
TYPE Original Research 
PUBLISHED 17 July 2025 
DOI 10.3389/fpls.2025.1613487 

OPEN ACCESS 

EDITED BY 

Fengqin Yan, 
Institute of Geography Science and Natural 
Resources (CAS), China 

REVIEWED BY 

Yu Fenghua,
 
Shenyang Agricultural University, China
 
Krishan K. Verma,
 
Guangxi Academy of Agricultural Sciences,
 
China
 
Shaohua Lei,
 
Nanjing Hydraulic Research Institute, China
 

*CORRESPONDENCE 

Xicun Zhu 

zxc@sdau.edu.cn 

RECEIVED 24 April 2025 
ACCEPTED 30 June 2025 
PUBLISHED 17 July 2025 

CITATION 

Li M, Zhu X, Yu X, Li C, Xu D, Wang L, 
Lv D and Ma Y (2025) Nitrogen content 
estimation of apple trees based on 
simulated satellite remote sensing data. 
Front. Plant Sci. 16:1613487. 
doi: 10.3389/fpls.2025.1613487 

COPYRIGHT 

© 2025 Li, Zhu, Yu, Li, Xu, Wang, Lv and Ma. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms. 

Frontiers in Plant Science 
Nitrogen content estimation of 
apple trees based on simulated 
satellite remote sensing data 
Meixuan Li1, Xicun Zhu1,2*, Xinyang Yu1, Cheng Li1, 
Dongyun Xu1, Ling Wang1, Dong Lv1 and Yuyang Ma1 

1College of Resources and Environment, Shandong Agricultural University, Tai’an, China, 2National 
Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong 
Agricultural University, Tai’an, China 
Introduction: Using satellite remote sensing technology to diagnose apple tree 
nitrogen content is critical for guiding regional precision fertilization of apple 
trees. However, due to differences in spatial resolution and spectral response, 
there is a lack of systematic evaluation of satellite data's applicability and 
accuracy in apple tree nitrogen inversion. 

Methods: This study used apple orchards in Qixia City, Shandong Province as the 
research area, collecting canopy hyperspectral data through an ASD spectrometer 
during three key phenological periods: the new-shoot-growing stage (NGS), the 
new-shoot-stop-growing stage (NSS), and the autumn shoot-growing stage (ASS). 
The data was resampled based on satellite sensor spectral response functions to 
match the band resolutions of multiple satellite sources. Correlation coefficient 
method and partial least squares regression were used to screen sensitive bands 
for apple tree nitrogen content. Support Vector Machine (SVM) and 
Backpropagation Neural Network (BPNN) algorithms were used to construct and 
screen the optimal models for apple tree nitrogen content estimation. 

Results: Results showed that visible light, red edge, near-infrared, and yellow 
edge bands were sensitive bands for estimating apple tree nitrogen content. The 
support vector machine model constructed based on Sentinel-2 satellite 
simulated data was the optimal nitrogen content inversion model, with an 
average R² value of 0.81 and an average RMSE value of 0.15 for training sets 
across different phenological periods, and an average R² value of 0.61 and an 
average RMSE value of 0.23 for validation sets. 

Discussion: This study systematically evaluated the applicability and accuracy 
differences of multi-source satellite data for estimating nitrogen content in apple 
trees, and clarified the variation patterns of nitrogen-sensitive spectral bands and 
optimal modeling strategies across key phenological stages. This research 
provides a scientific basis for data selection and a technical paradigm for 
remote sensing-based nutrient diagnosis of apple trees at the regional scale, 
and holds significant theoretical and practical value for developing region-wide 
precision fertilization systems based on remote sensing. 
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1 Introduction 

Nitrogen is a key nutritional element for apple tree growth, 
development, and apple quality, with its content changes directly 
affecting photosynthetic efficiency, leaf area index, and final yield 
(Li W, et al., 2022; Zhang et al., 2023). Traditional nitrogen 
diagnostic methods mainly rely on laboratory chemical analysis, 
such as the Kjeldahl method and spectrophotometric method. 
Although these methods have high measurement accuracy, they 
have disadvantages such as strong sample destruction, time-

consuming processes, and high costs, making it difficult to meet 
the needs for real-time and efficient monitoring. 

With the rapid development of remote sensing technology, its 
application in crop growth monitoring, nutrient diagnosis, and yield 
prediction has demonstrated significant advantages (Goffart et al., 
2022; Wen et al., 2024; Zydlik et al., 2024). Depending on the sensor 
platform, remote sensing can be categorized into proximal sensing, 
unmanned aerial vehicle (UAV) remote sensing, and satellite 
remote sensing. Proximal sensors, such as the ASD FieldSpec 
series, can acquire hyperspectral data with a spectral resolution of 
1–3 nm, enabling precise estimation of nitrogen content at the 
individual plant scale due to their rich spectral information and high 
estimation accuracy. However, they are limited by their point-based 
sampling nature and are thus only suitable for small-scale studies 
(Wang et al., 2019; Li C, et al., 2023). In contrast, UAV-based 
remote sensing, equipped with multispectral or hyperspectral 
cameras, offers high spatial resolution (at the centimeter level) 
and flexible deployment, allowing full orchard coverage and 
enabling effective nitrogen monitoring in small to medium-sized 
areas (Wang et al., 2023; Jiang et al., 2025). Nevertheless, its 
applicability is still constrained by flight altitude and battery life, 
typically limiting its use to experimental plots of only a few hectares 
(Li Y, et al., 2023). 

At the regional scale, satellite remote sensing has shown great 
potential in monitoring crop growth and nutrient dynamics due to 
its wide spatial coverage, short revisit periods, and convenient data 
acquisition (Jiang et al., 2023; Fu et al., 2024). High-resolution 
commercial satellites such as RapidEye and WorldView have 
achieved favorable results in vegetation nutrient monitoring 
(Magney et al., 2017; Brinkhoff et al., 2019; Wu et al., 2019). 
However, their high data acquisition costs limit widespread use in 
routine agricultural management (Huang et al., 2017; Solano et al., 
2019; Sozzi et al., 2021). Consequently, the exploration of open-
access, cost-effective, and efficient satellite data for monitoring 
nitrogen content in fruit trees has become a research hotspot. 

