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Automatic fused
multimodal deep learning
for plant identification
Alfreds Lapkovskis †, Natalia Nefedova † and Ali Beikmohammadi*

Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden
Introduction: Plant classification is vital for ecological conservation and

agricultural productivity, enhancing our understanding of plant growth

dynamics and aiding species preservation. The advent of deep learning (DL)

techniques has revolutionized this field by enabling autonomous feature

extraction, significantly reducing the dependence on manual expertise.

However, conventional DL models often rely solely on single data sources,

failing to capture the full biological diversity of plant species comprehensively.

Recent research has turned tomultimodal learning to overcome this limitation by

integrating multiple data types, which enriches the representation of plant

characteristics. This shift introduces the challenge of determining the optimal

point for modality fusion.

Methods: In this paper, we introduce a pioneering multimodal DL-based

approach for plant classification with automatic modality fusion. Utilizing the

multimodal fusion architecture search, our method integrates images from

multiple plant organs—flowers, leaves, fruits, and stems—into a cohesive

model. To address the lack of multimodal datasets, we contributed

Multimodal-PlantCLEF, a restructured version of the PlantCLEF2015 dataset

tailored for multimodal tasks.

Results: Our method achieves 82.61% accuracy on 979 classes of Multimodal-

PlantCLEF, outperforming late fusion by 10.33%. Through the incorporation of

multimodal dropout, our approach demonstrates strong robustness to missing

modalities. We validate our model against established benchmarks using

standard performance metrics and McNemar’s test, further underscoring

its superiority.

Discussion: The proposed model surpasses state-of-the-art methods,

highlighting the effectiveness of multimodality and an optimal fusion strategy.

Our findings open a promising direction in future plant classification research.
KEYWORDS

plant identification, plant phenotyping, multimodal learning, fusion automation,
multimodal fusion, architecture search, neural architecture search, multimodal dataset
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1 Introduction

Plant classification is among the most significant tasks for

agriculture and ecology. It facilitates the preservation of plant

species and enhances understanding of their growth dynamics,

thus protecting the environment (Zhang et al., 2012). Typically,

plants can be categorized into additional specific groupings, such as

weeds, invasive species, or plants exhibiting diseases and conditions.

According to Dyrmann et al. (2016), between 23 and 71 percent

of yield can be lost due to uncontrolled weeds, highlighting the

necessity of accurately understanding weed species for more precise

herbicide application. Therefore, accurate plant identification is

crucial in preventing crop losses and avoiding inaccurate and

unnecessary pesticide usage (Meshram et al., 2021).

Manual plant identification typically relies on leaf and

flower features and demands profound domain expertise,

alongside substantial allocation of time and financial resources

(Beikmohammadi et al., 2022). Moreover, Saleem et al. (2018)

suggest that the extensive diversity of plant species amplifies the

complexity of laboratory classification. Given these challenges, there

has been a shift toward automated methods. These approaches,

leveraging machine learning (ML) and computer vision (Wäldchen

et al., 2018), aim to predict plant types and minimize the reliance on

manual skill and resources.

In this regard, some studies have explored traditional ML

algorithms for plant classification (Gao et al., 2018; Saleem et al.,

2018; Srivastava and Kapil, 2024; Dubey et al., 2025; Yang et al.,

2025). However, these algorithms rely on the creation of hand-

crafted features, a process heavily dependent on human expertise

(Haichen et al., 2021). This human involvement also introduces the

potential for biased assumptions and poses challenges in manually

identifying suitable features for visual classification. For instance, a

classifier based on leaf teeth proves ineffective for species lacking

prominent leaf teeth (Wäldchen et al., 2018). Similarly, classifiers

relying on leaf contours struggle with species exhibiting similar leaf

shapes (Liu et al., 2016).

