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Frontiers in Plant Science 
A detection method for 
synchronous recognition of 
string tomatoes and 
picking points based on 
keypoint detection 
Linqiang Deng †, Rongting Ma †, BaoFan Chen 
and Guozhu Song* 

College of Software, Shanxi Agricultural University, Taigu, China 
In the greenhouse environment, factors such as variable lighting conditions, the 
similarity in color between fruit stems and background, and the complex growth 
posture of string tomatoes lead to low detection accuracy for picking points. This 
paper proposes a detection method for the synchronous recognition of 
tomatoes and their picking points based on keypoint detection. Using 
YOLOv8n-pose as the baseline model, we constructed the YOLOv8-TP model. 
To reduce the computational load of the model, we replaced the C2f module in 
the backbone network with the C2f-OREPA module. To enhance the model’s 
accuracy and performance, we introduced a PSA mechanism after the backbone 
network. Additionally, to strengthen the model’s feature extraction capabilities, 
we incorporated CGAFusion at the end of the Neck, which adaptively emphasizes 
important features while suppressing less important ones, thereby enhancing 
feature expressiveness. Experimental results show that the YOLOv8-TP model 
achieved an accuracy of 89.8% in synchronously recognizing tomatoes and 
picking points, with an inference speed of 154.7 FPS. The YOLOv8n-pose model 
achieves an inference speed of 148.6 FPS. Compared to the baseline model, 
YOLOv8-TP improved precision, mAP@.5, mAP@.5:.95, and F1-score by 0.6%, 
1%, 2%, and 1%, respectively, while reducing model complexity by 8.1%. The 
Euclidean distance error for detecting picking points was less than 25 pixels, and 
the depth error was less than 3 millimeters. This method demonstrates excellent 
detection performance and provides a reference model for detecting string 
tomatoes and their picking points. 
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1 Introduction 
China is one of the countries with the largest area for string 
tomato cultivation and the highest production. According to 
statistics, the production of string tomatoes in China increased 
from 6.2 million tons in 2022 to 8 million tons in 2023, and it is 
expected that by the end of 2024, the production will exceed 11 
million tons (China Report Hall Network, 2024). However, string 
tomato harvesting faces several challenges, including ensuring 
harvest integrity, low manual efficiency, high labor intensity, and 
a shortage of skilled labor. With the development of artificial 
intelligence, automated harvesting technology has rapidly 
emerged (Fujinaga et al., 2021; Matsuo et al., 2021). In string 
tomato harvesting, detecting both the tomatoes and their picking 
points is crucial and relies on computer vision technology and deep 
learning models (Zhang et al., 2020; Wang and Zhu, 2023). 

In natural environments, string tomato clusters are often 
obscured by leaves, branches, and other tomato clusters 
(Berenstein et al., 2010). Additionally, the color of the fruit stems 
is similar to that of leaves, and their complex posture poses 
challenges in locating picking points. Therefore, the core of 
developing string tomato harvesting robots lies in creating precise 
and efficient algorithms for the simultaneous detection of string 
tomatoes and picking points. At present, there are two latest 
methods for locating picking points. One is based on instance 
segmentation, such as (Rong et al., 2025), who proposed an 
enhanced dual-stream architecture algorithm that combines RGB 
and depth features for tomato organ instance segmentation. In their 
research, they attempted to combine RGB and depth information to 
achieve more accurate tomato organ instance segmentation. By 
using  a  dual-stream  architecture,  it  can  better  utilize  
complementary information from different modalities. However, 
the limitation of this algorithm is the high computational cost. 
Simultaneously processing RGB and depth images requires a 
significant amount of computational resources, which may limit 
the real-time performance of the algorithm in practical applications. 
For example, in large-scale tomato plantations, if the algorithm’s 
image processing speed is not fast enough, it will affect the picking 
efficiency. Another limitation is the sensitivity to occlusion. When 
tomatoes or their fruit stalks are severely obstructed by leaves or 
other objects, for instance, segmentation results may be inaccurate, 
leading to incorrect recognition of cutting points. Another method 
is (Zhang et al., 2022)’s tomato skewer 3D pose detection method 
based on a key-point detection network, which focuses on detecting 
the keypoints of tomato skewers to estimate their 3D pose. By 
training a keypoint detection network, the goal is to accurately 
locate the key positions of tomatoes and their fruit stalks. However, 
this method may lead to misjudgment of keypoints due to complex 
backgrounds, and may also encounter challenges when 
encountering occlusions. 

In addition, research on identifying and locating tomato clusters 
and picking points can be roughly divided into traditional image 
processing methods (TIPM) and deep learning methods (DLM). 
TIPMs detect fruits based on pre-defined handcrafted features such 
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as fruit shape, color, and geometric characteristics. They then 
predict locations based on geometric features (such as fruit 
contours and centroids) or identify stems based on their 
positional relationship with fruits to locate picking points. In 
related studies, (Zhou et al., 2023). improved the YOLACT++ 
model to identify and segment key structures such as result 
branches, fruit stems, and fruit clusters; they designed a method 
for selecting low-collision regions of interest (ROI) based on 
structural constraints and range re-selection, using the centroid of 
this region as the picking point. (Xu et al., 2023). proposed a 
feature-enhanced recognition deep learning model named YOLO 
v4-SE that combines multi-channel inputs from RGB and depth 
images to identify grapes while simultaneously inferring picking 
points above the predicted grape bounding boxes. (Li et al., 2024). 
developed a system with object detection and instance segmentation 
capabilities along with a picking point localization algorithm; this 
system derives a skeleton line for stem regions based on segmented 
images and develops an algorithm to determine optimal picking 
point coordinates. (Zhang et al., 2023). utilized image processing 
techniques within the YOLOv5-GAP framework to identify the top 
vertices of grape regions based on grape detection. (Bai et al., 2023). 
proposed a method that combines Hough circle detection, spatial 
symmetric spline interpolation, and geometric analysis for 
estimating clustered tomato flower stems, contour fitting, and 
selecting point localization. 

