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microalgae: progress, challenges,
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Genome-scale metabolic models (GEMs) provide a systems-level framework for

understanding and engineering microalgal metabolism. This review explores the

evolution of GEMs in microalgae, highlighting advances in light modeling,

automation, and multi-omics integration. Special emphasis is placed on

Chlamydomonas reinhardtii as a model species. Limitations of current models,

particularly for microalgae, are discussed, alongside promising developments in

dynamic modeling and machine learning. Together, these innovations chart a

path toward more predictive, adaptable GEMs that can accelerate

biotechnological applications of microalgae in sustainable production systems.
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Introduction

Microalgae have demonstrated significant potential for the sustainable production of

biofuels and other valuable products. As cell factories, microalgae can be optimized for

biofuel production (Makareviciene and Sendzikiene, 2022), wastewater processing (Ahmed

et al., 2022), and the creation of a wide variety of high-value bioproducts such as

nutraceuticals and pharmaceuticals (Abu-Ghosh et al., 2021; Khanra et al., 2022) (see

Table 1). Microalgae have also been shown to have a solar conversion efficiency of 4.4%

(Huntley and Redalje, 2007), considerably higher than the solar conversion efficiency of

terrestrial plants which is typically between 1-2% (Vasudevan and Briggs, 2008). The

advantage in solar conversion efficiency for microalgae then translates to higher growth

rates and annual yields compared to terrestrial plants (Chung et al., 2011). Since many

bioproducts produced by microalgae are intracellular, their yields are closely tied to

biomass accumulation, meaning that higher growth rates generally result in greater

overall production of desired bioproducts.

Unfortunately, algae have not fully realized their potential as cellular factories due to a

number of challenges associated with economical production at large scale (Bosňjaković

and Sinaga, 2020). A main driver of the overall cost of production is the productivity of the

algae (growth rate x production rate) which influences the choice of photobioreactors,

separation and labor costs (Acién et al., 2012; Awasthi et al., 2020; Stichnothe et al., 2016).

Maximizing productivity can lead to lower downstream costs, and one tool that has been
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proven to be successful in rerouting carbon in metabolism is

metabolic engineering, specifically the use of metabolic models, to

predict and implement genetic changes that can improve overall

productivity (Hu et al., 2023) and product specific productivity

(Yan et al., 2019; Song et al., 2020). For example, metabolic models

have been used to guide the overexpression of acetyl-CoA

carboxylase to increase lipid accumulation for biodiesel

production (Yan et al., 2019) and redirect carbon flux toward

carotenoid biosynthesis by optimizing the isoprenoid pathway

(Song et al., 2020). These efforts demonstrate how metabolic

models can enable precise identification of limiting steps in target

pathways and support design strategies to improve yields of

economically valuable compounds.

Computational tools provide powerful means to investigate the

complexities of metabolism. Among the computational methods

employed in metabolic engineering, genome-scale metabolic

models (GEMs) stand out due to their relative ease of

implementation and comprehensive, systems level approach.

GEMs are in silico representations of an organism’s metabolic

capacity based on the organism’s sequenced genome, enumerating

all reactions and metabolites encoded within. Experimental data,

such as carbon uptake and excretion, biomass composition and

growth rate can be used to constrain the model (Bernstein et al.,

2021). Dramatically decreasing costs for high quality genome

sequencing has led to increased sequence data for GEM

reconstruction (Pareek et al., 2011), and advances in genome

annotation have enabled more complete simulations of metabolic

processes. GEMs can be used to identify gene knockouts that lead to

increased yield or productivity. They can also be used to predict

changes in yield due to the incorporation of heterologous metabolic

pathways, narrowing the potential mutants to be screened in the lab

and drastically decreasing research and development investment

(Mekanik et al., 2023). By representing the entire metabolic capacity

of an organism, GEMs have also been used to identify genetic

targets that are not easy to predict a priori as having an impact on

the productivity of a specific product (Levering et al., 2016; Yang

et al., 2018). The utilization of GEMs is not limited to screening

genetic changes, GEMs can additionally be applied to understand

how an organism will respond to environmental changes. These

applications include media optimization and predictions on the

most crucial nutrients for growth (Van Tol and Armbrust, 2021).

GEMs also can be utilized to rapidly provide predictions on the

changes that varying growth conditions will have phenotypically

(Zuniga et al., 2016). In silico studies provide an effective method to

aid in target selection for traditional experiments, enabling

researchers to investigate the impact of thousands of genetic or

environmental changes in a fraction of the time it takes to create

and characterize in the lab (Ofaim et al., 2021; Nocon et al., 2014).

GEMs have been extensively employed to study metabolism

across a wide range of organisms, with the majority of existing

literature and models focused on heterotrophic systems such as

bacteria and yeast (Orth et al., 2011; Monk et al., 2017; Lu et al.,

2019). This emphasis is reflected in the greater availability of

heterotrophic GEMs on public repositories such as BioModels

(Malik-Sheriff et al., 2020) and BiGG Models (Norsigian et al.,
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2020). Although some algal GEMs are hosted on these platforms,

the listings are not comprehensive and often require manual

literature searches to identify additional models. Nonetheless,

GEMs in both heterotrophic and autotrophic organisms have

proven highly effective for simulating metabolic fluxes, identifying

genetic engineering targets and optimizing growth conditions.