Recognizing these challenges, numerous studies indicate the

superior performance of deep learning (DL) models compared to

traditional ones (Nhan et al., 2020; Kolhar and Jagtap, 2021; Kaya

et al., 2019). Consequently, researchers have recently adopted DL

techniques to develop more effective models for plant identification

(Beikmohammadi and Faez, 2018; Beikmohammadi et al., 2022;

Espejo-Garcia et al., 2020; Ghazi et al., 2017; Ghosh et al., 2022;

Kaya et al., 2019; Lee et al., 2018; Liu et al., 2022; Tan et al., 2020;

Dalvi et al., 2024; Diwedi et al., 2024; Kavitha et al., 2023; Kiran and

Kaur, 2025; Sharma and Vardhan, 2025; Gowthaman and Das,

2025). Such models, typically employing convolutional neural

networks (CNNs), can extract features themselves without the

need for explicit feature engineering (Nhan et al., 2020; Saleem

et al., 2018; Wäldchen et al., 2018). However, DL models introduce
Abbreviations: DL, deep learning; ES, early stopping; IRB, inverted residual

block; LR, learning rate; MD, multimodal dropout; MFAS, multimodal fusion

architecture search; ML, machine learning; MSE, mean squared error; NAS,

neural architecture search; SMBO, sequential model-based optimization.
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challenges in engineering model architectures, a task that demands

expertise and extensive experimentation and is susceptible to errors

(Elsken et al., 2019). Addressing this, neural architecture search

(NAS) automates the design of neural architectures. NAS has

demonstrated remarkable performance, surpassing manually

designed architectures across various ML tasks, notably in image

classification (Liu et al., 2021). These methods have also been

effectively applied in plant identification (Umamageswari et al.,

2023; Sun et al., 2022).

However, typically, both traditional ML and DL models

developed for plant classification tasks are constrained to a single

data source, often leaf or whole plant images. From a biological

standpoint, a single organ is insufficient for classification (Nhan

et al., 2020), as variations in appearance can occur within the same

species due to various factors, while different species may exhibit

similar features. Moreover, using a whole plant image is insufficient,

as different organs vary in scale, and capturing all their details in a

single image is impractical (Wäldchen et al., 2018). In response to

this limitation, very recent studies have delved into the application

of multimodal learning techniques (de Lutio et al., 2021; Liu et al.,

2016; Nhan et al., 2020; Salve et al., 2018; Hoang Trong et al., 2020;

Wang et al., 2022; Zhou et al., 2021), which integrate diverse data

sources to provide a comprehensive representation of phenomena.

Particularly, Nhan et al. (2020) illustrate that leveraging images

from multiple plant organs outperforms reliance on a single organ,

in line with botanical insights (Goëau et al., 2015). Wäldchen et al.

(2018) underscore the emerging trend of multi-organ-based plant

identification, indicating promising accuracy improvements due to

the diverse plant viewpoints.

In multimodal learning, the fusion of modalities is recognized as

a critical challenge (Barua et al., 2023; Zhang et al., 2020). Various

fusion strategies outlined in the literature include early,

intermediate, late, and hybrid fusions (Boulahia et al., 2021).

Early fusion integrates modalities before feature extraction, such

as combining multiple 2D images into a single tensor. Intermediate

fusion extracts features from each modality separately and then

merges them, offering deeper insights. Late fusion combines

modalities at the decision level, often through averaging. The

hybrid approach mixes these strategies for optimal results.

Among these fusion strategies, late fusion emerges as the most

prevalent in the observed plant classification literature, presumably

due to its simplicity and adaptability (Baltrusaitis et al., 2019).

However, the choice of a specific strategy relies on the discretion of

the model developer (Xu et al., 2021), which can introduce bias and

lead to a suboptimal architecture.

