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Fengyu Han3, Lingjiang Meng3, Xiuling Yu3, Xiaoqin Wang1*

and Yang Cao1*

1College of Pharmacy, Inner Mongolia Medical University, Hohhot, China, 2Department of Pharmacy,
Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China, 3Inner Mongolia Tianqi Han
and Mongolia Pharmaceutical Co., Ltd., Chifeng, Inner Mongolia Autonomous Region, China
Background: Water and nitrogen are essential elements prone to deficiency

during plant growth. Current water–fertilizer monitoring technologies are unable

to meet the demands of large-scale Glycyrrhiza uralensis cultivation. Near-

ground remote sensing technology based on unmanned aerial vehicle (UAV)

multispectral image is widely used for crop growth monitoring and agricultural

management and has proven to be effective for assessing water and nitrogen

status. However, integrated models tai lored for medicinal plants

remain underexplored.

Methods: This study collected UAV multispectral images of G. uralensis under

various water and nitrogen treatments and extracted vegetation indices (VIs).

Field phenotypic indicators (PIs), including plant height (PH), tiller number (TN),

soil plant analysis development values (SPAD), and nitrogen content (NC), were

synchronously measured. Models were constructed using backpropagation

neural network (BP), support vector machine (SVM), and random forest (RF) to

evaluate PIs to predict yield and monitor growth dynamics. Yield predictions

based on PIs were further compared with validate model performance.

Results: The results demonstrated that both the RF algorithm and excess green

index (EXG) exhibited versatility in growth monitoring and yield prediction. PIs

collectively achieved high-precision predictions (mean 0.42 ≤ R2
≤ 0.94), with the

prediction of PH using green leaf index (GLI) in BP algorithm attaining peak

accuracy (R² = 0.94). VIs and PIs exhibited comparable predictive capacity for

yield, with multi-indicators integrated modeling significantly enhancing

performance: VIs achieved R² = 0.87 under RF algorithms, whereas PIs

reached R² = 0.81 using BP algorithms. Further analysis revealed that PH

served as the central predictor, achieving R² = 0.74 under standalone

predictions of RF algorithm, whereas other parameters primarily enhanced
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model accuracy through complementarity effects, thereby providing

supplementary diagnostic value.

Conclusions: This research established a high-precision, time-efficient, and

practical UAV remote sensing–based method for growth monitoring and yield

prediction inG. uralensis, offering a novel solution for standardized production of

medicinal plant resources.
KEYWORDS

Glycyrrhiza uralensis, machine learning, phenotyping, water management, remote
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1 Introduction

Water and nitrogen serve as the material basis and metabolic

components throughout the plant phenologycal cycle (Shi et al.,

2024). The dynamics of both are closely related to crop yield and

quality and are more prone to deficiency (Sharma et al., 2024).

Water serves as a substrate for photosynthesis and the primary

transport medium within plants. Water deficiency induces leaf

wilting and disrupts assimilate allocation, thereby limiting PH

growth and reducing effective tillering capacity (Shahzad et al.,

2019). Excessive water induces root hypoxia, suppresses respiratory

activity, and inhibits ion uptake, further reducing tiller bud

initiation and increasing lodging risk (Okada et al., 2024).

Nitrogen is a critical component of proteins, nucleic acids, and

chlorophyll, inhibits amino acid synthesis, and accelerates

chlorophyll degradation under deficiency conditions; this results

in suppressed internode elongation and reduced tiller bud viability

(Du et al., 2022). Conversely, excessive nitrogen disrupts carbon–

nitrogen metabolism by increasing photorespiratory consumption

of assimilates, resulting in excessive tillering and delayed panicle

differentiation (Li et al., 2021). Imbalanced water and nitrogen

supply exacerbate abnormalities in growth phenotype, ultimately

compromising plant stress tolerance and yield qualities (Zentgraf

et al., 2025). Therefore, climate-change-triggered frequent

occurrence of drought events poses a mounting threat to global

agricultural productivity, urgently requiring precision water–

nitrogen regulation based on real-time monitoring to safeguard

food security and enhance resource use efficiency. The important

components of this technology include the precise analysis of water

and nutrient dynamics during critical plant growth stages and

safeguarding plant growth, development, and physiological

activities. Consequently, developing highly precise dynamic

growth monitoring systems to deliver accurate water–nutrient

regulation strategies constitutes the critical pathway for enhancing

crop yield and quality.

Glycyrrhiza uralensis Fisch. is a widely used medicinal plant

belonging to the Leguminosae family, with a history of medicinal

use in China spanning over three millennia (Zhou et al., 2019). Its
02
roots and rhizomes are extensively used across East Asia and South

Asia for treating and preventing diseases of respiratory and

digestive systems (Lu et al., 2023). China is the largest producer

of G. uralensis globally, with an annual yield of 100,000–120,000

tons (Yan et al., 2023). The Inner Mongolia region is its genuine

production area, where the semiarid climate and sandy soils are

optimal for secondary metabolite accumulation in G. uralensis. In

recent years, overexploitation and environmental degradation have

led to the depletion of wild resources, making cultivated G. uralensis

the primary market source. However, most growers lack scientific

water and nutrient management practices, unreasonably replicating

staple crop management models during large-scale cultivation. This

results in severely compromised yield and quality of cultivated G.

uralensis characterized by substandard medicinal compound

content and diminished herb quality (Wan et al., 2021; Yang

et al., 2020), significantly constraining industrial development.

Medicinal plants have str ingent demands for growth

environments and cultivation management strategies because of

the specific nature of their applications, necessitating substantial

labor inputs. Concurrently, increased urbanization and aging

population of China have escalated labor management costs

(Volpato et al., 2024). Consequently, under the dual pressures of

cultivation scale expansion and rising labor expenses, the

development of efficient and reliable decision-support tools for

medicinal plant growers has become essential.

