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TriPerceptNet: a lightweight
multi-scale enhanced YOLOv11
model for accurate rice
disease detection in complex
field environments
Xin Zhang, Linjing Wei* and Ruqiang Yang

College of Information Science and Technology, Gansu Agricultural University, Lanzhou,
Gansu, China
This study proposes EDGE-MSE-YOLOv11, a novel lightweight rice disease

detection model based on a unified Tri-Module Lightweight Perception

Mechanism (TMLPM). This mechanism integrates three core components:

multi-scale feature fusion (C3K2 MSEIE), attention-guided feature refinement

(SimAM), and efficient spatial downsampling (ADown), which significantly

enhance the model’s ability to detect multi-scale and small disease targets

under complex field conditions. Unlike isolated architectural enhancements,

TMLPM supports collaborative feature interactions, which significantly

improves the interpretability and computational efficiency of the model under

complex environmental conditions. Experimental results show that, compared

with the baseline YOLOv11n model, EDGE-MSE-YOLOv11 improves precision

(from 85.6% to 89.2%), recall (from 82.6% to 86.4%), mAP@0.5 (from 90.2% to

92.6%), and mAP@0.5:0.95 (from 63.7% to 70.3%). The model also reduces

parameter count by 0.69M and computational cost by 0.3 GFLOPs, while

maintaining a high inference speed of 111.6 FPS. These results validate its

effectiveness in identifying small, dense lesion areas with high accuracy and

efficiency. However, the model still faces challenges in detecting ultra-small or

occluded lesions under extremely complex conditions and has yet to be

evaluated across multiple domains. Future work will focus on cross-domain

generalization and deployment optimization using lightweight techniques such

as quantization, pruning, and transformer-based enhancements, aiming to build

a robust and scalable disease diagnosis system for intelligent agriculture.
KEYWORDS

rice disease detection, YOLOv11, TMLPM, C3K2 MSEIE, ADown, SimAM, lightweight
CNN, GradCAM++
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1 Introduction
Crop diseases are a major limiting factor that significantly

hampers agricultural productivity (Savary et al., 2012). The

implementation of precise pest and disease control strategies is

essential to simultaneously increase crop yield and overall

production capacity (Lucas, 2011). As a staple global food crop,

rice production has long been threatened by fungal and bacterial

diseases such as rice blast, bacterial blight, and brown spot, which

can reduce yields by 20-50%. These diseases pose a significant threat

to global food security. Rapid identification and targeted treatment

of rice diseases play a crucial role in ensuring stable yields (Mew

et al., 2004).

To effectively address the growing challenges posed by crop

diseases, improving the accuracy and efficiency of plant disease

detection has become a key research focus (Martinelli et al., 2015).

Deep learning-based object detection methods, particularly those

based on the YOLO series, have shown great promise due to their

balance between speed and accuracy (Wang et al., 2025d; Shoaib

et al., 2023). In recent years, numerous improvements have been

made to YOLO architectures through module enhancements,

attention mechanisms, and lightweight strategies.

Several studies improved YOLOv4–YOLOv7 to boost detection

performance in complex environments. For example, Fu et al.

(2021) introduced CBAM into YOLOv4 to enhance marine target

detection, addressing small and overlapping object issues. Mathew

and Mahesh (2022) used YOLOv5 with mosaic augmentation for

bacterial spot detection in bell peppers. Soeb et al. (2023) adopted

YOLOv7 with E-ELAN and mosaic data augmentation to detect tea

leaf diseases efficiently.

The release of YOLOv8 triggered a wave of attention-focused

enhancements in crop disease detection. Ye et al. (2024) developed

YOLOv8-RMDA using RFCBAM and MixSPPF to detect small tea

leaf disease targets. Yang et al. (2024) proposed an improved

YOLOv8n with C2f_MSEC and BiFPN for rice false smut

detection. Similarly, Xue et al. (2023) and Li et al. (2024)

enhanced YOLOv5 and YOLOv8 with ACmix, RFB, and

GhostNet to improve detection of tea and maize leaf diseases,

respectively. Wang et al. (2025c) designed RGC-YOLO with

CBAM and GhostConv for multi-scale rice disease detection,

achieving 93.2% mAP50 with reduced parameters and

inference cost.

Recent efforts focus on YOLOv10/11 for real-time agricultural

deployment. Guan et al. (2024) enhanced YOLOv10 with BiFPN

and GCNet for wheat spike detection, while Huang et al. (2025b)

proposed YOLO-YSTs for pest detection on sticky traps using SPD-

Conv and Inner-SIoU. YOLOv11-based studies include: Lee et al.

(2025) applied hyperparameter optimization to YOLOv11m for

tomato disease detection; Zhang et al. (2025) developed YOLO11-

Pear for complex orchard pear detection; Sapkota and Karkee

(2024a) integrated CBAM into YOLO11x-seg for seasonal tree

segmentation; Rao et al. (2025) proposed a lightweight YOLO11

model using Efficient Multi-scale Attention and CMUNeXt for
Frontiers in Plant Science 02
defect detection; Kutyrev et al. (2025) employed YOLO11x for

UAV-based apple counting.

In addition to agricultural-specific models, recent literature has

explored lightweight and high-performance detection frameworks

across various domains, providing valuable inspiration for

agricultural visual recognition. For example (Wang et al., 2025a),

proposed an embedded cross framework with a dual-path

transformer for high-resolution salient object detection, achieving

state-of-the-art results on public datasets. However, their method

targets generic salient object segmentation and is not specifically

optimized for agricultural disease detection or the identification of

small, irregular lesions in crops (Zhou et al., 2023). developed an

improved YOLACT-based instance segmentation approach for

accurate and real-time ice floe identification in polar remote

sensing imagery. However, their work focuses on sea ice

segmentation rather than the detection of small lesions in

agricultural settings (Chen et al., 2025). proposed a dual-pathway

instance segmentation network (TP-ISN) for rice row detection,

featuring a lightweight backbone and real-time deployment on

embedded devices. However, their method mainly addresses

structured crop row extraction rather than the detection of small,

irregular lesions in crop disease scenarios (Jiang et al., 2025

presented a real-time poultry tracker leveraging the SimAM

attention mechanism within YOLOv5 to improve localization of

moving animals. Although SimAM enhances key region focus, their

approach is tailored to animal tracking and does not specifically

optimize for the fine-grained, small lesion detection required in

crop disease analysis (Deng et al., 2025). proposed a CBAM-

enhanced ResNet framework for 3D circle recognition in point

cloud data, achieving precise geometric feature extraction but at the

cost of increased computational burden, which limits its real-time

and edge deployment applicability.

