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Noella Kagehi1,2, Dennis Beesigamukama1*,
Chrysantus M. Tanga1*, Mathew P. Ngugi2,
Sevgan Subramanian1 and Fathiya M. Khamis1

1International Center of Insect Physiology and Ecology, Nairobi, Kenya, 2Department of Microbiology,
Biochemistry, and Biotechnology, Kenyatta University, Nairobi, Kenya
Vegetables are crucial for food security and income, but in developing countries

their production is hindered by low soil fertility. Although the insect frass fertilizer

is a potential solution, its use is constrained by limited product choices. Unlike

conventional fertilizers, which are available in different forms, the insect frass

fertilizer is mostly available in solid form. Here, we evaluated the effects of

different black soldier fly frass fertilizer (BSFFF) products on broccoli [Brassica

oleracea] growth, yield, and nutritional profiles. Solid, liquid BSFFF, chitin-fortified

solid BSFFF, chitin-fortified liquid BSFFF, and commercial organic fertilizer (Safi)

were applied at rates equivalent to 250 kg N ha-1 for two cropping seasons. The

control treatment consisted of unfertilized soil. Results showed that solid and

chitin-fortified solid BSFFF products significantly increased broccoli leaf growth

and chlorophyll concentration by 54% and 11%, respectively, compared to the

other BSFFF products. Soils amended with BSFFF products produced broccoli

with higher number of heads (28 – 158%), fresh yield (26 – 138%), dry yield (17 –

60%), and aboveground biomass (7 – 117%) compared to Safi and control

treatments. Broccoli grown in soil amended with BSFFF had higher nitrogen

(84%), phosphorus (93%), potassium (51%) uptake, and agronomic use efficiency

(4.6-fold) as compared to Safi and the control. Additionally, the application liquid

BSFFF produced broccoli heads with higher levels of crude fat (61%),

carbohydrates (16%), and calcium (38%) compared to other BSFFF products.

Conversely, broccoli grown using chitin-fortified BSFFF exhibited the highest

levels of crude protein, potassium, crush ash, and phosphorus. The net income

and gross margin achieved with BSFFF treatments were 19 – 26-fold and 29 –

63-fold higher than values obtained Safi, respectively, with higher profitability

achieved using chitin-fortified BSFFF formulations. These findings demonstrate

the efficacy of different BSFFF formulations in supporting circular economy for

safe vegetable production, and improved food and nutrition security.
KEYWORDS

nutrient recycling, insect frass fertilizer, soil health, broccoli yield, regenerative
agriculture, economic returns
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1613814/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1613814/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1613814/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1613814/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1613814&domain=pdf&date_stamp=2025-08-14
mailto:dbeesigamukama@icipe.org
mailto:ctanga@icipe.org
https://doi.org/10.3389/fpls.2025.1613814
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1613814
https://www.frontiersin.org/journals/plant-science


Kagehi et al. 10.3389/fpls.2025.1613814
1 Introduction

Broccoli is an edible green plant belonging to the cabbage family

and is highly nutritious, offering numerous health advantages due to

its rich content of nutrients. It provides essential nutrients such as

magnesium, calcium, iron, potassium, vitamins C, D, and K, folic

acid, and dietary fiber (Michaud et al., 2002). In comparison to

other vegetables, broccoli supports immune health, promotes bone

and skin health, helps reduce cholesterol levels, and plays a critical

role in cancer prevention (Mohamed et al., 2021). China and India

together account for approximately 73% of the world’s total broccoli

production, while Kenya is one of the leading exporters in Africa

(Omondi, 2014). The optimal production of broccoli requires fertile

soils with sufficient supply of nitrogen, excess and insufficient

nitrogen application may cause yield reduction, physiological

disorders, and pathological problems (Yildirim et al., 2020).

Sub-Saharan Africa’s (SSA) crop production faces significant

obstacles due to inadequate soil fertility, compounded by the limited

use of mineral fertilizers, which are often expensive and scarce in

local markets (FAO et al., 2024). Therefore, the low broccoli yields

in some SSA countries like Kenya, Uganda, and Tanzania can be

largely attributed to the low soil fertility levels (Raimi et al., 2017;

Tully et al., 2015). Previous studies have shown that organic

fertilizers tend to give better results in broccoli cultivation in

terms of broccoli yield, growth parameters, and nutrient uptake

(Altuntas ̧, 2018). This is because organic fertilizers supply the

crucial macronutrients required for broccoli development, uptake

and utilization of macronutrients, and boosts soil microbial activity

(Islam et al., 2004; Wortmann et al., 2019). The integrated use of

organic and inorganic fertilizers enhances and preserves soil

fertility, boosts crop returns, and maximizes nutrient utilization

efficacy in Sub-Saharan Africa (Vanlauwe et al., 2015). Despite these

benefits, many farmers in SSA don’t use organic fertilizers due to

competitive uses (Rufino et al., 2011).

Insect farming is emerging as a sustainable method to accelerate

the recycling of low-value organic waste streams into high-value

products, such as organic fertilizer within 5 weeks (Beesigamukama

et al., 2021a, 2023; Beesigamukama et al., 2022a). The black soldier

fly (BSF) frass fertilizer is an organic product consisting of a mixture

of insect excretion, exoskeleton, and substrate residue leftovers at

the end of larval growth with demonstrated potential for soil health

management and crop production (Beesigamukama et al., 2023;

Poveda, 2021). As opposed to ordinary composts, the insect frass

fertilizer is richer in beneficial microbes, and plant nutrients (Terfa,

2021), free of phytotoxicity, and contributes to pests and pathogens

suppression (Beesigamukama et al., 2023).

The BSF contains chitin content (Lagat et al., 2021) that has

been found to suppress pathogens and soil-borne pests such as

nematodes (Anedo et al., 2025; Kisaakye et al., 2024). Chitin also

enhances the abundance of plant growth-promoting fungi and

rhizal bacteria, which play crucial roles in nitrogen fixation,

phosphate so lub i l i za t ion , phy tochrome produc t ion ,

photosynthesis, and plant protection against abiotic stress (van de

Zande et al., 2024; Shahrajabian et al., 2021; Shamshina et al., 2020).

As a result, the application of BSF frass fertilizer (BSFFF) boosts the
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growth and yield of different crops, including vegetables, cereals,

tubers, and pastures (LoMonaco et al., 2024; Abiya et al., 2022;

Dzepe et al., 2022; Anyega et al., 2021; Menino et al., 2021;

Beesigamukama et al., 2020a; Quilliam et al., 2020).

Unlike the mineral and conventional organic fertilizers, which

are available in both solid and liquid forms, research on BSF frass

fertilizer has largely focused on the solid form, limiting its uptake

and application in addressing different production challenges. To

address this gap, the International Centre of Insect Physiology and

Ecology (icipe) and its partners have developed diversified frass

fertilizer products, including powered, granulated, liquid, and

chitin-fortified BSF frass fertilizers in response to consumer

demands, economic conditions, and biotic and abiotic challenges

to crop production (Tanga and Kababu, 2023). The efficacy of

chitin-fortified frass fertilizers has been demonstrated against soil-

borne pests (Anedo et al., 2025; Kisaakye et al., 2024).However, the

comparative performance of different BSF frass fertilizer products

and formulations (liquid, solid, and chitin-fortified) has not been

assessed, yet such information is crucial in selecting the suitable

products for supporting specific crops and in different production

environments (Beesigamukama et al., 2023). Moreover, the

performance of the different forms of BSFFF for broccoli growth,

yield, and nutritional profiles in comparison to existing organic

fertilizers is still unknown. The present study aimed to evaluate the

impact of different BSFFF products on the growth, yield, and

nutritional value of broccoli, in comparison with commercial

organic fertilizers, to generate recommendations for integrating

different forms of BSFFF into existing farming practices for

improved soil health and crop productivity.
2 Materials and methods

2.1 Description of the experimental site

The Field experiments were conducted at the International

Centre of Insect Physiology and Ecology (icipe), situated in

Nairobi (1° 13’ 18.5” S 36° 53’ 50.7’’ E; 1616 m above sea level)

over two cropping seasons (June – October 2023 and November –

March 2024). The site experiences an average monthly temperature

range of 12 – 29°C and receives an average annual rainfall of 787

mm characterized by a bimodal distribution. The short rains

typically occur from October to December, while the long rains

span from March to June. The study area has well-drained, mostly

sandy clay soils, classified as humic Nitisols. There is 2400 mm of

evapotranspiration each year (Jaetzold and Schmidt, 1982).
2.2 Soil sampling and land preparation