During the crop growth period, the requirements for water and

fertilizer exhibit dynamic variations due to changes in soil

physicochemical properties, temperature fluctuations, and rainfall

patterns (Plett et al., 2020). Rational fertilization is critical to

ensuring crop yield and quality (Lee et al., 2024). Consequently,

dynamic monitoring of water and fertilizer requirements during

critical crop growth stages and the timely implementation of

supplementary measures are essential. Currently, the primary

methods for acquiring growth monitoring parameters include

physicochemical analysis in the laboratory, measurements using

portable phenotyping instrument, and multispectral technology.

Physicochemical analysis in the laboratory relies on the availability

of a laboratory environment, entailing laborious and protracted
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operational procedures (Pun Magar et al., 2025). Additionally,

portable phenotyping instruments are constrained to single-plant

measurements and exhibit low representativeness (Jiang et al.,

2020). Conversely, multispectral technology, founded on the close

correlation between crop Phenotypic Indicators (PIs) and spectral

characteristics, exhibits notable advantages in terms of rapidity (Yu

et al., 2024), nondestructiveness (Itoh et al., 2024), and operational

simplicity (Chen et al., 2024a). Although existing proximal

multispectral technologies can monitor field conditions with high

precision (Roth et al., 2024; Andvaag et al., 2024), the data

acquisition efficiency of these systems remain low, unable to meet

the real-time monitoring demands of large-scale agricultural fields.

With the maturation of unmanned aerial vehicle (UAV)

technology, platforms can be flexibly equipped with payloads

such as Red-Green-Blue (RGB) sensors, multispectral sensors,

hyperspectral sensors, thermal infrared sensors, and Light

detection and ranging (LiDAR) (Zhang et al., 2024). This enables

efficient capture of photon scattering, absorption, and transmission

processes resulting from light–plant–canopy interactions. Through

radiative transfer modeling, the light attenuation effects associated

with vegetation physicochemical attributes are quantified, thereby

precisely resolving crop PIs. These capabilities facilitate growth

dynamic monitoring (Sumnall et al., 2024), nutritional status

diagnosis (Zhu et al., 2024), and yield prediction (Shen et al.,

2024). Currently, UAV-based low-altitude spectral imaging

technology provides an innovative technical pathway for growth

monitoring in large-scale G. uralensis cultivation zones, leveraging

its efficiency, real-time performance, and nondestructive

advantages. This framework extends to staple crop surveillance,

delivering cost-effective and highly adaptable smart agricultural

solutions for global food security.

The process of crop growth detection must take consider

agroecosystem sustainability. This technological challenge is

addressed through UAV multispectral technology, which provides

nondestructive, low-cost, and efficient monitoring capabilities.

Multispectral sensors can be equipped with multiple discrete

spectral bands. The selection of these bands is determined by the

necessity of vegetation indices (VIs), which are correlated with crop

phenotypes. These indices demonstrate higher sensitivity to

vegetation characteristics compared with single-wavelength data.

Among them, VIs including the normalized difference vegetation

index (NDVI), green normalized difference vegetation index

(GNDVI), normalized difference red-edge index (NDRE), and

soil-adjusted vegetation index (SAVI), have been demonstrated to

strongly correlate with plant nutritional status (Song et al., 2022).

Duque et al. (2023) employed a combination of GNDVI and SAVI,

along with phenotypic data and Gaussian regression, to estimate

nitrogen levels in rice with high precision. In a similar study, Ali

et al. (2024) correlated soil plant analysis development (SPAD)

values from sugar beet parts with NDVI and developed an SVM-

based model for accurate nitrogen diagnosis and drought response.

Zou et al. (2024) developed a UAV-based leaf area index (LAI)

estimation framework integrating spectral indices, optimized

texture features, and plant height (PH) through machine

algorithms, demonstrating enhanced robustness against spectral
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saturation through multifeature fusion. Johansen et al. (2020)

developed models to predict tomato biomass and yield by

integrating plant morphological and spectral features extracted

from UAV-based RGB and multispectral imagery with the

random forest (RF) and further investigated prediction

discrepancies under salt-stress conditions. Based on the

aforementioned evidence, we speculated that UAV multispectral

technology has significant potential for establishing growth

monitoring models for G. uralensis, addressing urgent market

demands for cultivated varieties that balance high yield with

superior quality.

Machine learning algorithms enhance model performance by

effectively capturing complex data relationships. backpropagation

neural network (BP) excels at learning intricate nonlinear patterns

but requires substantial data and computational resources and is

prone to over-fitting. SVM is theoretically grounded and exhibits

strong generalization capabilities with small-sample, high-

dimensional data. However, its effectiveness highly depends on

kernel function and parameter selection, and it offers limited

interpretability for nonlinear relationships. RF is user-friendly,

achieves high accuracy, demonstrates high resistance to

overfitting, has flexible data requirements, provides feature

importance rankings, and supports parallel computation but

exhibits limited extrapolation capability. Considering these

distinct algorithmic characteristics, the split ratio between

training and test sets is crucial. It must balance model learning

capacity with robust generalization validation: sufficient training

data enable effective learning and mitigate underfitting, whereas an

adequately sized test set ensures reliable and statistically significant

performance evaluation. Therefore, for UAV-based monitoring and

yield prediction of G. uralensis, in-depth understanding and

optimized application of these algorithms are crucial for

enhancing the efficacy of technology.

The objective of this study was to validate the feasibility of real-

time and efficient growth monitoring of a medicinal plant G.

uralensis using UAV multispectral technology. Moreover, the

study further evaluated the accuracy of different algorithms to

predict PIs and established a PIs-based yield prediction model. It

is hypothesized that the integration of UAV multispectral

technology with optimized algorithms will facilitate high-

precision growth monitoring and yield prediction based on PIs.
2 Materials and methods

2.1 Experimental design and data
collection

2.1.1 Study area and experimental design
The field experiment was conducted in Qingshuihe County (41°

8′ N, 112°10′ E; 1,100 m ASL), Hohhot City, Inner Mongolia

Autonomous Region, China, from June 2022 to September 2023

(Figure 1). This area lies within the extended zone of theG. uralensis

genuine producing region on the Ordos Plateau, characterized by a

temperate continental monsoon climate. The locally arid conditions
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favor the synthesis and accumulation of secondary metabolites in G.

uralensis. During the experimental period, the recorded average

diurnal temperature was 13.60°C; average nocturnal temperature

was 2.25°C, and cumulative rainfall reached 413.80 mm. The soil

type is clay loam (pH 8.0), supporting natural distribution of wild G.

uralensis and demonstrating suitability for cultivated research.