Although considerable advancements have been made in

YOLO-based plant disease detection, most existing models focus

on optimizing isolated components while overlooking the

synergistic potential of integrated architectural innovations. To

address this gap, this study proposes a Tri-Module Lightweight

Perception Mechanism (TMLPM)—a unified framework that

incorpora te s mul t i - s ca l e edge-aware f ea ture fus ion

(C3K2_MSEIE), attention-guided feature refinement (SimAM),

and efficient spatial downsampling (ADown). Rather than relying

on single-point enhancements, TMLPM emphasizes coordinated

module interaction to enable robust, high-resolution detection of

dense, small-scale lesions in real-world agricultural environments.

The resulting EDGE-MSE-YOLOv11 model, built upon TMLPM,

achieves a superior trade-off between detection accuracy and

computational efficiency, and demonstrates real-time performance

in practical deployments under complex field conditions.

Building upon this architecture, we further develop EDGE-

MSE-YOLOv11, a lightweight and high-performance object

detection model specifically designed for rice disease recognition

under complex and variable field conditions. Based on YOLOv11n,

the proposed model integrates edge-enhanced multi-scale feature

extraction, efficient attention mechanisms, and optimized
frontiersin.org
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downsampling strategies to improve detection accuracy while

maintaining low computational overhead.

The proposed model has been successfully deployed as a client-

side application for real-time disease detection in agricultural

environments. This implementation enables efficient disease

detection with minimal computational overhead, ensuring that

users can deploy the model on client devices with acceptable

performance. Currently, the system processes image data from

agricultural cameras and other sensors for real-time analysis. In

the future, as smart agriculture applications continue to evolve, we

plan to extend the model to mobile platforms, offering broader

accessibility and facilitating on-site disease detection in the field

using smartphones for agricultural practitioners. The primary

contributions of this work are summarized as follows:
Fron
a. This study proposes a novel Tri-Module Lightweight

Perception Mechanism (TMLPM), which integrates three

complementary strategies—multi-scale edge feature

enhancement, attention-guided refinement, and efficient

downsampling—into a unified detection framework. This

design enables collaborative feature interaction and

provides a new direction for constructing high-

performance lightweight detectors in agricultural scenarios.

b. A comprehensive and large-scale rice disease dataset has

been curated, encompassing six prevalent disease types

under diverse field conditions. This dataset supports

robust training and evaluation of deep detection models.

c. Extensive ablation studies and comparative experiments

were conducted to validate the effectiveness and

generalization ability of the proposed model. Results show

superior performance over existing lightweight detectors in

both accuracy and inference speed.

d. A real-time visualization system based on the proposed model

was implemented, demonstrating its practical applicability in

field deployment scenarios for precision agriculture.
In summary, this study introduces the concept of Tri-Module

Lightweight Perception Mechanism (TMLPM), which

synerg i s t i ca l ly integrates edge-enhanced mult i - sca le

representation (C3K2 MSEIE), spatial-semantic refinement

(SimAM), and computationally efficient downsampling (ADown).

This mechanism serves as a unified structural foundation for

constructing high-performance, low-complexity detection models,

marking a significant step forward in the lightweight evolution of

vision models for agricultural applications.

2 Construction of the recognition
model

2.1 YOLOv11 overview and algorithm
improvements

The YOLO family encompasses a series of deep learning-driven

architectures tailored for real-time object detection tasks. These
tiers in Plant Science 03
models identify object positions and classes in a single forward pass

across an image (Sirisha et al., 2023). The most recent version,

YOLOv11n, released by Ultralytics on September 30, 2024,

represents the latest advancement in this line of detection models

(Jegham et al., 2024), offering improvements in precision,

processing speed, and computational efficiency. Significant

architectural updates include substituting the conventional C2f

module with the C3K2 module in the backbone to enhance

feature extraction capabilities, and integrating the C2PSA module

to strengthen multi-scale feature learning. Additionally, the

revamped spatial pyramid pooling combined with C2PSA

increases the diversity of feature representations (Khanam and

Hussain, 2024). The network neck employs a PAN-FPN structure

to effectively merge low- and high-level features, thereby refining

localization performance. The detection head incorporates a

decoupled architecture with depthwise separable convolutions

(DWConv) to reduce both parameter count and computational

overhead. In the YOLOv10n variant, “n” refers to “nano”.

YOLOv11n builds on this design by accelerating inference and

minimizing model size through streamlined layers and parameters,

which enhances deployment feasibility on hardware-limited

platforms. In this study, YOLOv11n is adopted as the baseline

due to its balance of efficiency and performance. Compared to

earlier versions such as YOLOv8n and YOLOv10n, YOLOv11n

achieves a 2% gain in inference speed, while reducing resource

consumption, making it particularly suitable for real-time detection

tasks on constrained devices (Sapkota et al., 2024). Hence,

YOLOv11n serves as the foundational architecture for the

proposed rice disease identification framework. The overall

structure of YOLOv11 comprises four essential components:

input, backbone, neck, and head, as illustrated in Supplementary

Figure S1.

Although YOLOv11 demonstrates strong detection performance,

its application in rice disease detection 137 still requires refinement to

improve both accuracy and efficiency—especially for small lesion

regions, 138 which are typically low in contrast, irregular in shape,

and easily lost during downsampling. To address 139 this challenge,

this study proposes EDGE-MSE-YOLOv11, a lightweight and

enhanced version of 140 YOLOv11n specifically optimized for

detecting small objects in rice disease scenarios. The overall 141

architecture, illustrated in Figure 1, consists of an improved

Backbone, an optimized Neck, and the original 142 Head.