From each plot, the soil was collected from 0–30 cm depth

before the application of fertilizers using a soil auger and following

the zig-zag pattern. The representative soil samples were collected

by quarter sampling. The collected soil was air-dried for 5 days at

25°C, and ground using a mortar and pestle before sieving through
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a 2 mm sieve to remove foreign objects and bigger particles. The soil

was analyzed for physiochemical properties following standard

methods described in Okalebo et al. (2002). The results of soil

analysis are presented in Table 1. The land was prepared by hand

hoeing to remove all the weeds and create a fine tilth for

broccoli cultivation.
2.3 Source of materials

The trial comprised of five fertilizers: solid BSFFF, solid BSFFF

fortified with 3% BSF chitin, liquid BSFFF, and liquid BSFFF

fortified with 3% BSF chitin, and commercial organic fertilizer

(Safi). The liquid and solid BSFFF used in the field experiment were

prepared at icipe following procedures described by Anedo et al.

(2025) and Kisaakye et al. (2024). The solid BSF frass fertilizer was a

product obtained from the feeding of BSF larvae on a substrate

made of potato peels at icipe, Nairobi, Kenya. The BSF larvae were

reared according to Shumo et al. (2019). After harvesting of larvae

at 2 weeks, the frass was composted for 4 weeks using the heap

method to obtain a mature and stable frass product, which was used

in this study as solid BSF frass fertilizer. The chitin-fortified liquid

fertilizer was formulated using black soldier fly frass, BSF exuviae
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effective microorganisms (EMs), biochar and molasses. The mixed

solid materials were placed in airtight fermentation tanks as

described by Kisaakye et al. (2024). Each tank was tightly covered

with a lid fitted with a 5-mm-diameter tube to allow for gaseous

exchange. The contents were fermented for 6 weeks with weekly

stirring to obtain mature and stable chitin-fortified fertilizer. The

maturity and stability of frass fertilizer extracts were determined

following previously described procedures (Beesigamukama et al.,

2021a). After fermentation, the chitin-fortified fertilizer was sieved

through a 150-μm sieve (Endecotts Ltd., London, UK), put into 20-

L non-transparent jerrycans, and stored in a cool place pending

field experiment. The liquid BSF frass fertilizer was prepared using

the same procedure, excluding addition of chitin. The chitin-

fortified solid fertilizer was produced by mixing the composted

BSF frass fertilizer with milled BSF exuviae following procedures

described by Anedo et al. (2025). The commercial organic fertilizer

(Safi) was obtained from Safi Organics Limited located in Mwea

town, Kirinyaga county, Kenya. The organic fertilizers were

analyzed for nutrient levels and other properties following

standard laboratory methods described in Okalebo et al. (2002),

and the results presented in Table 1. Broccoli seeds (Green

sprouting variety) [Brassica oleracea] were obtained from SimLaw

seeds, Nairobi, Kenya. The seeds were sown in 4 seedling trays of
TABLE 1 Physical-chemical characteristics of the test soil and organic fertilizers used in the study.

Parameter Soil Solid BSFFF Liquid BSFFF Chitin-fortified
solid BSFFF

Chitin-fortified
liquid BSFFF

Safi

pH 5.9 7.7 5.9 7.0 5.8 6.4

Electrical conductivity
(mS/cm)

0.105 11.8 38.1 4.39 32.9 6.1

Organic carbon (%) 0.9 43.9 1.09 42.0 1.3 45.1

Nitrogen (%) 0.12 3.69 0.10 4.49 0.14 3.0

Phosphorus (%) 0.001 1.54 0.11 0.61 0.07 1.23

Potassium (%) 0.08 2.37 0.79 2.2 0.48 1.49

Calcium (%) 0.22 1.00 0.03 4.99 0.05 0.29

Magnesium (%) 0.048 0.59 0.05 0.39 0.04 0.43

Sulphur (mg/kg) 17.6 4350 294 3233 156.7 –

Manganese (mg/kg) 452.3 203 16.1 1403.3 23.4 –

Iron (mg/kg) 104.3 4985 55.1 9610 31.9 –

Copper (mg/kg) 1.59 15.5 0.18 15.6 0.01 –

Zinc (mg/kg) 13.0 61.5 0.73 144.7 0.01 –

Boron (mg/kg) 0.90 42.9 0.84 28.1 0.85 –

C/N ratio 7.5 11.9 10.8 7.61 8.6 15

Ammonium (mg/kg) 47.6 – 8643 – 1720 39.4

Nitrate (mg/kg) 18.9 – 602.7 – 458.7 92.3

Cation exchange
capacity (Cmol/kg)

19.7 – – –

Textural class loam – – –
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160 wells. The trays were filled with topsoil obtained from icipe farm

and then planted with one seed per well. The trays were placed in a

greenhouse watered twice a day and managed following

recommended practices (Omondi, 2014). The seedlings were then

transplanted into the experimental plots 4 weeks after germination.
2.4 Experimental design and treatments

A randomized complete block design (RCBD) with three

replications was used to establish the experiment. The RCBD was

chosen to cater for soil heterogeneity. Plots of 2 m × 3 m with a

spacing of 1 m between blocks and 0.5 m between plots were used.

The solid organic fertilizers were applied 3 days before planting,

using band placement method to ensure the timely onset of

mineralization and synchrony of nutrient release for plant uptake.

The liquid BSFFF and chitin-fortified liquid BSFFF were applied

twice weekly, starting from the 3rd week after transplanting up to

the harvesting time. This was achieved by diluting 200 ml of each

liquid fertilizer into 20 liters of water. The split-application was

meant to reduce nutrient leaching and improve fertilizer use

efficiency. The liquid fertilizers were applied by drenching the soil

around the plant base using a knapsack sprayer. The fertilizers were

applied at rates equivalent to 250 kg N/ha (Vågen et al., 2007). To

meet this nitrogen requirement, the amounts applied were6775.1

kg/ha, 5567.9 kg/ha, and 8333.3 kg/ha for solid BSFFF, solid BSFFF

fortified with 3% BSF chitin, and Safi, respectively. Broccoli was

planted at a spacing of 60 cm between rows by 45 cm

between plants.

During the experiment, weeding was done twice a month using

a hand hoe, while irrigation was performed three times per week.