Based on the growth cycle from sowing in mid-May to harvesting

in early October, the period was divided into four important

phenological stages: seedling establishment [40 DAS (days after

sowing)], rapid vegetative growth (85 DAS), reproductive-storage

transition (110 DAS), and maturation and harvest (145 DAS).

The experiment was performed in a regional mountainous

environment with four irrigation levels (2,000, 4,000, 6,000, and

8,000 m³/ha) and five nitrogen application levels (75, 150, 225, 300,

and 375 kg N/ha). The control treatment (CK) included neither

supplemental irrigation nor fertilization. Each treatment was

replicated three times (63 experimental plots in total; 5 m × 5 m

per plot), with 1 m wide alleys separating adjacent plots. Compound

fertilizer (N:P2O5:K2O = 20:20:20) was applied as base fertilizer.

Urea was used for nitrogen treatment. Fertilizers were uniformly

incorporated into the soil layer during plowing. Post-sowing

irrigation was supplied using a drip system. Data were collected

30 days after sowing and thereafter at monthly intervals. All

measurements were conducted under clear, windless conditions

(10:00–15:00) to minimize temporal discrepancies between ground

observations and UAV remote sensing.

2.1.2 Remote sensing image acquisition
Multispectral image data were acquired during phenological

stages phenological stages (seedling establishment, rapid vegetative

growth, reproductive-storage transition, and maturation and

harvest). Image collection was uniformly conducted between

11:00 and 13:00 under clear and calm atmospheric conditions. A

DJI Phantom 4 Multispectral UAV (DJI Inc., Shenzhen, China)
Frontiers in Plant Science 04
equipped with a multispectral camera system was deployed

(Supplementary Table S1), featuring six CMOS sensors (Sony

Group Corporation, Minato, Japan), one color sensor for visible-

light imaging and five monochromatic sensors for multispectral

imaging (Supplementary Table S2). Flight missions were

programmed and executed via the DJI GS Pro software (DJI Inc.,

Shenzhen, China) running on an external tablet device (iPad mini,

Apple Inc., USA) mounted to the drone remote controller. Routes

were planned using GPS positioning and 2D map clipping. The

platform operated at 50 m above ground level with a horizontal

speed of 5.0 m/s, ensuring 2.6 cm/pixel spatial resolution. A gimbal-

stabilized camera maintained a nadir orientation relative to the

terrain surface. Image collection followed predefined flight routes

with 80% longitudinal overlap and 75% lateral overlap between

consecutive frames. Before data acquisition, three radiometric

calibration panels (25%, 50%, 75% reflectance values; JINGYI,

Guangzhou, China) were deployed at plot centers to validate

radiometric calibration integrity.

2.1.3 Ground data collection
Ground data collection was synchronized with UAV

multispectral remote sensing data acquisition. The TYS-4N device

(TOP Cloud-agri, Hangzhou, China) was used to measure SPAD

and nitrogen content (NC). Measurements were conducted on the

first fully expanded leaf beneath the terminal branch, with five

positions sampled: both lateral sides of the leaf base, both lateral

sides of the mid-section, and the leaf tip; the mean value of these

points was calculated. PH was manually recorded by extending a 1-

m ruler vertically from the base to the apex of the main stem. Yield

was obtained through destructive sampling by harvesting entire

plants from the soil, and tiller number (TN) per plant was manually

determined at the late tillering stage by counting all tillers with at

least two visible leaves. Each treatment was randomly sampled in

five replicates.
FIGURE 1

Experimental region and design of different water and fertilizer treatments.
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2.2 Digital image processing and data
analysis

2.2.1 Generation of orthorectified mosaic and
radiometric correction

Multispectral UAV image processing was implemented in

Pix4Dmapper version 4.3.9 (Pix4D SA, Lausanne, Switzerland).

The workflow encompassed image alignment, 3D terrain

reconstruction, lens aberration correction, and dark angle

compensation, followed by core radiometric calibration:

Xref =
XDN � pCamX

XLS � pLSX
� rNIR

Where XDN denotes the brightness value of the image element;

XLS represents light-sensitive signal captured in real-time by the

light intensity sensor; pCamx and pLSx are the calibration

parameters for the multispectral camera and light sensor,

respectively, and rNIR serves as the parameter regulating

interconversion referenced to the near-infrared band. This

algorithm eliminates ambient light fluctuations through dynamic

irradiance monitoring while standardizing sensor responses via

integrated hardware calibration parameters.

2.2.2 Multispectral image stitching and extraction
of VIs

The captured RGB images underwent geometric correction via

orthorectification and were subsequently mosaicked in

Pix4Dmapper (Figure 2). Orthorectification corrected spatial

distortions caused by differences in terrain elevation and camera

tilt angles to ensure geometric accuracy. High overlap rates (80%

longitudinal, 75% lateral) enhanced redundant image matching

during stitching, effectively reducing gaps and positional errors in
Frontiers in Plant Science 05
the composite. These steps significantly minimized seamline

artifacts inherent to mosaicking. All processing used

photogrammetric tools of Pix4Dmapper. Finally, structure-from-

motion (SFM) algorithms generated digital surface models (DSM)

and georeferenced orthophotos. VIs were calculated in

Pix4Dmapper based on spectral data from the processing

area (Table 1).

2.2.3 Data analysis
A simple linear regression analysis was performed on UAV-

based VIs and manually measured PI data to explore their

relationship. In this model, the field-acquired PIs served as the

dependent variables, whereas the sensor-derived VIs served as the

independent predictors. Validation involved comparing VI-

estimated PIs against ground-truth measurements. Estimation

accuracy was quantified using four metrics: coefficient of

determination (R²), root mean square error (RMSE), mean

absolute error (MAE), and mean bias error (MBE). R² quantified

the proportion of variance explained by the model, with higher

values indicating stronger correlations. RMSE and MAE

represented the magnitude of prediction errors, with lower values

reflecting higher precision. MBE indicated systematic

overestimation or underestimation tendencies, with values closer

to zero representing minimal bias. Mathematical formulae of these

metrics were defined to ensure transparent interpretation of model

performance.