Currently, widely used open-access satellite data include 
Landsat-8, Sentinel-2, and GF-6, which have shown great promise 
in agricultural monitoring (Wolters et al., 2021; Dehghan-Shoar 
et al., 2023). Landsat-8 is equipped with the Operational Land 
Imager (OLI), which contains nine multispectral bands, including a 
near-infrared band (Band 5: 845–885 nm) commonly used for 
retrieving vegetation chlorophyll and nitrogen content. Croft et al. 
(2020) found that the normalized difference vegetation index 
(NDVI) derived from Landsat-8 imagery could effectively 
estimate chlorophyll content in cropland. Sentinel-2, with its 
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Multispectral Instrument (MSI), includes three red-edge bands 
(B5: 705 nm, B6: 740 nm, B7: 783 nm), which have proven useful 
for monitoring vegetation growth and nutrient status (Bossung 
et al., 2022; Li et al., 2022; Lapaz Olveira et al., 2023). Wang et al. 
(2025) used Sentinel-2 data in combination with biochemical trait 
models to achieve high-precision estimation of leaf nitrogen content 
in almond orchards, thereby providing valuable support for 
precision agriculture. The GF-6 satellite introduced additional 
spectral bands such as a yellow-edge band (Band 5: 520–600 nm) 
and two red-edge bands, further enhancing the capability for early 
stress detection and nutrient diagnosis. Chen and Xu (2024) 
demonstrated the potential of GF-6 red-edge bands by 
constructing NDRE1 and CIred-edge indices, which successfully 
monitored forest health conditions. 

Although these open-access satellite data have achieved 
promising results in crop nutrient monitoring, their application 
in fruit trees-particularly in economically significant crops such as 
apples—remains limited. Direct comparative studies using different 
satellite sensors to monitor nitrogen content in apple orchards face 
several challenges, including difficulties in acquiring temporally 
synchronized imagery over the same region, disparities in spatial 
resolution (30 m for Landsat-8, 10–20 m for Sentinel-2, and 16 m 
for GF-6), and differences in spectral band configurations. These 
factors can introduce systematic errors and complicate the 
integration and comparison of multi-source satellite data. 

To address these challenges, this study simulates satellite 
reflectance  using  ground-based  canopy  hyperspectral  
measurements and the spectral response functions of three 
satellite sensors to systematically evaluate the performance of 
Landsat-8, Sentinel-2, and GF-6 in estimating nitrogen content of 
apple trees at different phenological stages. Sensitive spectral bands 
were identified through correlation analysis and partial least squares 
regression. Subsequently, support vector machine (SVM) and back-
propagation neural network (BPNN) models were constructed to 
determine the optimal nitrogen estimation models and the most 
suitable monitoring satellite. The objective of this study is to provide 
a theoretical basis and practical reference for the efficient 
application of open-access satellite data in fruit tree nutrient 
monitoring and precision orchard management. 
2 Materials and methods 

2.1 Study area 

The research area is located in Qixia City, Yantai, Shandong 
Province, China (37°18’-37°32’N, 121°20’-121°34’E), as shown in 
Figure 1. This region has a warm temperate monsoon humid 
climate with distinct seasons and large day-night temperature 
differences, which is beneficial for apple sugar accumulation. The 
soil type is cambisol, which has good water retention capacity and is 
very suitable for apple tree growth. Qixia City is known as the 
“Apple Capital of China” and is one of China’s main apple 
production areas. The apple orchards in this region are 
concentrated in distribution, with a wide total area and relatively 
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uniform varieties, providing favorable conditions for large-scale 
estimation research using remote sensing technology. 
2.2 Data acquisition and preprocessing 

2.2.1 Apple tree leaf sample collection and 
nitrogen content determination 

Using ‘Red Fuji’ apple trees in their apple-bearing period as the 
research subjects, leaf samples were collected during three key 
phenological stages in 2023: the new-shoot-growing stage (NGS) 
on May 19, the new-shoot-stop-growing stage (NSS) on June 20, 
and the autumn shoot-growing stage (ASS) on September 22. 
Twenty orchards were randomly selected in the research area, 
with 5 apple trees randomly chosen from each orchard. From 
each apple tree canopy, 3 healthy leaves were randomly collected 
from the east, west, south, and north directions, totaling 12 leaves as 
one sample. A total of 100 samples were collected for each 
phenological period. The collected samples were placed in a 
thermos box and taken back to the laboratory, and the Kjeldahl 
method was used to determine the nitrogen content of the 
canopy leaves. 
2.2.2 Determination and preprocessing of apple 
tree canopy hyperspectral data 

Canopy reflectance spectra of apple trees were collected using 
an ASD FieldSpec 4 spectroradiometer (Analytical Spectral Devices 
Inc., Boulder, CO, USA), which covers a spectral range of 350–2500 
nm. The acquisition time is consistent with the collection time of 
apple leaves. The spectrometer offers a spectral resolution of 3 nm 
in the visible and near-infrared (VNIR) region around 700 nm and 
10 nm in the shortwave infrared (SWIR) regions around 1400 nm 
Frontiers in Plant Science 03 
and 2100 nm. Reflectance data were recorded at 1 nm intervals, 
resulting in a total of 2151 continuous spectral bands. 