The study was conducted in the same plots for two consecutive

cropping seasons. The first season ran from June to October 2023

while the second season began in December 2023 and ended in

April 2024. For clarity, throughout this manuscript, the seasons are

referred to as season 2023A and season 2023B for the first and

second seasons, respectively.
2.5 Broccoli growth parameters

Broccoli growth was assessed by collecting data on plant height,

chlorophyll content, stem diameter, leaf length, leaf width, number

of secondary curbs/heads, and the number of leaves every week,

from the 8th week after transplanting up to the 17th week when

harvesting was conducted. Ten randomly selected plants were

tagged per plot and used to measure the different growth

parameters. The plant height, leaf length, and width were

measured using a tape measure. Plant height was measured using

a tape measure that was stretched from the ground level up to the

tip of the shoot. Leaf chlorophyll was measured using SPAD-502

(Konica Minolta, Tokyo, Japan), which was placed on top of six

fully grown leaves. Digital vernier callipers (Mitutoyo, Kanagawa,

Japan) were used to measure the stem diameter at 10 cm from

the ground.
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The total biomass and yield were determined at the harvesting

stage. At harvesting, the plants from each plot were uprooted and

soil washed off from the roots using tap water. The edible flower

heads were harvested by cutting using a knife and non-edible parts

were discarded. The yield was determined by determining the

weight of heads per treatment using a weighing balance. Part of

the harvested broccoli heads was chopped, air-dried to reduce

moisture for 5 days, and then oven-dried (SDO-225-CLAD-F-

200-HYD, Wagtech Projects Limited, Thatcham, United

Kingdom) at 60°C for 72 hours to drive off all the moisture

and determine dry matter yield on a kg per hectare basis. The

dried samples were then crushed into powder using an analytical

mill to measure proximate (crude ash, carbohydrates, crude

fiber, crude fat, and crude proteins using standard methods (Van

Soest et al., 1991). The minerals were determined using atomic

absorption spectrometry (AAS) (iCE 3300 AA system, Thermo

Scientific, Beijing, China) at respective wavelengths (Okalebo

et al., 2002).
2.6 Nutrient uptake and use efficiency of
broccoli

The concentrations of N, P, and K were determined in section

2.5 (Okalebo et al., 2002), and yield data were used to calculate

nutrient uptake in broccoli heads (Equation 1). Agronomic

efficiency (AEN), which is a measure of yield produced per unit

N supplied from each treatment, was also calculated using broccoli

yield from each treatment (Equation 2).

Nutrient   (N ,   P   and  K)   uptake   (kg   ha−1)

=

Nutrient   concentration   ( % )  �
  broccoli   head   dry   yield   (kg   ha−1)

100
  (1)

AEN(kg   kg  N−1)

=
½Dry   yieldF   (kg   ha−1)   −  Dry   yieldC   (kg   ha−1)�

Quality   of  N   applied   (kg   ha−1)
(2)

Where,

F represents plots that received fertilizer treatments

C represents the control treatment (unfertilized soil)
2.7 Economic returns to broccoli
production

The profitability of broccoli production using the different

forms of BSFFF and commercial organic fertilizer was assessed by

determining net income, benefit-to-cost ratio, return on

investment, and gross margins (Equations 3-6) (Chia et al., 2019).

The variable costs considered during the study included the cost of

seeds, fertilizers, labor, and pesticides. The pesticide was used to

manage aphids during the experiment. We used Degree Max 200EC

(Osho Chemical Industries limited, Nairobi, Kenya). The
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application rates were 2.5ml per 20 liters of water, and it was applied

once a week for 5 weeks. The prices of solid fertilizers were sourced

from the websites of Mzuri Organics (https://mzuriorganics.co.ke)

and Safi Organics (https://safiorganics.co.ke) while the price of

green sprouting broccoli seeds was obtained from Simlaw seeds

(https://www.simlaw.co.ke). The labor costs during land

preparation, fertilizer application, planting, and weeding were

determined using the hourly rate of US$1.25 (The Labor

Institutions Act (No. 12 of 2007), 2022). Broccoli fresh yield was

considered a source of revenue.

Net income = Gross income –Total cost of production (3)

Benefit   cost   ratio =
Net   income

Total   cost   of   production
  (4)

Gross  margin   ( % ) =
Net   income
Gross   income

∗ 100 (5)

Return   on   investment   ( % )

=
Net   income

Total   cost   of   production
∗ 100 (6)
2.8 Statistical analysis

The Shapiro-Wilk test was used to check the normality of data.

Data on broccoli growth (number of leaves, leaf area, plant height,

number of curds, chlorophyll content, and stem diameter)

parameters were analyzed using the linear mixed effect function

from the model with “lmer” package “lme4” in R Studio (R Core

Team, 2022) with fertilizer treatment and growth period as the fixed

effect, replication as a random effect). The following data were

analyzed using Analysis of Variance (ANOVA) because they met

the assumptions of normality: broccoli growth parameters,

including plant height, number of leaves, leaf area, stem diameter,

and chlorophyll concentration for both seasons. Also, the number

of edible flower heads, fresh and dry yield, proximate composition

of broccoli (crude protein, ash, fat, fiber, and carbohydrates),

mineral content (potassium, magnesium, calcium, sodium,

manganese, copper, boron, molybdenum, zinc, sulfur, and cobalt),

nutrient uptake (potassium and phosphorus for both seasons), and

agronomic nitrogen use efficiency for season 2023B, were analyzed

using (ANOVA). Conversely, data that did not meet normality

assumptions [fresh biomass (2023A), dry biomass (2023A and

2023B), nitrogen uptake and agronomic nitrogen use efficiency

(2023A), phosphorus and iron concentrations in broccoli,

economic returns (2023B), benefit-to-cost ratio and return on

investment (2023A), and dry matter content] were analyzed using

a Generalized Linear Model (GLM). In case of significant

differences, the means were separated using Tukey’s Honest

Significant Difference (HSD) test. All statistical analyses were

conducted separately for each season using R software version

3.6.1 for Windows (R Core Team, 2022).
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3 Results

3.1 Impact of BSF frass fertilizers and
commercial fertilizer on broccoli growth

3.1.1 Plant height and leaf growth
The fertilizer treatments caused significant differences in broccoli

height (season 2023A: c2 = 44.52, df = 5, p<0.0 01, season 2023B: c2
= 95.4, df = 5, p< 0.001). The influence of growth period was

significant only during season 2023A only (season 2023A: c2 =

151.6, df = 1, p< 0.001, season 2023B: c2 = 1.2, df = 1, p = 0.28). The

interaction between the fertilizer formulations and growth period was

significant during season 2023B only (season 2023A: c2 = 7.64, df = 5,

p = 0.18, season 2023B: c2 = 12.9, df = 5, p< 0.05).

Plant heights followed an increasing trend up to peak values in the

16thweek (12-50cm) (F = 1.5, df = 5, p = 0.27) and 17th week (30 –

63cm) (F = 1.7, df = 5, p = 0.21) during the seasons 2023A and 2023B,

respectively. However, these increases were not significant (Figures 1A,

D). The broccoli height was 47–51 cm at the end of season 2023A (F =

0.57, df = 5, p = 0.73), with plots amended with solid BSFFF producing

broccoli with the highest plant height, with control the least height. It

was noted that these differences were not significant. At the end of

season 2023B (F = 1.7, df = 5, p = 0.21), the plant height ranged

between 46 and 64 cm. Plots amended with solid BSFFF produced the

tallest plants while plants grown in the control plots were the shortest.

Generally, higher values of plant heights were observed in the second

season compared to the first season.

The fertilizer amendments caused significant differences in broccoli

leaf number (season 2023A: c2 = 23.99, df = 5, p< 0.001, season 2023B:

c2 = 161, df = 5, p< 0.001), and growth period (season 2023A: c2 =

659.6, df = 1, p< 0.001, season 2023B: c2 = 720.5, df = 1, p< 0.001). The

combined effect was significant in the season 2023B only (season 2023A:

c2 = 7.7, df = 5, p = 0.17, season 2023B: c2 = 10.5, df = 5, p< 0.1).

An increasing trend in the number of leaves was observed in both

seasons, reaching peak levels in the 17th week, however these increases

were not statistically significant (season 2023A: F = 1.4, df = 5, p = 0.28,

season 2023B: F = 2.6, df = 5, p = 0.082) (Figures 1B, E). At the end of

season 2023A, the number of leaves ranged between 46 and 60, with

broccoli grown in plots treated with chitin-fortified solid BSFFF

achieving the highest count, while Safi-treated plants had the lowest.