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �yi)

2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ŷ i − yi)

2

s

FIGURE 2

Multispectral data processing flow of UAV.
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MAE =
1
no

n

i=1
ŷ i−yij j

MBE =
1
no

n

i=1
ŷ i − yij j

Where n is the number of samples; yi and ŷ i are the measured

and estimated values, respectively; �yi is average measured value.

2.2.4 Model construction
Based on the Pearson correlation coefficient, the top three VIs

significantly correlating with each PI were defined as the

independent variables for the model. Three linear machine

learning algorithms, specifically the BP, SVM, and RF, were used

to model relationships between VIs and PIs. The dataset was

randomly partitioned at the plot level into training (70%) and

testing (30%) subsets, with strict isolation between the two groups

to prevent data leakage. Model parameters were optimized using the

training subset, whereas the testing subset independently evaluated
Frontiers in Plant Science frontiersin.or06
predictive performance. Implemented via MATLAB (MathWorks

R2019b Inc., Natick, MA, USA)-customized linear techniques, each

algorithm (BP, SVM, and RF) underwent iterative training on the

training data. Model accuracy was assessed using R², RMSE, MAE,

and MBE metrics to quantify agreement between predicted and

observed PIs.
3 Results

3.1 Effect of water and fertilizer treatments
on the growth of G. uralensis

Samples were collected after 2 years of water and fertilizer

treatments and the yield, PH, leaf chlorophyll content, and NC of G.

uralensis across different water treatment groups (Table 2) were

measured. Except W2, all water-stress treatment groups exhibited

significant decreases in PH compared with CK, with W3 exhibiting

the highest decrease (11.39%), followed by W1 (10.30%), and W4
TABLE 1 Vegetation indices and equations.

Name Equation Effect Reference

Normalized Difference VI NDVI=(NIR–R)/(NIR+R) Vegetation density and health estimation (Filonchyk et al., 2025)

Red Ratio VI RVI=NIR/R Vegetation vigor quantification (Li et al., 2025a)

Enhanced VI
EVI=2.5*((NIR-R)/(NIR+6R-

7.5B+1))
High-biomass sensitivity enhancement (Tang et al., 2025)

Difference VI DVI=NIR-R Biomass estimation via NIR - red difference (Tang et al., 2025)

Renormalized Difference VI RDVI=(NIR-R)/√(NIR-R) Soil background noise minimization (Tang et al., 2025)

Soil Adjusted VI SAVI=1.5*(NIR-R)/(NIR+R+0.5) Soil brightness variation compensation (Yueliang et al., 2025)

Green Normalized Difference VI GNDVI=(NIR-G)/(NIR+G) Chlorophyll sensitivity enhancement (Basso et al., 2019)

Normalized Difference Red-edge VI NDRE=(NIR–RE)/(NIR+RE) Chlorophyll content change detection (Li et al., 2025a)

Optimization of Soil-Adjusted VI OSAVI=(NIR-R)/(NIR+R+0.16) Optimized soil-adjusted vegetation index
(Ashrafuzzaman
et al., 2025)

Green Ratio VI GRVI=NIR/G Early growth stage sensitivity (Sapkota and Paudyal, 2023)

Leaf Chlorophyll Index LCI=(NIR-RE)/(NIR-R) Chlorophyll density targeting (Yu et al., 2022)

Normalized Difference
Water Index

NDWI=(G-NIR)/(G+NIR) Plant water content assessment (Jurevičius et al., 2022)

Blue Normalized Difference VI BNDVI=(NIR-B)/(NIR+B) Atmospheric scattering reduction (Traba et al., 2022)

Blue Ratio VI BVI=NIR/B Early stress detection (Liao et al., 2025)

Simple Blue Ratio Index BRVI=R/B Soil contrast enhancement (Liao et al., 2025)

Modified Simple Ratio MSR=(NIR/R-1)/√(NIR/B+1) High-biomass saturation mitigation (Wang et al., 2022)

Non-Linear Index NLI=(NIR*NIR-R)/(NIR*NIR+R) LAI estimation via non-linear transformation (Huang et al., 2025)

Green-Red Ratio Index GRRI=R/G Senescence detection (Xu et al., 2022)

Green Leaf Index GLI=(2*G-R-B)/(2*G+R+B) General vegetation health assessment (Li et al., 2025b)

Normalized Difference Index NDI=(R-G)/(R+G+0.01) Custom band combination framework (Deveerasetty et al., 2024)

Excess Green Index EXG=2*G-B-R Green vegetation highlighting (Zanotta et al., 2025)

Gray Level VI GRAY=(R+G+B)/3
Soil brightness measurement; Background

noise correction
(Hu et al., 2024)
g
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exhibited the smallest decrease (4.69%). SPAD exhibited significant

differences only between W2 and CK (9.44% decrease). W3

displayed significant increase in SPAD compared with CK

(2.57%), with no statistical differences observed in other groups.

No significant differences were observed in TN among water

treatment groups (P > 0.05). For NC, no significant differences

were detected between any treatment group and CK, although W3

exhibited 4.40% increase in NC compared with CK, indicating

potential for water regulation. Collectively, all water stress

treatments decreased PH (W3 > W1 > W4 > W2). Only W2

significantly decreased photosynthetic pigment content (SPAD),

whereas W3 exhibited coordinated improvements in SPAD and NC

despite decreased PH.

