to the state of their leaves, which are essential for the process of photosynthesis.

Methods: This study utilized an extensive dataset comprising 1600 images, which

included 800 images of healthy leaves and another 800 of Dubas images.

Additionally, the primary aim was to develop EfficientNetV2B0, DenseNet12,

and a transformer model known as the Vision Transformer (ViT) model for

detecting diseases and pests affecting palm leaves, utilizing image analysis

methods to enhance pest management strategies.

Results: The proposed models demonstrated superior performance compared

to numerous recent studies in the field, utilizing established metrics on both

original and augmented datasets, achieving an impressive accuracy of 99.37%

with the ViT model.

Discussion: This study presents an innovative approach for identifying diseases in

palm leaves. This will have a significant impact on the agricultural sector. The

results were quite promising, justifying their implementation in palm companies

to improve pest and disease management
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1 Introduction
Round 70% of the world’s date fruit comes from Saudi Arabia,

thanks to its more than thirty-one million palm trees (The Ministry

of Environment and Water and Agriculture Saudi Arabia, 2020). In

2023, the more than 26,000 date farms located in the Madinah area

of western Saudi Arabia produced about $253 million. Roots,

trunks, leaves, and fruits of palm trees are all vulnerable to a host

of infectious illnesses caused by bacteria and fungi (The Saudi Press

Agency (SPA), 2024).

The inventory of palm trees is essential for assessing diversity

and health; however, data regarding their numbers and distribution

is limited, outdated, and inconsistent. Estimations of date palm

trees in plantations rely on assessments that exclude non-

agricultural areas and natural populations. Data on canary palm

populations is restricted to areas of significant public interest, with

estimates derived from date palm production rather than geospatial

databases (Jaradat, 2015; Sharma et al., 2021; Zaid and de

Wet, 2002).

Agriculture, and date palm trees in particular, are very

vulnerable to diseases and climate change. Date palm trees suffer

greatly from serious diseases, including Brittle Leaf disease, Brown

Leaf Spot, Bayoud disease, Black Scorch, SDS, and Brown Leaf Spot,

which drastically reduce fruit quality and productivity. This study

examines the detection of the SDS disease, which disseminates in a

hazardous manner, complicating control efforts and resulting in

substantial losses in fruit output. This disease poses a significant

threat to Date palm farming worldwide and hinders fresh planting

efforts (Khamparia et al., 2020).

Palm leaves are integral to numerous ecosystems, economies,

and civilizations. They play a crucial role in various aspects,

supporting individuals in earning a livelihood and staying on

their chosen course in life. Nevertheless, the Dubas bug presents a

significant risk to date palm trees and their leaves, especially in areas

where date palm farming is prevalent. Identifying and classifying

plant diseases is crucial for precision agriculture; however, farmers

face challenges in diagnosing these diseases and assessing the extent

of infestation. The combination of machine vision and deep

learning has revolutionized the automated detection and

assessment of pests and diseases in agriculture. Palm leaf diseases

pose a considerable challenge to the health and productivity of trees

(Resh and Cardé, 2009; Hessane et al., 2023).

Adult, nymph, and egg are the three phases that make up a

dubas bug’s life cycle. With its two sets of wings, this insect is

hemimetabolous. It undergoes a mating cycle in the spring

(February–May) and another in the fall (August–November) of

each year. Date palm females use the third and fifth leaf fronds,

respectively, to deposit their eggs in the spring and autumn.

The life cycle begins with oviposition, followed by hatching into

nymphs and undergoing five molts until the adult form is attained.

Adults have a yellowish-brown to greenish coloration, characterized

by two black patches on their heads. They generate honeydew and

necrotic regions in plant tissues due to their oviposition behavior.

Nonetheless, it remains uncertain whether these necrotic lesions
Frontiers in Plant Science 02
result from fungal infections (Elwan and Al-Tamimi, 1999; Thacker

et al., 2003; Ba-Angood et al., 2009; Resh and Cardé, 2009;

Payandeh et al., 2010).

Computer-based technologies are rapidly revolutionizing

agriculture, reducing human labor, and enabling impartial

decision-making. Image processing methods are utilized in

various computer vision applications for disease diagnosis,

identification, and segmentation tasks. This technological

development is revolutionizing agriculture, improving efficiency

and efficacy. Using a modified MobileNetV2 neural network, the

authors (Kong et al., 2022) enhanced the accuracy of cassava leaf

disease classification by employing data augmentation methods on

lower-quality test images.