Similarly, the chitin-fortified solid BSFFF produced plants with the

highest leaf number (72) at the end of season 2023B while the control-

treated plants had the fewest leaves (47).

The broccoli leaf area showed significant variations due to

fertilizer treatments (season 2023A: c2 = 71.93, df = 5, p< 0.001,

season 2023B: c2 = 58.5, df = 5, p< 0.001), and the growth time

(season 2023A: c2 = 115.74, df = 1, p< 0.001, season 2023B: c2 =

172.8, df = 1, p< 0.001). The combined effect was significant in

season 2023B only (season 2023A: c2 = 4.37, df = 5, p = 0.49, season

2023B: c2 = 42.2, df = 5, p< 0.001).

The leaf area increased through season 2023A, but a declining

trend was observed from the 12th week after transplanting up to the

end of experiments during season 2023B, although this decline was

not significant (season 2023B: F = 2.7, df = 5, p = 0.07). Plots treated
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with solid BSFFF maintained higher leaf area from the 8th week

(season 2023A: F = 0.9, df = 5, p = 0.47) to the 16th week (season

2023A: F = 2.9, df = 5, p = 0.062) and the 8th week which was

significant (season 2023B: F = 6, df = 5, p< 0.01) to the 12th week

(season 2023B: F = 2.7, df = 5, p = 0.07) during seasons 2023A and

2023B, respectively (Figures 1C, F). The leaf area ranged from 292.7

to 387 cm² in season 2023A and 159 to 201 cm² in season 2023B,

with chitin-fortified solid BSFFF amendment achieving the largest

broccoli leaf area in both seasons. On the other hand, chitin-

fortified liquid BSFFF and Safi producing leaves with the least

areas at the end of both seasons, respectively.

3.1.2 Stem diameter and leaf chlorophyll
The broccoli stem diameter showed significant differences

owing to fertilizer amendments (season 2023A: c2 = 16.13, df =
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5, p< 0.01, season 2023B: c2 = 67.0, df = 5, p< 0.001) and growth

period (season 2023A: c2 = 210.48, df = 1, p< 0.001, season 2023B:

c2 = 168.31, df = 1, p< 0.001).The combined effect was insignificant

in both seasons (season 2023A: c2 = 6.06, df = 5, p = 0.3, season

2023B: c2 = 0.48, df = 5, p = 0.99).

An increasing trend was observed throughout the experiments

in both growing seasons (Figures 2A, C). The stem diameter varied

between 1.9 and 2.2 cm at the end of season 2023A, and 2.1 – 2.9 cm

at the end of season 2023B. Plants grown using chitin-fortified solid

BSFFF and control had the smallest stem diameter in seasons 2023A

and 2023B, respectively. The largest stem diameter in season 2023A

was achieved by liquid BSFFF treatment (F = 0.78, df = 5, p = 0.58)

during the 17th week. Similarly, in season 2023B, the solid BSFFF

treatment produced the largest stem diameter at the 17th week,

although this was not significant (F = 0.34, df = 5, p = 0.88).
FIGURE 1

Trends in plant height (A, D), number of leaves (B, E), and leaf area (C, F), of broccoli grown in soil amended with BSF frass fertilizers and
commercial fertilizer during Season 2023A (A-C) and Season 2023B (D-F). BSFFF, black soldier fly frass fertilizer; Safi, commercial organic fertilizer;
control, no fertilizer amendment.
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Broccoli leaf chlorophyll concentration differed significantly due

to fertilizer treatments in (season 2023A: c2 = 54.12, df = 5, p< 0.001,

season 2023B: c2 = 4.43, df = 5, p< 0.001) and growth period (season

2023A: c2 = 31.18, df = 1, p< 0.001, season 2023B: c2 = 68.8, df = 1,

p< 0.001). The interaction between the growth stage and fertilizer

amendments was significant in season 2023A only (season 2023A: c2
= 11.02, df = 5, p< 0.1, season 2023B: c2 = 1.48, df = 5, p = 0.91).

An increasing thread in the leaf chlorophyll content was observed

from the 8th (F = 0.3, df = 5, p = 0.28) to the 12th week (F = 3.2, df = 5,

p< 0.05) and from the 8th week (F = 0.2, df = 5, p = 0.96) to the 14th

week (F = 0.6, df = 5, p = 0.685) after transplanting during seasons

2023A and 2023B, respectively (Figures 2B, D). During season 2023A,

the highest chlorophyll concentration was achieved in the 12th week

using chitin-fortified solid BSFFF. In season 2023B, the highest

chlorophyll concentration was recorded in the 14th week after

transplanting from plots amended with solid BSFFF, but this was not

significantly different from the values achieved using other treatments.

The BSFFF amendments significantly increased the chlorophyll

concentration by 2 – 19% and 3 – 9% relative to control and Safi,

respectively, at the end of season 2023A (F = 4.8, df = 5, p< 0.05). The

application of solid BSFFF in season 2023A produced broccoli with

16% chlorophyll content compared with the liquid BSFFF treatment.

Also, the chitin-fortified liquid BSFFF produced broccoli with 3.2-

fold higher leaf chlorophyll concentration compared to liquid BSFFF.

Notably, the chitin-fortified solid BSFFF enhanced leaf chlorophyll by

7% relative to solid BSFFF during season 2023A. At the end of season
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2023B, the chlorophyl concentration did not vary significantly (F =

0.8, df = 5, p = 0.06), with the values ranging between 61 and 70

SPAD values for the control and Safi treatments, respectively.
3.2 Effect of different BSF frass fertilizer
formulations and commercial fertilizer on
broccoli nutrient uptake and nitrogen use
efficiency

3.2.1 Nitrogen uptake
The fertilizer amendments significantly influenced the nitrogen

uptake of broccoli in season 2023A only (Table 2). The fertilizer

amendments significantly increased nitrogen uptake by 18 – 84%

during season 2023A and 3 – 71% during season 2023B compared

to control and Safi treatments. Broccoli grown in solid BSFFF had

17% and 46% higher nitrogen uptake during season 2023A and

2023B, respectively, compared to liquid BSFFF treatments. Plots

amended with chitin-fortified solid BSFFF had 33% higher

nitrogen uptake than solid BSFFF in season 2023A. On the

other hand, chitin-fortified liquid BSFFF produced broccoli

with higher nitrogen capacity by 28% in season 2023A

compared to the values achieved using liquid BSFFF. Plots with

chitin-fortified solid BSFFF and solid BSFFF produced broccoli with

84% higher nitrogen uptake than other treatments during

the season.
FIGURE 2

Effects of BSF Frass Fertilizers and commercial fertilizer on broccoli stem diameter (A, C), and chlorophyll concentration (B, D) during Season 2023A
(A, B) and Season 2023B (C, D). BSFFF, black soldier fly frass fertilizer; Safi, commercial organic fertilizer; control, no fertilizer amendment.
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TABLE 2 Nutrient uptake and use efficiency of broccoli grown amended with BSF frass fertilizers and commercial organic fertilizer.