Samples were collected after 2 years of water and fertilizer

treatments, and the yield, PH, leaf chlorophyll content, and NC of

G. uralensis across different fertilizer treatment groups (Table 3)

were measured. Compared with the CK group, the N1, N2, and N5

groups exhibited significant decreases in PH (9.17%–10.41%),

whereas the N3 and N4 groups exhibited no significant

differences in PH compared with CK (reductions of 5.28%–

1.70%). SPAD exhibited significant decrease of 11.63% and 9.80%

in the N1 and N2 groups, respectively, with no statistical differences

observed in the N3, N4, or N5 groups. NC was significantly higher

in the N4 and N5 groups than in the CK group (increases of 7.33%
Frontiers in Plant Science 07
and 1.47%, respectively), whereas no significant differences were

observed in the remaining treatment groups. Tillering numbers

exhibited no significant difference among all nitrogen treatment

groups (P > 0.05). Collectively, nitrogen treatments induced

differential responses: N1 and N2 caused marked decline in PH

and chlorophyll levels; N4 and N5 enhanced nitrogen

accumulation, and no treatment significantly affected

tillering capacity.
3.2 Model building and evaluation

3.2.1 Variable filtering
Pearson correlation analysis was performed to assess pairwise

correlations among 22 VIs for redundancy elimination (Figure 3).

NDVI, EVI, SAVI, OSAVI, MSR, and RVI exhibited marked

redundancy (r ≥ 0.99), indicating that these indices should be

excluded from subsequent modeling. Subsequently, VIs were

screened based on yield and PIs to select model inputs (Figure 4).

Prediction models for PIs and yield were developed using BP, SVM,

and RF algorithms with the optimized VI sets. A standalone model

directly linking PIs to yield was concurrently established to enable

comparative evaluation, which validated the synergistic effects of

the multidimensional modeling framework.

3.2.2 Estimation of PIs based on VIs
The VI-based phenotypic prediction model for G. uralensis

(Table 4) exhibited significant correlations between predicted and

measured values of SPAD, NC, TN, and PH (R² > 0.40). GLI, excess

green index (EXG), and DVI under the BP algorithm exhibited high

accuracy in predicting PH (R² > 0.85), with GLI predicting the best

among the three VIs, and the BP algorithm having the highest

prediction accuracy (R² = 0.94, RMSE = 2.70). RF algorithm also

exhibited high prediction accuracy (R² = 0.91, RMSE = 2.87). The

RF models of GRRI and GRAY exhibited the highest prediction

accuracy for NC (R² = 0.68, RMSE = 0.01 and 0.08), and the

combination of RF and RDVI best predicted TN (R² = 0.76, RMSE =

0.21; Figure 5). Scatter plots and bar charts of the prediction results

are given in Supplementary Figures S1 and S2. The RF algorithm,

which is based on the advantages of integrated analysis of

morphological and physiological characteristics, exhibited

stronger generalization ability in predicting different PIs, whereas

EXG exhibited higher accuracy in the prediction model, making it a

critical spectral discriminant for monitoring the growth of

G. uralensis.

3.2.3 Yield prediction based on VIs
The findings of the yield prediction study (Table 5)

demonstrated that BRVI, EXG, GRAY, and NDRE substantially

correlated with G. uralensis yield (R² > 0.40). Furthermore, the

prediction accuracy of the multi-index combined model was

significantly superior to that of a single-index. Specifically, EXG

and NDRE demonstrated optimal performance in the SVM

algorithm (R² = 0.61, RMSE = 15.53; R² = 0.55, RMSE = 13.27),

whereas GRAY and BRVI achieved the highest accuracy through
TABLE 2 The effect of different water treatments on phenotypic indicators.

Group PH/cm TN SPAD
NC/

mg*g-1

CK 53.58±0.05a 1.67±0.58a 41.62±0.05ab 3.41±0.10a

W1 48.07±3.89b 1.47±0.51a 41.01±2.87ab 3.43±0.24a

W2 52.13±2.87a 1.33±0.51a 37.69±2.52b 3.36±0.20a

W3 47.47±2.77b 1.47±0.49a 42.69±4.03a 3.56±0.34a

W4 51.07±4.31ab 1.67±0.49a 40.34±3.72ab 3.49±0.32a
LSD, Different lowercase letters on the table indicate significant differences between
treatments (P < 0.05). PH stand for plant height; TN stand for tiller number; SPAD stand
for soil and plant analysis development value; NC stand for nitrogen content.
TABLE 3 The effect of different nitrogen treatments on phenotypic indicators.

Group PH/cm TN SPAD NC/mg*g-1

CK 53.58±1.58a 1.67±0.58a 41.62±0.05ab 3.41±0.10a

N1 48.67±3.74b 1.58±0.51a 36.78±2.16b 3.23±0.18b

N2 48.33±4.25b 1.58±0.51a 39.99±3.79ab 3.43±0.29ab

N3 50.75±3.73ab 1.25±0.49a 40.78±3.34a 3.53±0.27ab

N4 52.67±4.56ab 1.33±0.51a 42.27±5.00a 3.66±0.29a

N5 48.00±2.10b 1.33±0.49a 42.34±4.33a 3.46±0.39a
LSD, Different lowercase letters on the table indicate significant differences between
treatments (P < 0.05). PH stand for plant height; TN stand for tiller number; SPAD stand
for soil and plant analysis development value; NC stand for nitrogen content.
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FIGURE 4

Correlation between phenotypic indicators and vegetation indices. PH stand for plant height; TN stand for tiller number; SPAD stand for soil and
plant analysis development value; NC stand for nitrogen content. GRAY stand for gray level index; EXG stand for excess green index; GLI stand for
green leaf index; GRRI stand for green - red ratio index; BRVI stand for simple blue ratio index; NDRE stand for normalized difference red - edge
index; RDVI stand for renormalized difference vegetation index; DVI stand for difference vegetation index.
FIGURE 3

Heat map of vegetation indices correlation.
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TABLE 4 VIs prediction phenotype indictors results.