With high-quality photographs, they achieved a 97%

recognition accuracy; however, this accuracy was significantly

reduced with low-quality images. Using a range of classifiers at

the image level, including Fine KNN, Cubic SVM, and tree

ensemble, the authors in (Li et al., 2023) classified guava plant

illnesses with an overall classification accuracy of 99%. Plant disease

classification is achieved by a hybrid wrapper model that combines

CNN classifiers with FPA-SVM (Bayomi-Alli et al., 2021). This

methodology yielded a classifier with an accuracy of 99% through

feature selection using FPA and SVM in a wrapper approach. The

authors (Almadhor et al., 2021) proposed a deep learning (DL)

model for disease detection on cucumber and potato leaves,

utilizing an optimization approach. A 99% success rate was

achieved by optimizing the DFs obtained from the global pooling

layer using an upgraded Cuckoo search strategy. For disease

categorization in plant leaves, Yağ and Altan (2022) presented the

EfficientNet DL architecture. They employed a transfer learning

approach to train their model and other deep learning models, and

both performed well. To classify citrus diseases, Zia Ur Rehman

et al. (2022) developed a new DL model. The accuracy rate was 95%

because the Whale Optimisation Algorithm (WOA) was used to

retrain two pre-trained models, DenseNet 201 and MobileNetv2, so

that they could produce feature vectors. A DL model for guava

disease identification has achieved a 97% accuracy rate by utilizing

enhanced data supplemented with color-histogram equalization

and unsharp masking techniques (Atila et al., 2021). The primary

contributions of this research are as follows.

Make a substantial contribution to the categorization of palm leaf

diseases by using cutting-edge deep learning architecture. This paper

presents a method for the automated detection and enumeration of

palm leaves, disease identification, and assessment of palm health from

high-resolution images using deep learning and Vision Transformer

models. The training dataset included more than 1600 images of

individual dubas and healthy classifications. We assessed the model via

training assessment and by comparing prediction outcomes with visual

and ground inspections. The model was also evaluated using images

captured at varying elevations. It can achieve elevated accuracy with

less labeled data by using pre-trained models. This method enhances

classification efficacy while reducing training duration and

computational expenses. Additionally, it streamlines the process of

disease identification, providing a scalable and rapid option for early

detection. This is essential for agricultural disease management.
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2 Related works

Several new approaches to identifying and categorizing plant

diseases have recently been developed. The methods were tested on

a variety of datasets, each with its distinct features. Representing

plant photos using practical and discriminative characteristics is

essential for creating a system to identify plant diseases. There are

two primary schools of thought regarding feature extraction

methods: those that rely on manually created features and those

that utilize deep learning techniques (Shah et al., 2016; Sethy et al.,

2020; Iqbal et al., 2023; Tholkapiyan et al., 2023).

Using CNN with SVM, Kamal et al. (2018). We were able to

differentiate between Chimara (the most prevalent date palm spot

leaf disease) and Anthracnose (the least frequent), achieving

accuracy rates of 97% and 95%, respectively. To attain a

classification accuracy of 99.67% with an artificial neural network

(ANN) classifier, Hamdani et al. (2021) suggested an approach that

makes use of a color histogram feature and a dataset consisting of

300 laboratory photos. With an overall accuracy of above 96%, Liu

et al. (2021) used a DL-based Faster RCNN to identify and quantify

oil palm plants in UAV pictures. Abu-zanona et al. (2022) achieved

the best accuracy for the Kaggle dataset, classifying four types of sick

palm trees with 97% accuracy using VGG 16 and MobileNet.

Septiarini et al. (2021) presented a method for detecting diseases

in oil palm leaves. Otsu thresholding was employed in the Lab color

space to identify Regions of Interest (ROIs), followed by

preprocessing and classification using k-nearest neighbors (KNN)

(Eunice et al., 2022). The identification of leaf diseases in tomato

plants was conducted by Sunil S. Harakannanavar et al

(Harakannanavar et al., 2022). This approach combines multiple

techniques, such as SVM, KNN, and CNN, for the detection of palm

diseases. Recent studies have developed a CNN for disease

classification in palm trees (Abu-zanona et al., 2022).