Applying GEMs to photoautotrophic organisms, particularly

eukaryotic microalgae, presents a distinct set of challenges. These

include the need to simulate light-dependent metabolism, diel

cycling, and shifting cellular objectives across changing

environmental conditions, all within a framework that

traditionally assumes steady-state behavior. In this review, we

examine the specific difficulties encountered when constructing

and utilizing GEMs for photoautotrophic microalgae, as well as

the current limitations that hinder their broader adoption and

predictive accuracy. A dedicated section explores the role of

Chlamydomonas reinhardtii, which has emerged as a cornerstone

species in algal systems biology and a model for developing and

refining GEMs in microalgae. Finally, we highlight future directions

in GEM research, including the integration of dynamic modeling,

multi-omics data, and machine learning techniques, all of which are

poised to significantly advance the utility of GEMs in both

fundamental research and applied biotechnology.
Chlamydomonas reinhardtii: a
keystone species for microalga GEM
reconstruction

Chlamydomonas reinhardtii has received extensive attention in

scientific research (Harris, 2001), emerging as a pivotal organism

for studying microalgae and aquatic photosynthetic systems

(Calatrava et al., 2023). As a model green microalga, C.

reinhardtii has served as the foundation for GEMs in algal

species. The first GEM for C. reinhardtii was developed by Boyle

and Morgan in 2009 (Boyle and Morgan, 2009), marking the first

GEM constructed for any algal species (see Figure 1). Another

noteworthy GEM is iCre1355 (Imam et al., 2015), which has served

as a foundational platform for subsequent models. Derived like

many of the currently available GEMs from the earlier iRC1080

(Chang et al., 2011), iCre1355 (Imam et al., 2015) incorporates

updates based on improvements made to the annotation of the

genome, rectifying inaccuracies in gene-protein reaction

associations. This improved model has been utilized to predict

growth under varying light conditions (Shene et al., 2018). iCre1355

(Imam et al., 2015) was also utilized in the development of the first

diurnal metabolic model in microalgae developed by Metcalf and

Boyle (Metcalf Alex and Boyle Nanette, 2022). This diurnal model is

a type of transient metabolic model (TMM). TMMs are

computational models that capture dynamic changes in

metabolism under varying environmental conditions. The Metcalf

and Boyle TMM incorporated quantitative, time dependent

transcriptomic data to constrain the availability of the associated

gene products and metabolic reactions and more accurately predict

growth in diurnal conditions.
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The GEM developed by Yao et al. (2023), merged the iCre1355

and iGR774 models, replacing the chloroplast reactions in iCre1355

(Imam et al., 2015) with the more detailed iGR774 (Bjerkelund

Rokke et al., 2020) chloroplast specific model. This integration

allowed for a more biologically accurate depiction of chloroplast

metabolism, improving compartmental resolution, gene-reaction

mapping, and the model’s ability to simulate light-driven and

plastid-localized processes. Yao et al. additionally utilized protein

constrained flux balance analysis (PC-FBA), an extension of

traditional FBA that integrates enzyme capacity and proteome

allocation to better reflect cellular limitations. This approach

allows for context-specific flux predictions informed by

transcriptomic data and represents the first implementation of a

protein-constrained model (PC-Model) for a microalgal GEM.

More recently, Arend et al (Arend et al., 2023). continued this

advancement by directly integrating quantitative proteomic data to

constrain enzyme usage, offering a more accurate representation of
Frontiers in Plant Science 03
in vivo metabolic states. This proteomics-driven approach narrows

the solution space of the model, leading to improved predictions of

enzyme allocation and flux distributions. With these advancements,

C. reinhardtii’s GEMs continue to be at the forefront of advancing

algal biotechnology, significantly contributing to the understanding

of microalgal metabolism and algal GEM reconstructions.
Challenges and limitations of algal
genome-scale metabolic models

GEMs are a powerful and rapidly advancing tool for

understanding cellular metabolism, however, like any complex

modeling approach, there are challenges that researchers continue

to address to unlock their full potential. One challenge across all

organisms but particularly in non-model species is inaccurate or

incomplete genome annotations, which leads to gaps that need to be
FIGURE 1

Historical perspective on the generation of algal GEMs, organized by species and year of publication.
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manually filled. This issue is particularly pronounced in

photoautotrophic organisms such as microalge, as fewer well-

annotated reference genomes are available for comparison. C.

reinhardtii largely represents an exception as its genome has

undergone extensive sequencing and curation (Craig et al., 2023),

as well as support by databases such as Phytozome (Goodstein et al.,

2012), ChlamyCyc (May et al., 2009) and AlgePath (Zheng et al.,

2014). Not all organisms have this extensive research with many

inaccuracies arising from the need for homology-based annotations,

which while faster than manual curation, can assign functions

without biochemical validation. Based on how automated

annotation algorithms work, poor annotations can be carried

through to new organisms. An additional challenge with

annotation is that many metabolic pathways and reactions,

particularly in non-model organisms, are still being discovered or

refined, which can create gaps in the models that require extensive

manual curation or assumptions to fill (Karp et al., 2018). Beyond

annotation issues, GEMs also face limitations due to their reliance

on stoichiometric reactions rather than reaction kinetics. By

ignoring reaction kinetics, the entire metabolic network can be

modeled; but it comes at a cost because the level of detail is greatly

reduced. Kinetic models have been developed for well-studied

organisms such as Escherichia coli (Khodayari et al., 2014), but

they include far fewer reactions than GEMs due to the requirement

for detailed kinetic data. For microalgae, such data is especially

scarce, making GEMs the most practical framework for modeling

their metabolism. To enhance their accuracy, GEMs can integrate

omics data such as transcriptomics and proteomics. This data

provides crucial insights into cellular states and responses.

However, aligning diverse omics datasets with GEMs is another

challenge, requiring sophisticated computational techniques.

Fortunately, advancements in data integration and computational

methods are allowing GEMs to incorporate omics data more

effectively and enhance their predictive power (Sen and Oresǐč,

2023). However, even with these advancements in annotation and

omics integration, GEMs still face limitations due to key

assumptions most notably the reliance on steady state conditions

that pose unique challenges in photosynthetic organisms.