Fertilizer Season 2023A Season 2023B

rus
kg/ha)

Agronomic nitrogen
efficiency (kg/kg N)

Nitrogen
uptake
(kg/ha)

Potassium
uptake (kg/ha)

Phosphorus
uptake (kg/ha)

Agronomic nitrogen
efficiency (kg/kg N)

– 19.0±6.5a 8.7±3.05a 1.9±0.71a 0.00±1.7ab

-0.26± 0.66a 15.0±3.22ab 7.7±1.49a 1.7±0.33a -0.48±0.05a

1.58±0.43ab 28.4±2.44ab 13.3±1.01a 3.0±0.29a 4.1±0.45c

1.76±0.06ab 19.5±6.9ab 8.7±2.87a 2.0±0.62a 1.0±0.37bc

3.33±1.11b 25.7±5.61b 11.5±2.3a 2.6±0.54a 3.1±0.75bc

1.88±0.87ab 22.5±5.8ab 10.0±2.31a 2.4±0.62a 3.52±0.5c

* * ns ns ***

5 5 5 5 5

12.5+ 13.7+ 2.0 2.3 16.1

er amendment; Safi, commercial organic fertilizer; BSFFF, black soldier fly frass fertilizer. Per column, mean (±standard error) followed by same letters are not significantly
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treatments
Nitrogen
uptake
(kg/ha)

Potassium
uptake (kg/ha)

Phospho
uptake (

Control 12.4±2.31a 7.8±1.5a 1.4±0.41a

Safi 16.8±3.1ab 9.0±0.67a 2.1±0.12a

Solid BSFFF 17.2±1.14ab 9.5±0.64a 2.2±0.26a

Liquid BSFFF 14.7±3.1ab 8.9±1.29a 1.9±0.39a

Chitin-fortified
Solid BSFFF

22.8±2.88b 11.8±1.44a 2.8±o.31a

Chitin-fortified
Liquid BSFFF

19.8±1.5ab 11.4±1.28a 2.3±0.41a

Significance level * ns ns

Df 5 5 5

F/ c2value 10.6+ 2.0 2.3

*p<0.05, ***p < 0.001, ns, not significant (p ≥ 0.05), +, chi square value. Control, no fertili
different at p<0.05.
z
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3.2.2 Potassium uptake
There was no significant difference in potassium uptake of

broccoli grown using different fertilizer amendments (Table 2).

During season 2023A, the potassium uptake ranged between 7.8

and 11.8 kg ha-1 for the control treatment and chitin-fortified solid

BSFFF, respectively. In season 2023B, the lowest potassium uptake

(7.8 kg ha-1) was recorded in broccoli grown using Safi fertilizer

while the highest (11.5 kg ha-1) was achieved by broccoli grown

using chitin-fortified solid BSFFF.

3.2.3 Phosphorus uptake
The fertilizer amendments did not significantly influence the

phosphorus uptake of broccoli (Table 2). The phosphorus uptake

ranged between 1.4 and 2.8 kg ha-1 during season 2023A, and 1.7 –

2.6 kg ha-1 during season 2023B.

3.2.4 Agronomic nitrogen use efficiency
The fertilizer amendments showed significant improvements in

agronomic nitrogen efficiency in both seasons (Table 2). The

fertilizer amendments significantly increased agronomic nitrogen

efficiency by 1.6 – 3.3-fold and 1.1 – 4.1-fold higher in seasons

2023A and 2023B, respectively, in comparison to the control. The

BSFFF amendments significantly increased agronomic nitrogen

efficiency by 1.8 – 3.6-fold and 1.5 – 4.6-fold higher compared to

Safi in seasons 2023A and 2023B, respectively. Plots amended with

chitin-fortified solid BSFFF and solid BSFFF produced broccoli with

3.3-fold and 4.1-fold higher nitrogen uptake in seasons 2023A and

2023B, respectively.

Broccoli grown with chitin-fortified liquid BSFFF had higher

agronomic nitrogen efficiency by 7% and 249% than with liquid

BSFFF during seasons 2023A and 2023B, respectively. The

performance of both solid and chitin-fortified solid BSFFF varied

in both seasons when compared to each other. In season 2023A,

chitin-fortified solid BSFFF produced broccoli with 111% higher

agronomic nitrogen efficiency than the solid BSFFF. However, in

season 2023B, solid BSFFF produced broccoli with an agronomic

efficiency that was 34% higher than that achieved with chitin-

fortified solid BSFFF.
3.3 Yield parameters of broccoli grown in
soil amended with BSF frass products and
commercial organic fertilizer

3.3.1 Number of heads
The number of broccoli heads varied significantly due to

fertilizer treatments during both growing seasons (season 2023A:

F = 5.00, df = 5, p< 0.05, season 2023B: F= 5.64, df = 5, p< 0.01).

Compared to the control, the different forms of BSFFF increased

broccoli head count by 28-100%, and 16 – 72% in seasons 2023A

and 2023B, respectively (Figures 3A, F). The number of broccoli

heads achieved using BSFFF was significantly higher than the value
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achieved using Safi treatment by 65 – 158% during season 2023A

and 27 – 89% in season 2023B.

Chitin-fortified solid BSFFF and non-fortified solid BSFFF

produced significantly higher (p< 0.05) broccoli heads compared

to all the other treatments during seasons 2023A (by 158%) and

2023B (by 89%). In season 2023A, the application of solid BSFFF

produced 49% higher broccoli heads relative to liquid BSFFF in

season 2023A. Chitin-fortified solid BSFFF yielded 35% more

broccoli heads compared to solid BSFFF during season 2023A.

Conversely, liquid BSFFF produced 20% more heads than chitin-

fortifies liquid BSFFF in the same season.
3.3.2 Broccoli yield and total biomass
The fertilizer amendments significantly influenced the fresh

broccoli head yield (season 2023A: F = 3.2, df = 5, p< 0.05, season

2023B: F = 5.66, df = 5, p< 0.01) but not dry yield (season 2023A:

F=2.12, df = 5, P=0.133, season 2023B: F=2.29, df = 5, p = 0.11). The

BSFFF treatments significantly increased fresh broccoli head yield by 33

– 70% in season 2023A and 26 – 108% during season 2023B, compared

to the control. The same fertilizer treatments also produced higher

fresh broccoli head yield than Safi in season 2023A (41 – 80%) and

season 2023B (45 – 138%) (Figures 3B, G). During season 2023B, the

application of solid BSFFF enhanced fresh broccoli head yield by 65%

relative to liquid BSFFF, and 15% compared to chitin-fortified solid

BSFFF. However, in season 2023A, chitin-fortified solid BSFFF

produced 28% higher fresh head yield than solid BSFFF. It was

noted that chitin-fortified liquid BSFFF increased fresh head yield by

2% in season 2023A and 54% in season 2023B, compared to

liquid BSFFF.

For dry broccoli head yield, values ranged from 244.8 to 391.4

kg ha-1 in Season 2023A, with chitin fortified solid BSFFF and the

control achieving the highest and lowest values, respectively

(Figures 3C, H). In season 2023B, the dry yield ranged between

342 and 507 kg ha-1 with solid BSFFF achieving the highest value

and Safi the lowest.

The fertilizer treatments significantly increased broccoli fresh

biomass (season 2023A: c2 = 5.34, df = 5, p = 0.37, season 2023B: F

= 4.2, df = 5, p< 0.05) (Figures 3D, I) during season 2023B only, and

dry biomass during both seasons (season 2023A: c2 = 11.88, df = 5, p<

0.05, season 2023B: c2 = 22.45, df = 5, p< 0.001) (Figures 3E, J). The

BSFFF formulations significantly increased broccoli fresh by 12 – 43%

compared to control, and by 36 – 74% relative to Safi in season 2023B

(Figures 3D, I). During the same season, the solid BSFFF produced 27%

more fresh biomass than the liquid BSFFF while chitin-fortified liquid

BSFFF outperformed liquid BSFFF by 19%. However, when comparing

the solid formulations, the solid BSFFF yielded 28% more fresh

biomass than the chitin-fortified solid BSFFF in season 2023B and

solid BSFFF was the most effective of all treatments during

season 2023B.

The BSFFF amendments significantly increased the broccoli dry

biomass by 27 – 117% and 15 – 77% compared to the control during

the seasons 2023A and 2023B, respectively, and by 48-151% and 6-
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63% as relative to Safi in seasons 2023A and 2023B, respectively

(Figures 3E, J).