Phenotypic indicators VIs Algorithm R2 RMSE MAE MBE Equation

SPAD

DVI

BP 0.49 1.33 1.67 0.23 y=0.53x+19.04

SVM 0.56 1.27 1.67 0.24 y=0.51x+19.72

RF 0.58 1.08 1.49 -0.05 y=0.52x+19.42

RDVI

BP 0.42 1.79 1.59 -0.06 y=0.53x+18.45

SVM 0.44 1.92 3.82 -0.98 y=0.51x+14.95

RF 0.45 0.44 5.19 2.41 y=0.52x+12.49

EXG

BP 0.51 1.66 1.71 -0.16 y=0.52x+18.98

SVM 0.46 1.42 1.81 -0.26 y-0.38x+24.45

RF 0.61 1.36 1.43 -0.05 y=0.55x+17.94

NC/mg*g-1

GRRI

BP 0.64 0.09 0.13 0.17 y=0.41x+1.97

SVM 0.64 0.07 0.14 -0.01 y=0.43x+1.90

RF 0.68 0.01 0.13 0.00 y=0.48x+1.76

GRAY

BP 0.64 0.09 2.59 -3.52 y=0.41x+0.97

SVM 0.64 0.07 5.85 -3.59 y=0.39x+10.86

RF 0.68 0.08 3.35 0.02 y=0.49x+1.68

EXG

BP 0.50 0.16 0.12 0.16 y=0.41x+1.93

SVM 0.44 0.16 0.13 -0.01 y=0.42x+1.90

RF 0.55 0.16 0.12 0.00 y=0.47x+1.76

TN

DVI

BP 0.62 0.22 0.18 0.02 y=0.91x+0.17

SVM 0.67 0.29 0.24 -0.03 y=0.73x+0.43

RF 0.59 0.25 0.19 0.00 y=0.84x+0.29

RDVI

BP 0.70 0.24 0.18 -0.01 y=0.93x+0.10

SVM 0.73 0.24 0.20 0.02 y=0.81x+0.35

RF 0.76 0.21 0.18 -0.01 y=0.83x+0.30

EXG

BP 0.54 0.23 0.19 -0.03 y=0.89x+0.17

SVM 0.53 0.23 0.22 -0.04 y=0.77x+0.37

RF 0.58 0.21 0.17 0.00 y=0.86x+0.23

PH/cm

NDRE

BP 0.87 3.51 3.08 0.03 y=0.85x+6.53

SVM 0.81 3.86 3.76 0.00 y=0.77x+10.01

RF 0.80 2.77 2.74 0.10 y=0.80x+8.72

GLI

BP 0.94 2.70 2.26 0.36 y=0.88x+5.46

SVM 0.80 3.79 3.44 -1.09 y=0.80x+7.40

RF 0.91 2.87 2.83 0.14 y=0.78x+9.53

EXG

BP 0.85 3.29 2.60 -0.07 y=0.85x+6.39

SVM 0.75 3.91 4.01 -0.38 y=0.68x+13.12

RF 0.77 3.74 3.35 0.02 y=0.74x+10.66
F
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PH stand for plant height; TN stand for tiller number; SPAD stand for soil and plant analysis development value; NC stand for nitrogen content. EXG stand for excess green index; GLI stand for
green leaf index; NDRE stand for normalized difference red - edge index; GRAY stand for gray level index; GRRI stand for green - red ratio index; RDVI stand for renormalized difference
vegetation index; DVI stand for difference vegetation index. BP stand for back propagation neural network; SVM stand for support vector machine; RF stand for random forest.
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the RF algorithm (R² = 0.71, RMSE = 10.94; R² = 0.68, RMSE =

11.37). In the multi-index fusion model, a high-accuracy

prediction model was achieved by the BP algorithm (R² = 0.87,

RMSE = 10.67), and the RF algorithm further reduced the RMSE

to 6.78 (Figure 6). Scatter plots and bar charts of the prediction
Frontiers in Plant Science 10
results are given in Supplementary Figure S3 and S4. The RF

algorithm demonstrated a high integrated prediction ability

among the three algorithms, both for single-index and multi-

index combined predictions, which fully validated its stability and

high efficiency in yield prediction.
FIGURE 5

Radial bar chart of G. uralensis phenotypic indicator prediction results based on vegetation indices. PH stand for plant height; TN stand for tiller
number; SPAD stand for soil and plant analysis development value; NC stand for nitrogen content. EXG stand for excess green index; GLI stand for
green leaf index; NDRE stand for normalized difference red - edge index; GRAY stand for gray level index; GRRI stand for green - red ratio index;
RDVI stand for renormalized difference vegetation index; DVI stand for difference vegetation index. BP stand for back propagation neural network;
SVM stand for support vector machine; RF stand for random forest.
TABLE 5 VIs predicts yield results.

VIs Algorithm R2 RMSE MAE MBE Equation

EXG

BP 0.59 11.02 14.61 -0.18 y=0.40x+38.51

SVM 0.61 15.43 13.32 1.11 y=0.67x+23.80

RF 0.58 10.78 11.00 -0.02 y=0.54x+29.02

GRAY

BP 0.65 12.27 12.41 -0.32 y=0.59x+25.86

SVM 0.66 14.65 9.65 2.27 y=0.77x+17.89

RF 0.71 10.94 8.25 0.21 y=0.69x+19.57

BRVI

BP 0.61 11.82 11.06 0.07 y=0.61x+25.62

SVM 0.58 11.07 9.93 -3.15 y=0.52x+27.34

RF 0.68 11.37 8.74 0.28 y=0.69x+20.50

NDRE

BP 0.41 13.17 11.83 0.48 y=0.47x+34.39

SVM 0.55 13.27 13.37 -0.80 y=0.45x+33.99

RF 0.54 11.45 11.52 0.07 y=0.47x+33.85

Combine

BP 0.87 10.67 7.25 -2.05 y=0.83x+8.75

SVM 0.86 10.75 5.93 -1.05 y=0.83x+9.85

RF 0.87 6.78 5.63 -0.03 y=0.8x+12.46
EXG stand for excess green index; GLI stand for green leaf index; GRAY stand for gray level index; BRVI stand for simple blue ratio index; NDRE stand for normalized difference red - edge index.
BP stand for back propagation neural network; SVM stand for support vector machine; RF stand for random forest.
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3.2.4 Yield prediction based on PIs
The yield prediction study (Table 6) revealed a substantial

correlation (R² > 0.40) between the prediction models of SPAD,
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NC, TN, and PH and actual yield. The prediction accuracy of multi-

indicator models surpassed that of single-indicator models. The BP

algorithm exhibited the highest level of accuracy (R² = 0.81, RMSE =

13.78). The RF algorithm demonstrated the highest performance in

all single-indicator predictions. The prediction accuracy of PH and

NC was the highest (R² = 0.74, RMSE = 9.29; R² = 0.76, RMSE =

8.67), whereas TN and SPAD exhibited slightly lower prediction

accuracy (R² = 0.59, RMSE = 11.10; R² = 0.66, RMSE = 10.35;

Figure 7). Bar charts and scatter plots of the prediction results are

given in Supplementary Figures S4 and S5. Among the four PIs, PH

demonstrated the optimal comprehensive predictive capacity.