Adopting a steady-state assumption poses significant challenges

for GEMs in photosynthetic microalgae, where complex diel

fluctuations and regulatory mechanisms make strict steady-state

models less representative of metabolic dynamics. While this

assumption is important mathematically, converting a set of

ordinary differential equations to a set of linear equations, it

limits the application of GEMs to steady growth conditions. This

is particularly pronounced in photosynthetic organisms due to

typical growth in diel light conditions which results in substantial

fluctuations in metabolism (Fisher et al., 2023) due to the shift from

day to night and vice versa. Photosynthesis also involves numerous

regulatory mechanisms, such as photoprotection (Goss and Jakob,

2010), photosynthetic quenching (Schubert et al., 2006), and

variations in photon flux (Schnurr et al., 2016), all of which are

difficult to represent with static models. To account for regulatory

elements such as enzyme capacity constraints and gene expression

control, the integration of proteomic and transcriptomic data into
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GEMs is essential. Transcriptomics can be used to infer active

pathways by adjusting reaction constraints based on gene

expression levels, while proteomics enables more accurate

estimation of enzyme abundances and capacities to constrain the

solution space of the model. However, such genome-wide data sets

remain scarce for most microalgae due to limited experimental and

financial investment. Chlamydomonas reinhardtii stands out in this

regard, as it benefits from available transcriptomic and proteomic

data. An extension of this problem is the use of a single objective

function (most often to maximize biomass). While this objective

function matches the cellular objective for heterotrophic bacteria

quite well (Orth et al., 2011), this objective is especially problematic

in photosynthetic organisms due to the decoupling of carbon and

energy inputs and the time-dependent nature of cellular division in

diel light. Additionally, the biomass function for algae is more

complex and dynamic than those seen in heterotrophic organisms,

as many can grow in autotrophic, mixotrophic, and heterotrophic

states. Each of these trophic states requires a distinct biomass

formulation to reflect the underlying physiological differences

(Matos et al., 2017). Moreover, algal cells must continuously

optimize their metabolism in response to environmental

conditions. These can vary such as minimizing energy usage

when light is not present or the formation of storage products in

preparation for environmental changes. Additionally autotrophic

and mixotrophic growth results in biomass composition are more

dependent on the environment, changing with light intensity

throughout the day under diel conditions (Jallet et al., 2016).

These challenges have motivated the development of more

sophisticated GEMs that better capture the complexity of

photosynthetic microalgae. Recent models have begun to

incorpora t e mu l t ip l e ob j e c t i v e func t ions , s imu la t e

compartmentalized metabolism and account for trophic

flexibi l i ty . Other innovations address environmental

responsiveness, such as stress adaptation and diel regulation. The

following sections highlight these advancements through examples

of automated reconstruction tools, light modeling, omics

integration, and dynamic modeling (see Figure 2).
Automation of model reconstruction

Automated reconstruction of GEMs helps address the time-

intensive nature of model development by streamlining the

reconstruction process, making it feasible to generate high-quality

models for a wider range of organisms. The GEM iChr1915

(Meagher et al., 2024) for Chromochloris zofingiensis represent

significant advancement in the automatic curation of

photosynthetic metabolic networks. iChr1915 (Meagher et al.,

2024) utilized an algorithm called Rapid Annotation of

Photosynthetic Systems (RAPS) (Metcalf et al., 2020) to automate

much of the process. Other GEM automation tools exist such as

model SEED (Devoid et al., 2013) and CarveMe (MaChado et al.,

2018), however these automation tools are not tailored for use on

algae. The model SEED (Devoid et al., 2013) framework plantSEED

(Seaver et al., 2014) is, as its name would suggest, better suited for
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the reconstruction of plant GEMs as it carries over many highly

conserved reactions in plants to avoid issues with gap filling.

Including these conserved reactions in algal GEM reconstructions

doesn’t properly represent the diversity of microalgal metabolism

(Catalanotti et al., 2013) and variation from plant metabolism

(Tamoi and Shigeoka, 2015). CarveMe (MaChado et al., 2018)

additionally is primarily for the reconstruction of prokaryotes and

bacterial communities with reactions pulled from the BiGG

database (Schellenberger et al., 2010) excluding reactions unique

to eukaryotic organisms. The use of RAPS (Metcalf et al., 2020)
Frontiers in Plant Science 05
enabled the development of a high quality first draft network in only

20 minutes; the resulting model only required minimal manual

curation. RAPS (Metcalf et al., 2020) facilitates the automated

curation of GEMs for photosynthetic algae by leveraging manual

curation efforts already invested in published models and using

these to generate new models.

Another automation tool that has been utilized in GEM

reconstruction is RAVEN toolbox (Agren et al., 2013), which was

utilized in the reconstruction of iLB1027_lipid and iLB1025

(Levering et al., 2016). The original RAVEN toolbox provided a
FIGURE 2

Challenges for algal GEM reconstruction include the need for automated algorithms for model reconstruction specifically for algae, improved light
modeling and integrating -omics data to improve predictability. Addressing these will enable the design of dynamic models that can better predict
growth in dynamic conditions, such as day/night cycles.
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MATLAB-based framework to facilitate semi-automated draft

reconstruction of metabolic networks through homology-based

mapping from annotated genomes to template models. In this

case, RAVEN was used to generate an initial draft network by

identifying homologous genes based on previously published

models from photosynthetic organisms. This draft network served

as the foundation, which was further refined using updated genome

annotations, subcellular localization predictions, and biochemical

validation. Although significant manual effort was required to

correct compartmentalization, balance reactions, and incorporate

complex eukaryotic features, the automated steps provided by

RAVEN accelerated the initial reconstruction process and ensured

alignment with known gene–reaction relationships. A newer

version of the RAVEN toolbox, RAVEN 2.0 (Wang et al., 2018),

has since been developed with expanded capabilities, including

integration of MetaCyc-based reconstruction (Caspi et al., 2020)

and improved model interoperability.