Authors (Nusrat et al., 2020) were able to detect and categorize

wheat illness leaves with a 98% success rate using SVM and

GoogLeNet, two ML models. A prior study by (Too et al., 2019)

compared several DL models for plant disease detection. This study

utilized 121-layer customized models, including VGG-16, Inception

V4, ResNet, and DenseNets, to classify plant species. This study

used the model to detect and classify healthy leaves, as well as four

prevalent diseases that may affect palm trees: bacterial leaf blight,

brown spots, leaf smut, and white scale. When tested against VGG-

16 and MobileNet, two prominent CNN models, the suggested

model outperformed them both with an accuracy rate exceeding

99%. In a separate study, Hamdani et al. (2021) examined methods

for identifying and categorizing diseases that affect palm trees. The

authors of this study achieved a 99% success rate in classifying palm

diseases using an artificial neural network (ANN) classifier and

principal component analysis (PCA) to extract color features.

Masazhar and Kamal (2017) employed an automated system to

detect and categorize disease indicators in palm oil leaves. Two

palm oil illnesses were successfully detected using k-means

clustering, an SVM classifier, and leaf symptomatology. Thirteen

novels were produced from k-means clustering for disease
Frontiers in Plant Science 03
classification. Ashqar and Abu-Naser (2018) utilized a CNN

model for identifying tomato leaf diseases, demonstrating

improved performance with full-color images compared to

grayscale images. Shruthi U et al. highlighted the efficacy of

convolutional neural networks in identifying specific agricultural

diseases through machine learning methodologies (Shruthi

et al., 2019).
3 Materials and methods

3.1 Farmwork of the proposed system

The suggested paradigm for disease detection in palm leaves is

shown in Figure 1. The proposed framework covers the following

crucial steps. The data is first enhanced to improve the training

process by increasing the sample count. Then, we choose and

improve EfficientNetV2B0, DenseNet12, and Vision Transformer.

ViT features are obtained from the global pooling layer, and deep

learning further trains the models. We conclude by drawing

parallels to popular and up-to-date DL and transformer kinds.

Training Vision Transform models using the Palm-leaves dataset is

the focus of this research.
3.2 Dataset

We obtained the dataset from the Karbala Governorate in Iraq

via Kaggle, collecting leaves to varying degrees. In the research, we

used palm leaves with images of Dubas and health. The image

resolutions are 6000 × 4000 × 3 pixels for the Canon 77D camera

and 8000 × 6000 × 3 pixels for the DJI Camera 800 images of Dubas

and 800 images of the health class. A snapshot of the palm leaves is

presented in Figure 2. Figure 3 presents the class values of the palm

leaves dataset.
3.2 Preprocessing steps

During the preprocessing phase of EfficientNetV2B0,

DenseNet121, and ViT, several critical processing steps were

implemented to ensure high-quality input data for model

training. Initially, all images were downsized to a consistent

dimension suitable for each model’s architecture: 224×224×3 for

EfficientNetV2B0 and DenseNet121, and 384×384×3 for ViT.

Subsequently, the pixel values of palm images were standardized

using the mean and standard deviation to enhance model

convergence. These models used data augmentation methods,

including rotation, flipping, zooming, and contrast modification,

to improve model generalization and flexibility. Furthermore, the

ViT model uses the tokenization of image patches before

processing, whereas CNN-based models employ feature scaling to

ensure consistency. These preprocessing measures enhance model

efficiency, accuracy, and generalizability.
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3.3 Proposed models

3.3.1 EfficientNet-B0 model
The EfficientNet-B0 architecture is a well-established CNN

model that can serve as an encoder in tasks involving semantic

segmentation. EfficientNet-B0 served as the backbone network in

the proposed research design for feature extraction from the input

image through downsampling. EfficientNet-B0 is a CNN
Frontiers in Plant Science 04
architecture comprising several blocks, each incorporating

convolutional layers, activation functions, and pooling operations.

This architecture is a convolutional neural network commonly

employed for image classification tasks. The output of

EfficientNet-B0 is frequently used as input for a decoder network

in semantic segmentation. The application of EfficientNet-B0 as an

encoder for semantic segmentation has demonstrated remarkable

accuracy and efficiency in various contexts, particularly in medical
FIGURE 1

Farmwork of the palm system.
FIGURE 2

Sample from palm data.
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image segmentation (Hamdani et al., 2021; Liu et al., 2021). Figure 4

presents the plots generated by the encoder model.