To address these issues, we propose an automatic multimodal

fusion approach utilizing images from four distinct plant organs—

flowers, leaves, fruits, and stems. Following Nhan et al. (2020), we

refer to these organs asmodalities1. While all organs are represented

as RGB images, each encapsulates a unique set of biological features,

reflecting the fundamental property of multimodality—

complementarity (Lahat et al., 2015). Furthermore, unlike multi-

view methods (Seeland and Mäder, 2021), our model explicitly
1 In this study, we use terms modality, organ, and input interchangeably.
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requires distinct plant organs as inputs. Additionally, unlike certain

multi-organ methods (Lee et al., 2018), our model has a fixed set of

inputs, with each input corresponding exclusively to a specific

organ. Thus, we suggest the term multimodality aligns more

accurately with our approach.

In contrast to previous multimodal and multi-view plant

classification studies [e.g., (Ghazi et al., 2017; Lee et al., 2018; de Lutio

et al., 2021)], our model is constructed automatically, enabling the

discovery of more optimal and efficient architectures. Additionally, the

discovery process itself is accelerated and partially parallelized. While

earlier works employing NAS [e.g., (Umamageswari et al., 2023; Sun

et al., 2022)] have not focused on the multimodal setting, we adopt an

algorithm specifically tailored for multimodal problems. As a result, our

approach effectively integrates the strengths of both multimodal

modeling and NAS. This leads to a compact model with a

significantly smaller parameter count, facilitating deployment on

resource-limited devices, such as smartphones. By delivering fast,

accurate plant identification directly in the field, our method

empowers farmers, ecologists, and citizen scientists with actionable

insights for agricultural and environmental decision-making.

In addition, existing plant classification datasets are

predominantly designed for unimodal tasks, which poses a

significant challenge for developing and evaluating multimodal

approaches. To address this limitation, we introduce a data

preprocessing pipeline that transforms an existing unimodal

dataset, namely PlantCLEF2015 (Joly et al., 2015), into a

multimodal dataset comprising combinations of plant organ

images. This dataset, which we call Multimodal-PlantCLEF,

supports the development of models with a fixed number of

inputs, each corresponding to a specific plant organ.

Our contribution is fourfold:
2 G i t H u b r e p o s i t o r y : h t t p s : / / g i t h u b . c o m / A l f r e d s

Lapkovskis/MultimodalPlantClassifier

Fron
1. We propose a novel data preprocessing approach to convert

an unimodal plant classification dataset into a multimodal

one and apply it to transform PlantCLEF2015 into

Multimodal-PlantCLEF for use in this study.

2. We propose a novel automatic fused multimodal DL

approach for the first time in the context of plant

classification. To do so, we first train an unimodal model

for each modality using the MobileNetV3Small pre-trained

model. Then, we apply a modified multimodal fusion

architecture search algorithm (MFAS) (Perez-Rua et al.,

2019) to automatically fuse these unimodal models.

3. We evaluate the proposed model against an established

baseline in the form of late fusion using an averaging

strategy (Baltrusaitis et al., 2019). We utilize standard

performance metrics and McNemar’s statistical test

(Dietterich, 1998). The results demonstrate that our

automated fusion approach enables the construction of a

more effective multimodal DL model for plant

identification, outperforming the baseline.

4. Additionally, we assess the proposed model on all subsets of

plant organs, revealing its robustness to missing modalities

when trained with a multimodal dropout technique

(Cheerla and Gevaert, 2019).
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The source code of our work is available online at the

GitHub repository
2.

The remainder of this paper is organized as follows. Section 2

introduces our proposed method, outlines the dataset and data

preprocessing, and describes model evaluation. Section 3 presents

the obtained results. Section 4 discusses the acquired results in

relation to other research. Section 5 concludes the paper and

highlights the directions for future research.
2 Materials and methods

2.1 Fusion automation algorithm selection

Different layers of DL models represent different levels of

abstraction, and the highest levels are not necessarily the most

suitable for fusion (Perez-Rua et al., 2019). Following this insight, to

automate the development of a multimodal model architecture, we

explore the use of NAS algorithms specifically designed for

multimodal frameworks. These algorithms offer a promising

solution for automatically identifying the optimal point of fusion

rather than relying on manual determination. In this regard, Perez-

Rua et al. (2019) introduce MFAS, a multimodal NAS algorithm.