These method addresses a key challenge in GEM development:

the time-consuming nature of manual curation and annotation

gaps. By using RAPS and RAVEN, researchers can streamline the

initial stages of model development, allowing them to focus on gap-

filling and other manual curation efforts that will lead to a high-

quality network. This hybrid approach reduces the time-intensive

nature of fully manual curation by automating the initial draft

creation and filling metabolic gaps while still incorporating the

precision of expert intervention where needed.
Modeling light harvesting

Because microalgae are photosynthet ic organisms

incorporating light dynamics such as wavelength, intensity and

spectral composition into GEMs is crucial for accurately capturing

their metabolism and improving model predictions. The first GEM

for microalgae to account for different wavelengths of photons in its

metabolic network was iRC1080 (Chang et al., 2011), a model for C.

reinhardtii allowing for variations in light conditions to influence

the model. iRC1080 (Chang et al., 2011) achieved this by defining

spectral ranges associated with all the photon-utilizing reactions in

the network connecting and allowing for 11 distinct light sources

such as solar light as well as halogen and LED lights to be modeled.

The metabolic network was also verified with over 90% of

transcripts predicted by iRC1080 (Chang et al., 2011) being found

in experimental transcriptomic data. Additionally, iRC1080 (Chang

et al., 2011) accurately predicted solar conversion efficiency to be

2%, matching experimental results. The coupling of light

wavelengths with reactions marked a substantial improvement on

previous models and allows for the optimization of light sources as

well as elucidating the phenotypic results of varying light

conditions. Similarly, the Chlorella variabilis model iAJ526 (Juneja

et al., 2016) accounts for varying light conditions by simulating the

effects of twelve different light sources on growth rate and uptake

rates. These light sources were like those modeled in iRC1080

(Chang et al., 2011) representing light sources that have been

utilized in algal growth, but had a greater focus on modeling
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Three of these light conditions were experimentally validated,

confirming predictions made by the model that white light would

provide the best growth followed by red/blue light then red light.

iAJ526 (Juneja et al., 2016) predicts higher growth rates than those

observed experimentally under all light conditions with the authors

attributing the differences to issues with the model’s lack of growth

kinetics and photoinhibition. These models advance GEM

reconstruction in algae and other photosynthetic organisms by

offering a more robust representation of the effects light intensity

and composition have on metabolism.

Innovations in GEMs for microalgae have also addressed other

limitations traditionally seen in GEMs, particularly those affecting

photosynthetic organisms. For instance, the Thalassiosira

pseudonana model iTps1432 (Van Tol and Armbrust, 2021)

incorporates the application of photon loss reactions to simulate

photosynthetic quenching. By including these reactions, iTps1432

(van Tol and Armbrust, 2021) offers valuable insight into photon loss

reactions with particular interest coming from predictions around

cyclic electron flow at low light intensities. At these lower light

intensities, the model predicts that a significant portion of total

electron flow is made up of cyclic electron flow supporting other

findings highlighted in the paper that cyclic electron flow is important

for ATP generation at low light (Bailleul et al., 2015). Cyclic electron

flow is not only important for ATP generation and modeling light

dynamics but has also been demonstrated to be important in lipid

biosynthesis pathways in algae (Chen et al., 2015). This highlights the

potential improvements adding light dynamics reaction within GEMs

can provide. With this added insight these models can be better

applied to determine targets for improving metabolic engineering

outcomes under autotrophic conditions.
Models with a focus on reactions
outside of carbon metabolism

GEMs can be applied to explore algal production of value-added

compounds beyond traditional targets like biomass and

hydrocarbons. One such emerging application is the modeling of

green hydrogen production, which has gained significant interest in

recent years (Borges et al., 2024). Models such as iMM627 (Mekanik

et al., 2019) for Auxenochlorella protothecoides and iRJ1321 (Shah

et al., 2017) for Nannochloropsis gaditana incorporate predictions

of hydrogen production. The iMM627 (Mekanik et al., 2019) model

integrates two objective functions maximizing both biomass and

hydrogen production. By incorporating multiple objectives, the

model can more completely utilize the GEMs metabolic network

and better represent reactions outside of central carbon metabolism.

Additionally, although not originally designed for hydrogen

production, the AlgaGEM model (Gomes De Oliveira Dal’molin

et al., 2011) for Chlamydomonas reinhardtii was used to maximize

hydrogen synthesis through modification of its objective function,

demonstrating that any genome-scale metabolic model can, in

principle, be adapted to study hydrogen production or any other

product based on the set objective function.
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Beyond expanding product scope, recent GEMs have also

improved pathway resolution for key metabolic processes such as

nitrogen metabolism. The Nannochloropsis salina model iNS934

(Loira et al., 2017) provides a more detailed representation of

nitrogen metabolism, capturing the intricate balance between

carbon fixation and nitrogen assimilation, while also

incorporating a variety of nitrogen sources. This allows iNS934

(Loira et al., 2017) to integrate essential reactions not directly tied to

carbon metabolic pathways, addressing gaps present in earlier

models and offering more flexibility when optimizing media

recipes. Such refinements enhance the model’s utility for strain

engineering under nutrient-limited conditions and support the

development of cost-effective cultivation strategies.
Model robustness

Enhancing the robustness of GEMs improves their ability to

simulate organismal responses to environmental stress and genetic

perturbations, making them more reliable tools for predictive

modeling and metabolic engineering. The Lavoie et al.

Fragilariopsis cylindrus model (Lavoie et al., 2020) focuses on

reaction robustness to help analyze how metabolic networks

maintain stability under stress or environmental shifts. This

robustness analysis, combines flux balance analysis (FBA) with

minimization of metabolic adjustment (MOMA) (Segrè et al.,

2002) allows for better prediction of how networks respond to

perturbations made by knock outs. In contrast to flux variability

analysis (FVA) (Gudmundsson and Thiele, 2010), which assesses

the flexibility of individual reactions by calculating the range of

fluxes consistent with optimal growth, MOMA evaluates robustness

based on the assumption that, following a perturbation, the network

minimizes its deviation from the wild-type flux distribution without

immediately reoptimizing for a new objective. This makes MOMA

particularly useful for modeling short-term or acute responses,

when the organism has not yet had time to adapt through

regulation or evolution. This improves the GEM’s ability to

simulate stress responses, addressing a significant aspect of how

F. cylindrus survives well in its very dynamic environment (Yoshida

et al., 2020).