In season 2023A, solid BSFFF enhanced broccoli dry biomass by

59% compared to liquid BSFFF, while in season 2023B, the increase
Frontiers in Plant Science 10
was 13%. Also, the solid BSFFF outperformed chitin-fortified solid

BSFFF by 4% in season 2023B. However, the opposite trend was

observed in season 2023A, where chitin-fortified solid BSFFF

yielded 70% more dry biomass than the non-fortified solid form.
FIGURE 3

Effects of BSF frass fertilizers and commercial fertilizer on number of broccoli heads (A, F), broccoli fresh yield (B, G), broccoli dry yield (C, H),
broccoli fresh biomass (D, I), and broccoli dry biomass (E, J) during Season 2023A (A-E) and Season 2023B (F-J). Control, no fertilizer amendment;
Safi, commercial organic fertilizer; solid BSFFF; liquid BSFFF; chitin-fortified solid BSFFF; chitin-fortified liquid BSFFF. Per panel, bars followed by the
same lower case letter(s) are not significantly different at p ≤ 0.05.
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In terms of liquid formulations, liquid BSFFF resulted in 43%

higher dry biomass than chitin-fortified liquid BSFFF during season

2023A. In contrast, during season 2023B, chitin-fortified liquid

BSFFF outperformed liquid BSFFF by 54%. Among all the

treatments, solid BSFFF produced the highest broccoli dry

biomass in season 2023A, while chitin-fortified liquid BSFFF

achieved the highest biomass in season 2023B.
3.4 Nutritional profile of broccoli grown
using BSF frass fertilizers and commercial
organic fertilizer

3.4.1 Proximate composition
The fertilizer formulations significantly influenced the dry matter

(c2 = 157.8, df = 5, p< 0.001), ash (F = 4.87, df = 5, p< 0.05), crude fat

(F = 12.1, df = 5, p< 0.001), crude fiber (F = 3.39, df = 5, p< 0.05), and

carbohydrate (F = 7.96, df = 5, p< 0.01), while crude protein was not

significant (F=2.35, df=5, p=0.11) contents of broccoli. The fertilizer

amendments significantly increased dry matter by 11 – 12% as

compared to the control (Figure 4A). Broccoli heads from plots

amended with the various BSFFF formulations had 40 – 90% higher

dry matter compared to those grown with Safi. The crude protein

concentrations ranged from 36.3% to 41.6%, whereby Safi had the

lowest value, while chitin-fortified solid BSFFF had the highest

value (Figure 4B).

Both BSFFF amendments and Safi significantly (p< 0.051)

increased the ash concentration by 25-32% relative to the control

(Figure 4C). The BSFFF amendments improved ash concentration

by 3 - 4% when compared with Safi while the liquid BSFFF

increased ash content by 4% compared to solid BSFFF. In

comparison to control, the fertilizer treatments significantly (p<

0.001) increased fat concentration by 1 – 61% (Figure 4D). The

different forms of BSFFF amendments also improved fat content by

44 – 60% relative to Safi. Liquid BSFFF enhanced broccoli fat

content by 11% compared to solid BSFFF. Additionally, liquid

BSFFF produced heads with 7% higher fat content compared to

chitin-fortified liquid BSFFF treatment.

The fertilizer amendments significantly (p< 0.001) increased the

crude fiber compared with the control by 6 – 28% (Figure 4E). Soil

amended with Safi produced broccoli heads with the highest crude

fiber concentration. Among the BSFFF treatments, liquid BSFF

resulted in heads with 5% higher fiber concentration compared to

solid BSFFF. Furthermore, both chitin-fortified liquid and chitin-

fortified solid BSFFF enhanced fiber levels more effectively than

non-fortified counterparts. Similarly, the fertilizer amendments

significantly increased the carbohydrate levels of broccoli heads

by 7 – 16% and by 4 – 85% compared to the control and Safi,

respectively (Figure 4F). The carbohydrate concentration among

broccoli grown using different BSFFF formulations was comparable,

with no major differences between formulations during the

study period.
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3.4.2 Mineral composition
The application of different BSFFF and commercial fertilizer

products caused significant variations in the concentrations of

phosphorus, sodium, manganese, boron, zinc, and sulfur but had

no significant effect on the levels of potassium, calcium, magnesium,

iron, copper, molybdenum, and cobalt (Table 3). The potassium

content ranged between 2.4% and 2.7%, whereby the control

treatment had the lowest value. Fertilizer treatments boosted

phosphorus levels by 15 – 19% compared to the control

(Table 3), with the highest increase recorded in broccoli grown

using chitin-fortified liquid BSFFF, and the lowest observed under

Safi treatment.

The magnesium levels ranged between 0.23 and 0.25% in

broccoli from control and BSFFF treatments, respectively. Safi

significantly increased the sodium levels in broccoli by 44%

relative to the control. The calcium and iron levels ranged from

0.85 to 1.18 ppm and 216 to 558 ppm, respectively. The manganese

levels were notably higher in broccoli grown in soils soil amended

with Safi and chitin-fortified liquid BSFFF, achieving 66 – 68% and

47 – 49% increases, respectively, compared to the values obtained

under control and liquid BSFFF treatments.

The BSFFF fertilizer treatments significantly increased the

copper levels of broccoli by 20 – 29% relative to the control

(Table 3), with the highest increases observed under liquid

BSFFF. On the other hand, all fertilizer treatments caused

significant increases in boron levels by 17 – 37% compared to

unamended soil, with broccoli grown in plots amended with solid

BSFFF and chitin-fortified solid BSFF achieving 11.3 – 11.7-fold

significantly higher boron concentrations than crops grown in

unfertilized soil. Additionally, solid BSFFF-amended soils

enhanced boron levels of broccoli by 17% compared to chitin-

fortified solid BSFFF.

The application of the liquid BSFFF and chitin-fortified solid

BSFFF improved the zinc concentration of broccoli by 13% and

17%, respectively, relative to the control. On the other hand, the

application of liquid BSFF, chitin-fortified liquid BSFF, and Safi

significantly increased the sulfur levels of broccoli by 7.6 – 10.5%,

4.1 – 4.9%, and 9.7 – 10.4%, respectively, compared to control and

solid BSFFF. The molybdenum and cobalt levels were 6.1 – 8.0 ppm

and 0.1 – 0.17 ppm, with the highest values recorded in broccoli

grown in soil amended with Safi and the lowest in unamended soil.
3.5 Profitability of broccoli production
using BSFFF and commercial organic
fertilizer

The net income, gross margin, benefit-to-cost ratio (BCR), and

return on investment (ROI) of broccoli production are presented in

Table 4. Broccoli grown in plots amended with chitin-fortified solid

and chitin-fortified liquid BSFFF generated higher net income

compared to the vegetables grown in unfertilized plots. The net
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income yielded by broccoli grown using liquid BSFFF, chitin-

fortified solid BSFFF and chitin-fortified liquid BSFFF was 18.9-

fold, 25.7-fold, 19.5-fold higher than the values achieved with Safi

fertilizer during season 2023A. Furthermore, in the same season,

chitin-fortified solid BSFFF (30.5-fold) and chitin-fortified liquid

BSFFF (2.9%) yielded significantly higher net income than non-

fortified formulations (solid BSFFF and liquid BSFFF).
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Economically, the chitin-fortified solid BSFFF was the most

effective treatment during 2023A which coincided with the long

rains, whereas, the liquid formulation was more profitable during

2023B, characterized by short rains.