The network is optimized for classification (healthy vs. Dubas)

through the incorporation of a global average pooling layer and a

dense layer utilizing a sigmoid activation function. The model was

trained on augmented image data that had horizontal flips. An

adaptive learning rate and early stopping were used to avoid

overfitting. Using depthwise separable convolutions, batch

normalization, and activation layers, the EfficientNetV2B0

architecture has 236 layers that are optimized for effective feature

extraction. A transfer learning framework utilizes the pre-trained

base, omitting the upper classification layers. Along with the base

model, two extra layers are added: a Global Average Pooling layer

that combines spatial data from feature maps and a Dense layer that

uses a sigmoid activation function for binary classification. The

model comprises 238 layers and combines EfficientNetV2B0’s

powerful feature-extraction capabilities with a simplified custom

classification head designed for binary classification tasks. Table 1

displays the parameters of the EfficientNet-B0 model.

3.3.2 DenseNet121 model
DenseNet121 is a CNN architecture proposed by Huang et al. It

belongs to the DenseNet family, recognized for its dense network

architecture and remarkable efficacy in several computer vision

applications, including image categorization. The design of

DenseNet-121, as shown in Figure 5, is centered on the principle

of dense connections. Unlike standard CNN designs, where layers

are sequentially linked, DenseNet utilizes skip connections that link

each layer to every other layer in a feed-forward way. This intricate

connection structure facilitates direct feature reuse and promotes

information flow throughout the network, leading to improved

gradient propagation, enhanced feature extraction, and overall

model efficacy. The core feature extractor is DenseNet-121, a pre-
Frontiers in Plant Science 05
trained convolutional neural network developed for image

classification tasks. Across all 121 levels, this design effectively

utilizes gradient movement and feature reuse due to its rich

connections. Class weights, a binary cross-entropy loss function,

and the Adam optimizer, which has a learning rate of 0.001, are

used by the model to handle data imbalances. Metrics, including

confusion matrices, classification reports, and accuracy, are used for

evaluation. Essential parameters are a batch size of 16, a target

image dimension of (224, 224), and 20 training epochs.

3.3.3 Vision transformer model
The Vision Transformer (ViT) is an innovative neural network

design that transforms the processing and comprehension of

images. The Vision Transformer (ViT) concept was presented in

2021 in a conference research paper entitled “An Image is Worth

16*16 Words.” Transformers for Image Recognition at Scale, or

ViT, presents an innovative approach to image analysis by

segmenting images into smaller patches and using self-attention

processes. This enables the model to discern both local and global

links among images, resulting in remarkable performance across

many computer vision tasks. Whereas CNNs immediately analyze

raw pixel values, ViT segments the input image into patches and

converts them into tokens. ViT utilizes self-attention processes to

analyze connections among all patches. The Vision Transformer

(ViT) inherently captures global context through self-attention,

enabling the recognition of relationships among distant patches.

Convolutional Neural Networks use pooling layers to extract coarse

global information.

It can be fine-tuned for individual tasks after pre-training on

large datasets. By segmenting 224x224 input images into patches

and modeling their interrelationships using self-attention

mechanisms, the ViT model can perform analysis. The B16

architecture is used by this ViT model, as seen in Figure 6.
FIGURE 3

Class of palm data.
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Feature extraction is made easier with its transformer block, which

incorporates feedforward neural networks and many attention

layers trained on massive datasets. An integrated custom

classification head, along with immobilized pre-trained weights

and layers, ensures the model’s obtained representations remain

intact. This head comprises an activation layer with a regularization

rate of 0.5, a dense layer with 128 neurons activated by ReLU, and a

final dense layer with sigmoid activation for binary classification.

Class weights are used to reduce class imbalance, and adjustments

to data augmentat ion methods improve the model ’s

generalizability. After 20 iterations of training using the Adam
FIGURE 4

EfficientNetV2B0 model.
TABLE 1 Parameter EfficientNet-B0 model.