The Recht et al. model (Recht et al., 2014) for Haematococcus

pluvialis further incorporates variability flux sampling (VFS), an

additional step on the commonly used FVA. VFS enables more

accurate flux predictions and a deeper analysis of metabolic

pathways as it not only predicts the range of possible fluxes, as is

done in FVA, but also includes determinations about the

probabilities of various fluxes. Incorporating VFS allows for better

understanding of pathways that are activated as a stress response as

demonstrated in the models focus on exploring the shift toward

fatty acid synthesis under nitrogen starvation. Variability Flux

Sampling (VFS) enhances interpretation of flux flexibility by

generating probability distributions of feasible flux values through

random sampling and constrained optimization, rather than
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reflect the range and likelihood of alternative flux states under given

physiological constraints. While not inherently dynamic, the

application of VFS across time-resolved datasets such as in H.

pluvialis under nitrogen deprivation captures experimentally

observed shifts in metabolism, including the transition from

carbohydrate accumulation to fatty acid biosynthesis (Recht et al.,

2012), underscoring the need for models that can represent

metabolic plasticity under stress. Although demonstrated here in

the context of specific GEMs, VFS and MOMA are generalizable

approach that can be applied to any GEM to enhance the

characterization of condition-dependent metabolic states.
Integration of additional omics data
and dynamic modeling

Integrating omics data into GEMs enhances their predictive

power by capturing regulatory and physiological constraints that

are not represented by purely stoichiometrically models. The Yao

et al. model (Yao et al., 2023) for C. reinhardtii does this by

incorporating RNA sequencing data to assume the proteome of

the organism as well as enzyme data to create a protein-constrained

metabolic model (PC-model). This allows for the model to better

represent the dynamics that are lost in the conventional approach of

representing metabolism only stoichiometrically. However, while

transcriptomics provides useful insights into gene expression, it

does not fully reflect metabolic activity due to regulatory layers such

as translation, protein turnover, and post-translational

modifications. The model by Arend et al (Arend et al., 2023).

published shortly after the Yao et al. model advances this

framework by directly incorporating quantitative proteomic

measurements. The data collected was used to calculate in vivo

apparent turnover numbers (kapp) for 568 reactions, providing a

more accurate basis for constraining enzyme usage within the

model. Of the 1460 enzymes, 936 (64%) were quantified in at

least one experimental condition, representing the most extensive

proteome coverage achieved for C. reinhardtii to date. This allowed

the model to more accurately constrain enzyme usage by grounding

flux predictions in measured protein abundances, thereby

significantly reducing the solution space and increasing the

physiological relevance of the predicted flux distributions. By

aligning enzyme usage with what is actually present in the cell,

the model more faithfully captures metabolic capabilities. Models

that incorporate omics data have great potential in better

representing the complex regulatory mechanisms present around

metabolism (Carthew, 2021) as well as applications under varying

growth conditions (Gim et al., 2016).

Another model, iEH410 (Knies et al., 2015) for Emiliania

huxleyi, introduces diurnal FBA (diuFBA), significantly improving

the simulation of internal regulation of metabolic reactions by

moving beyond static flux distributions and better reflecting real-

time cellular responses. diuFBA simulates the organism’s
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metabolism under alternating light and dark conditions. This

approach partitions a 24-hour diurnal cycle into discrete light and

dark phases, assuming quasi-steady-state conditions within each

phase. Another important feature of this model is that it allows for

dynamic optimization of storage metabolites, such as mannitol and

lipids, rather than relying on fixed concentrations set by the

biomass function, as is standard. To achieve this dynamic

optimization, diuFBA extends the stoichiometric matrix to

include duplicated networks for the light and dark periods, which

are connected through reversible transfer reactions for storage

metabolites. The model integrates fluxes over each phase duration

using explicit Euler integration, enabling the calculation of net

concentration changes across the full cycle. This formulation

preserves the structure of classical FBA, allowing for efficient

convex optimization while capturing the temporal redistribution

of metabolic resources that occurs in response to circadian

environmental changes. By solving for metabolite accumulation

across light and dark periods within a single optimization problem,

diuFBA offers a more biologically relevant representation of

photosynthetic metabolism without the computational complexity

of fully dynamic simulations. However, while this approach

captures resource allocation across day-night transitions, it still

assumes steady-state behavior within each phase and

cannot represent short-term metabolic fluctuations. This

limitation has motivated the development of transient metabolic

models (TMMs), which aim to simulate cellular metabolism at

finer temporal resolution under continuously changing

environmental conditions.

TMMs offers a promising avenue for future research utilizing

the value of GEMs while offering a dynamic model. While dynamic

models have been developed for heterotrophic organisms such as E.

coli (Yang et al., 2019) and photosynthetic species like Synechocystis

sp (Rügen et al., 2015), similar models have been largely absent in

microalgae. The first TMM for microalgae was developed by

Metcalf and Boyle (Metcalf Alex and Boyle Nanette, 2022) in C.

reinhardtii to model growth in diel light. The model was based on

experimental transcriptomics data based on growth in 12:12 hour

day:night cycles as this data was used to constrain the availability of

the associated enzymatic reactions based on gene expression data.