The Backbone network incorporates several targeted

enhancements to improve feature extraction and localization of

small lesions: First, the standard C3K2 modules in layers 2, 4, 6, and

8 are replaced with the proposed C3K2_MSEIE (MultiScale Edge

Information Enhance) module. This structure enhances edge-aware

multi-scale feature fusion, which is particularly effective in

preserving lesion boundaries and improving the discrimination of

small and subtle disease spots. Second, to minimize the loss of fine-

grained spatial features during downsampling, traditional

convolutional layers at positions 3, 5, 7, 19, and 22 are replaced

with the ADown module. This lightweight design preserves critical

lesion details and contributes to improved detection accuracy for

small diseased regions.
frontiersin.org
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The Neck network is further strengthened by integrating the

SimAM attention mechanism in layers 14, 18, and 25. This module

enhances the model’s ability to focus on lesion-relevant regions by

suppressing background noise and emphasizing discriminative

features—especially useful for small lesion areas—without

increasing computational overhead.
2.2 C3K2 Integrating MSEIE (Multi Scale
Edge Information Enhance)

In rice disease detection, significant challenges arise due to large

variations in lesion scale, complex and irregular shapes, and cluttered

backgrounds. Traditional convolutional neural networks (CNNs),

which rely on fixed-grid convolutional kernels, often fail to

effectively adapt to such variations in scale and geometry (He et al.,

2021). This limitation becomes especially pronounced when detecting

small, deformed, or edge-ambiguous lesions, resulting in reduced

detection accuracy and poor robustness in real-field scenarios.
Frontiers in Plant Science 04
To address these issues, this study introduces a novel module

called Multi-Scale Edge Information Enhancement (MSEIE), which

is embedded into the C3K2 structure of YOLOv11n (Zhao et al.,

2025), forming the improved C3K2_MSEIE module, as illustrated

in Figure 2. The MSEIE module is designed to enhance the model’s

ability to detect small and irregular lesions by combining three core

functions: multi-scale feature extraction, edge information

enhancement, and efficient feature fusion. As shown in Figure 3,

it extracts features at multiple receptive fields to better handle scale

variations, amplifies critical edge contours to improve boundary

localization, and fuses the result ing features to form

robust representations.

This targeted design enables the network to retain fine-grained

spatial and boundary information while maintaining lightweight

efficiency. The integration of MSEIE significantly boosts the model’s

performance in detecting rice disease lesions of varying scales and

shapes, thereby improving both detection accuracy and overall

robustness. The main computational process of the MSEIE

module is outlined as follows:
FIGURE 1

EDGE-MSE-YOLOv11 model structure diagram.
frontiersin.org
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2.2.1 Multi-scale feature extraction
The module first employs Adaptive Average Pooling

(AdaptiveAvgPool2d) to achieve multi-scale pooling, extracting

local information of different sizes to generate multi-scale feature

maps with rich hierarchical structures (Liu et al., 2022). Given an

input feature map c∈ RC�H�W , multiple scale feature maps are

obtained through adaptive average pooling, as shown in Equation 1:

X 8 = AdaptiveAvgPool2d(X ),S ∈ S1,S2,…,Snf g (1)

WhereX 8 represents the pooled feature map at scale S, with the
subscript “8” indicating that the spatial 180 resolution of the pooled

output is 8 × 8, obtained by applying adaptive average pooling with

an output size 181 of 8 × 8.

2.2.2 Edge information enhancement
Building on this, the module introduces EdgeEnhancer (as

shown in Figure 4) to extract edge information from the image

(Suzuki et al., 2003). The core idea is to compute local gradient

changes to enhance edge information, using the Laplacian

Transform to highlight edge features, as shown in Equation 2:

E = ∇2X (2)
Frontiers in Plant Science 05
The feature map after edge enhancement is denoted as E, and
∇2 represents the Laplacian operator. This operation notably

increases the network’s sensitivity to edge regions, enhancing the

accuracy of object detection tasks.

2.2.3 Feature fusion and output
To fully leverage the feature information across different scales,

the MSEIE module adopts a feature fusion strategy, integrating

features of various dimensions through channel concatenation and

convolution operations, as shown in Equation 3:

F out = s (W f ½X 1,X 2,…,Xn, E�) (3)

In this context, [·] indicates the operation of channel-wise

concatenation, Wf represents the convolutional kernel applied to

the fused features, and s(·) denotes the non-linear activation

function, such as ReLU or SiLU. This mechanism facilitates the

efficient integration of features across multiple scales, resulting in a

unified feature representation derived from the convolutional

output. Consequently, the model’s capacity to recognize objects of

varying sizes is significantly improved. The C3K2 MSEIE module

further enhances detection performance for small-scale objects and

targets embedded in complex scenes by leveraging multi-scale
FIGURE 2

C3K2 MSEIE structure diagram.
FIGURE 3

MSEIE structure diagram.
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pooling, edge-aware enhancement, and advanced feature fusion

strategies. These improvements contribute to increased precision

and robustness in the context of rice disease recognition.
2.3 The SimAm attention mechanism is
introduced into the neck network

Detecting densely distributed small objects in cluttered

environments remains a key challenge in modern object

detection, especially in agricultural scenarios such as rice disease

recognition. Variations in object scale, irregular lesion shapes, and

complex backgrounds often prevent conventional detectors from

focusing on critical features, leading to decreased accuracy

and robustness.

To address this limitation, this study incorporates the SimAM

(Similarity Attention Module) mechanism into the model

architecture, as illustrated in Figure 5. SimAM is a lightweight,

parameter-free attention mechanism that enhances feature

representations by evaluating the self-similarity between spatial

elements in the feature map (Suzuki et al., 2003). It operates on

the assumption that pixels with similar context should be assigned

higher attention, while dissimilar or noisy regions are suppressed.

By quantifying the similarity between each pixel and its local

neighborhood (Xiang et al., 2024), SimAM highlights salient

lesion features and attenuates background interference, which is

crucial for detecting small and visually subtle disease spots.

Compared to conventional attention mechanisms such as SE

(Squeeze-and-Excitation) and CBAM (Convolutional Block
Frontiers in Plant Science 06
Attention Module), SimAM provides substantial advantages in

both efficiency and accuracy (Wu and Dong, 2023; Yan et al.,

2024). SE only performs channel-wise weighting and lacks spatial

adaptability, making it ineffective for localizing small-scale lesions

in complex scenes. Furthermore, its fully connected layers increase

computational overhead. CBAM introduces both spatial and

channel attention but often suffers from high latency, with its

integration into architectures like ResNet50 resulting in up to a

15% slowdown in inference—unsuitable for real-time or

edge deployments.