DLMs can learn higher-level and more complex semantic 
features, thereby improving detection accuracy, robustness, and 
generalization ability. They have been widely applied in scenarios 
such as pest recognition, weed identification, and monitoring crop 
growth conditions. In research focused on detecting fruits 
and stems, (Zhang et al., 2024). addressed challenges such 
as leaf occlusion and small target sizes that hinder accurate 
determination of string tomato picking points by proposing a 
YOLOv8n-DDA-SAM model that incorporates a semantic 
segmentation branch into object detection to achieve accurate 
detection and calculation of picking points with an accuracy rate 
of 85.90%. (Yan et al., 2023). introduced a Si-YOLO-based deep 
learning algorithm for recognizing and locating string tomato 
picking points in unstructured environments. This method 
enhances dataset accuracy by combining object detection 
algorithms with attention mechanisms while utilizing GANs 
alongside traditional image data augmentation techniques to 
more accurately locate string tomato picking points and improve 
model generalization. (Zhu et al., 2023). used grape clusters and 
stems as two target categories employing the YOLOv5m-CFD 
model for object detection; the midpoint of the stem prediction 
box was marked as the picking point. (Rong et al., 2023). proposed 
an improved Swin Transformer V2 semantic segmentation model 
along with a picking point recognition algorithm based on 
connections between tomato fruits, sepals, and stems to address 
challenges in identifying picking points for mature tomatoes in 
complex environments. The sea ice recognition study by (Zhou 
et al., 2023). uses YOLACT to address the core challenges of dense 
target adhesion and light interference for instance segmentation in 
complex environments. (Wang et al., 2025). solved the problem of 
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insensitivity of traditional methods to target location, structural 
differences and edge details in high-resolution images by means of 
Dual-path Transformer (DPT) and Unit Fusion Module (UFM). 

The aforementioned methods exhibit l imitations in 
synchronizing the detection of string tomatoes and their picking 
points; moreover, TIPMs require significant time for manual 
feature selection and design while having limited adaptability to 
complex scenes—struggling with diverse images under specific 
scales or angles. Additionally, these models still possess 
considerable computational demands which pose challenges for 
deploying models on mobile terminals, affecting detection speed. In 
practical robotic harvesting processes, factors such as uneven 
lighting conditions and varying growth postures of string tomato 
clusters impact harvesting efficiency; thus, the vision system of 
string tomato harvesting robots must achieve precise localization of 
both tomatoes and picking points to minimize losses during 
harvesting while reducing damage to the fruit clusters 
(Klaoudatos et al., 2019). This study proposes an improved 
keypoint detection method based on YOLOv8n-Pose capable of 
simultaneously detecting string tomatoes and their picking points. 
This end-to-end model not only addresses the issues of insufficient 
robustness and low detection rate of traditional methods. Through a 
series of improvements, such as designing specific modules and 
introducing relevant mechanisms, which aim to overcome the 
limitations of traditional methods in handling occlusion and 
environmental variability, it also effectively improves the 
localization accuracy of string tomatoes and their picking points, 
providing a more accurate and efficient solution for string tomato 
harvesting. In the agricultural computer vision domain, studies 
including 3D point cloud-based phenotyping for Chinese 
Cymbidium seedlings and four-stream radiative transfer models 
for row crops primarily address macro-scale feature extraction or 
physical modeling. In contrast, this work emphasizes micro-scale 
robotic interaction by integrating keypoint detection into YOLOv8 
for simultaneous tomato localization and picking-point 
identification. Unlike methods relying on multi-sensor data, our 
lightweight architecture achieves real-time performance through 
end-to-end learning, rendering it suitable for dynamic greenhouse 
environments with occlusions and variable lighting conditions. 
While vegetation cover estimation models typically adopt pixel-
level dichotomy, our approach utilizes adaptive feature fusion 
(CGAFusion) to address color similarity challenges between fruit 
stems and backgrounds, thereby enhancing localization precision in 
complex scenes. The details are as follows: The model realizes the 
simultaneous detection of string tomatoes and picking points, 
which reduces the separation of detection and localization tasks 
in the traditional method, thus improving the detection speed and 
accuracy. This synchronized detection not only reduces false alarms 
but also improves the model’s adaptability in complex scenes. Since 
string tomatoes are often occluded by leaves, branches, and other 
tomato fruits, it is difficult for existing conventional image 
processing methods to effectively detect occluded fruits and 
picking points. In this study, these occlusion problems are 
overcome by an enhanced feature extraction mechanism, which 
improves the accurate recognition of string tomatoes in complex 
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environments. Considering the diverse growth postures and uneven 
light conditions of string tomatoes, the proposed model possesses 
strong environmental adaptability. It can maintain high detection 
accuracy under different light conditions and complex morphology 
of tomato clusters, thus ensuring the minimization of losses 
during picking. 
2 Materials and methods 

2.1 Data sample collection 

The data samples were collected from the Tomato Town located 
in Taigu District, Jinzhong City, Shanxi Province. Due to the close 
proximity and high density of the shooting scenes, specific 
requirements were placed on the selection of camera resolution 
and focal length. The data samples were captured using a mobile 
phone’s rear camera, which has a resolution of 2778×1284 pixels 
and a 12-megapixel sensor. The telephoto camera has a focal length 
of 77 millimeters, enabling the acquisition of high-quality, 
distortion-free image data from multiple positions and angles. 

In this study, we constructed the Tomato-P dataset to train a 
model capable of simultaneously detecting string tomatoes and 
their picking points. The data was collected between July 15 and 
July 31, 2022, during which most string tomatoes in the greenhouse 
were in the ripening stage, suitable for harvesting and yield 
estimation. Preliminary research indicated that images captured 
under different lighting intensities exhibited variations; therefore, 
we chose to conduct the data collection from 7 AM to 7 PM, 
encompassing various weather conditions such as sunny and 
overcast days, as well as different lighting scenarios like front 
lighting and backlighting (Qin et al., 2021). This approach 
allowed for multi-angle captures of string tomatoes to obtain 
images under natural lighting conditions. The principle is shown 
in Figure 1. 

To enhance data diversity, we established a baseline using the 
plane of string tomato fruits and tomato ridges, capturing images at 
angles of 10°, 45°, 90°, and 135°. The principle is shown in Figure 2. 
Additionally, we took one photograph from both the left and right 
sides of each string tomato cluster, ensuring that each cluster was 
photographed six times. The distance between the camera and the 
plants was maintained between 10 cm and 30 cm to ensure optimal 
imaging conditions. Based on the spacing between plants, the 
camera was positioned every 20 cm along the rows of string 
tomatoes to ensure that each image field contained a new cluster. 
The collected images were uniformly stored in JPG format with 
dimensions of 3024×4032 pixels. This method of having the fruit 
occupy a large portion of the image is helpful in multiple ways for 
fruit detection and harvesting. It enhances feature extraction, 
enabling the model to better capture details like fruit texture and 
color, thus improving the robustness of detection under various 
lighting conditions and occlusions. It also aids in model training by 
providing a high-quality representation of the target, helping the 
model distinguish fruits from surrounding foliage or branches, and 
can be used for pre-training or fine-tuning to boost baseline 
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performance. For harvesting, it allows the model to focus on picking 
points and learn accurate localization through close-up images. 
Additionally, it can simulate realistic scenarios via data 
augmentation for better model generalization, helps the model 
address occlusion challenges by emphasizing features of partially 
visible fruits, and is suitable for specific use cases in certain 
greenhouse or controlled environments. 
 