Additionally, the TMM also decoupled the biomass objective

functions from the standard static biomass equation allowing it to

better simulate the cells adapting to the changing environmental

conditions over a day. This is a substantial improvement on GEMs,

addressing one of their key challenges: that they are generally static

stoichiometric representations of metabolism. The dynamics of the

TMM also allow for better targeting for metabolic engineering

as these models better represents the fluctuations in metabolism

over the course of a day rather than at a single point in the

day. Despite these advantages, the implementation of TMMs

depends on high-resolution, time-series transcriptomic data, the

generation and integration of which are both labor-intensive and

expensive. However, the ability to simulate time-resolved shifts in

gene expression and metabolism makes this investment particularly
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valuable, especially for photosynthetic organisms where diel

dynamics are fundamental to metabolic function.
Prospects for future microalgal
genome-scale metabolic models

Future advances in GEM formulation will enable more

sophisticated models that will be better suited to predicting the

dynamic and complex metabolism of microalgae. While GEMs have

traditionally relied on steady-state assumptions using FBA,

incorporating regulatory constraints has successfully been

demonstrated in the Yao et al. model and iEH410. While both

these GEMs incorporated transcriptomics data, there are further

advancements that can be made to the reconstruction of future

GEMs incorporating multi-omics data. Tools such as GECKO 2.0

(Domenzain et al., 2022) allow for pipelines for the implementation

of enzyme kinetic parameters and proteomic data into GEMs which

has already been utilized in multiple species of yeast, E. coli and

Homo sapiens. By adding additional layers of omics data GEMs can

address limitations that are presented in many of the currently

available static stoichiometric models.

Another emerging direction for algal GEMs is the application

of microbial community models (MCMs), which have garnered

considerable interest in recent years (Tarzi et al., 2024). MCMs

capture the complex inter-specific interactions that microalgae

experience in both natural and engineered environments. Rather

than existing in isolation, algae typically coexist with diverse

microbial partners that influence their metabolism through

nutrient exchange, competition, and metabolic cross-feeding. To

simulate these interactions, community-scale modeling tools such

as SteadyCom (Chan et al., 2017), MICOM (Diener et al., 2020),

and the Microbiome Modeling Toolbox (Heinken and Thiele,

2022) enable constraint-based simulations that consider the

growth and resource allocation strategies of multiple interacting

species. Building on this, dynamic models including dOptCom

(Zomorrodi et al., 2014) and COMETS (Harcombe et al., 2014)

incorporate spatial and temporal variation, making them

especially suited for studying nutrient shifts and microbial

succession. Incorporating algal GEMs into these MCM

frameworks could improve predictive accuracy under realistic

conditions, uncover emergent properties such as division of

labor and metabolite sharing, and support the design of more

productive algal–bacterial consortia for biotechnology

applications. While data availability remains a constraint for

many microalgal species, machine learning offers exciting

opportunities. In particular, deep learning, which uses neural

networks to perform multi-level predictions (Lecun et al., 2015),

has already improved genome annotations in bacterial

metagenomes (Boer et al., 2024). Applying similar approaches to

microalgae could enable the reconstruction of GEMs for the vast

number of algal species that remain unculturable (Sharma and

Rai, 2010). This could not only improve our understanding of
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these organisms but also help design more effect ive

cultivation strategies.

Another promising avenue is the integration of GEMs with

Transient Metabolic Models (TMMs), which simulate metabolic

changes over time and under varying environmental conditions.

While a TMM has been developed for Chlamydomonas reinhardtii

(Metcalf Alex and Boyle Nanette, 2022), other microalgae including

those with GEMs (see Table 2) currently lack such dynamic models.

Expanding TMMs to include additional species and conditions such as

UV radiation, temperature fluctuations, and nutrient availability could

dramatically enhance the applicability of GEMs in modeling real-world

scenarios (El-Sheekh et al., 2021; Al Jabri et al., 2021; Ikaran et al., 2015).

Altogether, these innovations including multi-omics

integration, machine learning, and dynamic modeling represent
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the future of microalgal GEMs. They offer a more comprehensive

understanding of algal metabolism, particularly under diel cycles

and photosynthetic fluctuations, moving the field closer to realizing

the full potential of microalgae in biotechnology and

sustainability applications.
Conclusion

Microalgae hold immense potential for contributing to a

sustainable future through their applications in biofuels,

bioremediation, and the production of high-value products. The

development of GEMs has emerged as a powerful tool in

understanding the complex metabolic networks of these organisms,
TABLE 1 Algae species that currently have GEMs reconstructed for them as well as research and cell factory applications of each species.

Species Research and cell factory metabolite production

Auxenochlorella protothecoides
Triacylglycerols (TAGs) overproduction for biofuel (Patel et al., 2018); nutraceuticals: lutein, zeaxanthin (Xiao et al., 2018) and b-

Carotene (Park et al., 2018); pharmaceutical: Antibacterial metabolite production (Polat et al., 2023)

Chlamydomonas reinhardtii

Model for photosynthesis in microalgae (Harris, 2001); biofuel: overproduction of TAGs (Pandey et al., 2023); biohydrogen production
(Kruse et al., 2005); nutraceuticals: lutein, b-Carotene (Rathod et al., 2020), zeaxanthin (Song et al., 2020) and astaxanthin (Ryu et al.,

2024),
Omega-3 fatty acids (Masi et al., 2023); pharmaceutical: vaccine antigen proteins (Demurtas et al., 2013), camelid heavy chain-only

antibodies (Barrera et al., 2015)

Chlorella variabilis
Wastewater remediation (Tran et al., 2020); Nutraceutical: lutein (Loganathan et al., 2020), and biofuel: overproduction of TAGs (Sati

et al., 2021)

Chlorella vulgaris
Nutraceutical: vitamin D, vitamin B12 (Bito et al., 2020), lutein, b-Carotene, Zeaxanthin (Serra et al., 2021) and astaxanthin

(Kendirlioglu and Cetin, 2017); biofuel: overproduction of TAGs (Moradi and Saidi, 2022)

Chromochloris zofingiensis
Nutraceutical: lutein, zeaxanthin, b-Carotene (Huang et al., 2018) and astaxanthin (Zhang et al., 2021); biofuel: overproduction of

TAGs (Vitali et al., 2023)

Dunaliella salina
Water remediation (Moayedi et al., 2019; Santos et al., 2001); high salinity tolerance (Hu et al., 2024); nutraceuticals: lutein (Fu et al.,