Spectral measurements were conducted under clear, cloud-free 
conditions between 10:00 and 14:00 local time, when the solar 
elevation angle exceeded 45°, to minimize the influence of changing 
illumination. The instrument was preheated for 15 minutes prior to 
data acquisition. A calibrated white reference panel was used for 
spectral calibration before each measurement, and optimized every 
15 minutes. During optimization, the panel was placed horizontally 
and kept free of direct shadows to ensure an ideal reflectance value 
of 1. During measurements, the operator faced the sun to avoid 
casting shadows on the target. The spectrometer probe was 
positioned vertically downward above the center of the tree 
canopy at a height of 1.5 to 3 meters, adjusted according to the 
crown size to ensure the entire canopy was within the field of view 
and to reduce interference from canopy structure and shadows. Ten 
measurements were taken for each observation plot, and the average 
reflectance value was used to represent the sample. The acquired 
canopy hyperspectral data were smoothed using preprocessing 
techniques to reduce noise and improve signal quality. Finally, 
100 apple canopy spectral data were obtained for each 
phenological period. 
2.3 Research methods 

2.3.1 Extraction of different satellite apple tree 
canopy spectral simulation data 

To evaluate the potential of Landsat-8, Sentinel-2, and GF-6 
sensors for estimating nitrogen content in apple tree canopies, this 
study generated simulated satellite data based on ground-measured 
hyperspectral data. Specifically, the spectral reflectance data 
FIGURE 1 

Location map of the study area. 
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collected by the ASD FieldSpec spectrometer were resampled using 
a convolution operation according to the spectral response 
functions (SRFs) of the three satellite sensors, producing 
equivalent satellite band reflectance data under ideal conditions 
without atmospheric interference (Prey and Schmidhalter, 2019). 
This approach allows for precise assessment of the sensitivity of 
different sensor bands to apple tree nitrogen content in an ideal 
environment, thereby providing theoretical support for the 
selection of sensitive bands and optimization of modeling 
procedures prior to the application of actual satellite imagery. 

Considering that plant spectral characteristics in the visible region 
are mainly influenced by chlorophyll content, the near-infrared region 
is closely associated with leaf internal structure, and the shortwave 
infrared region predominantly reflects leaf water content variations. 
Given that nitrogen is a fundamental component of chlorophyll 
present in both chlorophyll a and b, this study concentrated the 
resampling on bands within the visible and near-infrared regions to 
more effectively capture the spectral responses related to nitrogen 
content. The spectral response functions (SRFs) employed for 
resampling are presented in Figure 2, while the key parameters of 
the three sensors are summarized in Tables 1–3. The spectral 
resampling procedure is detailed in Equation 1. 

Z bandl   max  

sband (l)r(l)dl 
bandl   min  rband = Z (1)bandl max 

sband (l)dl 
bandl min 

where rband is the simulated satellite band reflectance, sband (l) is  
the spectral response function of Landsat−8, Sentinel−2, and GF−6 
(Figure 2), bandl and bandl min are the upper and lower limits max 

of the band, and r(l) is the measured canopy hyperspectral data. 
2.3.2 Screening sensitive bands for apple tree 
nitrogen content from different satellite 
simulation data 

Due to its normalized construction approach, the Normalized 
Difference Vegetation Index (NDVI) is relatively sensitive to 
changes in soil background and can effectively suppress 
radiometric distortions caused by various environmental factors, 
including sensor calibration errors, variations in solar elevation 
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angle, terrain fluctuations, cloud shadows, and atmospheric 
conditions. As a result, NDVI exhibits high stability and 
reliability in extracting vegetation phenological information 
(Rokni and Musa, 2019; Zhao and Qu, 2024). 

Compared with other commonly used spectral feature extraction 
methods, such as raw reflectance, first-order derivatives, or simple 
ratio indices, the normalized vegetation index demonstrates greater 
robustness under diverse environmental conditions. Although ratio-
based indices and derivative spectra can enhance the sensitivity to 
certain physiological characteristics of vegetation in specific spectral

regions, they are more susceptible to noise and atmospheric 
disturbances, leading to lower stability. In contrast, NDVI, by 
emphasizing relative differences between spectral bands, effectively 
mitigates the influence of these external interferences. 

Based on these advantages, this study selected the normalized 
vegetation index as a more stable and adaptable spectral feature 
construction method to identify spectral bands sensitive to apple 
tree nitrogen content under different phenological stages and sensor 
conditions, as shown in Equation 2. Specifically, the Pearson 
correlation coefficient was employed to preliminarily identify 
sensitive spectral bands by evaluating the correlations between the 
NDVI constructed from simulated data of three sensors during 
various phenological stages and the measured nitrogen content. 
Subsequently, Partial Least Squares Regression (PLSR) models were 
constructed using various combinations of the selected sensitive 
bands to further explore the impact of different band combinations 
derived from simulated multi-sensor data on the inversion accuracy 
of apple tree nitrogen content. 

oi½(xij −  xj)(yi −  y) 
rj = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

½ot (xij −  xj)
2 

q 
½ot (yi −  y)2 

(2) 

where xij represents the spectral reflectance of the jth 
wavelength in the ith sample (i=1,2,…, m, j=1,2,…, n), yi 
represents the nitrogen content of the ith sample,  xj is the sample 
average of xj,  yj is the sample average of yj. 

2.3.3 Screening the optimal model for apple tree 
nitrogen content estimation 

A total of 100 samples were collected, from which 60 samples 
were randomly selected as the training set, and the remaining 40 
TABLE 1 Landsat-8 satellite sensor parameters. 

Band settings Wavelength range (nm) Spatial resolution (m) 

Coastal band 433-453 30 

Blue band 450-515 30 

Green band 525-600 30 

Red band 630-680 30 

NIR 845-885 30 

SWIR1 1560-1660 30 

SWIR2 2100-2300 30 

Cirrus band 1360-1390 30 
 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1613487
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1613487 
 

 

samples were used as the validation set. The full-band information 
from different satellite-simulated data was used as independent 
variables, and the nitrogen content of apple trees was taken as the 
dependent variable. Two nonlinear machine learning algorithms— 
Support Vector Machine (SVM) and Backpropagation Neural 
Network (BPNN) —were employed to construct inversion models 
of apple tree nitrogen content across different phenological stages. 
The coefficient of determination (R²) and root mean square error 
(RMSE) were used to evaluate the accuracy of the models, with the 
aim of identifying the optimal inversion model and determining the 
most suitable satellite sensor for estimating apple tree nitrogen 
content. The calculation formulas for R² and RMSE are provided in 
Equations 3 and 4, respectively. 