Given the hardware constraints and the need for precise lesion

localization in rice disease detection, SimAM is selected as the

primary attention mechanism in this study. It offers enhanced

discriminative focus on disease regions while preserving model

compactness, reducing false detections and improving overall

robustness under complex field conditions.

To implement SimAM, the mechanism evaluates attention by

computing pixel-level similarity scores. For an input feature map

X ∈ RB�C�H�W , where B is the batch size, C the number of

channels, and H, W the height and width respectively, SimAM

first normalizes each feature vector, then computes the similarity

between a given pixel and all others in the same feature map. The

similarity score is used to reweight each spatial location, producing

an updated feature representation that emphasizes contextually

important regions. The complete computation process of SimAM

is defined as follows:

First, the mean m ∈ RB�C�1�1 and variance vag ∈ RB�C�1�1

of the feature map X are computed along the height and width

dimensions. Then, the feature map X is standardized to obtain the

normalized feature map ~x ∈ RB�C�1�1, as shown in Equation 4:

~x =
x − mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vag + e

p (4)

In which e is a very small constant to prevent the denominator

from being zero.

The similarity Yi,j between each pixel Xi,j ∈ ~x and all other

pixels is computed and normalized. For each pixel Xi,j, the similarity

values with other pixels are computed as shown in Equation 5:

Yi,j =
X2
i,j

4 1
n−1ok≠i,jx

2
k + e

� � + 0:5 (5)

The number of pixels in the feature map is denoted as n = HW.

The similarity Yi,j is computed by normalizing the squared difference

between Xi,j and all other pixels, followed by adding a bias term of 0.5,

mapping the similarity value to the range [0,1]. The original feature

map X is then multiplied element-wise by the similarity Y, yielding

the weighted feature mapZ ∈RB�C�W�H, where B is the batch size,

and the feature map value is computed as: Zi,j= Xi,jYi,j. Subsequently,

the weighted feature map Z is normalized using the Sigmoid

activation function to obtain the final output feature map. SimAM

is a parameter-free, three-dimensional attention mechanism inspired

by neuroscientific principles, designed for image classification tasks.

Its core concept leverages similarity information to adaptively
FIGURE 4

EdgeEnhancer structure diagram.
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modulate the attention weights of each channel, thereby enhancing

image classification performance.
2.4 Introduction of the lightweight ADown
module

Balancing detection accuracy and model compactness remains a

key challenge in deploying deep learning models, especially in

resource-constrained scenarios. While conventional backbone

networks such as ResNet and Darknet achieve high detection

performance, their large parameter counts and deep convolutional

stacks lead to increased inference latency, making them less suitable

for lightweight applications such as rice disease detection on edge

devices (Tank et al., 2025).

In this context, we propose a novel ADown convolution

structure, designed to mitigate feature degradation during

downsampling and enhance sensitivity to small lesions—one of

the primary challenges in rice disease identification (Fang et al.,

2024). Unlike traditional downsampling methods that rely solely on

strided convolution or max pooling, ADown integrates both

average and max pooling to preserve global context while

retaining salient details. Given an input feature map X ADown

computes, as shown in Equation 6:

Xavg = AvgPool2d(X), Xmax = MaxPool2d(X) (6)
Frontiers in Plant Science 07
Each branch is processed through a convolutional layer as

shown in Equation 7:

Y1 = Conv(Xavg), Y2 = Conv(Xmax) (7)

The final output is produced by concatenating both branches

along the channel axis as shown in Equation 8:

Y = Concat(Y1,Y2) (8)

This design allows ADown to retain hierarchical and

complementary features while performing resolution reduction

(Song et al., 2024). In our implementation, ADown replaces

traditional downsampling layers in YOLOv11n’s backbone and

neck, which previously relied on stride-2 convolutions and

pooling for 8 �, 16 �, and 32 � spatial reductions (Zhai et al.,

2023). Although effective for general-scale targets, such methods

often discard fine-grained spatial cues that are critical for

identifying early-stage or small-scale lesions in rice leaves.

To further illustrate the architecture, Figure 6 compares the

traditional convolution-based downsampling workflow (left) with

the ADown-enhanced approach (right). In the ADown block, the

input feature map is split along the channel axis into X1 and X2. The

X1 branch is convolved directly, while X2 undergoes max pooling

followed by convolution as shown in Equation 9:

Y = Concat(Conv(X1), Conv(MaxPool2d(X2))) (9)
FIGURE 5

SimAm structure diagram.
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This asymmetric pooling-convolution strategy improves

representation capability across scales while 273 maintaining

computational efficiency. By replacing conventional downsampling

blocks with ADown, our 274 modified YOLOv11n architecture

achieves a better trade-off between model size and accuracy. It

improves 275 detection precision for small lesions and enhances

robustness in cluttered field environments, thereby 276 offering a

more lightweight and task-adapted solution for rice disease detection.
3 Experimental data and evaluation
metrics

3.1 Experimental data

In this study, the dataset was independently collected and

encompasses six commonly observed rice diseases, including
Frontiers in Plant Science 08
Bacterial Blight, Brown Spot, Dead-heart, Downy, False, and

Leaf-smut (Figure 7). To enhance the model’s robustness and

adaptability across varying conditions, a series of multi-

dimensional geometric transformations and color perturbation

techniques were employed during the data preprocessing phase.

Specifically, spatial domain augmentation was achieved by

app ly ing a ffine t r ans fo rma t ion mat r i c e s fo r image

displacement, mirror inversion, scaling, and rotation. In

addition, color domain augmentation was performed by

introducing random perturbations within the HSV color model

to dynamically adjust hue, saturation, and brightness, thereby

enhancing spectral diversity. As a result, the dataset was

expanded to 11,617 images. This composite data augmentation

strategy, which simulates visual variations in real-world

scenarios, significantly enhanced the model’s feature extraction

capabi l i ty and robustness aga ins t inter ference from

unseen samples.
FIGURE 6

Diagram of conv downsampling and ADown downsampling structures.
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3.2 Dataset construction

A total of 11,617 images of rice leaves were collected from

experimental paddy fields located in Jiangsu Province, China,

during the 2022–2023 growing seasons. Images were captured

using a Canon EOS 90D high-definition DSLR camera under

various natural lighting conditions to reflect realistic field

environments. The dataset covers six common rice diseases: rice

blast, bacterial leaf streak, brown spot, sheath blight, leaf blast, and

false smut. After collection, the data were carefully filtered to remove

duplicates and blurred samples to ensure high-quality input.