2014), zeaxanthin (Jin et al., 2003), b-Carotene (Xi et al., 2022) and astaxanthin (Chen et al., 2024)

Emiliania huxleyi
Broad salinity tolerance (Sheward et al., 2024); nutraceuticals: lutein, fucoxanthin (Zhang et al., 2023), Omega-3 fatty acids (Aveiro

et al., 2020)

Fragilariopsis cylindrus
Cold tolerant extremophile (Bayer-Giraldi et al., 2010) and nutraceuticals: b-Carotene (Guérin et al., 2024), Fucoxanthin,

diadinoxanthin (Guerin et al., 2022) and omega-3 fatty acids (Vaezi et al., 2013)

Haematococcus pluvialis
Nutraceuticals: lutein, zeaxanthin, b-Carotene and astaxanthin (Mularczyk et al., 2020); biofuel: overproduction of TAGs (Hosseini

et al., 2020)

Isochrysis galbana
Broad salinity tolerance (Alkhamis and Qin, 2013); wastewater remediation (Wang et al., 2021); nutraceuticals: fucoxanthin, zeaxanthin,

b-Carotene (Chen et al., 2022) and omega-3 fatty acids (Wang et al., 2022); biofuel: overproduction of TAGs (Sánchez et al., 2013)

Nannochloropsis gaditana
Nutraceuticals: violaxanthin, Zeaxanthin, b-Carotene (Di Lena et al., 2019) omega-3 fatty acids (Mitra et al., 2015); biofuel: lipid

production (Perin et al., 2015)

Nannochloropsis salina
Nutraceuticals: violaxanthin (Park et al., 2021), b-Carotene (Brown, 1987) and omega-3 fatty acids (Koh et al., 2024b); biofuel:

overproduction of TAGs (Fakhry and El Maghraby, 2015; Koh et al., 2024a)

Phaeodactylum tricornutum
Model diatom (Butler et al., 2020); nutraceutical: chrysolaminarin, fucoxanthin, lupeol, botulin and omega-3 fatty acids (Butler et al.,

2020); biofuel: overproduction of TAGs (Butler et al., 2020)

Scenedesmus obliquus
Wastewater remediation (Álvarez-Dıáz et al., 2015), nutraceuticals: lutein (Ho et al., 2014), Neoxanthin, luteoxanthin, violaxanthin,
antheraxanthin, b-Carotene (Maroneze et al., 2019), astaxanthin (Qin et al., 2008) and omega-3 fatty acids (Makulla, 2000); biofuel:

lipid production (Yang et al., 2020)

Schizochytrium limacinum
Nutraceuticals: astaxanthin, canthaxanthin, lycopene, b-Carotene (Zhang et al., 2017), omega-3 fatty acids (Bouras et al., 2020); biofuel:

lipid production (Bi et al., 2015)

Thalassiosira pseudonana
First microalgae sequenced (Armbrust et al., 2004); wastewater remediation (Wang et al., 2021); nutraceuticals: b-Carotene, fucoxanthin

and omega-3 fatty acids (Peng et al., 2024); biofuel: overproduction of TAGs (El-Sheekh et al., 2024)
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enabling researchers to optimize their metabolic pathways effectively.

However, while GEMs have made significant strides, they are not

without limitations. Issues related to incomplete genome annotations,

static assumptions, and the integration of multi-omics data continue

to pose challenges for GEMs to more accurately simulate metabolism.

To address these limitations and fully harness the capabilities of

microalgae, there is a pressing need for the creation of more GEMs

across a diverse array of algal species. Expanding the repertoire of

GEMs will enhance our understanding of algal metabolism and

facilitate the development of tailored strategies for metabolic

engineering. By addressing the existing challenges and improving
Frontiers in Plant Science 10
GEM methodologies, we can pave the way for a more

environmentally friendly future, ultimately contributing to a more

sustainable and productive bioproduct landscape.
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TABLE 2 The table displays the GEMs currently published, organized by species and year of publication from oldest to newest.

Species Model Year Reactions Metabolites

Auxenochlorella protothecoides iMM627 (Mekanik et al., 2019) 2019 1,963 2,115

Chlamydomonas reinhardtii

Boyle and Morgan (Boyle and Morgan, 2009) 2009 484 458

iAM303 (Manichaikul et al., 2009) 2009 259 267

iRC1080 (Chang et al., 2011) 2011 2,190 1,706

AlgaGEM (Gomes De Oliveira Dal’molin
et al., 2011)