Central to their approach is the assumption that each modality

possesses a distinct pre-trained model, substantially reducing the

search space by maintaining these models static during the search

process. The MFAS algorithm iteratively seeks an optimal joint

architecture by progressively merging individual pre-trained

models at different layers. A notable advantage of this

methodology lies in its focus on exclusively training fusion layers,

resulting in significant computational time savings.

In another work, Xu et al. (2021) present MUFASA, an

advanced multimodal NAS algorithm. One of the standout

features of this algorithm is its comprehensive approach, which

involves searching for optimal architectures not only for the entire

fusion architecture but also for each modality individually, all while

considering various fusion strategies. Unlike unimodal NAS

methods, MUFASA addresses the whole architecture, leveraging

the understanding of its multimodal nature. Furthermore, unlike

MFAS, MUFASA addresses the architectures of individual

modalities while considering their interdependencies. This unique

approach positions MUFASA as potentially more powerful in

tackling challenges in multimodal fusion.

While MUFASA demonstrates superior potential, it comes with

a notable drawback: its high computational demands. Xu et al.

(2021) indicate that achieving state-of-the-art performance on

widely used academic datasets would necessitate roughly two

CPU years of computational time. In contrast, MFAS has

achieved high accuracy, completing within 150 hours of four

P100 GPU time on a large-scale image dataset and much faster

on simpler datasets (Perez-Rua et al. 2019). This difference can be

attributed, at least, to the substantial training requirements of
frontiersin.org
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MUFASA, which involves optimizing a larger number of

weights and evaluating a greater number of configurations.

Therefore, in this study, we select MFAS, as it is considered more

suitable for efficiently searching for optimal multimodal

fusion architectures.
2.2 Proposed method

The MFAS algorithm employed in this work requires a pre-

trained unimodal model for each modality. Therefore, the method

is initiated with the creation of these models.

2.2.1 Unimodal models
To construct an unimodal model for each modality represented

by different plant organs, we employ a transfer learning technique.

There are two primary approaches to applying transfer learning.

One involves utilizing pre-trained model weights to extract features

from a dataset for subsequent classification, while the other entails

full or partial updates of pre-trained weights using a new dataset.

The latter is known as fine-tuning (Espejo-Garcia et al., 2020).

Initially, we adopted the former approach, pre-training only the

appended top layers of each unimodal model. For models where

fine-tuning yielded improved performance, we selectively

proceeded with this technique.

We explored MobileNetV3Small (Howard et al., 2019),

DenseNet121 (Huang et al., 2017), InceptionV3 (Szegedy et al.,

2016), and NasNetMobile (Zoph et al., 2018) as candidate

architectures for a unimodal base model, and observed that

MobileNetV3Small and DenseNet121 demonstrated superior

performance; however, MobileNetV3Small also has a low number

of parameters. Therefore, we employ MobileNetV3Small as the base

model, utilizing weights pre-trained on the ImageNet dataset, for

our transfer learning approach. This model is compatible with RGB

images and an input size close to 256 × 256 × 3.

2.2.2 Multimodal fusion architecture search
We leverage the MFAS algorithm, which utilizes a pre-trained

model f(i)(x(i)) = ŷ i for each modality i ∈ {1,…,m}. Here, ŷ i denotes

an approximation of the true label y, derived from the input x
specific to modality i. Each model f(i) with size ni is composed of

layers f (i)l , where l ∈ {1,…,ni}, such that for l-th layer, x(i)l =

(f (i)l ∘ f (i)l−1 ∘   · · ·   ∘ f
(i)
l )(x(i)) represents features considered for

fusion with features from other modalities. The objective of the

algorithm is to find optimal combinations of such features to fuse,

along with determining the properties of such fusion.