Subsequently, the curated dataset was split into training,

validation, and testing subsets following a 7:2:1 ratio, as detailed

in Table 1. Specifically, the training set contains 8,130 images, the

validation set 2,324 images, and the testing set 1,163 images. This

partition ensures a balanced distribution for model training,

validation, and generalization.

All images were manually annotated by agricultural experts

using the LabelImg annotation tool to accurately delineate disease

regions. Corresponding YOLO-format ‘.txt’ annotation files were

automatically generated for subsequent experiments. The

annotation procedure is illustrated in Supplementary Figure S2,

demonstrating the consistency and standardization of the labeling

process. The comprehensive and standardized construction of this

dataset provides a solid foundation for robust model training and

performance evaluation.
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3.3 Experimental environment

Experiments were conducted on a cloud server running Ubuntu

20.04, equipped with an NVIDIA RTX 4090 GPU (24 GB) and an

Intel® Xeon® Platinum 8358P CPU operating at 2.60 GHz. The

software environment comprised CUDA 11.8, PyTorch 2.0.0, and

Python 3.8.10.

The model was trained using stochastic gradient descent (SGD)

optimizer with an initial learning rate of 0.001, weight decay of

0.0005, and a batch size of 16 over 300 epochs. A cosine annealing

learning rate scheduler with warm restarts every 30 epochs was

employed to facilitate convergence. Data augmentation techniques,

including random horizontal flipping, random cropping, and color

jittering, were applied to improve model robustness and

generalization. Other hyperparameters were maintained at default

settings from the original YOLOv11n implementation to ensure

stable and efficient training.
3.4 Evaluation metrics

This experiment evaluates the performance of the improved

network model from multiple perspectives, including detection

accuracy, localization precision, and model complexity. Key

metrics such as Precision (P), Recall (R), Mean Average Precision

at IoU 0.5 (mAP50), Mean Average Precision across IoU thresholds
FIGURE 7

Images of six rice diseases: (a) Bacterial Blight, (b) Brown Spot, (c) Dead-heart, (d) Downy, (e) False, (f) Leaf-smut.
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from 0.5 to 0.95 (mAP95), parameter count, and computational

complexity are used. These metrics provide a comprehensive and

objective evaluation of the model’s overall performance.

Precision evaluates the proportion of correctly predicted

positive instances among all instances predicted as positive by the

model, reflecting its reliability in identifying positive samples, as

shown in Equation 10:

Precision =
TP

TP + FP
(10)

Here, TP denotes the number of true positive cases, while FP

represents the number of false positive cases.

Recall is a metric that evaluates a model’s ability to detect actual

targets, reflecting the proportion of true targets correctly identified,

as shown in Equation 11:

Recall =
TP

TP + FN
(11)

Here, FN represents the number of false negatives.

The mean Average Precision (mAP50) is the mean of the

Average Precision (AP) when the Intersection over Union (IoU)

threshold is set to 0.5, as shown in Equation 12:

mAP50 =
1
No

N
I

Z
01
P(R) dR (12)

The mean Average Precision (mAP50−95) is computed as the

average of the Average Precision (AP) across IoU thresholds from

0.5 to 0.95, as shown in Equation 13:

mAP50−95 =
1
No

N
i=1APi(0:95) (13)

Among them, APi represents the Average Precision (AP) for the

i-th category, and n denotes the total number of categories.

The number of parameters reflects the storage requirements of

the model, specifically the number of weights that need to be trained

and stored. A smaller number of parameters leads to a lighter

model. Computational cost refers to the computational overhead

required by the model during fast inference. Both metrics are crucial

for evaluating model usability and are relevant for edge

computing devices.
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4 Experimental results and analysis

4.1 Improved module combination effect
comparison

To systematically analyze the relationship between model

performance and component or design selection, and to validate

the effectiveness of the improved modules, this paper uses the

original YOLOv11n model as the baseline and sequentially

integrates the C3K2 MSEIE module, SimAM module, and

ADown module to form the improved model. The results of the

ablation experiments are shown in Table 2.

As shown in Table 2, the ablation results clearly demonstrate

the effectiveness of each proposed module. Compared to the

baseline YOLOv11n model, YOLOv11n-A—constructed by

replacing the original C3K2 module with the enhanced

C3K2_MSEIE module—achieves notable improvements: precision

(P) increases from 85.6% to 86.6% (+1.0%), recall (R) from 82.6% to

85.2% (+2.6%), mAP50 from 90.2% to 91.8% (+1.6%), and mAP95
from 63.7% to 66.9% (+3.2%). These gains highlight the

effectiveness of multi-scale edge enhancement in improving

localization and recognition of fine-grained features.

Building upon this, YOLOv11n-B introduces the SimAM

attention mechanism on top of the C3K2_MSEIE-enhanced

architecture. This further improves detection metrics, achieving a

precision of 88.0%, recall of 86.3%, mAP50 of 92.1%, and mAP95 of

68.4%. The performance gains confirm that SimAM effectively

emphasizes informative regions and suppresses background noise,

especially benefiting the detection of small lesion areas.

Finally, the proposed EDGE-MSE-YOLOv11 model, which

integrates the C3K2_MSEIE, SimAM, and the lightweight ADown

module, achieves the best results across all evaluation metrics:

89.2% precision, 86.4% recall, 92.6% mAP50, and 70.3% mAP95.

This represents an overall improvement of 3.6%, 3.8%, 2.4%, and

6.6%, respectively, over the baseline. These results demonstrate that

the joint optimization of feature extraction, attention refinement,

and downsampling enhances both accuracy and efficiency, making

the model well-suited for rice disease detection in resource-

limited environments.
TABLE 1 Rice disease dataset.