2011 1,725 1,862

iBD1106 (Chaiboonchoe et al., 2014) 2014 2,445 1,959

iCre1355 (Imam et al., 2015) 2015 2,394 1,845

Winck et al (Winck et al., 2016) 2016 3,554 2,342

Salguero et al (Mora Salguero et al., 2018) 2018 3,726 2,436

Yao et al (Yao et al., 2023) 2023 2,641 2,240

Arend et al (Arend et al., 2023) 2023 2,394 1,845

Chlorella variabilis iAJ526 (Juneja et al., 2016) 2016 1,455 1,236

Chlorella vulgaris
iCZ843 (Zuniga et al., 2016) 2016 2,294 1,770

iCZ946 (Zuniga et al., 2018) 2018 2,294 1,770

Chromochloris zofingiensis iChr1915 (Meagher et al., 2024) 2024 3,413 2,652

Dunaliella salina iEC1693 (Cunha et al., 2024) 2024 4,614 3,732

Emiliania huxleyi iEH410 (Knies et al., 2015) 2015 410 363

Fragilariopsis cylindrus Lavoie et al (Lavoie et al., 2020) 2020 2,144 1,707

Haematococcus pluvialis Recht et al (Recht et al., 2014) 2014 2,622 1,975

Isochrysis sp. iIsochr964 (Sengupta et al., 2024) 2023 4,315 1,879

Nannochloropsis gaditana iRJ1321 (Shah et al., 2017) 2017 1,918 1,862

Nannochloropsis salina iNS934 (Loira et al., 2017) 2017 2,345 1,985

Phaeodactylum tricornutum
iLB1027_lipid (Levering et al., 2016) 2016 4,456 2,172

iLB1025 (Levering et al., 2016) 2016 2,156 1,704

Scenedesmus obliquus iAR632 (Ray et al., 2023) 2023 1,476 1,549

Schizochytrium limacinum iCY1170_DHA (Ye et al., 2015) 2015 1769 1659

Thalassiosira pseudonana
iThaps987 (Ahmad et al., 2020) 2020 2,477 2,456

iTps1432 (Van Tol and Armbrust, 2021) 2021 6,073 2,789
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Guérin, S., Bruyant, F., Gosselin, M., Babin, M., and Lavaud, J. (2024). Photoperiodic
dependent regulation of photosynthesis in the polar diatom Fragilariopsis cylindrus.
Front. Photobiol. 2, 1387119. doi: 10.3389/fphbi.2024.1387119

Guerin, S., Raguenes, L., Croteau, D., Babin, M., and Lavaud, J. (2022). Potential for
the production of carotenoids of interest in the polar diatom fragilariopsis cylindrus.
Mar. Drugs 20, 491. doi: 10.3390/md20080491

Harcombe, W. R., Riehl William, J., Dukovski, I., Granger Brian, R., Betts, A., Lang
Alex, H., et al. (2014). Metabolic resource allocation in individual microbes determines
ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115. doi: 10.1016/
j.celrep.2014.03.070

Harris, E. H. (2001). Chlamydomonasas A model organism. Annu. Rev. Plant Biol.
52, 363–406. doi: 10.1146/annurev.arplant.52.1.363

Heinken, A., and Thiele, I. (2022). Microbiome Modelling Toolbox 2.0: efficient,
tractable modelling of microbiome communities. Bioinformatics 38, 2367–2368.
doi: 10.1093/bioinformatics/btac082

Ho, S.-H., Chan, M.-C., Liu, C.-C., Chen, C.-Y., Lee, W.-L., Lee, D.-J., et al. (2014).
Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3
using light-related strategies. Bioresource Technol. 152, 275–282. doi: 10.1016/
j.biortech.2013.11.031

Hosseini, A., Jazini, M., Mahdieh, M., and Karimi, K. (2020). Efficient
superantioxidant and biofuel production from microalga Haematococcus pluvialis
via a biorefinery approach. Bioresource Technol. 306, 123100. doi: 10.1016/
j.biortech.2020.123100

Hu, J., Wang, D., Chen, H., and Wang, Q. (2023). Advances in genetic engineering in
improving photosynthesis and microalgal productivity. Int. J. Mol. Sci. 24, 1898.
doi: 10.3390/ijms24031898

Hu, H., Wu, B.-L., Wei, D., Yu, L., Li, W.-H., and Zhu, S.-G. (2024). Salinity
controlling enhanced high-salinity pickle wastewater treatment coupling with high-
value fatty acid production by Dunaliella salina. J. Cleaner Production 448, 141732.
doi: 10.1016/j.jclepro.2024.141732

Huang, W., Lin, Y., He, M., Gong, Y., and Huang, J. (2018). Induced high-yield
production of zeaxanthin, lutein, and b-carotene by a mutant of chlorella zofingiensis.
J. Agric. Food Chem. 66, 891–897. doi: 10.1021/acs.jafc.7b05400

Huntley, M. E., and Redalje, D. G. (2007). CO2 mitigation and renewable oil from
photosynthetic microbes: A new appraisal. Mitigation Adaptation Strategies Global
Change 12, 573–608. doi: 10.1007/s11027-006-7304-1
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Isochrysis galbana for biodiesel production. Appl. Energy 101, 192–197. doi: 10.1016/
j.apenergy.2012.03.027

Santos, C. A., Vieira, A. M., Fernandes, H. L., Empis, J. A., and Novais, J. M. (2001).
Optimisation of the biological treatment of hypersaline wastewater from Dunaliella
salina carotenogenesis. J. Chem. Technol. Biotechnology: Int. Res. Process Environ. Clean
Technol. 76, 1147–1153. doi: 10.1002/jctb.497

Sati, H., Chokshi, K., Soundarya, R., Ghosh, A., and Mishra, S. (2021). Seaweed-based
biostimulant improves photosynthesis and effectively enhances growth and biofuel
potential of a green microalga Chlorella variabilis. Aquaculture Int. 29, 963–975.
doi: 10.1007/s10499-021-00667-9

Schellenberger, J., Park, J. O., Conrad, T. M., and Palsson, B.Ø. (2010). BiGG: a
Biochemical Genetic and Genomic knowledgebase of large scale metabolic
reconstructions. BMC Bioinf. 11, 213. doi: 10.1186/1471-2105-11-213

Schnurr, P. J., Espie, G. S., and Allen, G. D. (2016). The effect of photon flux density
on algal biofilm growth and internal fatty acid concentrations. Algal Res. 16, 349–356.
doi: 10.1016/j.algal.2016.04.001

Schubert, H., Andersson, M., and Snoeijs, P. (2006). Relationship between
photosynthesis and non-photochemical quenching of chlorophyll fluorescence in
two red algae with different carotenoid compositions. Mar. Biol. 149, 1003–1013.
doi: 10.1007/s00227-006-0265-9

Seaver, S. M. D., Gerdes, S., Frelin, O., Lerma-Ortiz, C., Bradbury, L. M. T., Zallot, R.,
et al. (2014). High-throughput comparison, functional annotation, and metabolic
modeling of plant genomes using the PlantSEED resource. Proc. Natl. Acad. Sci. 111,
9645–9650. doi: 10.1073/pnas.1401329111

Segrè, D., Vitkup, D., and Church, G. M. (2002). Analysis of optimality in natural and
perturbed metabolic networks. Proc. Natl. Acad. Sci. 99, 15112–15117. doi: 10.1073/
pnas.232349399
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