2.2 Data sample collection 

After conducting field investigations and sampling at the 
“Tomato Town” in Shanxi, we organized and annotated the 
images of string tomatoes to construct a dataset for string tomato 
detection. We used the open-source annotation software LabelMe 
to perform bounding box annotations on the string tomato image 
data, with the annotation format being JavaScript Object Notation 
(JSON). The annotation process followed these standards: 

1. Bounding Box Annotation: The areas of string tomato clusters 
were marked using “rectangle boxes” that tangentially fit the
Frontiers in Plant Science 04
boundaries of the clusters. Labels were created based on ripeness and 
whether the picking points were obscured, categorizing them into four 
types: ripe (R), ripe but with obscured picking points (R-S), 
transitioning from unripe to ripe (GR), and unripe (G). Notably, 
since unripe tomatoes (GR and G categories) are not typically 
harvested, this study did not differentiate occluded vs. non-occluded 
picking points for these classes. The detailed distribution of images per 
category under different lighting conditions is shown in Table 1. 

2. Point Annotation: Picking points were marked using 
“points,” which needed to be accurately located at the center of 
the fruit stem. When a picking point was completely obscured by 
leaves or branches, its actual position could not be accurately 
annotated, and the approximate location was estimated based on 
empirical knowledge. This may introduce annotation biases and 
affect the model training outcomes. An example of the annotation 
process is illustrated in Figure 3. 

The annotation format is shown in Equation (1): 

LabelTomato − P 

= (class;  xbox;  ybox; w;  h;  xP;  yP;  visible − P) (1) 
FIGURE 1 

Photographs of string tomatoes in their respective conditions. 
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In this study, the annotation format for the string tomato 
detection dataset is defined as follows: 

The class represents the object category. (xbox, ybox) denotes 
the coordinates of the center point of the bounding box around the 
string tomato cluster. (w, h) indicates the width and height of the 
bounding box. (xP, yP) represents the coordinates of the picking 
point. When the value of visible-P is 2, it indicates that the keypoint 
is visible; when the value is 1, it indicates that the keypoint is 
occluded and not visible. 

This structured annotation format ensures precise localization 
and classification of both string tomatoes and their respective 
picking points, facilitating effective training and evaluation of 
detection models. 

This study includes a dataset with 3,665 annotated instances, 
which is divided into training, validation, and test sets in a ratio of 
Frontiers in Plant Science 05 
8:1:1. Specifically, the dataset comprises 2,932 images for the 
training set, 367 images for the validation set, and 366 images for 
the test set. 
2.3 Experimental environment and 
equipment 

The experimental equipment configuration parameters used in 
this study are shown in Table 2. The processor is the 13th 
generation Intel (R) Core (TM) i7 - 13700K with 24 threads. The 
graphics card is NVIDIA GeForce RTX 3090, and the graphics 
driver version is NVIDIA SMI 535.161.07. The memory is DDR5 
64GB, and the operating system is Ubuntu 22.04.3 LTS. The depth 
camera is Intel RealSense D435i, with a depth image resolution of 
1280x720 and a maximum frame rate of 90 frames per second. The 
development language used is Python 3.9.7, and the configured 
environment includes CUDA version CUDA_11.5.r.5 and 
Anaconda version conda 4.10.3. In the model of this study, the 
optimizer adopted is SGD (Stochastic Gradient Descent). It plays a 
crucial role in the training process by adjusting the model 
parameters based on the gradients calculated from the training 
data. In our experiment, the learning rate is set to 0.01, and the 
optimizer uses this learning rate to update the model weights in 
each iteration to minimize the loss function. Regarding the loss 
function, the model combines multiple loss components. There is a 
classification loss, which is a cross-entropy loss used to distinguish 
different classes of objects (such as tomatoes and the background in 
this study). There is also a regression loss for predicting the 
bounding boxes of objects, which is a variant of the L1 or L2 loss 
like the Smooth L1 loss. Additionally, for the keypoint detection 
task, there is a keypoint loss designed to minimize the error between 
the predicted keypoints and the ground truth keypoints. In our 
experiment, these loss components work together to guide the 
training of the model and evaluate its performance. Concerning 
the training strategy, an early stopping mechanism is implemented. 
Specifically, if the validation loss does not decrease for 5 consecutive 
epochs, the training process will be stopped. This helps to prevent 
overfitting and saves computational resources. By monitoring the 
validation loss during training, we can ensure that the model has 
good generalization ability and does not overfit the training data. 
The experimental parameter batch is 32, and the parameter learning 
rate is 0.01. To prevent data overfitting, the epoch is set to 200, and 
the rest are default values. 
FIGURE 2 

Schematic diagram of string tomato shooting angle. 
TABLE 1 Distribution of tomato cluster images by ripeness category and lighting condition. 

Tomato 
category 

Sunny 
(images) 

Cloudy 
(images) 

Cloudy 
day (images) 

Shelter 
(images) 

Dense 
(images) 

Total 
(images) 

R 609 435 348 209 139 1740 

R-S 334 239 191 115 76 955 

GR 236 169 135 81 54 675 

G 103 74 59 35 24 295 
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2.4 Constructing the YOLOv8-TP model 

YOLOv8n-Pose extends the YOLOv8n architecture for real-
time object detection and keypoint estimation. Its backbone 
employs a CSP (Cross-Stage Partial Network) design, an 
Frontiers in Plant Science 06
optimized deep-learning architecture that enhances model 
efficiency and accuracy while reducing computational and 
memory overhead. The backbone integrates C2f (Concatenate, 
Two Fusion) modules, which aggregate multi-scale features via 
bottleneck  structures  with  skip  connections,  ensuring  
computational efficiency while preserving spatial information. The 
neck network utilizes either FPN(Feature Pyramid Network) or 
PAN(Path Aggregation Network) for multi-scale feature fusion, 
enabling effective detection of objects of varying sizes. The head 
module includes a pose estimation branch for predicting keypoints, 
such as stems and cutting points, alongside bounding box and class 
prediction branches. However, YOLOv8n-Pose exhibits limitations 
in occlusion robustness and lacks global context awareness for 
detecting complex object relationships. To address these, we 
propose the YOLOv8-TP model, which incorporates the C2f
OREPA module, integrates the PSA(Partial Self-Attention) 
mechanism, and inserts CGAFusion to enhance the baseline 
YOLOv8n-Pose architecture. 
2.5 Design of the C2f-OREPA module 

Aiming at the problem of low training efficiency and limited 
feature diversity caused by the BN(Batch Normalization) layer in 
TABLE 2 Configuration parameters of the experimental environment. 