To do so, fusion is performed through another model h, whose

layers are defined as in Equation 1:

h1 = sg a
1

W1

x(1)g 1
1

⋮

x(m)
g m
1

2
6664

3
7775

0
BBB@

1
CCCA, hl = sg a

l
Wl

x(1)g 1
l

⋮

x(m)
g m
l

hl−1

2
666664

3
777775

0
BBBBB@

1
CCCCCA, l > 1 (1)
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where for l-th layer of h, sg a
1
denotes an activation function, Wl

is a trainable weight matrix and gl = (g 1
l , · · ·, g

m
l , g a

l ) is a tuple

with indices of features from each modality and an index of an

activation function. The maximum number of fusion layers hl is

denoted by L: l ∈ {1,…,L}, and is a hyperparameter defined prior to

execution of the algorithm. A complete fusion configuration of a

particular instance of h with L layers is defined by a vector of tuples

½gl�l∈ 1,…,Lf g, while a set of all possible tuples with L layers is denoted

by GL. A list of possible activation functions with size k and possible

modality layers used in hl are also hyperparameters that can be

implementation-specific.

Given this setup, the algorithm spans a large search space of size

(n1 × ··· × nm × k)L. Since exploring even a small portion of these

configurations manually is infeasible, Perez-Rua et al. (2019) have

integrated a sequential model-based optimization (SMBO) method

into their framework. They argue this approach methodically

explores the search space by progressively introducing new

configurations, a process which has proven to yield architectures

that perform comparably to those identified through direct methods.

Although our approach to fusion automation is grounded in the

methodologies outlined in (Perez-Rua et al., 2019), it also

incorporates several modifications while maintaining certain

similarities. In the following, we provide further elaboration on

the specific details of our implementation.

Unimodal models: We utilize the pre-trained MobileNetV3Small

model for each modality.

Search space: In this paper, the search space is constrained to

the following parameters:
• Maximum of four fusion layers (i.e., L = 4).

• Two possible activation functions: ReLU and sigmoid (i.e., k

= 2).

• 6 fusible layers in each unimodal model: the 1st activation,

the 1st, 6th, and 11th inverted residual blocks, and our two

appended dense layers (i.e., ni = 6, ∀i).
This results in 64 × 2 = 2592 different configurations for a single

fusion layer and forms a search space of size 25924 ≈ 4.51 × 1013.

Generating model configurations: In this work, the sampled

architectures, denoted by S, are reused across iterations. During the
progression from l = 1 to l = L, newly generated layer configurations

are either appended to the sampled configurations or used to

replace existing l-th layers in S.
Building architectures:We construct multimodal architectures

based on fusion configurations. Since the outputs of layers from

unimodal models may have different numbers of dimensions, we

apply global average pooling to each multidimensional output from

MobileNetV3Small, similarly to the original approach.

Subsequently, the output of each fused layer is concatenated and

connected with a dense layer, incorporating an activation function

specified in the model configuration. In the case of an intermediate

fusion layer (l > 1), the previous fusion layer is also connected to the

dense layer. Each multimodal model is finalized with a classifier

layer employing a softmax activation function.
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Weight sharing: In addition to sharing weights between fusion

layers that have the same indices and identical weight matrix sizes,

our approach also takes into account the activation functions of the

fusion layers. This adjustment acknowledges the significant impact

that activation functions can have on the behavior of weights. In our

model, weights are shared across all configurations.

Storing results: Similarly to the original algorithm, if the same

configuration is visited twice, the best result is retained.

Surrogate:We utilize the surrogate described in Perez-Rua et al.

2018, since it has proven to be effective in this context3. This

surrogate comprises an embedding layer with zero masking,

yielding vectors with a length of 100; an LSTM layer with 100

neurons; and a regression layer with a single neuron and sigmoid

activation. The model is compiled with an Adam optimizer with a

learning rate (LR) of 0.001, and mean squared error (MSE) loss.

Each update is executed for 50 epochs with a batch size of 64.