R2 = 
^n y i − y)2oi=1(

noi=1(yi − y)2 (3) 
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^

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 

y i)
2n 

i=1ðyi −RMSE = (4)on 

where yi is the measured value of canopy nitrogen content, ŷ i is 
the predicted value of nitrogen content, y is the average of the 
measured values, and n is the number of samples. 
3 Results and analysis 

3.1 Analysis of apple tree canopy nitrogen 
content in different phenological periods 

Figure 3 shows the changes in apple tree canopy nitrogen 
content during different phenological periods. From the new 
shoot growing period to the autumn shoot stop-growing period, 
the average nitrogen content values were 3.04, 2.82, and 2.60 mg·g-1, 
FIGURE 2 

Simulated spectral response functions of satellite sensors. (A) Landsat-8; (B) Sentinel-2; (C) GF-6. 
TABLE 2 Sentinel-2A satellite sensor parameters. 

Band settings Centre wavelength (nm) Spatial resolution 

Coastal band 443 60 

Blue band 490 10 

Green band 560 10 

Red band 665 10 

RE1 705 20 

RE2 740 20 

RE3 783 20 

NIR1 842 10 

NIR2 865 20 

Water vapor band 945 60 

Cirrus band 1375 60 

SWIR1 1610 20 

SWIR2 2190 20 
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respectively. The maximum value was 3.83 mg·g-1, occurring in the 
new shoot growing period, and the minimum value was 2.02 mg·g-1, 
occurring in the autumn shoot stop-growing period. This indicates 
a gradually decreasing trend in apple tree canopy nitrogen content. 
3.2 Analysis of apple tree canopy 
hyperspectral and satellite simulation data 
in different phenological periods 

The apple tree canopy hyperspectral curves for the three 
phenological periods are shown in Figure 4A. From Figure 4A, it  
can be seen that the canopy spectral curves for the three 
phenological periods have basically consistent trends and 
characteristics. Comparing the canopy spectral reflectance values 
of apple trees in different phenological periods, the canopy spectral 
reflectance was highest in the new shoot growing period, slightly 
lower in the spring shoot stop-growing period, and lowest in the 
autumn shoot stop-growing period. This indicates that the 
Frontiers in Plant Science 06
phenological period is an important factor to consider when 
estimating apple tree canopy nitrogen content. 

Based on the spectral response functions of Landsat-8, Sentinel­
2, and GF-6, the near-ground hyperspectral data was resampled to 
obtain simulation data for the three satellite sensors, as shown in 
Figures 4B-D. All three satellite sensors include blue, green, red, and 
near-infrared bands. Among them, Sentinel-2 is equipped with 
three red edge bands, while GF-6 includes two red edge bands and 
one yellow edge band. Among these three sensors, Sentinel-2 has 
ten bands, GF-6 has eight bands, and Landsat-8 has five bands. 
3.3 Correlation analysis between different 
satellite simulation data and apple tree 
nitrogen content 

The correlation analysis between normalized vegetation indices 
and nitrogen content in apple tree canopies (Figure 5) revealed that 
Sentinel-2 imagery consistently demonstrated superior potential for 
TABLE 3 GF-6 satellite sensor parameters. 

Band settings Wavelength range (nm) Spatial resolution (m) 

Blue band 450-520 16 

Green band 520-590 16 

Red band 630-690 16 

NIR 770-890 16 

RE1 690-730 16 

RE2 730-770 16 

PE 400-450 16 

YE 590-630 16 
 

FIGURE 3 

Statistical values of nitrogen content in the canopy of apple trees at different phenological periods. 
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nitrogen monitoring across all three key phenological stages: the 
new-shoot-growing stage (NGS), the new-shoot-stop-growing stage 
(NSS), and the autumn shoot-growing stage (ASS). In particular, 
during the NSS stage, Sentinel-2 achieved a correlation coefficient as 
high as 0.56, significantly outperforming both Landsat-8 and GF-6. 
Further investigation indicated that the vegetation indices most 
strongly correlated with nitrogen content were all derived from 
Sentinel-2 data. Specifically, the optimal index during the NGS stage 
involved the combination of the RedEdge1 and NIR bands, while 
RedEdge2 and RedEdge3 combinations were most effective during 
the NSS and ASS stages. These findings highlight the pivotal role of 
red-edge bands in the remote sensing–based assessment of nitrogen 
status in apple orchards. 

From the perspective of spectral response mechanisms, 
chlorophyll and nitrogen content are the primary factors influencing 
the absorption and reflectance properties of plant leaves across the 
electromagnetic spectrum, particularly in the red, red-edge, and near-
infrared (NIR) regions. During the NGS stage, the optimal spectral 
band combinations spanned the red, green, red-edge, and yellow-edge 
regions—wavelengths known to be highly sensitive to variations in 
chlorophyll concentration and leaf cellular structure. These bands 
effectively capture photosynthetic activity and nutrient dynamics 
Frontiers in Plant Science 07 
during peak vegetative growth. In the NSS stage, the optimal 
combination expanded to include the blue and NIR bands, likely 
reflecting structural changes such as increasing leaf thickness and 
internal anatomical alterations. The blue band is particularly 
responsive to surface scattering properties, while the NIR band is 
indicative of the integrity and organization of internal cell structures. 
By  the ASS  stage,  the most  informative  bands were primarily  located  
in the red-edge and NIR regions, coinciding with the physiological 
senescence of the trees, characterized by declining chlorophyll levels 
and cellular degradation. The strong sensitivity of red-edge and NIR 
bands to these degenerative processes underpins their effectiveness in 
monitoring canopy nitrogen status during the later stages of the 
growth cycle. 
3.4 Screening sensitive bands for apple 
tree nitrogen content estimation 