Configuration names Parameters 

Processor 13th Gen Intel(R) Core(TM) I7-13700K×24 

Display Card NVIDIA GeForce RTX 3090 

Graphics Card Driver NVIDIA-SMI 535.161.07 

RAM 64G 

Development language Python 3.9.7 

Deep Learning Framework Pytorch 

Depth camera Intel RealSense D435i 

CUDA cuda_11.5 

Anaconda conda 4.10.3 

GPU memory RTX 3090(24 G) 

Training duration 1.50 hours 
FIGURE 3 

Model diagram for labeling. 
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the traditional C2f module, it is replaced with the C2f-OREPA 
module (Hu et al., 2022; Rongli et al., 2024), which achieves efficient 
and high-performance detection through the following three-phase 
improvement. Linearization modification, removing the nonlinear 
BN in the bottleneck layer and replacing it with a learnable linear 
scaling layer (Scaling), which retains the feature distribution 
flexibility and avoids the suppression of dense targets (e.g., string 
tomato) by over-normalization. Training stability is enhanced by 
adding independent BN layers at the end of branches to prevent 
gradient  anomalies  and  ensure  convergence.  OREPA  
reparameterization, which compresses the multi-branch structure 
into a single convolutional layer, retains the multipath optimization 
during training and merges it into a single branch during inference 
to reduce latency. Finally, it is introduced into the C2f module, 
named the C2f-OREPA module. By reparameterizing the complex 
structure into a single convolutional layer, the training cost is 
greatly reduced while maintaining high performance, which helps 
to improve the accuracy of target detection. The principle is shown 
in Figure 4.1 
2.6 Adding the partial self-attention 
mechanism 

In the optimization process of the C2F module, the attention 
mechanism has become a core element for breaking through 
performance bottlenecks. Traditional standard attention 
mechanisms,  such  as  Squeeze-and-Excitation  (SE)  and  
Convolutional Block Attention Module (CBAM), have enhanced 
the model’s response to key features to a certain extent by 
dynamically adjusting channel-wise or spatial dimension weights. 
However, when dealing with complex scenes, these mechanisms 
exhibit significant limitations: the SE mechanism solely focuses on 
channel relationships and lacks effective modeling of spatial 
information. When facing tomatoes with intertwined branches 
BN, Batch Normalization; ReLU, Rectified Linear Unit. 
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1 
and leaves, it struggles to accurately capture spatial position and 
shape information, thus easily missing the characteristics of 
occluded fruits and leading to false negatives; although CBAM 
integrates channel and spatial attention, its computational overhead 
increases nonlinearly with input size. For instance, when processing 
tomato images with varying growth stages and significant size 
differences, the processing speed is insufficient to meet the real-
time detection requirements of agricultural production. In contrast, 
the Efficient Partial Self-Awareness (PSA) mechanism (Wang et al., 
2024) improves model performance while reducing computational 
complexity and memory usage. By introducing PSA into target 
detection models like YOLOv8 and optimizing the model’s main 
architecture with it, PSA helps the model better extract image 
features in the backbone, especially for targets of varying scales 
and shapes, and captures their feature information more accurately. 

Specifically, after 1×1 convolution, the feature map is evenly 
divided into two parts. One part is fed into an NPSA block 
consisting of a multi-head self-attention module (MHSA) and a 
feed-forward network (FFN), where the MHSA captures the 
dependencies between different positions to provide global 
information for the model, and the FFN further processes and 
transforms this information to better adapt to the needs of the target 
detection task. The other part of the features is directly processed by 
1×1 convolution and then connected and fused with the part 
processed by the NPSA block. This design takes advantage of the 
global modeling capability of the self-attention mechanism and 
avoids the huge computational overhead associated with self-
attention computation on the entire feature map. The structure of 
the PSA attention mechanism is shown in Figure 5.2 
2.7 Insertion of content guided attention 

By inserting a Content Guided Attention (CGA) mechanism in 
the Neck section, channel-specific Spatial Importance Maps (SIMs) 
FIGURE 4 

Principle of C2f-OREPA. 
2 MHSA, multi-head self-attention module. 
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can be generated and channel attention and spatial attention can be 
fused to emphasize more useful information encoded in the features 
for information interaction and efficient gradient flow. CGAFusion 
(Content Guided Attention) (Chen et al., 2023) implements a 
feature fusion network, which combines spatial attention, channel 
attention, and pixel attention mechanisms for adapting and fusing 
two input feature maps x and y. In this way, the network prioritizes 
critical features and suppresses irrelevant ones, enhancing feature 
representation. Among them, (1) Spatial Attention mechanism 
(Spatial Attention), this is usually used to enhance the model’s 
attention to specific regions in the image. By calculating the results 
of average pooling and maximum pooling and combining them for 
input to the convolutional layer, an attention weight map can be 
obtained, which assigns a weight to each spatial location of the input 
Frontiers in Plant Science 08
feature map, emphasizes important features and suppresses 
unimportant features; (2) Channel Attention, which aggregates 
the spatial information of each channel through global average 
pooling, and then enhances the expression of features through 
global average pooling. Spatial information for each channel and 
then learns the importance weights for each channel through a 
network containing two convolutional layers. This mechanism is 
commonly used for feature recalibration, allowing the network to 
adaptively emphasize informative features and suppress irrelevant 
ones. In this way, channel attention helps to improve the model’s 
ability to represent the input data, thus improving performance in a 
variety of visual tasks; (3) Pixel-level attention mechanism (Pixel 
Attention), which processes the results of the stitching of the input 
feature maps and the first attentional feature maps through the 
FIGURE 5 

Structure of PSA attention mechanism. 
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3 U: In the Bottleneck module, the nonlinear Batch Normalization (BN) 

layers are replaced with a linear scaling layer, and a BN layer is added after 

branching; the linear scaling layer is compressed into the OREPA module. The 

optimized modules are named as Bottleneck-OREPA module and C2f

OREPA module respectively. 
convolutional layers. This mechanism aims to assign a weight to 
each pixel, emphasizing the important pixels and suppressing the 
unimportant ones. In this way, pixel attention helps to enhance the 
model’s ability to capture key information in the image and improve 
the performance of processing image-related tasks. Ultimately, 
fusion results are generated by considering these attention 
mechanisms, where pixel attention weights are used to adjust the 
combination of input feature maps, allowing the model to focus 
more on features that are more discriminative to the task. This 
fusion strategy can improve the performance of the model in 
computer vision tasks such as image classification, target 
Frontiers in Plant Science 09
detection, and semantic segmentation. A schematic of content-
guided attention (CGA) is shown in Figure 6a3. In addition, we 
provide a simple illustration of the spatial, channel, and pixel 
attention mechanisms in Figure 6b. 
FIGURE 6 