The gross margin, BCR, and ROI exhibited similar trends, with

BSFFF treatments outperforming Safi. Additionally, chitin-

fortification further enhanced the economic returns of broccoli
FIGURE 4

Impact of BSF Frass Fertilizers and commercial fertilizer on broccoli dry matter (A), broccoli crude protein (B), broccoli crude ash (C), broccoli crude
fat (D), broccoli crude fiber (E), and broccoli carbohydrate (F). BSFFF, black soldier fly frass fertilizer; Safi, commercial organic fertilizer; control, no
fertilizer amendment. Per panel, bars followed by the same lower case letter(s) are not significantly different at p ≤ 0.05.
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TABLE 3 Mineral composition of broccoli grown in soil amended with BSF frass fertilizers and commercial organic fertilizers.

Treatments Potassium Phosphorus Magnesium Sodium
)

Calcium
(ppm)

Iron
(ppm)

Manganese
(ppm)

Copper
(ppm)

Boron
(ppm)

Molybdenum
(ppm)

Zinc
(ppm)

Sulphur
(%)

Cobalt
(ppm)

.01a
0.85±0.1a 216.0

±58.1a
57.5±7.1a 3.18±0.12a 22.7

±0.96a
6.53±0.42a 56.7

±1.11a
1.45
±0.02a

0.1
±0.001a

.7b
1.15±0.03a 641.3

±267.3a
95.2±12.0c 3.51±0.03a 27.7

±0.96bc
8.04±0.14a 60.37

±1.3ab
1.59
±0.03d

0.17
±0.04a

.0ab
0.96±0.02a 328.8

±13.0a
77.8±2.8abc 3.91±0.07a 31.1

±1.07c
7.57±0.14a 62.67

±1.3ab
1.44
±0.99a

0.15
±0.03a

.5ab
1.18±0.01a 205.0

±11.6a
64.6±0.2ab 4.09±0.19a 29.5

±1.21bc
7.66±0.48a 64.07

±1.7b
1.56
±0.01cd

0.1±0.00a

.6ab
1.03±0.1a 246.7

±24.0a
67.9±3.1abc 3.86±0.04a 26.6±1.1b 7.79±0.4a 66.37

±1.88b
1.49
±0.01ab

0.14
±0.02a

.1ab
1.09±0.1a 558.0

±143.8a
96.4±0.4bc 3.83±0.18a 29.6

±1.41bc
7.99±0.24a 61.77

±1.47ab
1.51
±0.01bc

0.14
±0.03a

ns ns ** ns *** ns *** *** ns

5 5 5 5 5 5 5 5 5

3.1 11.0+ 5.7 1.9 84.3 10.6 24.4 127.6 4.19

amendment; Safi, commercial organic fertilizer; BSFFF, black soldier fly frass fertilizer. Per column, mean (±standard error) followed by same letters are not significantly
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(%) (%) (%) (ppm

Control 2.37±0.0a 0.52±0.01a 0.23±0.01a 4043
±127

Safi 2.66±0.1a 0.60±0.02b 0.23±0.01a 5827
±473

Solid BSFFF 2.65±0.1a 0.60±0.0b 0.24±0.01a 4725
±543

Liquid BSFFF 2.61±0.1a 0.61±0.01b 0.25±0.01a 5750
±369

Chitin-fortified
solid BSFFF

2.69±0.1a 0.60±0.01b 0.25±0.01a 5520
±184

Chitin-fortified
liquid BSFFF

2.61±0.1a 0.62±0.02b 0.25±0.01a 4895
±303

Significance level ns *** ns *

Df 5 5 5 5

F/c2 value 12.2 35.5+ 0.54 3.7

*p<0.05, **p<0.01, ***p<0.001, ns, not significant (p ≥0.05), +chi square value. Control, no fertilizer
different at p<0.05.
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production compared to non-fortified BSFFF products. Notably, the

application of Safi or solid BSFFF was less profitable than the

production of broccoli with no fertilizer (control treatment).
4 Discussion

4.1 Effects of different BSF frass fertilizer
products and commercial organic fertilizer
on broccoli growth and yield

The improved broccoli growth and its association with different

black soldier fly frass fertilizers as compared to commercial organic

fertilizer and unfertilized soil has been previously reported using

vegetables and other crops (Chavez et al., 2024; Chepkorir et al.,

2024; Rejeki et al., 2023; Abiya et al., 2022; Dzepe et al., 2022;

Anyega et al., 2021; Ouda and Mahadeen, 2008), and this can be

ascribed to the high nutrient levels in black soldier fly frass fertilizer

and chitin-rich exuviae that is readily available to plants (Anedo

et al., 2025; Beesigamukama et al., 2020a). Furthermore, the BSF
Frontiers in Plant Science 14
frass fertilizer does not have phytotoxicity challenges

(Beesigamukama et al., 2021b), and has a low C/N ratio, a high

mineralization rate (Adin Yéton et al., 2019), and better synchrony

of nutrients for plant growth (Beesigamukama et al., 2020b).

Past studies have also demonstrated the benefits of frass

fertilizer in addressing soil acidity and salinity, suppressing pests

and pathogens, and enhancing soil microbiota, thereby improving

soil health for better plant growth (Kisaakye et al., 2024; Anedo

et al., 2025; Beesigamukama et al., 2021b; Poveda, 2021; Poveda

et al., 2019; Kagata and Ohgushi, 2012). The chitin fertilizer

contained in the BSF frass also enhances soil fertility and

microbiota. In leafy plants, dry weight is frequently a good sign of

above-net primary productivity (Smart et al., 2017), partly due to

increased photosynthetic activity (Mendoza-Tafolla et al., 2019)

indicated by high chlorophyll content, and root development

(Boudabbous et al., 2023) which are consistent with the findings

of this study. Past studies (Kisaakye et al., 2024) have reported

improved root development in vegetables grown with chitin-

fortified black soldier fly frass fertilizer. The enhanced plant

growth associated with chitin-fortified fertilizers and BSFFF could
TABLE 4 Economic value of broccoli production using different BSF frass fertilizer products and commercial organic fertilizer.

Season Treatment Net income (USD
ha-1)

Gross
Margin (%)

Benefit
cost ratio

Return on invest-
ment (%)

Season 2023A Control 2643.4±282.1bc 97.2±0.3c 36.0±3.8b 3602.9±384.5b

Safi 143.1±438.0a 1.1±12.7a 0.05±0.2a 5.0±15.4a

Solid BSFFF 120.3±285.3ab 28.8±4.9a 0.42±0.1a 41.7 ±9.5a

Liquid BSFFF 2705.2±40.5bc 62.4±0.4b 1.66 ±0.0a 166.0±2.5a

Chitin-fortified
solid BSFFF

3673.0±7.4c 67.0±4.7b 2.15±0.4a 215.2±43.2a

Chitin-fortified
liquid BSFFF

2784.8±582.8bc 61.7±5.2b 1.71±0.4a 170.9±35.8a

Significance
level

*** *** *** ***

Df 5 5 5 5

F/ c2 value 7.9 28.7 402.6+ 402.3+

Season 2023B Control 2298.7±981.7c 93.0±5.0c 33.1±0.2b 3307.2±1412.4b

Safi -2203.4±35.4b -88.0±2.7a -0.47±0.0a -46.8±0.8a

Solid BSFFF -6487.0±336.6a -109.7±11.9a -0.52±0.0a -52.0±2.7a

Liquid BSFFF 1804.9±277.7c 47.1±3.9b 0.99±0.2a 99.0±15.2a

Chitin-fortified
solid BSFFF

3065.9±566.7c 57.9±4.7b 2.0±0.2a 202.4±20.8a

Chitin-fortified
liquid BSFFF

3694.2 ±379.8c 66.6±2.3bc 1.4±0.3a 143.4±26.5a

Significance
level

*** *** *** ***

Df 5 5 5 5

c2 value 287.8 1057.3 26.4 26.4
***p<0.001, ns, not significant (p ≥ 0.05), +chi square value. Control, no fertilizer amendment; Safi, commercial organic fertilizer; BSFFF, black soldier fly frass fertilizer. Per column, mean
(±standard error) followed by same letters are not significantly different at p<0.05.
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be attributed to the synthesis of amino acids that play an active role

in plant growth and tolerance to environmental stresses (Trovato

et al., 2021).