The preliminarily screened nitrogen content sensitive bands 
were combined to construct partial least squares regression models 
to explore the influence of different sensitive bands on apple tree 
nitrogen content estimation. The model accuracy results are shown 
FIGURE 4 

Spectral characteristic curves of apple tree canopy hyperspectral and simulated Landsat-8, Sentinel-2, and GF-6 satellite data in different 
phenological periods. (A) shows the hyperspectral data of the apple tree canopy; (B) shows the simulated Landsat-8 data of the apple tree canopy; 
(C) shows the simulated Sentinel-2 data of the apple tree canopy; (D) shows the simulated GF-6 data of the apple tree canopy. 
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in Table 4. The PLSR model results based on Landsat-8 data show 
that the near-infrared band played a key role in all three 
phenological periods. In the new-shoot-growing stage, the model 
including red, green, blue, and near-infrared bands had an R² of 
0.48, which decreased by 20% after removing the near-infrared 
band; in the new-shoot-stop-growing stage, the model R² decreased 
from 0.53 to 0.50 (a 3% decrease); in the autumn shoot-growing 
stage, it decreased from 0.29 to 0.19 (a 10% decrease). Notably, the 
model accuracy was lowest for combinations in Sentinel-2 and GF-6 
data that did not include near-infrared bands (R² of 0.31 and 0.27, 
respectively), further confirming the importance of the near-
infrared band. 

The PLSR model for Sentinel-2 data indicated that removing 
red edge bands would result in a significant decrease in model 
accuracy: a 24% reduction in R² (from 0.55 to 0.31) in the new-
shoot-growing stage, a 12% reduction (from 0.61 to 0.49) in the 
new-shoot-stop-growing stage, and an 11% reduction (from 0.58 to 
0.47) in the autumn shoot-growing stage. GF-6 data showed a 
similar trend, with R² decreasing by 8%, 8%, and 16% in the new-
shoot-growing stage, new-shoot-stop-growing stage, and autumn 
Frontiers in Plant Science 08
shoot-growing stage, respectively, after removing red edge bands. 
The yellow edge band unique to GF-6  data showed unique

predictive value. Removing this band caused the model R² to 
decrease by 7% (from 0.54 to 0.47) in the new shoot growing 
period and by 7% (from 0.57 to 0.50) in the spring shoot stop-
growing period. 

In addition, all different satellite remote sensing data indicated 
that the three visible light bands - blue, green, and red - had 
important influences on estimating apple tree nitrogen content in 
different phenological periods. In summary, visible light bands, red 
edge bands, near-infrared bands, and yellow edge bands are 
important for estimating apple tree nitrogen content. 
3.5 Screening the optimal inversion model 
for apple tree nitrogen content estimation 

Using all bands of the three satellite simulation data, SVM and 
BPNN were used to construct apple tree nitrogen content 
estimation models to screen the optimal satellite for apple tree 
FIGURE 5 

Correlation analysis between different band combinations and nitrogen. 
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TABLE 4 Partial least squares regression model based on different sensitive band combinations. 

Simulated Data Source Phenological Stage Band combination R2 

Landsat-8 

NGS 

Red, Green, Blue, Nir 0.48 

Red, Green, Nir 0.44 

Red, Blue, Nir 0.40 

Green, Blue, Nir 0.32 

Red, Green, Blue 0.28 

NSS 

Red, Blue, Coastal, Nir 0.53 

Red, Blue, Coastal 0.50 

Red, Coastal, Nir 0.45 

Red, Coastal 0.29 

ASS 

Red, Blue, Green, Nir 0.47 

Red, Green, Nir 0.43 

Red, Blue, Nir 0.29 

Red, Blue 0.19 

Sentinel-2A 

NGS 

Red, Blue, Green, RE1 0.55 

Red, Green, RE1 0.52 

Red, Blue, RE1 0.51 

Red, Blue, RE1 0.44 

Red, Blue, Green 0.31 

NSS 

RE1, RE2, RE3, Nir1, Nir3 0.50 

Red, Blue, RE1, Nir1 0.61 

Red, Blue, RE1, RE2, RE3 0.55 

Red, Blue, Nir1, Nir2 0.53 

Red, Blue, Green 0.49 

ASS 

RE1, RE2, RE3, Nir1, Nir2 0.45 

Red, Blue, Green, RE1, Nir1 0.58 

Red, Blue, Green, Nir1 0.47 

Red, Blue, Green, RE1 0.40 

GF-6 

NGS 

Red, Green, RE1, YE 0.54 

Green, RE1, YE 0.49 

Red, Green, RE1 0.47 

Red, Green, YE 0.46 

Red, Green 0.27 

NSS 

PE, Blue, YE, RE1, Nir 0.57 

PE, Blue, RE1, Nir 0.50 

PE, Blue, YE, Nir 0.49 

PE, YE, RE1, Nir 0.49 

PE, Blue, Nir 0.44 

ASS Green, RE1, RE2, Nir 0.56 

(Continued) 
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nitrogen content estimation. The accuracy evaluation results are 
shown in Table 5. A comparison of inversion models constructed 
using data from different satellite sensors showed that the accuracy 
of the BPNN model was consistently lower than that of the SVM 
model across all phenological stages. 

Comparing the modeling accuracy of the three simulation data, 
it was found that the support vector machine model constructed 
based on Sentinel-2 simulation data had an average R² value of 0.81 
and an average RMSE value of 0.15 for the training set, and an 
average R² value of 0.61 and an average RMSE value of 0.23 for the 
validation set. In contrast, the support vector machine model 
established based on Landsat-8 bands had an average R² value 
0.17 lower than Sentinel-2 and an RMSE 0.06 higher for the training 
set, and an R² 0.1 lower and an RMSE 0.05 higher for the validation 
set. Comparing the model accuracy constructed based on Sentinel-2 
and GF-6 simulation data, the results showed that the inversion 
accuracy of Sentinel-2 bands was slightly higher than that of GF-6. 
In summary, Sentinel-2 satellite simulation data performed best in 
the application of apple tree nitrogen content estimation. The 
scatter plots of the optimal inversion models for different 
phenological periods of apple trees are shown in Figure 6. 
 