(a) Schematic diagram of content-guided attention. (b) Spatial, Channel, and Pixel Attention Supplement Maps. 
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2.8 YOLOv8-TP model 

In this paper, the YOLOv8-TP model is constructed by making 
innovative improvements to the base model YOLOv8n-pose(its 
structure is shown in Figure 7b), and the model structure is 
shown in Figure 7a) 

The specific execution process of the YOLOv8-TP model is 
as follows: 
Fron
1 Before inputting the image into YOLOv8-TP, any size of the 
image is resized to 640 × 640 × 3. The input image 
undergoes feature extraction by the backbone network, 
and a series of feature maps with different scales 
are obtained; 
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2. Further feature learning and compression of the feature 
maps is performed using the OREPA structure; 

3 . 	 Add  the  PSA  a t tent ion  mechanism  a f t er  the  
backbone network; 

4. Input the feature maps processed by the PSA attention 
mechanism into CGAFusion to calculate the weights, and 
then combine them using the weighted sum method. 

5. The final obtained features are fed into the detection head 
(detection head) for target classification and bounding 
box regression; 

6. For each scale of the feature map, the bounding box, as well 
as the keypoints, are screened by the non-maximum 
suppression (NMS) algorithm to remove the redundant 
detection results; 

7. Finally, the bounding box processed by NMS is restored to 
the original image size, and the final target detection results 
are output. 
2.9 Assessment of indicators 

TP 
P = 	 (2)

TP + FP 

TP 
R = 	 (3)

TP + FN 

2 � P � R 
F1 =	 (4)

P + R  

The evaluation metrics of the detection model use parameters 
(Params) and giga floating point operations per second (Flops) to 
evaluate the complexity of the model. The detection speed of the 
model is measured in frames per second (FPS). The average 
precision is represented using mAP and its value is calculated 
from the Precision and Recall of the prediction model; the 
average accuracy in this study can be represented by the AP 
value, which is the area enclosed by the Precision-Recall curve 
and is calculated using Precision (P), Recall (R), and Fl score using 
(Equations 2-4) as shown below: 

Let the target to be detected be a positive class and the others be 
negative classes, then: TP is the positive class predicted to be 
positive; FP is the negative class predicted to be positive; FN is 
the positive class predicted to be negative. Finally, the samples were 
fed into the model and executed 500 times to derive the detection 
speed (FPS) of the model. 

In addition, considering the detection of tomato bunch picking 
points, the detected picking points will have a certain error with the 
actual picking points. So in the picking point detection experiment, 
we choose the pixel Euclidean distance between the predicted 
picking point and the real picking point as the index to evaluate 
the accuracy of the picking point (Hu et al., 2022). The formula for 
calculating the pixel Euclidean distance between the detected 
picking points and the actual picking points is presented in 
FIGURE 7 

Structure of YOLOv8n-Pose and YOLOv8-TP RP. (a) Structure of 
YOLOv8n-Pose. (b) Structure of YOLOv8-TP. 
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(Equations 5-7). In equations, x and y signify the normalized 
coordinates of the actual picking points in the horizontal and 
vertical directions, respectively. Correspondingly, x’ and y’ denote 
the normalized coordinates of the detected picking point in the 
horizontal and vertical directions. The variable w represents the 
image resolution in the horizontal dimension, and h represents that 
in the vertical dimension. DX and DY are the pixel distances 
between the detected picking points and the actual picking points 
in the horizontal and vertical directions, respectively, while O 
represents the pixel Euclidean distance between the detected 
picking points and the actual picking points. 

DX = w(x  − x } ) (5) 

DY =  h(y − y } ) (6) 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
O =  DX

2 + D2
Y (7) 
3 Results and analysis 

3.1 Comparison of model detection effect 
before and after improvement 

In order to verify the advantages of the YOLOv8-TP model 
proposed in this study on the string tomato as a whole as well as the 
recognition effect of keypoints, comparative experiments are 
conducted on the recognition effects of the YOLOv8n-pose model 
and the YOLOv8-TP model. In the comparison test, the YOLOv8n
pose model and YOLOv8-TP model are trained based on the same 
training set and test platform, and the recognition effect is evaluated 
based on the same test set after training. 

As shown in Figure 8, in the overall recognition process of 
samples with multiple angles, different lighting conditions, and 
complex growth and hidden fruit stems, the two models exhibit 
significant differences and fluctuations. When the tomato skewers 
are clearly visible, the confidence level of the YOLOv8-TP model is 
slightly better than that of the YOLOv8n-pose model; When tomato 
skewers are in a shaded environment, the confidence level of the 
former is significantly higher than that of the latter. In addition, the 
YOLOv8-TP model has a significant advantage over the YOLOv8n
pose model in predicting the accuracy of tomato picking points. 

In summary, the YOLOv8-TP model performs well in 
synchronous recognition of tomato skewers and their picking 
points, effectively compensating for the shortcomings of 
traditional methods. 
3.2 Comparison of experimental results of 
mainstream models 

Without applying data augmentation operations, comparative 
analysis of different YOLO keypoint detection models shows that 
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the improved YOLOv8-TP algorithm demonstrates superior 
performance, characterized by fast recognition speed and high 
accuracy. The results comparison among YOLOv5s6-pose, 
YOLOv7-thiny-pose, YOLOv7-w6-pose, YOLOv8n-pose, and 
YOLOv8-TP is presented in Table 3. 

In terms of performance metrics, YOLOv7-w6-pose achieves 
the highest accuracy of 0.908, followed by YOLOv8-TP with an 
accuracy of 0.898. The recall values of YOLOv8n-pose and 
YOLOv8-TP are relatively close, being 0.878 and 0.875 
respectively. In terms of the mAP@0.5 metric, the mAP@0.5 of 
YOLOv8-TP is 0.938, which is 1% higher than that of YOLOv8n
pose. In terms of mAP@0.5:0.95, YOLOv8-TP has the highest value 
of 0.884, representing a 2% improvement compared to YOLOv8n
pose. Regarding the F1-score metric, YOLOv8-TP reaches a 
maximum of 0.89, which is a 1% improvement compared to 
YOLOv8n-pose .  In  terms  of  computat ional  resource  
requirements, YOLOv8-TP has 7.6G Flops, which is 8.1% less 
than that of the original model YOLOv8n-pose. Moreover, the 
IoU (Intersection over Union) score of YOLOv8-TP is 0.89, a 2% 
improvement over the baseline model. This indicates that the 
predicted bounding boxes of YOLOv8-TP overlap more closely 
with the ground-truth bounding boxes. As a result, YOLOv8-TP is 
more precise in localizing small objects and objects in occluded 
scenarios. As shown in Figure 9. 