Disease categories Training set/Images Validation set/Image Test set/Images Total/Images

Bacterial Blight 1384 334 165 1883

Brown Spot 1208 357 233 1798

Leaf-smut 1221 460 142 1823

Dead-heart 1365 405 195 1965

Downy 1422 322 183 1927

False 1530 446 245 2221
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Figure 8 illustrates the performance trends of different models

throughout the training process using four standard object

detection metrics: precision, recall, mAP@0.5, and mAP@

0.5:0.95. Precision measures the ratio of true positives to all

predicted positives, reflecting the model’s ability to reduce

false detections. Recall indicates the model’s effectiveness in

identifying all actual targets. mAP@0.5 evaluates detection

accuracy with an Intersection over Union (IoU) threshold of

0.5, while mAP@0.5:0.95 averages performance across IoU
Frontiers in Plant Science 11
thresholds from 0.5 to 0.95, offering a more comprehensive

assessment of localization accuracy.

All models exhibit significant initial improvements, rapidly

stabilizing after approximately 100 epochs. The EDGE-MSE-

YOLOv11 consistently demonstrates superior performance,

particularly evident in all four metrics, achieving the highest and

most stable values earlier than other models. YOLOv11n-A and

YOLOv11n-B also show clear advantages over the baseline

YOLOv11n, validating the efficacy of the introduced modules.
FIGURE 8

Performance comparison of different models.
TABLE 2 Improved module combination effect comparison.

Detection
model

C3K2
MSEIE

SimAM ADown
P/
%

R/
%

mAP50/
%

mAP95/
%

Model
size/M

Param/
M

Inference
speed/FPS

FLOPs/
G

YOLOv11n 85.6 82.6 90.2 63.7 4.8 8.55 174.7 5.7

YOLOv11n-A ✓ 86.6 85.2 91.8 66.9 5.6 9.69 111.2 6.4

YOLOv11n-B ✓ ✓ 88 86.3 92.1 68.4 5.6 9.69 111.6 6.4

EDGE-
MSE-YOLOv11

✓ ✓ ✓ 89.2 86.4 92.6 70.3 4.4 7.86 102.8 5.4
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This significant improvement is attributed to the optimization of

the C3K2 module in the backbone network, particularly the

introduction of the MSEIE module, which significantly enhances

model accuracy. Moreover, replacing the standard downsampling

module in the neck network with the lighter ADown module

reduces the model’s size and parameters by 0.4% and 0.69%,

respectively, while reducing computational cost by 0.3%.

Additionally, the inclusion of the SimAM attention module

further boosts overall performance. The multi-module fusion

EDGE-MSE-YOLOv11 improves detection performance while

preserving the model’s lightweight advantage, especially

noticeable in the mAP95 metric.

Figure 9 illustrates the confusion matrix for the detection results

of rice diseases using the YOLOv11n model series, which includes

YOLOv11n, YOLOv11n-A, YOLOv11n-B, and EDGE-MSE-

YOLOv11. Comparison of these matrices reveals that they are

normalized, with the horizontal and vertical axes representing

various disease categories and backgrounds, respectively. Larger

diagonal values and darker colors correspond to higher detection

accuracy for each category, while off-diagonal elements indicate the

proportion of misclassified samples from other categories.
Frontiers in Plant Science 12
By examining the changes in the confusion matrix, it is evident

that as the model progresses from YOLOv11n to YOLOv11n-A,

then to YOLOv11n-B, and finally to EDGE-MSE-YOLOv11, the

diagonal element colors become progressively darker. This indicates

a significant improvement in the model’s recognition accuracy for

various diseases. At the same time, the color of the non-diagonal

elements lightens, demonstrating the model’s growing ability to

differentiate between disease categories and a notable reduction in

misclassification rates. For example, earlier versions of the model

may have struggled to distinguish between similar diseases,

particularly those with similar morphological features. However,

these misclassifications were substantially reduced in the later

versions. While the YOLOv11n model performs adequately

within mainstream lightweight detection frameworks, it still faces

challenges in differentiating between similar disease categories and

suffers from decreased accuracy under complex background

interference. By incorporating enhanced modules like the C3K2

MSEIE, the SimAM attention mechanism, and the ADown

downsampling module, the YOLOv11n-A and YOLOv11n-B

models show considerable improvement in distinguishing similar

diseases. Notably, the EDGE-MSE-YOLOv11 model, which
FIGURE 9

Comparison of confusion matrices before and after model improvement.
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integrates these various enhancements, achieves near-optimal

performance. The diagonal elements in its confusion matrix

approach a value of 1, while the non-diagonal elements are

significantly reduced, demonstrating superior accuracy and

robustness. Based on these experimental findings, compared to

the baseline model, the proposed EDGE-MSE-YOLOv11 not only

improves recognition accuracy for key disease types but also greatly

reduces confusion between different diseases, offering a more

accurate and reliable solution for rice disease detection in

complex environments.

The Grad-CAM++ technique was employed to visualize the

feature activation regions of the models during disease detection

(Chattopadhay et al., 2018). The heatmaps shown in Figure 10

highlight the spatial distribution of model attention within diseased

areas of rice leaves. For the original YOLOv11n model, the
Frontiers in Plant Science 13
activation regions appear scattered and disorganized, with a

substantial amount of background interference. This dispersion

suggests that the model fails to consistently attend to the actual

lesion areas, which may result in frequent missed detections. With

the introduction of the C3K2 MSEIE module, the YOLOv11n-A

model demonstrates noticeable improvements in localizing and

emphasizing critical features, particularly in the detection of

diseases such as B (Brown Spot), C (Dead Heart), D (Downy), E

(False), and F (Leaf-smut). The activation heatmaps become more

concentrated around the lesion regions, although challenges remain

for class A (Bacterial Blight), where some background textures still

exhibit attention. After integrating the SimAM attention

mechanism, the YOLOv11n-B model exhibits a substantial

reduction in background activation and a sharper focus on

diseased regions. This enhanced focus contributes to stronger
FIGURE 10

Detection heatmap of the model before and after improvement on the rice disease dataset: (A) Bacterial Blight, (B) Brown Spot, (C) Dead Heart,
(D) Downy, (E) False, (F) Leaf-smut.
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robustness in complex backgrounds and improved localization of

small lesions. Compared to YOLOv11n-A, the TMLPM-enhanced

YOLOv11n shows more focused attention on the primary disease

locations, enabling faster and more precise identification of target

areas. Furthermore, the final EDGEMSE-YOLOv11 model, which

incorporates the ADown downsampling module, demonstrates the

best trade-off between feature resolution and detection accuracy.