4 Discussion 

4.1 Impact of phenological period on apple 
tree nitrogen content estimation 

Research has found that from the new shoot growing period to 
the autumn shoot stop-growing period, apple tree canopy nitrogen 
content continuously decreases. Apple trees  have  the highest
Frontiers in Plant Science 10 
nitrogen content during the new organ construction period, and 
as the organs grow, the nitrogen content in the tree body gradually 
decreases. The main reason is that as the seasons change, nitrogen 
in apple trees continuously transfers to other new organs. During 
the new shoot growing period, nitrogen absorbed by the apple tree 
root system continuously transfers to new organs to meet the 
nitrogen needs for constructing new shoots and leaves; while in 
the spring shoot stop-growing period, leaf nitrogen reaches a 
relatively stable state; after entering the autumn shoot stop-
growing period, nitrogen absorbed by the apple tree root is 
prioritized for root growth, relatively weakening the transport to 
the upper part of the apple tree (Zhao et al., 2024). Therefore, as 
shown in Figure 3, apple tree canopy nitrogen content shows a 
decreasing trend from the new shoot growing period to the autumn 
shoot stop-growing period. 
4.2 Analysis of sensitive bands for apple 
tree nitrogen content 

There are differences in sensitive bands for estimating apple tree 
nitrogen content in different phenological periods. However, through 
correlation analysis of different band combinations with nitrogen 
content, it was found that the optimal bands within the same 
phenological period showed certain similarities. Comprehensive 
analysis of the three satellite sensors’ results showed that during the 
new shoot growing period, red, green, red edge, and yellow edge bands 
showed higher sensitivity to nitrogen content; during the spring shoot 
stop-growing period, the optimal bands were blue, red edge, near-
infrared, and yellow edge bands; while during the autumn shoot stop-
growing period, red edge and near-infrared bands became the key 
TABLE 4 Continued 

Simulated Data Source Phenological Stage Band combination R2 

RE1, RE2, Nir 0.48 

Green, RE1, RE2 0.43 

Green, Nir 0.40 
FIGURE 6
 

SVM inversion scatter plots for nitrogen content using Sentinel-2 data at different phenological stages. (A) NGS, (B) NSS, (C) ASS.
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feature bands (Li et al., 2014; Sun et al., 2021; Zhang et al., 2023; Hou 
et al., 2024). 

Although the optimal band combinations differed across 
phenological periods, in all three periods, the band combinations 
with the highest correlation to nitrogen content all came from 
Sentinel-2, specifically NDVI(Rededge1/Red), NDVI(Rededge2/ 
Rededge3), and NDVI(Rededge2/Rededge3). This result further 
confirms the importance of red edge bands in nitrogen estimation. 
Furthermore, as shown in Table 1, the model accuracy established 
with optimal combinations after removing red edge bands 
significantly decreased, again emphasizing the key role of red edge 
bands in nitrogen estimation (Peng et al., 2021). The partial least 
squares models constructed with different band combinations also 
verified the important role of near-infrared bands in nitrogen 
estimation (Jang et al., 2024). Additionally, the study found that 
yellow edge bands also have important value for nitrogen 
estimation, indicating that compared to previous high-resolution 
satellite series, the newly added red edge and yellow edge bands in 
the GF-6 satellite  have  significant advantages in vegetation nitrogen 
Frontiers in Plant Science 11 
monitoring. These findings provide important theoretical basis and 
technical support for optimizing apple tree nitrogen monitoring. 
4.3 The optimal satellite for estimating 
nitrogen content in apple trees and 
analysis of their interactions 

To comprehensively evaluate the capability of different sensors in 
estimating nitrogen content, we constructed inversion models using 
support vector machines (SVM) and backpropagation neural networks 
(BPNN) based on all spectral bands of the three sensors. The results 
indicate that Sentinel-2 consistently exhibits the highest correlation and 
modeling accuracy across all phenological stages, followed by GF-6, 
with Landsat-8 performing the worst. Sentinel-2’s superior

performance is attributed to its narrower red-edge bands (15 nm 
bandwidth), which enable finer detection of subtle changes in the 
nitrogen content of the apple canopy (Prey and Schmidhalter, 2019). It 
is noteworthy that there are significant interactions among 
TABLE 5 Accuracy evaluation results of SVM and BPNN models constructed using all bands of different simulation data. 

Sensor Type Model Type Sample Set Evaluation Metrics NGS NSS ASS 

Landsat-8 

SVM 

Training Set 
R2 0.64 0.66 0.62 

RMSE 0.21 0.18 0.23 

Validation Set 
R2 0.51 0.53 0.50 

RMSE 0.34 0.27 0.24 

BPNN 

Training Set 
R2 0.57 0.65 0.60 

RMSE 0.22 0.18 0.23 

Validation Set 
R2 0.48 0.50 0.59 

RMSE 0.35 0.28 0.24 

Sentinel-2 

SVM 

Training Set 
R2 0.81 0.83 0.79 

RMSE 0.15 0.12 0.17 

Validation Set 
R2 0.61 0.63 0.60 

RMSE 0.26 0.23 0.21 

BPNN 

Training Set 
R2 0.77 0.80 0.77 

RMSE 0.17 0.13 0.18 

Validation Set 
R2 0.59 0.60 0.56 

RMSE 0.28 0.24 0.22 

GF-6 

SVM 

Training Set 
R2 0.80 0.82 0.78 

RMSE 0.16 0.13 0.18 

Validation Set 
R2 0.60 0.62 0.61 

RMSE 0.30 0.23 0.21 

BPNN 

Training Set 
R2 0.78 0.78 0.74 

RMSE 0.16 0.14 0.20 

Validation Set 
R2 0.58 0.64 0.56 

RMSE 0.30 0.22 0.22 
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phenological stages, spectral band characteristics, and sensor 
configurations. The distribution and variation of canopy nitrogen 
during different phenological periods affect the sensitivity to specific 
bands, which vary among sensors. For example, although GF-6 
possesses red-edge and yellow-edge bands, its red-edge bandwidth is 
wider than that of Sentinel-2, resulting in less precise responses to 
nitrogen variations. This matching relationship between band 
configuration and physiological changes is a critical factor 
influencing the accuracy of nitrogen estimation. Therefore, 
integrating phenological dynamics, spectral band sensitivity, and 
sensor characteristics contributes to a more comprehensive 
understanding of the spatiotemporal dynamics of nitrogen in fruit 
trees and provides a theoretical basis for optimizing remote sensing 
monitoring strategies. 
 