#Name #Values

Layers 238

Image 224x224x3

Optimize Adam

Learning_rate 0.001

Batch_Size 16

Epochs 20
frontiersin.org
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optimizer at a learning rate of 0.001, the model is complete. The ViT

values are displayed in Table 2.
4 Experiments and results discussion

The experiments were evaluated using a GPU P100 Kaggle

system as the baseline. Operating Windows 11, the machine

features 16 GB of RAM and a 9th-generation Core i7 CPU.

Aiming to enable deep learning applications with reduced

memory usage and improved execution speed, the software

implementation included libraries such as Anaconda, Keras,

OpenCV, NumPy, and CuDNN. For every experiment carried

out, this work assessed the training and testing accuracy. Every

model has calculated losses throughout the testing and training

periods. Training the models on the Palm tree dataset helped to

improve the learning speed of the transformer and transfer learning

models. EfficientNetV2B0, DenseNet121, and ViT models were

used for this work.
FIGURE 5

DenseNet121 model.
FIGURE 6

ViT model.
TABLE 2 ViT parameters.

#Name #Values

Patch_size: 16,

Transformer _encoder: 12

Attention_heads 12

Hidden_size 768

Optimizer: Adam

Epochs: 20

Learning_Rate: 0.001

Image_Size 244X244

Dropout_Rate: 0.5
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Each of the two dataset classes corresponded to a different

disease. Since the Palm dataset’s color images worked well with the

DL and ViT models, we used them in our experiments. The images

were downscaled to a uniform pixel format since different pre-

trained network models require varied input sizes. Input

dimensions of 224 × 224 × 3 (height, width, and channel depth)

are used by EfficientNet V2B0, DenseNet 121, and ViT. Data

augmentation after preprocessing is a regularization strategy that

is used to reduce the impact of overfitting. This method of model

augmentation makes the model more robust, which in turn

enhances its ability to categorize images of real plant diseases

while reducing the likelihood of overfitting and model loss.
4.1 Results

4.1.1 Result of EfficientNetV2B0 model
The findings of the EfficientNetV2B0 model, presented in

Table 3, demonstrate robust performance across all assessed

criteria, indicating a highly efficient classification system. The

model demonstrates balanced and consistent performance in

accurately detecting instances of both the “Dubas” and “Healthy”

classes, with accuracy, recall, and F1-score all at 98%. The total

accuracy of 98% further substantiates the model’s reliability. The

weighted average of accuracy, recall, and F1-score, again at 98%,

indicates that the model generalizes well across the dataset,

maintaining excellent performance without significant bias

towards any one class. The findings underscore the efficacy of the

EfficientNetV2B0 model for this classification job, demonstrating

exceptional predicted accuracy and dependability.

Figure 7 illustrates the confusion matrix for the EfficientNetV2B0

model used in a classification job differentiating between healthy and

Dubas samples, demonstrating outstanding performance. The model

analyzed 160 test samples (80 each class), accurately identifying 80

healthy and 77 Dubas samples, resulting in 3 misclassifications from

each class, yielding 3 false positives and 0 false negatives. This yields an

exceptional accuracy of 98.12%, demonstrating the model’s robust

discriminative capability. Nonetheless, the almost flawless

classification requires further validation on an independent dataset

to verify its robustness and alleviate concerns over possible overfitting.

4.1.2 Result of DenseNet121 model
Table 4 illustrates that the retrained DenseNet121 model

exhibits strong performance in both classes, as evidenced by the

elevated accuracy, recall, and F1 Scores. For the Dubas class, the
Frontiers in Plant Science 08
model achieves a precision of 99%, indicating that 97% of the

examples predicted as Dubas are accurate, and a recall of 97%,

demonstrating that the model recognizes 97% of all genuine Dubas

occurrences. In the Healthy class, the accuracy and recall are 97%

and 99%, respectively, indicating the model’s proficiency in reliably

classifying healthy samples. The F1-scores for both groups are 98%,

indicating a balanced equilibrium between accuracy and recall. The

model’s overall accuracy of 98% highlights its success, accompanied

by a weighted average precision, recall, and F1-score of 98%,

demonstrating consistent performance across the dataset. The

findings indicate that the DenseNet121 model has shown

high performance.

Figure 8 shows the confusion matrix for the DenseNet121 model

in classifying healthy (1) and Dubas (0) data, demonstrating

outstanding performance. Out of 160 test samples (80 in each

class), the model correctly names 78 as Dubas and 79 as healthy.