The higher broccoli growth and yield achieved in the second

season can be attributed to residual benefits of the BSFFF

amendments and higher rainfall, which enhanced the higher

nutrient release and uptake as reported in the study. This also

caused the leaves in season 2023B to mature faster than those in

season 2023A, thus the difference in peaks of the graphs. The high

nitrogen, phosphorus and potassium uptake of broccoli grown in

soil amended with BSF frass fertilizer, compared to Safi has been

previously reported (Chepkorir et al., 2024; Anyega et al., 2021;

Beesigamukama et al., 2020a) and can be attributed to better root

formulation linked to phosphorus availability within the

rhizosphere (Beesigamukama et al., 2021b).

Soils amended with BSF frass fertilizer improves mineral

nitrogen in the root zone, resulting in higher nitrogen uptake and

crop yields (Beesigamukama et al., 2021b). Therefore, the higher

agronomic nitrogen efficiency achieved using frass fertilizer

products when compared to Safi, accrues from the multiple

benefits of these novel fertilizer products on soil health and aligns

with previous studies (Anyega et al., 2021; Beesigamukama et al.,

2020a). Our findings show that farmers would need to apply fewer

quantities to realize higher increases in crop yields (Beesigamukama

et al., 2022b), hence reducing the burden of high fertilizer purchase

costs. It should be noted that high prices are one of the hindrances

to fertilizer use in Africa and most developing countries. Therefore,

adopting high-quality frass fertilizer could provide a sustainable

solution to this challenge and transform agri-food systems.

The differences in broccoli growth and yield observed due to the

different BSFFF products highlight the crucial role of fertilizer

source and quality in influencing soil health, crop productivity,

and overall food security. The higher broccoli yield achieved using

BSF frass fertilizers may be attributed to their the additional

benefits, such as pest and disease suppression, which is not

typically provided by conventional fertilizers like Safi (Anedo

et al., 2025; Tanga and Kababu, 2023; Wantulla et al., 2023;

Barragán-Fonseca et al., 2022). It should be noted that due to

climate change and soil degradation, crop production faces several

abiotic challenges and adoption of multipurpose inputs such as

insect frass fertilizers provide a holistic solution. These inputs not

only supply essential nutrients but also contribute to pests and

disease control, improve soil moisture retention, and enhance

biodiversity (Tanga and Kababu, 2023). The regenerative insect

frass fertilizers also contribute to safe food production due to

reduced pesticide and agrochemical residues in food crops.

The differences in the performance of solid and liquid frass

fertilizers observed can be attributed to the distinct characteristics of

each product. The liquid frass fertilizers contain readily available

soluble nutrients for plant uptake compared to the solid which

requires time, water, and microbes for the mineralization process.

The attribute of fast nutrient release associated with liquid frass

fertilizers enables them to rapidly address nutrient deficiencies, even
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during critical crop growth stages, leading to better growth and

yield. Therefore, the superior performance of liquid BSFFF observed

during the dry season 2023A could be largely due to its dual-

purpose role of supplying both moisture and nutrients, making it

valuable during periods of moisture stress. This characteristic

positions liquid BSFFF as a promising input for climate-resilient

agriculture, helping cropping systems adapt to the impacts of

climate change (Abiya et al., 2022; Barragán-Fonseca et al., 2022).

On the other hand, the higher agronomic efficacy of chitin-

fortified BSF frass fertilizers compared to non-fortified BSF frass

fertilizers can be attributed to the benefits of chitin in enhancing

crop growth, nutrient availability, and plant defense through

suppression of pests and diseases (Anedo et al., 2025; Kisaakye

et al., 2025; Quilliam et al., 2020). Past studies have reported

reduced aphid infestation of pests in vegetables grown in soil

amended with chitin-fortified fertilizer (Kisaakye et al., 2024).

Additionally, chitin-fortified fertilizers also promotes the growth

of chitin-degrading microbes, which enhances microbial activity

and diversity, which in turn improves soil fertility and soil

microbiota (Barragán-Fonseca et al., 2022). Future research

should explore the effect of the different forms of black soldier fly

frass fertilizers on the management of broccoli pests and diseases to

generate accurate recommendations.
4.2 Nutritional quality and profitability of
broccoli production using different organic
fertilizers

The increased concentrations of crude protein, fat, ash, and

carbohydrate observed in this study following the application of the

different forms of BSFFF shows that, alongside vegetable yield,

BSFFF is efficient in boosting the nutritional quality of vegetable

crops. These results are align with previous studies that reported

improved nutritional profiles of different food crops grown in soils

amended with insect frass fertilizers (Anyega et al., 2021; Yoder and

Davis, 2020; Meena et al., 2018; Mukta et al., 2016; Chakwizira et al.,

2015). The observed improved nutritional quality of broccoli could

be associated with nutrient uptake, as discussed in section 3.1. In

particular, the enhanced levels of minerals such as potassium,

phosphorus, calcium, and manganese corroborate earlier reports

on use of BSF frass fertilizer (Menino et al., 2021) and highlight the

role of BSF frass fertilizer in eliminating hidden hunger and

malnutrition, contributing to sustainable development goal to

zero hunger. Moreover, recent studies have revealed a high

willingness to buy vegetable foods produced using insect frass

fertilizer and animal feed on insect-based feeds (Traore et al.,

2024), paving the way for full-scale development of insect-based

value chains. However, to ensure consumer acceptance and

marketability, organoleptic tests are necessary to evaluate taste,

texture, and overall appeal, thereby supporting the refinement of

insect-based fertilizers and the formulation of recommendations for

producing nutritious and palatable food.
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The higher economic returns observed with the application of

different forms of BSFFF formulations, compared with Safi could be

largely attributed to their high quality and affordability of BSFFF, as

previously reported (Chepkorir et al., 2024; Tanga et al., 2021). In

particular, the higher net income, gross margin, benefit-to-cost, and

return on investment achieved with chitin-fortified frass fertilizers

relative to other fertilizer products assessed could be largely

attributed to dual benefits of controlling pests and diseases while

supplying nutrients (Anedo et al., 2025; Kisaakye et al., 2024).

Furthermore, the enhanced profitability of liquid BSFFF formulations

during the dry season suggests additional advantages, such as

contributing moisture during periods of water stress. This not only

mitigates irrigation costs but also improves crop performance and

revenues. The liquid formulations are also more portable than their

solid counterparts, reducing transportation costs and making them

more accessible to smallholder farmers (Tanga and Kababu, 2023).

These findings show that by adopting diversified BSF frass fertilizers,

farmers can reduce fertilizer purchase costs, increase income, and

contribute to improved soil health, and ultimately improved food

security (Beesigamukama et al., 2022b).
5 Conclusion

Our study has demonstrated the high efficacy of the different

BSFFF products in boosting vegetable productivity better than the

conventional organic fertilizer assessed. For higher broccoli yield,

nutritional quality, and profitability, chitin-fortified BSF frass

fertilizers are recommended. Our findings show that the liquid and

chitin-fortified BSF frass fertilizer products can provide sustainable

substitutes for most commercial fertilizers, thus reducing the burden

of costly fertilizers and ensuring planetary health. The liquid BSF frass

fertilizer should be applied during the dry season to improve crop

resilience tomoisture stress andminimize nutrient leaching during the

rainy season. The adoption of various forms of BSF frass fertilizers

presents a more sustainable approach to agriculture, accelerating the

transition to circular and regenerative farming practices. Future

studies will be necessary to validate the yield benefits on other crops

and evaluate the effects of different BSF frass fertilizer products on soil

health and management of broccoli pests and diseases.
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