5 Conclusion 

Using a method combining near-ground measured canopy 
hyperspectral data with multi-source satellite simulation, this study 
evaluated the potential of different open-source satellite remote sensing 
data in estimating apple tree nitrogen content. Results showed that 
visible light, red edge, near-infrared, and yellow edge bands are 
important for apple tree nitrogen estimation. Compared to Landsat-8 
and GF-6, the apple tree nitrogen content estimation model 
constructed using Sentinel-2 satellite remote sensing data was the 
optimal inversion model. This study provides scientific basis  and
technical reference for the application of different satellite sensors in 
apple tree nitrogen monitoring, which is significant for optimizing 
apple tree nutrient monitoring management. Future research can 
expand on this study by integrating multi-temporal and multi-source 
remote sensing data to improve the temporal resolution and robustness 
of nitrogen content estimation based on Sentinel-2 imagery. 
Furthermore, the adoption of more advanced machine learning 
algorithms holds promise for enhancing model performance, thereby 
advancing fruit tree nutrient monitoring toward greater accuracy and 
broader applicability. 
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Lapaz Olveira, A., Saıńz Rozas, H., Castro-Franco, M., Carciochi, W., Nieto, L., 
Balzarini, M., et al. (2023). Monitoring corn nitrogen concentration from radar (C­
SAR), optical, and sensor satellite data fusion. Remote Sens 15, 824. doi: 10.3390/ 
rs15030824 

Li, C., Chimimba, E. G., Kambombe, O., Brown, L. A., Chibarabada, T. P., Lu, Y., 
et al. (2022). Maize yield estimation in intercropped smallholder fields using satellite 
data in southern Malawi. Remote Sens 14, 2458. doi: 10.3390/rs14102458 

Li, C., Li, X., Meng, X., Xiao, Z., Wu, X., Wang, X., et al. (2023). Hyperspectral 
estimation of nitrogen content in wheat based on fractional difference and continuous 
wavelet transform. AGRICULTURE-BASEL 13, 1017. doi: 10.3390/agriculture13051017 

Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., et al. (2014). Improving 
estimation of summer maize nitrogen status with red edge-based spectral vegetation 
indices. F Crop Res. 157, 111–123. doi: 10.1016/j.fcr.2013.12.018 

Li, Y., Wu, T., Ge, Y., Xi, S., Zhang, T., and Zhang, W. (2023). Semi-supervised 
cooperative regression model for small sample estimation of citrus leaf nitrogen content 
with  UAV  images.  Int.  J .  Remote  Sens  44,  7237–7262.  doi:  10.1080/  
01431161.2023.2240027 

Li, W., Zhu, X., Yu, X., Li, M., Tang, X., Zhang, J., et al. (2022). Inversion of nitrogen 
concentration in apple canopy based on UAV hyperspectral images. Sensors 22, 3503. 
doi: 10.3390/s22093503 

Magney, T. S., Eitel, J. U. H., and Vierling, L. A. (2017). Mapping wheat nitrogen 
uptake from RapidEye vegetation indices. Precis Agric. 18, 429–451. doi: 10.1007/ 
s11119-016-9463-8 

Peng, Y., Zhu, X., Xiong, J., Yu, R., Liu, T., Jiang, Y., et al. (2021). Estimation of 
Nitrogen Content on Apple Tree Canopy through Red-Edge Parameters from 
Fractional-Order Differential Operators using Hyperspectral Reflectance. J. Indian 
Soc Remote Sens 49, 377–392. doi: 10.1007/s12524-020-01197-2 

Prey, L., and Schmidhalter, U. (2019). Simulation of satellite reflectance data using 
high-frequency ground based hyperspectral canopy measurements for in-season 
Frontiers in Plant Science 13 
estimation of grain yield and grain nitrogen status in winter wheat. ISPRS J. 
Photogramm Remote Sens 149, 176–187. doi: 10.1016/j.isprsjprs.2019.01.023 

Rokni, K., and Musa, T. A. (2019). Normalized difference vegetation change index: A 
technique for detecting vegetation changes using Landsat imagery. CATENA 178, 59– 
63. doi: 10.1016/j.catena.2019.03.007 

Solano, F., Di Fazio, S., and Modica, G. (2019). A methodology based on GEOBIA 
and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive 
orchards. Int. J. Appl. Earth Obs Geoinf 83, 101912. doi: 10.1016/j.jag.2019.101912 

Sozzi, M., Kayad, A., Gobbo, S., Cogato, A., Sartori, L., Marinello, F., et al. (2021). 
Site-specific nitrogen economic comparison of satellite, plane and UAV-acquired 
NDVI images for application: observations from Italy. Agronomy 11, 2098. 
doi: 10.3390/agronomy11112098 

Sun, W., Wang, D., Jin, N., Xu, S., and Bai, H. (2021). Nitrogen content estimation of 
apple leaves using hyperspectral analysis. Math. Probl. Eng 2021, 1030706. doi: 10.1155/ 
2021/1030706 

Wang, Y., Feng, C., Ma, Y., Chen, X., Lu, B., Song, Y., et al. (2023). Estimation of 
nitrogen concentration in walnut canopies in southern xinjiang based on UAV 
multispectral images. Agronomy 13, 1604. doi: 10.3390/agronomy13061604 