Concurrently, NC, TN, and SPAD functioned as auxiliary

modeling instruments.
4 Discussion

4.1 Effect of water and nitrogen treatments
on G. uralensis growth

Water and nitrogen are essential substrates for plant

physiological metabolism, synergistically regulating chlorophyll

synthesis, morphological development, and yield formation. Our

study demonstrated that water–nitrogen deficit significantly

decreased PH, TN, SPAD, and NC in G. uralensis compared with

the CK, leading to dual losses in yield and quality. This is consistent

with crop stress response patterns reported by Tan and Liu (Tan

et al., 2023; Liu et al., 2020), mechanistically driven by

multiphysiological interactions. In morphological development,
FIGURE 6

Radial bar chart of G. uralensis yield prediction based on vegetation
indices. EXG stand for excess green index; GLI stand for green leaf
index; GRAY stand for gray level index; BRVI stand for simple blue
ratio index; NDRE stand for normalized difference red - edge index.
BP stand for back propagation neural network; SVM stand for
support vector machine; RF stand for random forest.
TABLE 6 Phenotypic indicators predict yield results.

Phenotypic indicators Algorithm R2 RMSE MAE MBE Equation

SPAD

BP 0.52 8.49 9.41 -1.76 y=0.49x+24.96

SVM 0.57 12.11 7.51 -0.03 y=0.57x+27.47

RF 0.59 11.10 8.51 0.05 y=0.46x+34.81

NC/mg*g-1

BP 0.51 11.02 8.80 -1.33 y=0.46x+32.49

SVM 0.68 10.11 9.19 -3.58 y=0.48x+29.51

RF 0.76 8.67 8.25 0.35 y=0.46x+37.11

PH/cm

BP 0.71 12.11 8.66 1.78 y=0.75x+18.45

SVM 0.69 12.17 7.25 0.58 y=0.75x+17.99

RF 0.74 9.29 8.45 0.42 y=0.62x+24.06

TN

BP 0.59 14.97 8.98 0.38 y=0.72x+19.98

SVM 0.50 10.14 17.60 -0.07 y=0.10x+60.53

RF 0.66 10.35 9.33 0.56 y=0.57x+29.80

Combine

BP 0.81 13.78 5.98 -0.04 y=0.57x+28.77

SVM 0.64 2.66 5.60 0.03 y=0.18x+53.68

RF 0.71 7.91 6.95 0.07 y=0.57x+29.80
PH stand for plant height; TN stand for tiller number; SPAD stand for soil and plant analysis development value; NC stand for nitrogen content. BP stand for back propagation neural network;
SVM stand for support vector machine; RF stand for random forest.
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water stress inhibits root elongation and lateral root differentiation

by suppressing cell turgor and auxin synthesis (Condorelli et al.,

2018; Vurro et al., 2023). Nitrogen deficiency restricts protein

synthesis, curbing leaf expansion and tillering (Yang et al., 2017),

a pattern validated across herbaceous plants. Photosynthetically,

water stress reduces stomatal conductance, limiting CO2

assimilation efficiency (Bao et al., 2025; Kaya and Ergin, 2025),

whereas nitrogen deficiency diminishes light-harvesting capacity by

lowering chloroplast density and abundance of PSII reaction center

(Chen et al., 2024b), with similar responses observed in cereal crops.

During yield-quality formation, water deficiency inhibits root

expansion and secondary metabolite synthesis (Wang et al.,

2024a), whereas nitrogen deficiency decreases photosynthetic

pigment content and critical enzyme activity (Maluleke and

Thobejane, 2025), collectively compromising resource allocation.

These physiological shifts manifest as spectral signatures at the

canopy scale, consistent with mechanisms identified by Jin and

Ding (Jin et al., 2023; Ding et al., 2025) reporting that spectral

changes directly reflect alterations in plant pigments and structure.

UAV-based multispectral technology captures these dynamics in

real time, leveraging strong correlations between VIs and PIs to

quantify cumulative water–nitrogen stress effects. This enables

synchronous diagnosis of PH, TN, chlorophyll, and nitrogen

dynamics, supporting precise water–nutrient regulation (Li et al.,

2024a, 2024).
Frontiers in Plant Science 12
4.2 Model evaluation

Our study developed efficient, nondestructive growth

monitoring and yield prediction techniques by integrating UAV-

derived VIs and PIs. Pearson correlation analysis revealed high

redundancy (r > 0.99) among NDVI, EVI, and four other VIs due to

shared near-infrared–red band foundations and statistical

homology (Ma et al., 2023). RF outperformed BP and SVM in

capturing nonlinear relationships through multitree integration,

with feature importance ranking aligning with agronomic

decision needs (Wu et al., 2025). A 7:3 training–testing ratio

ensured robust learning (70% train set) and minimized accuracy

fluctuations across growth stages (30% test set) (Zhou et al., 2024;

He et al., 2025). After comprehensive optimization of VI selection,

algorithms, and data partitioning, the constructed model provided

precise water–nutrient decision support for G. uralensis cultivation,

achieving synergistic yield–quality enhancement.