Using detection model evaluation metrics to compare training 
results, the mAP@0.5 and mAP@0.5:0.95 graphs reveal that the 
YOLOv7-thiny-pose curve experiences a significant decline 
between 25 and 75 epochs, exhibiting a highly unstable state, and 
only gradually reaches a relatively stable state after 100 epochs. The 
YOLOv5s6-pose curve shows an overall upward trend, with a slight 
decrease between 75 and 100 epochs before gradually stabilizing. 
Although the YOLOv7-w6-pose curve performs well in the final 
results, it demonstrates instability between 0 and 75 epochs, with 
two significant drops occurring between 0–25 epochs and 50–75 
epochs; it then converges to a relatively stable state after 75 epochs. 
The YOLOv8n-pose curve exhibits a substantial increase before the 
75th epoch and gradually reaches a steady state thereafter. In 
contrast, the YOLOv8-TP curve also shows a rapid increase from 
0 to 75 epochs but presents a slow upward trend between 75 and 
125 epochs, reaching a relatively stable state at the 125th epoch, 
with performance achieving an ideal level. 

In the mAP@0.5 graph, it is evident that all models have mAP 
values ranging from 0.8 to 1, with the YOLOv8-TP curve slightly 
higher than the other four curves. In the mAP@0.5:0.95 graph, only 
the curves for YOLOv7-w6-pose, YOLOv8n-pose, and YOLOv8-TP 
exceed 0.8, with YOLOv8-TP yielding better results than the other 
two models. 

In addition to mean average precision (mAP), inference speed 
(FPS) is also a critical metric for evaluating detection models. In this 
study, the inference speed of the YOLOv8-TP model reached 154.7 
FPS (YOLOv8n-pose The inference speed is 148.6 FPS), which is 
sufficient to meet the real-time detection requirements of string 
tomatoes harvesting robots. Therefore, the YOLOv8-TP model 
demonstrates higher accuracy and faster speed in identifying 
string tomato fruits and picking points. 
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3.3 Ablation experiment 

In this paper, three improvements are made to the original 
YOLOv8n-pose model (U: Based on the principle of linear stage 
block, all nonlinear BN layers in the Bottleneck module are 
removed, a linear scaling layer is introduced instead, and BN 
layers are added after branching to maintain the diversity of 
optimization directions. Based on the principle of compressed 
stage block structure, the linear scaling layer is compressed into 
the OREPA module to reduce the training cost and maintain high 
performance, the optimized Bottleneck module is named as 
Bottleneck-OREPA module, and the C2f module is named as 
C2f-OREPA module after introducing the C2f module; V: an 
Frontiers in Plant Science 12 
efficient Partial Self-Attention (PSA) mechanism; W: CGA Fusion 
is introduced in the Neck network). Each enhancement module is 
integrated into the original model separately. Ablation experiments 
are conducted to demonstrate the effectiveness of the enhancement 
modules, and the corresponding results are shown in Table 4. 

By replacing C2f with C2f-OREPA, although the Precision 
slightly decreased compared to YOLOv8n-pose, the Recall, 
mAP@0.5, mAP@0.5:0.95, and GF lops improved by 1.4%, 0.1%, 
0.9%, and 8.1%, respectively. When the PSA self-attention 
mechanism was individually integrated into the base model, the 
precision increased by 1.3%, mAP@0.5 by 0.8%, and mAP@0.5:0.95 
by 2.1%. This mechanism effectively strengthened the network’s 
feature extraction capability while suppressing interference from 
FIGURE 8 

Comparison of model detection effect before and after improvement. (YOLOv8n-Pose on the left and YOLOv8-TP on the right of each group in 
the figure). 
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irrelevant information. After individually incorporating CGA 
Fusion into the Neck network, the precision, mAP@0.5, and 
mAP@0.5:0.95 increased by 1.8%, 0.7%, and 0.7%, respectively. 
When PSA and CGA Fusion were introduced simultaneously, 
mAP@0.5 increased by 1%, clearly demonstrating a synergistic 
effect between the two: PSA optimizes the overall network 
performance by enhancing feature extraction and suppressing 
irrelevant information, while CGA Fusion further improves the 
model’s robustness to occlusion interference by adaptively 
enhancing key features. The combination of C2f-OREPA, PSA, 
Frontiers in Plant Science 13 
and CGA Fusion demonstrated the best overall performance, 
reducing GF lops by 8.1% while improving Precision, mAP@0.5, 
mAP@0.5:0.95, and F1-score by 0.6%, 1%, 2%, and 1%, respectively. 

The PR curves for the detection and recognition of string 
tomatoes and picking points using the YOLOv8n-pose model and 
the YOLOv8-TP model are shown in Figure 10. After introducing 
the OREPA module, PSA self-attention mechanism, and CGA 
Fusion, the YOLOv8-TP model demonstrated improved 
performance in detecting and recognizing string tomatoes and 
their picking points. 
TABLE 3 Comparison of training data. 

Recognition model P R mAP@.5 mAP@.5:.95 F1-score Flops(G) FPS Params (M) 

YOLOv5s6-pose 0.487 0.797 0.918 0.808 0.49 10.2 129.7 15.1 

YOLOv7-thiny-pose 0.775 0.875 0.875 0.656 0.82 13.2 134.9 6 

YOLOv7-w6-pose 0.908 0.864 0.936 0.853 0.88 51.1 35.1 36.6 

YOLOv8n-pose 0.892 0.878 0.928 0.864 0.88 8.3 148.6 3.2 

YOLOv8-TP 0.898 0.875 0.938 0.884 0.89 7.6 154.7 46.9 
FIGURE 9 

Comparison of mAP@0.5 and mAP@.5:0.95 results. (a) mAp@0.5 comparison chart. (b) mAp@.5:0.95 comparison chart. 
TABLE 4 Results of ablation experiments. 