This led to three mistakes: two false positives (healthy samples were

mistakenly labeled as Dubas) and one false negative (Dubas samples

were labeled as Healthy). This yields an accuracy of 98.12%,

demonstrating the efficacy of DenseNet121 in feature extraction

and classification. The modestly reduced misclassification rate

indicates a modest improvement in generalization.

4.1.3 Result of ViT model
Table 5 presents the performance parameters of the ViT model in

distinguishing between Dubas (0) and Healthy (1) samples,

highlighting its robust predictive potential. The precision for Dubas

is 100%, indicating that almost all samples categorized as Dubas are

accurate. Meanwhile, the recall is 97%, demonstrating that 96% of

genuine Dubas samples were accurately recognized. Correspondingly,

for the Healthy class, the model achieves 98% accuracy and 100%

recall, ensuring that most Healthy samples are accurately identified.

The F1-score, which equilibrates accuracy and recall, is 99% for both

classes, underscoring the model’s overall dependability. The overall

accuracy of 99% and a weighted average F1-score of 99% indicate that

ViT exhibits uniform classification performance across both

categories. The findings validate the model’s efficacy in

differentiating between Dubas and Healthy instances, exhibiting

only negligible misclassifications, hence underscoring its robustness

and generalizability in medical image classification.

Figure 9 illustrates the confusion matrix for the ViT model in

identifying Dubas (0) and Healthy (1) samples, indicating its

excellent accuracy. The model accurately categorized 78 Dubas

samples, misclassifying only 2 as Healthy, resulting in a high

recall for the Dubas category. It accurately recognized all 80
TABLE 3 Performance of EfficientNetV2B0 model.

Class name Precision (%) Recall (%) F1-score (%)
Support samples of/
validation phase

Dubas 96 100 98 80

Healthy 100 96 98 80

Accuracy 98

Weighted_Avg_ palm system 98 98 98 160
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Healthy samples without any false negatives, indicating that every

true Healthy instance was found. This signifies that the model

exhibits perfect recall for the Healthy class. However, its small

misclassification in the Dubas group implies a little compromise in

specificity. The ViT model demonstrates robust prediction

performance with few mistakes, making it extremely dependable

for differentiating between Dubas and Healthy instances.
4.2 Results performance

This segment of the research used cutting-edge deep learning

and Vision Transformer models for the identification of palm leaf
Frontiers in Plant Science 09
diseases. Previously trained on the ImageNet dataset, the publicly

available Palm Leaves dataset was utilized to augment pre-trained

deep learning (DL) and Vision Transformer (ViT) networks. Every

model in our study was standardized using two output classes, a

dropout rate of 0.5, and a learning rate of 0.001.

The dataset consisted of training, testing, and validation

samples. Of the palm leaf samples, 80% were set aside for pre-

training EfficientNetV2B0 models. Every model run for 10 epochs

and showed that our model started to converge with high accuracy

after this length. The first experiment demonstrates the

performance of the EfficientNetV2B0 model, as illustrated in

Figure 10a. Figure 10b displays the log loss of the

EfficientNetV2B0 model. The EfficientNetV2B0 model reached a

testing accuracy of 98.12%.

In the second experiment, we used the Palm dataset to test

DenseNet-121. Based on Figure 11a, the model achieved a

recognition accuracy of around 97.50% in the first 10 epochs, and

then it increased to a high accuracy of 92.50%. At 0.20%, the

recorded loss model and at 0.0974%, the validation model are

shown in Figure 11b.

Using the ViT model, the third experiment was carried out. The

recognition accuracy graph and the validation and training loss

graph are displayed in Figures 12a, b, respectively, and they
FIGURE 7

confusion matrix EfficientNetV2B0 model.
TABLE 4 Result of DenseNet121 model.

Class name Precision (%) Recall (%) F1-score (%)

Dubas 99 97 98

Healthy 98 99 98

Accuracy 98

Weighted_Avg 98 98 98
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demonstrate the identical methods used to evaluate model loss and

recognition accuracy. The model’s accuracy was 99.37%, with a

margin of error of 0.01%.