Wang, K., Huggins, D. R., and Tao, H. (2019). Rapid mapping of winter wheat yield, 
protein, and nitrogen uptake using remote and proximal sensing. Int. J. Appl. Earth Obs 
Geoinf 82, 101921. doi: 10.1016/j.jag.2019.101921 

Wang, Y., Suarez, L., Hornero, A., Poblete, T., Ryu, D., Gonzalez-Dugo, V., et al. 
(2025). Assessing plant traits derived from Sentinel-2 to characterize leaf nitrogen 
variability in almond orchards: modeling and validation with airborne hyperspectral 
imagery. Precis Agric. 26, 13. doi: 10.1007/s11119-024-10198-x 

Wen, S., Cui, N., Li, M., Gong, D., Xing, L., Wu, Z., et al. (2024). Optimizing 
irrigation and nitrogen fertilizer management to improve apple yield, quality, water 
productivity and nitrogen use efficiency: A global meta-analysis. Sci. Hortic. 
(Amsterdam) 332, 113221. doi: 10.1016/j.scienta.2024.113221 

Wolters, S., Söderström, M., Piikki, K., Reese, H., and Stenberg, M. (2021). Upscaling 
proximal sensor N-uptake predictions in winter wheat (Triticum aestivum L.) with 
Sentinel-2 satellite data for use in a decision support system. Precis Agric. 22, 1263– 
1283. doi: 10.1007/s11119-020-09783-7 

Wu, H., Levin, N., Seabrook, L., Moore, B. D., and McAlpine, C. (2019). Mapping 
foliar nutrition using WorldView-3 and WorldView-2 to assess koala habitat 
suitability. Remote Sens 11, 215. doi: 10.3390/rs11030215 

Zhang, C., Zhu, X., Li, M., Xue, Y., Qin, A., Gao, G., et al. (2023). Utilization of the 
fusion of ground-space remote sensing data for canopy nitrogen content inversion in 
apple orchards. Horticulturae 9, 1085. doi: 10.3390/horticulturae9101085 

Zhao, Q., and Qu, Y. (2024). The retrieval of ground NDVI (Normalized difference 
vegetation index) data consistent with remote-sensing observations. Remote Sens 16, 
1212. doi: 10.3390/rs16071212 

Zhao, X., Zhao, Z., Zhao, F., Liu, J., Li, Z., Wang, X., et al. (2024). An estimation of the 
leaf nitrogen content of apple tree canopies based on multispectral unmanned aerial 
vehicle imagery and machine learning methods. AGRONOMY-BASEL 14, 552. 
doi: 10.3390/agronomy14030552 

Zydlik, Z., Kayzer, D., and Zydlik, P. (2024). The Influence of some Climatic 
Conditions on the Yield and apple Quality of Replanted Apple Orchard. POLISH J. 
Environ. Stud. 33, 4493–4501. doi: 10.15244/pjoes/181160 
frontiersin.org 

https://doi.org/10.1007/s11540-022-09545-0
https://doi.org/10.3390/f15020268
https://doi.org/10.3390/rs9030227
https://doi.org/10.3390/horticulturae10010035
https://doi.org/10.1016/j.fcr.2023.108860
https://doi.org/10.3390/agronomy15010038
https://doi.org/10.3390/agronomy15010038
https://doi.org/10.3390/rs15030824
https://doi.org/10.3390/rs15030824
https://doi.org/10.3390/rs14102458
https://doi.org/10.3390/agriculture13051017
https://doi.org/10.1016/j.fcr.2013.12.018
https://doi.org/10.1080/01431161.2023.2240027
https://doi.org/10.1080/01431161.2023.2240027
https://doi.org/10.3390/s22093503
https://doi.org/10.1007/s11119-016-9463-8
https://doi.org/10.1007/s11119-016-9463-8
https://doi.org/10.1007/s12524-020-01197-2
https://doi.org/10.1016/j.isprsjprs.2019.01.023
https://doi.org/10.1016/j.catena.2019.03.007
https://doi.org/10.1016/j.jag.2019.101912
https://doi.org/10.3390/agronomy11112098
https://doi.org/10.1155/2021/1030706
https://doi.org/10.1155/2021/1030706
https://doi.org/10.3390/agronomy13061604
https://doi.org/10.1016/j.jag.2019.101921
https://doi.org/10.1007/s11119-024-10198-x
https://doi.org/10.1016/j.scienta.2024.113221
https://doi.org/10.1007/s11119-020-09783-7
https://doi.org/10.3390/rs11030215
https://doi.org/10.3390/horticulturae9101085
https://doi.org/10.3390/rs16071212
https://doi.org/10.3390/agronomy14030552
https://doi.org/10.15244/pjoes/181160
https://doi.org/10.3389/fpls.2025.1613487
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Nitrogen content estimation of apple trees based on simulated satellite remote sensing data
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data acquisition and preprocessing
	2.2.1 Apple tree leaf sample collection and nitrogen content determination
	2.2.2 Determination and preprocessing of apple tree canopy hyperspectral data

	2.3 Research methods
	2.3.1 Extraction of different satellite apple tree canopy spectral simulation data
	2.3.2 Screening sensitive bands for apple tree nitrogen content from different satellite simulation data
	2.3.3 Screening the optimal model for apple tree nitrogen content estimation


	3 Results and analysis
	3.1 Analysis of apple tree canopy nitrogen content in different phenological periods
	3.2 Analysis of apple tree canopy hyperspectral and satellite simulation data in different phenological periods
	3.3 Correlation analysis between different satellite simulation data and apple tree nitrogen content
	3.4 Screening sensitive bands for apple tree nitrogen content estimation
	3.5 Screening the optimal inversion model for apple tree nitrogen content estimation

	4 Discussion
	4.1 Impact of phenological period on apple tree nitrogen content estimation
	4.2 Analysis of sensitive bands for apple tree nitrogen content
	4.3 The optimal satellite for estimating nitrogen content in apple trees and analysis of their interactions

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