UAV-based phenotyping technology, characterized by

nondestructiveness, efficiency, and high precision, remains pivotal

in crop growth monitoring (Sapkota and Paudyal, 2023; Bai et al.,

2023). Our integrated models achieved high-precision inversion of

PH, TN, SPAD, and NC (0.42 ≤ R² ≤ 0.94), with RF coupled to the

EXG demonstrating exceptional stability across all four PIs

(Figure 8a). Early-stage PH prediction errors originated from

vertical projection deviations caused by prostrate stem

morphology in seedlings, later mitigated by structural stability

(Wang et al., 2024b). TN exhibited strong correlation with VIs

due to limited variability, enabling high accuracy through

multisample averaging (Lu et al., 2024). SPAD and NC

predictions were constrained by canopy structural issues, where

spectral mixing errors at current resolutions led to slightly inferior

accuracy, yet markedly surpassed traditional sampling methods (Xu

et al., 2023). These results validated the superiority of UAV

multispectral technology for growth monitoring, providing

actionable insights for real-time precise water–nutrient regulation.

Yield prediction is crucial for agricultural management,

determining economic returns and resource optimization

(Goodwin et al., 2018). Leveraging UAV high-resolution, full-

phenology data, BP, SVM, and RF models using VIs and PIs

achieved high-precision yield forecasts (VI models: 0.41 ≤ R² ≤

0.87; PI models: 0.50 ≤ R² ≤ 0.81), with VIs slightly outperforming

PIs (Figures 8b, c). BP and RF algorithms proved suitable for this

study, and multiparameter joint prediction enhanced accuracy

beyond single-parameter approaches, a widespread pattern in

crop yield modeling (Shu et al., 2023; McBreen et al., 2025).

Though VIs matched PIs in accuracy through multispectral

recognition, canopy structural interference particularly occlusion

and mixed-pixel effects persisted as constraints (Sun et al., 2024;

Hui et al., 2024). Innovative integration of photosynthetic

parameters (SPAD and NC) with morphological traits (PH and

TN) significantly improved model accuracy (R² ≥ 0.64). This multi-
FIGURE 7

Radial bar chart of G. uralensis yield prediction based on phenotypic
indicators. PH stand for plant height; TN stand for tiller number;
SPAD stand for soil and plant analysis development value; NC stand
for nitrogen content. BP stand for back propagation neural network;
SVM stand for support vector machine; RF stand for random forest.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1612898
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1612898
indicator approach confirmed PH as the important predictor while

revealing the auxiliary monitoring value of photosynthetic

parameters (Ji et al., 2022; Dai et al., 2024). Extending multi-

phenotype framework to medicinal plants (Singh et al., 2019), this

study enabled UAV-guided variable irrigation and nitrogen

topdressing, advancing cultivation from “empirical management”

to “demand-or i en t ed supp ly ” f o r r ea l - t ime wate r–

nutrient decisions.
4.3 Model applicability and limitations

This study constructed a full-growth-stage monitoring and yield

prediction model for G. uralensis by fusing UAV multispectral

technology with VIs and PIs. The RF algorithm combined with the

EXG demonstrated high versatility in growth monitoring and yield

prediction modeling. By integrating photosynthetic parameters and

PIs, this system accurately deciphered real-time field variations to

formulate dynamic water–nutrient regulation schemes, thereby
Frontiers in Plant Science 13
achieving resource conservation and quality enhancement in

sandy loam soils of Inner Mongolia. Technical advantages

included early monitoring capability through EXG-based VIs,

reduced errors via UAV precision technology, and water–nutrient

management strategies covering critical reproductive cycles.

Compared with traditional methods, this system significantly

improves monitoring efficiency, minimizes sampling-induced

tissue damage, and proves better suited for large-scale

agricultural production.

We validated the field applicability of models. However, this

study only examined nitrogen fertilization; the impacts of

phosphorus and potassium on growth and yield require further

investigation. The water–nitrogen gradient was designed with a CK-

based progressive decrease to simulate arid wild conditions in Inner

Mongolia, aiming to provide data support for water and fertilizer

conservation cultivation. Future studies should explore the effects of

excessive irrigation and excessive fertilization. We successfully

established multiple high-precision models at a 50-m flight height

for real-time monitoring of water–nutrient demand dynamics.
FIGURE 8

Fitted scatter plot of the model. (a, top) Scatter plots of optimal prediction performance for phenotypic indicators based on vegetation indices (left
to right): BP - GLI - PH, RF - RDVI - TN, RF - EXG - SPAD, RF - GRRI - NC. (b, center): Scatter plots of optimal yield prediction performance based
on vegetation indices (left to right): RF - BRVI, SVM - EXG, RF - GRAY, SVM - NDRE, RF - Combine. (c, bottom): Scatter plots of optimal yield
prediction performance based on phenotypic indicators (left to right): RF - PH, RF - TN, RF - SPAD, RF - NC, BP - Combine. PH stand for plant
height; TN stand for tiller number; SPAD stand for soil and plant analysis development value; NC stand for nitrogen content. EXG stand for excess
green index; GLI stand for green leaf index; NDRE stand for normalized difference red - edge index; GRAY stand for gray level index; GRRI stand for
green - red ratio index; BRVI stand for simple blue ratio index; RDVI stand for renormalized difference vegetation index. BP stand for back
propagation neural network; SVM stand for support vector machine; RF stand for random forest.
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However, developing universally applicable growth monitoring

models remains challenging because of the uncontrolled nature of

soil hydrochemical properties and the trade-off between efficiency

and accuracy at this altitude. Hyperspectral or higher-resolution

sensors may help in alleviating these constraints. Future studies

should investigate the impact of UAV flight altitude on monitoring

precision and efficiency.
5 Conclusions

This study developed an advanced multispectral growth

monitoring system for G. uralensis using UAVs, achieving R² =

0.94. The study encompassed the construction of a water–fertilizer

deficiency model and its subsequent field application, thus

demonstrating the comprehensive nature of the system.

Furthermore, the construction of stable yield prediction models

based on VIs and PIs was successfully achieved (R² = 0.87; 0.81).

The results of this study suggested that the RF algorithm exhibited

greater generalizability in model construction for both growth

monitoring and yield prediction, whereas the EXG demonstrated

greater applicability for growth monitoring. The proposed

framework provided a valuable reference for the application of

UAV remote sensing in smart agriculture, assisting G. uralensis

cultivators and botanists in optimizing management decisions.

With the rapid development of UAV remote sensing technology,

UAVs equipped with multisensor systems would play an important

role in the sustainable exploitation and utilization of medicinal

plant resources.
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