The corresponding Grad-CAM++ heatmaps show tightly clustered

attention within lesion areas and minimal activation in irrelevant

regions. This indicates superior performance in isolating critical

lesion features, suppressing background noise, and recognizing

small, complex disease patterns. Overall, compared to the baseline

YOLOv11n, the TMLPM-driven EDGE-MSE-YOLOv11 offers

substantial improvements in lesion localization, feature extraction,

and detection robustness. These visualizations further validate the

effectiveness of the TMLPM framework in enhancing

interpretability and precision in plant disease detection.
4.2 Comparison of different attention
mechanisms

This study selects YOLOv11n as the baseline model and

integrates three attention mechanisms—SE, CBAM, and SimAM

—to construct three variant models: YOLO+SE, YOLO+CBAM,
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and YOLO+SimAM. All models were trained and tested on the

same dataset to ensure experimental fairness (As shown in Table 3).

The results demonstrate that YOLO+SimAM outperforms the other

twomodels in terms of precision, recall, and mean average precision

(mAP). Specifically, YOLO+SimAM achieved a precision of 88%, a

recall of 86.3%, as well as mAPmAP50 and mAPmAP95 of 92.1%

and 68.4%, respectively, while maintaining a high frame rate of

111.6 FPS and a low computational complexity of 6.4 GFLOPs. In

comparison, YOLO+SE attained precision, recall, mAPmAP50, and

mAP95 of 85%, 83.0%, 89.5%, and 65.0%, respectively; YOLO

+CBAM achieved 86%, 84.0%, 90.0%, and 66.0% for these

metrics. These results clearly indicate that the SimAM attention

mechanism has a significant advantage in enhancing the

performance of rice disease detection.
4.3 Comparative experiments on improved
models

To comprehensively evaluate the model’s performance, this study

conducted a systematic comparative experiment on several

mainstream object detection models, including RT-DETR (Zhao

et al., 2024), YOLOv5n (Jocher et al., 2021), YOLOv6n (Bist et al.,

2023), YOLOv8n (Liu et al., 2023), YOLOv11n (Alkhammash, 2025),

and EDGE-MSE-YOLOv11, under unified experimental conditions
TABLE 3 Comparison of different attention mechanisms.

Model P/% R/% mAP50/% mAP95/% Model size/M Param/M Inference speed/FPS FLOPs/G

YOLOv11n+SimAM 88.0 86.3 92.1 68.4 5.6 9.69 111.6 6.4

YOLOv11n+SE 85.0 83.0 89.5 65.0 5.9 10.10 108.0 6.8

YOLOv11n+CBAM 86.0 84.0 90.0 66.0 5.8 10.00 109.0 6.7
f

TABLE 4 Comparative experiments on improved models.

Model mAP50/% mAP95/% Param/M FLOPs/G

Rtdetr 83.6 61.6 111.68 105.2

YOLOv5n 88.3 60.1 10.3 7.9

YOLOv6n 86.4 59.6 15.87 11.6

YOLOv8n 90 62.1 8.9 6.2

YOLOv11n 90.2 63.7 8.555 5.7

EDGE-MSE-YOLOv11 92.6 70.3 7.86 5.4
TABLE 5 Comparison with existing rice disease detection models.

Method mAP50/% mAP95/% Model Size/M Params/M FLOPs/G

RDRM-YOLO (Li et al., 2025) 93.5 – 7.9 – –

GDS-YOLO (Huang et al., 2025a) 85.3 – – 8.97 7.3

YOLOv7-Tiny (Cheng et al., 2024) 92.2 – – 12.2 –

EDGE-MSE-YOLOv11 (Ours) 92.6 70.3 4.4 7.86 5.4
The bold values represent the highest performance metrics achieved in each respective category.
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(Sapkota and Karkee, 2024b). RT-DETR (Wang et al., 2024) is a recent

end-to-end object detection framework based on Transformer

architecture, offering competitive accuracy and real-time inference

capability, which makes it suitable for lightweight agricultural vision

tasks. The comparison results are shown in Table 4.

As shown in Table 4, compared to standard YOLO series

models and the recent Rt-detr model, the EDGE-MSE-YOLOv11
Frontiers in Plant Science 15
model introduced in this study achieves notably higher detection

accuracy while significantly reducing parameter count and

computational complexity (Wang et al., 2025b). Specifically,

EDGE-MSE-YOLOv11 achieves an mAP50 of 92.6% and mAP95
of 70.3%, surpassing YOLOv5n by 4.3% and 10.2%, YOLOv6n by

6.2% and 10.7%, YOLOv8n by 2.6% and 8.2%, YOLOv11n by 2.4.

Additionally, its computational complexity is minimized to 5.4
FIGURE 11

Detection effect of different models on the rice disease dataset: (A) Bacterial Blight, (B) Brown Spot, (C) Dead Heart, (D) Downy, (E) False, (F) Leaf-smut.
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GFLOPs, representing reductions of approximately 5.3%, 6.7%,

53.1%, 30.5%, and 94.9% compared to YOLOv11n, YOLOv8n,

YOLOv6n, YOLOv5n, and Rt-detr, respectively.

Supplementary Figure S3 further illustrates the detailed training

performance trends of each model. The precision, recall, mAP50,

and mAP95 metrics for all models rapidly increase within the first

100 epochs and subsequently stabilize. Among them, the EDGE-

MSE-YOLOv11 consistently maintains superior performance

across all metrics, achieving higher stable values earlier and more

steadily compared to other models. Specifically, the improvements

in recall and mAP95 metrics are especially pronounced, clearly

separating EDGE-MSE-YOLOv11 from other models after

approximately 50 epochs. This indicates that the introduced

enhancements significantly improve the model’s ability to

accurately detect dense small targets from early training stages.

To qualitatively assess the detection performance of the rice disease

recognition model EDGE-MSE-YOLOv11 proposed in this study, a

comparative analysis was performed on the detection results of rice

disease images from the test set using RT-DETR, YOLOv5n, YOLOv6n,

YOLOv8n, YOLOv11n, and EDGE-MSE-YOLOv11. The detection

results for various rice diseases, including A (Bacterial Blight), B

(Brown Spot), C (Leaf Smut), D (Dead Heart), E (Downy), and F

(False), are shown in Figure 11. From the detection results of RT-

DETR, it is observed that the model performs well in detecting certain

diseases but often struggles to identify small or localized lesion regions,

with some prediction boxes showing imprecise positioning. Compared to

RT-DETR, YOLOv5n and YOLOv6n show higher accuracy in detecting
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prominent lesions; however, they may still miss or misclassify disease

types with significant variations in boundary shapes or appearances.