Optimal yields in agricultural production depend on the rapid

diagnosis of crop diseases. The early detection of palm diseases using

modern technologies is essential for maintaining an enhanced

production rate. The literature review indicated that DL models

excel in image classification, whereas DL methods effectively reduce

training complexity and the need for extensive datasets. We

examined three pre-trained models—the EfficientNetV2-B0, the
Frontiers in Plant Science 10
DenseNet-12, and the ViT models—to determine which one was

most effective in identifying various palm diseases. The pre-trained

models were assessed using assessment criteria, including specificity,

sensitivity, and F1 score values. Table 6 shows the results of the

proposed systems against the existing system. We provided a visual

representation of the validation accuracy for the pre-trained models

by computing the validation accuracy using the F1 score. The ROC

curve of the ViT model is shown in Figure 13. The model achieved a

perfect score.

Using deep learning and ViT, Figure 14 shows the method for

plant leaf image categorization.
Step 1: Image Acquisition: A digital camera is used to capture

plant leaves, both healthy and Unhealthy.

Step 2: Cloud Storage is used to centralize access to the images

Step 3: Pre-processing. Pre-processing of the system is used to

handle resizing, normalization, and augmentation, thereby

improving model training.

Step 4: Dataset Splitting - The system employs a validation

process to divide the dataset into training, validation, and

test sets, evaluating the model’s performance.
FIGURE 8

Confusion matrix DenseNet121model.
TABLE 5 ViT model performance.

Class name
Precision

(%)
Recall (%) F1-Score (%)

Dubas 100 97 99

Healthy 98 100 99

Accuracy 98

Weighted_Avg_plam
system

99 99 99
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FIGURE 9

ViT model.
FIGURE 10

Performance of the EfficientNetV2B model. (a) accuracy; (b) loss.
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Fron
Step 5: Model Training: The ViT and DL architectures are used

to train the model on the training and validation datasets.

Step 6: Performance Evaluation - The trained model is

evaluated on the test set, and its classification

performance is visualized.

Step 7: Mobile Deployment: Farmers used the mobile

applications for classifying plant leaves [Healthy vs.

Dubas-infected] through a user-friendly mobile interface

for field use.
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5 Conclusion

This study investigated a transfer learning and transformer

methodology to provide an edge computing solution for the

identification and detection of palm leaf diseases. Python

supports three pre-trained models. This study presents a novel

method for automatically detecting palm leaf disease against a

natural background. This enables the differentiation between

groups of infected and healthy leaves. We developed the
FIGURE 11

Performance DenseNet121 model. (a) accuracy; (b) loss.
FIGURE 12

Performance ViT model. (a) accuracy; (b) loss.
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FIGURE 13

ROC of ViTmodel.
FIGURE 14

Deployment system for detecting Dubas insect diseases in palm leaves.
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technique for EfficientNetV2B0, DenseNet12, and the transformer

paradigm. The dataset comprises 1600 images of palm leaves, with

800 depicting healthy and 800 depicting Dubas. To reduce

computing time, pre-processing was performed, including image

resizing and normalization, followed by augmentation.

Augmentation was implemented by rotation, flipping, shearing,

and zooming methods. The models were used to identify palm leaf

disease using the TensorFlow framework with an input dimension

of 224 × 224 × 3. The suggested approach achieved superior

performance, as indicated by an accuracy value. The experiment

demonstrated that the ViT model outperformed the other three

models, achieving a validation accuracy of 99.37%, which is

comparable to previously published techniques. The developed

model successfully sustained elevated recall values, accuracy, and

F1 scores. Although several automated detection models for palm

leaf disease have been developed, their efficacy has often proven

insufficient due to the resemblance of class attributes. This study

primarily focused on detecting Dubas insect-related diseases and

healthy leaves. This limitation of the study did not include other

diseases, such as Brittle Leaves and Brown Leaf Spot.
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Bayomi-Alli, O. O., Damasěvičius, R., Misra, S., and Maskeliūnas, R. (2021). Cassava
disease recognition from low-quality images using enhanced data augmentation model
and deep learning. Expert Syst. 38, 1–12. doi: 10.1111/exsy.12746

Elwan, A. A., and Al-Tamimi, S. S. (1999). Life cycle of Dubas bug Ommatissus
binotatus lybicus de Berg. (Homoptera: Tropiduchidae) in Sultanate of Oman. Egypt. J.
Agric. Res. 77, 1547–1553. doi: 10.21608/ejar.1999.342384