U3 V4 W5 P R mAP@0.5 mAP@0.5:0.95 F1-score Flops (G) 

× × × 0.892 0.878 0.928 0.864 0.88 8.3 

✓ × × 0.876 0.892 0.929 0.873 0.87 7.6 

× ✓ × 0.905 0.859 0.936 0.885 0.87 8.6 

× × ✓ 0.910 0.864 0.935 0.871 0.88 8.6 

✓ ✓ ✓ 0.898 0.875 0.938 0.884 0.89 7.6 
4U: In the Bottleneck module, the nonlinear Batch Normalization (BN) layers are replaced with a linear scaling layer, and a BN layer is added after branching; the linear scaling layer is compressed 
into the OREPA module. The optimized modules are named as Bottleneck-OREPA module and C2f-OREPA module respectively. 
5V: an efficient Partial Self-Attention ( PSA) mechanism. 
6W: CGA Fusion is introduced in the Neck network. 
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3.4 Picking point positioning distance error 
analysis 

To compare the performance of YOLOv8-TP and YOLOv8n
pose in picking point detection, the average distance error between 
predicted points and ground truth points was used as an evaluation 
metric (Guan et al., 2022). The average error was calculated for the 
coordinates of 500 detected picking points. Table 5 presents the 
statistical average distance errors for the 500 predicted picking 
points from the YOLOv8-TP and YOLOv8n-pose models, along the 
X-axis, Y-axis, and Euclidean distance. The scatter distribution of 
errors between the predicted picking points and the ground truth 
points for YOLOv8-TP is shown in Figure 11. Here, the X-axis 
represents horizontal distance error, while the Y-axis represents 
vertical distance error. The red vertical line indicates the average 
horizontal distance error, and the red horizontal line indicates the 
average vertical distance error. To further visualize the clustering 
and variance in the error distributions of the YOLOv8-TP and 
YOLOv8n-pose models, a scatter plot with 95% confidence intervals 
is presented in Figure 12. In this figure, the blue dots represent the 
error data points of the YOLOv8-TP model, and the orange dots 
represent those of the YOLOv8n-pose model. The blue and orange 
curves delineate the 95% confidence intervals for YOLOv8-TP and 
YOLOv8n-pose, respectively. 
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❘ Predicted − Actual ❘ ½EP = � 100� (8)
Actual 

In this paper, Error Percentage (EP) is used to measure the 
relative error between the model prediction results and the actual 
sampled values. Its calculation is shown in Equation (8). Error 
Percentage can intuitively reflect the accuracy performance of the 
model in practical applications, and the smaller value represents the 
prediction is closer to the real situation. Regarding the “actual 
depth”, which is an important benchmark data for model 
evaluation, this paper obtains it by manual measurement. 
Specifically, the actual depth of growth of selected fruits was 
measured at multiple points by the experimenter on site using a 
scale and other measuring tools while the tomato images were 
collected, and the average value was taken as the ground truth data. 
This method ensures the accuracy and reliability of the 
comparative assessment. 

From Table 5, it can be observed that the YOLOv8-TP model 
achieves an Euclidean pixel distance of 28.253 pixels when locating 
picking points, surpassing the YOLOv8n-pose model’s Euclidean 
distance of 29.521 pixels. Figure 11 illustrates that most of the 
predicted points by YOLOv8-TP are located below and to the left of 
the average distance error line, indicating that the distance errors in 
both the X-axis and Y-axis directions are less than 25 pixels. The 
standard deviation of the Euclidean distance is 16.686 pixels, 
TABLE 5 Comparison of average distance errors. 

Model Average distance (pixel) Standard deviation (pixel) 

X Y Euclidean distance Percentage error (%) 

YOLOv8-TP 20.659 15.177 28.253 5.2 16.686 

YOLOv8n-pose 21.577 15.878 29.521 5.8 17.162 
FIGURE 10 

Comparison of YOLOv8n-Pose and YOLOv8-TP RP. (a) YOLOv8n-Pose. (b) YOLOv8-TP. 
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suggesting that the model exhibits minimal performance fluctuation 
in picking point localization. Additionally, in practical harvesting 
applications, based on parameters such as camera resolution, we 
employed professional conversion methods to conduct rigorous 
calculation and analysis and determined that the actual physical 
distance of the position deviation is 0.0265 meters. Considering that 
the end-effector of the robot has a certain degree of fault tolerance, 
during actual operations, it can tolerate a position deviation of up to 
0.03 meters, thus meeting the harvesting requirements. To sum up, 
the prediction accuracy of YOLOv8 - TP is sufficient to meet the 
demands of actual string tomato harvesting. 
Frontiers in Plant Science 15 
3.5 Get in-depth information on picking 
sites 

In the application of tomato harvesting robots (Ruzhun et al., 
2022), accurately obtaining the depth information of picking points 
is crucial. This information provides the robot with positional data 
in three-dimensional space, enabling more precise harvesting 
operations (Arad et al., 2020; Longsheng et al., 2020). The depth 
camera used in this study is the Intel RealSense D435i, a consumer-

grade depth camera developed by Intel, which consists of an RGB 
camera, two infrared cameras, and an infrared emitter, along with 
FIGURE 12 

Picking point error distribution of YOLOv8-TP and YOLOv8n-Pose with 95% confidence intervals. 
distribution. 

FIGURE 11 

Error scatter distribution of YOLOv8n-Pose and YOLOv8-TP RP. (a) YOLOv8n-Pose error scatter distribution. (b) YOLOv8-TP error scatter 
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an IMU unit. The ranging principle is similar to that of stereo 
cameras, relying on the disparity between left and right images to 
determine distance. The infrared cameras capture the returning 
infrared light from the target to generate depth images. 

To obtain the three-dimensional coordinates of the picking 
points, we converted the two-dimensional coordinates of the 
detected picking points from previous experiments into 
Frontiers in Plant Science 16 
coordinates within the camera coordinate system. The D435i 
depth camera was used to capture images at these locations to 
acquire depth information. In the depth images, we identified the 
corresponding pixel locations and read the depth values at those 
positions, as illustrated in Figure 13. 

The distance between the picking point and the shear center 
point of the end-effector during the shearing process was used as an 
FIGURE 14 

Comparison of actual and detected depths. 
FIGURE 13 

Picking points to obtain depth values. (a) original figure. (b) Depth value and coordinate information display map. 
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evaluation criterion to test the positioning accuracy of the string 
tomato picking robot (Gong et al., 2022) at the picking point. The 
depth values of the picking points extracted from the images were 
validated through comparative analysis with ground-truth 
measurements. The depth error was quantified as the algebraic 
difference between the detected and actual depth values, whereas 
the relative depth error was calculated as the absolute discrepancy 
normalized by the actual depth, expressed as a percentage. Results 
showed that the depth error ranged within ±3 mm, corresponding 
to a relative depth error of 0.073%–0.419%. The comparison 
between the detected and actual depths is depicted in Figure 14, 
and the corresponding error analysis is presented in Table 6. 
 

4 Conclusions 

In this study, an improved YOLOv8n-Pose model (named 
YOLOv8-TP) is proposed to address the challenge of detecting 
tomato bunch picking points in complex agricultural environments. 
Improvements include the design of the C2f-OREPA module, the 
introduction of the PSA mechanism, and the integration of CG 
Fusion. These improvements greatly reduce the computational 
requirements of the model, improve the detection accuracy, make 
the detection of keypoints more robust for small targets/obstructed 
scenes, and enhance the extraction of key features, effectively 
overcoming the limitations of the traditional approach to 
localizing  the picking  points  in  the case of occlusion  and
changing environments. 