YOLOv11n shows precise localization across various disease types, with

prediction boxes closely matching diseased regions. This indicates that

improvements in its network structure and feature fusion have enhanced

disease detection. The enhanced EDGE-MSE-YOLOv11model accurately

marks diseased regions even when lesion edges are blurred, shapes are

similar, or color differences are minimal. It shows superior ability in

detecting small targets and complex backgrounds. These results indicate

that, through the synergistic effects of multiple modules, the model

effectively extracts key disease features while suppressing background

interference, significantly reducing false and missed detection rates.

These results highlight that the enhanced EDGE-MSE-

YOLOv11 model effectively extracts key disease features,

suppresses background interference, and significantly reduces

false and missed detection rates, all while maintaining low

computational complexity and a compact size, making it well-

suited for efficient deployment on resource-constrained edge

devices, especially for detecting dense small targets.
4.4 Comparison with existing methods

To further demonstrate the effectiveness and advancement of the

proposed EDGE-MSE-YOLOv11 model, we conducted a

comparative analysis against several recently published rice disease

detection models. As summarized in Table 5, the comparison
FIGURE 12

Comparison of improvement effects.
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includes key performance indicators such as mAP metrics, model

size, parameter count, and computational complexity.

For instance (Li et al., 2025), proposed RDRM-YOLO for rice

disease detection under complex environmental conditions. Although

their model achieved a high mAP50 of 93.5%, the model size reached

7.9 MB, which is notably larger than that of EDGE-MSE-YOLOv11.

Similarly (Huang et al., 2025a), introduced GDS-YOLO by integrating

GsConv, Dysample, SCAM, and WIoU v3, achieving an mAP50 of

85.3%, with a parameter count of 8.97M and computational

complexity of 7.3 GFLOPs—both higher than our approach. In

another study (Cheng et al., 2024), presented an enhanced YOLOv7-

Tiny model, which reached anmAP50 of 92.2% with a large parameter

size of 12.2M and a single-image inference time of 26.4 ms, satisfying

real-time detection requirements but at the cost of model compactness.

In contrast, our proposed EDGE-MSE-YOLOv11 achieves a

competitive mAP50 of 92.6% and a superior mAP95 of 70.3%, while

maintaining a compact model size of only 4.4 MB, with 7.86M

parameters and just 5.4 GFLOPs. These results highlight the

effectiveness of the proposed Tri-Module Lightweight Perception

Mechanism (TMLPM) and its strong balance between accuracy,

model size, and efficiency. Such performance makes EDGE-MSE-

YOLOv11 particularly suitable for real-time, resource-constrained

applications in precision agriculture.
4.5 Design of a rice disease visualization
system

The trained improved model is converted into the appropriate file

format and loaded using the PyTorch acceleration inference

framework, then deployed on a Flask server. The user interface (UI)

design, model invocation, and debugging are performed using the

VSCode development tool to build and run the visual system. The

development environment utilizes PyQt5 version 5.15.2, with Python

3.9.20 as the programming language. Users can upload images to

select the ones they wish to detect, which are then transmitted to the

Flask server for processing. The EDGE-MSE-YOLOv11 model is

applied to capture and recognize rice disease images, with the

recognition results returned in real time to the front-end interface

(as shown in Figure 12). Additionally, the system supports video and

camera detection features, displaying the location, quantity, reliability,

and processing time of the detected targets, thus providing users with a

comprehensive solution for disease identification.
5 Conclusion

This study proposes EDGE-MSE-YOLOv11, a novel lightweight rice

disease detection model based on a unified Tri-Module Lightweight

PerceptionMechanism (TMLPM). This mechanism integrates three core

components: multi-scale feature fusion (C3K2_MSEIE), attention-guided

feature refinement (SimAM), and efficient spatial downsampling

(ADown), which significantly enhance the model’s ability to detect

multi-scale and small disease targets under complex field conditions.

Experimental results show that compared to the baseline YOLOv11n
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model, EDGE-MSE-YOLOv11 achieves improvements of 3.6%, 3.8%,

2.4%, and 6.6% in precision (from 85.6% to 89.2%), recall (from 82.6% to

86.4%), mAP50 (from 90.2% to 92.6%), and mAP95 (from 63.7% to

70.3%), respectively. Meanwhile, the model’s parameter count is reduced

from 8.55M to 7.86M and computational cost decreases from 5.7

GFLOPs to 5.4 GFLOPs, corresponding to reductions of approximately

0.69M parameters and 0.3 GFLOPs. In practical deployment scenarios,

the model outperforms several state-of-the-art lightweight detectors

including RT-DETR, YOLOv5n, YOLOv6n, YOLOv8n, and

YOLOv11n, achieving a superior balance between high-speed inference

at 111.6 FPS and excellent detection performance, thereby meeting the

demands of intelligent agriculture applications.

The proposed model has been successfully deployed as a client-

side application for real-time disease detection in agricultural

environments, processing image data from cameras and other

sensors with minimal computational overhead. In the future, as

smart agriculture applications continue to evolve, we plan to extend

the model to mobile platforms to provide on-site, smartphone-based

disease detection for agricultural practitioners. Nonetheless,

limitations remain. EDGE-MSE-YOLOv11 may face challenges in

extremely complex field environments, such as ultra-small lesions,

occluded leaves, or overlapping disease symptoms, which could affect

detection reliability. Moreover, the model is currently evaluated on a

single-domain dataset, and its cross-domain generalization to other

crops or geographic regions requires further validation.

To overcome these limitations, future work will focus on the

following aspects: (1) Enhancing deployment efficiency and

hardware adaptability by leveraging techniques such as LoRA-

based fine-tuning, quantization-aware training (QAT), and

structured pruning; (2)) Improving spatial reasoning and disease

pattern recognition by incorporating MobileViT or graph neural

network (GNN)-based modules into the TMLPM framework; (3)

Expanding training datasets to cover a wider range of crops,

environments, and disease types, thereby building a robust and

generalizable multi-crop, multi-disease detection system specifically

designed for precision agriculture applications.
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