Eunice, J., Popescu, D. E., Chowdary, M. K., and Hemanth, J. (2022). Deep learning-
based leaf disease detection in crops using images for agricultural applications.
Agronomy 12, 2395. doi: 10.1111/dme.15222

Hamdani, H., Septiarini, A., Sunyoto, A., Suyanto, S., and Utaminingrum, F. (2021).
Detection of oil palm leaf disease based on color histogram and supervised classifier.
Optik (Stuttg) 245, 167753. doi: 10.1016/j.ijleo.2021.167753

Harakannanavar, S. S., Rudagi, J. M., Puranikmath, V. I., Siddiqua, A., and
Pramodhini, R. (2022). Plant leaf disease detection using computer vision and
machine learning algorithms. Global Transition Proc. 3, 305–310. doi: 10.1016/
j.gltp.2022.03.016

Hessane, A., El Youssefi, A., Farhaoui, Y., and Aghoutane and F. Amounas, B. (2023).
A machine learning based framework for a stage-wise classification of date palm white
scale disease. Big Data Min. Anal. 6, 263–272. doi: 10.26599/BDMA.2022.9020022

Iqbal, J., Hussain, I., Hakim, A., Ullah, S., and Yousuf, H. M. (2023). Early detection
and classification of rice brown spot and bacterial blight diseases using digital image
processing. J. Computing Biomed. Inf. 4, 98–109. doi: 10.1111/dme.15222

Jaradat, A. A. (2015). “Biodiversity, genetic diversity, and genetic resources of date
palm,” in Date Palm Genetic Resources and Utilization: Volume 1: Africa and the
Americas. Eds. J. M. Al-Khayri, S. M. Jain and D. V. Johnson (Springer, Dordrecht, The
Netherlands), 19–71.

Kamal, M. M., Masazhar, A. N. I., and Rahman, F. A. (2018). Classification of leaf
disease from image processing technique. Indones. J. Electr.Eng. Comput. Sci. 10, 191–
200. doi: 10.11591/ijeecs.v10.i1.pp191-200

Khamparia, A., Saini, G., Gupta, D., Khanna, A., Tiwari, S., de Albuquerque, V. H. C.,
et al. (2020). Seasonal crops disease prediction and classifcation using deep
convolutional encoder network. Circuits Syst. Signal Process 39, 818–836.
doi: 10.1007/s00034-019-01041-0

Kong, J., Wang, H., Yang, C., Jin, X., Zuo, M., and Zhang, X. (2022). A spatial feature-
enhanced attention neural network with high-order pooling representation for
application in pest and disease recognition. Agriculture 12, 500. doi: 10.3390/
agriculture12040500
Li, X., Li, M., Yan, P., Li, G., Jiang, Y., Luo, H., et al. (2023). Deep learning attention

mechanism in medical image analysis: Basics and beyonds. Int. J. Netw. Dyn Intell.
2023, 93–116. doi: 10.53941/ijndi0201006

Liu, X., Ghazali, K. H., Han, F., and Mohamed, I. I. (2021). Automatic detection of oil
palm tree from UAV images based on the deep learning method. Appl. Artif. Intell. 35,
13–24. doi: 10.1080/08839514.2020.1831226
Frontiers in Plant Science 15
Masazhar, A. N. I., and Kamal, M. M. (2017). “Digital image processing technique for
palm oil leaf disease detection using multiclass SVM classifier,” 2017 IEEE 4th
International Conference on Smart Instrumentation, Measurement and Application
(ICSIMA), (Putrajaya, Malaysia) pp. 1–6. doi: 10.1109/ICSIMA.2017.8311978

Nusrat, J., Paulo, F., Zhaohui, L., Andrew, F., Jithin, M., and Zhao, Z. (2020).
Detecting and distinguishing wheat diseases using image processing and machine
learning Algorithms. 2020 ASABE Annu. Int. Virtual Meeting. doi: 10.13031/
aim.20200037

Payandeh, A., Kamali, K., and Fathipour, Y. (2010). Population structure and
seasonal activity of Ommatissus lybicus in Bam region of Iran (Homoptera
Tropiduchidae). Munis Entomol. Zool. 5, 726–733. doi: 10.1038/nature10238
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