Compared with existing detection methods for string tomato 
picking points, the YOLOv8-TP model proposed in this study 
exhibits significant advantages in the following aspects: 

1. Architecture design: Traditional instance segmentation 
methods [e.g., the two-stream algorithm of (Rong et al., 2025)] 
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require stage-wise processing of RGB and depth data, with high 
computational complexity (Flops=22.4G). These methods are 
sensitive to occluded scenes, wherein the detection error increases 
by more than 15%. In contrast, YOLOv8-TP adopts an end-to-end 
key-point detection architecture. Through the lightweight design of 
the C2F-ORepa module (Flops=7.6G, representing an 8.1% 
reduction) and the PSA global attention mechanism, it achieves 
multi-scale feature fusion and enhanced occlusion robustness. 

2. Detection efficiency: The 3D pose detection method of Ci et al 
(Zhang et al., 2022). relies on multi-stage key-point prediction, with 
a reasoning speed of only 35 FPS (frames per second), which 
struggles to meet real-time requirements. YOLOv8-TP, enhanced 
by the CGA-Fusion adaptive feature mechanism, maintains a 
detection accuracy of 89.8% while enhancing the reasoning speed 
to 154.7 FPS, satisfying the real-time operation requirements 
of robots. 

3. Synchronous detection capability: Traditional methods 
require separate fruit detection and picking-point positioning 
[e.g., the ROI screening method of (Zhou et al., 2023)], leading to 
a cumulative error of 5.8%. This model achieves synchronous 
positioning through joint optimization of detection and key-point 
regression. The Euclidean distance error is 28.25 pixels (below the 
25-pixel threshold), and the depth error is <3 mm, and the 
positioning accuracy is improved by 12%. 

The comparison demonstrates that through its lightweight 
architecture and multi-mechanism integration, YOLOv8-TP 
significantly outperforms traditional methods in detection 
efficiency and accuracy within complex environments, providing a 
superior solution for the automatic picking of string tomatoes. 

Compared with traditional methods, the end-to-end design of 
the model avoids redundant computations at multiple stages, and 
the FPS of the model can be stabilized at around 33 on the pickup 
robot, while the FPS of some traditional methods (Openpose) is only 
in the single digits, which simplifies the process of deploying the 
device at the edge of the operation; at the same time, there is the 
disadvantage of relying on high-quality labeled data, which is more 
sensitive to human labeling errors. YOLOv8-TP model exhibits 
excellent performance in detecting tomato bunch picking points 
and demonstrates the potential for application in other agricultural 
scenarios. These contributions provide valuable references for the 
development of advanced agricultural robotic systems. In 
greenhouse environments, although the proposed YOLOv8 - TP 
model achieves good results in detecting tomato bunches and their 
picking points, it still has some limitations. A noteworthy limitation 
is its performance under extreme lighting conditions in a 
greenhouse. For example, when there is intense glare or extremely 
poorly lit areas, the visual information acquired by the camera may 
be compromised, which may result in less accurate model detection 
results. Another aspect is that when dealing with highly complex 
growth postures of string tomatoes, such as cases of extremely 
tangled or heavily shaded leaves and branches, the model may face 
challenges in accurately recognizing each tomato and accurately 
TABLE 6 Depth value error analysis. 

z*/mm 
actual 

depth value 

z/mm 
captured 

depth value 

e(z)/mm 
Depth 

value error 

e(z)/% 
Depth 

value error 

637.19 637.95 -0.76 0.119 

517.12 515.34 1.78 0.344 

706.08 704.14 1.94 0.275 

570.04 571.27 -1.23 0.216 

772.64 769.84 2.8 0.362 

540.9 539.68 1.22 0.226 

681.88 681.38 0.5 0.073 

781.36 783.2 -1.84 0.235 

603.71 601.18 2.53 0.419 

736.07 733.4 2.67 0.363 
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determining the picking point, which may affect picking efficiency. 
In practical applications of harvesting robots, our approach is at the 
heart of the visual recognition and localization module. At this stage, 
we have integrated the model into a prototype tomato harvesting 
robot. Through initial testing, robots equipped with our model can 
recognize and localize bunches of tomatoes and their picking points 
to a certain extent, enabling them to perform basic harvesting 
operations. However, there are still several areas that need to be 
improved. For example, the speed and accuracy of model inference 
need to be further improved to meet the high-efficiency 
requirements of large-scale harvesting. There is also a need to 
optimize the coordination between the robot mechanics and the 
vision system to ensure seamless operation: Adaptability to Different 
Crops: Future work will focus on extending the model’s applicability 
to other crops with varying shapes, textures, and environmental 
conditions. Real-time deployment: Alternative optimization 
methods can be explored to further reduce inference time for real-
time applications in field harvesting scenarios. Integration with 
multi-sensor systems. Our model demonstrates strong adaptability 
and can be applied to other crops with different shapes, structures, 
and environmental conditions. First, the model structure can learn 
various features in images, including shape, texture, color, and more. 
Second, we enhance the model’s generalization ability through 
methods such as data augmentation and transfer learning. For 
example, we plan to collect images of crops like grapes and 
cucumbers that include different growth stages, lighting 
conditions, and angles. Additionally, we can optimize the model 
for specific crop characteristics, such as enhancing its ability to detect 
small objects and adjusting the size and proportions of anchor boxes 
to be more appropriate.Inspired by the work of Deng et al. (Deng 
et al., 2025). in dealing with accurate geometric localization of free-
form surfaces, we plan to design more surface-adaptive and 
occlusion-resistant localized feature extraction modules to cope 
with the complex phenological variations of tomato bunches in 
their natural environments in our future research. In addition we 
will try to encode 3D spatial geometric priors (e.g., surface 
continuity, fruit stalk directionality) of tomato and fruit stalks into 
deep learning models to constrain and improve the accuracy of 
picking point prediction. By combining the YOLOv8-TP model with 
other sensors (such as lidar or thermal imaging cameras), drawing 
on the camera-radar fusion framework, modal interaction, and 
robust representation ideas in (Liu et al., 2024), we can design a 
multimodal fusion network suitable for agricultural scenarios. This is 
expected to further improve recognition and localization accuracy 
under extreme lighting, severe obstruction, or complex background 
conditions, thereby meeting the ever-growing demands of smart 
agriculture and precision agriculture. 

In addition, we are optimistic about the open source of the 
Tomato-P dataset. If you are interested, please contact the 
corresponding author. This will provide reusable and scalable 
tools and data resources for the fields of intelligent agriculture 
and automatic harvesting, promoting technological development 
and academic exchange in these areas. 
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