In this study, we create batches for the surrogate by applying

right zero padding to configurations. Moreover, our approach

slightly diverges from the original by updating the surrogate each

time with the entire dataset of results.

Temperature-based sampling: Following Perez-Rua et al. (2018)4,

the probability of sampling an architecture i with a score ai is pi =

ai=ojaj. However, when incorporating a temperature factor t, the

probability of sampling i is given by p1=ti =ojp
1=t
j . Thus, the larger the t,

the more stochastic the sampling becomes. Similar to Perez-Rua et al.

(2019), we employ inverse exponential temperature scheduling, as

it has shown to perform well in this context too. Therefore, at

each step s of the MFAS algorithm, the temperature is computed as

(tmax − tmin)e
−(s=d)2 + tmin, where d is the decay rate.
2.3 Dataset

We selected the PlantCLEF2015 dataset (Joly et al., 2015) for

our proposed plant classification model because it contains images

of different plant organs, including flowers, leaves, fruits, and stems.

The dataset provides a large and diverse collection that ensures a

sufficient quantity of images for each organ type as depicted

in Figure 1a.

This dataset follows a long-tailed distribution, as depicted in

Figure 1b. This class imbalance in the data underscores the necessity

of employing additional techniques to mitigate its potentially

adverse effects on model learning. Furthermore, Figure 2

illustrates the distribution of organ images across classes. Notably,

a considerable number of classes entirely lack certain organs. This

observation highlights the necessity for models to handle missing

modalities effectively, using tailored training approaches.

Moreover, it is evident that flowers, being a discriminative

organ (Nhan et al., 2020), are available for most classes, followed

by leaves and fruits, although with a noticeable scarcity in many
3 See Perez-Rua et al. (2018) for a complete specification of the embedding

layer, LSTM configuration, training regime, and loss settings.

4 See Perez-Rua et al. (2018) for a thorough derivation of the temperature

schedule and its impact on sampling stochasticity.
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classes. This scarcity is even more pronounced in stems, being the

least discriminative and the least available organ across classes.

Finally, the images in the dataset are derived from observations

—individual plant specimens. It is essential to use this information

to split the data for training, validation, and evaluation based on

observations rather than images, in order to prevent potential bias

from exposing similar images of the same observation across

different data splits. However, achieving well-balanced splits in

this context is non-trivial, as each observation can have an

arbitrary number of images, as illustrated in Figure 3. Our

approach to data splitting under these circumstances is detailed in

Section 2.3.1.
2.3.1 Data preprocessing
The original PlantCLEF2015 dataset and its associated

evaluation protocols are not suitable for the development of our

proposed multimodal model. These protocols are designed for

models that accept either a single image or an observation

comprising an arbitrary number of images from various plant

organs. In contrast, our model requires a fixed input format

consisting of four specific plant organ images. This fundamental

mismatch necessitates a custom strategy to reorganize the original

dataset into fixed combinations of plant organ images, which

inherently precludes the use of standard PlantCLEF2015

evaluation protocols. Given these constraints, modifying the

dataset is both a justified and essential step. It is important to

note that all multimodal approaches deal with this issue in plant

identification. For more information, see Section 4.4. In the

following, we detail our preprocessing pipeline for transforming

PlantCLEF2015 into Multimodal-PlantCLEF. The preprocessing

steps are visualized in Figure 4.

1. Combining the original splits: The original data splits of

PlantCLEF2015 are poorly balanced with respect to plant organs;

therefore, we merge them into a unified dataset to generate our own

splits subsequently.

2. Collecting metadata: Initially, we extract image metadata for

flowers, leaves, fruits, and stems from the dataset, resulting in a total

of 67812 records.

3. Grouping class observations: We group the metadata of

different organ images by their observation identifiers for each

class separately.

4. Filtering organ images and classes: We eliminate specific

organ images from a class if their total count in this class is less than

3, as such images cannot be split between training, validation, and

test sets. Subsequently, we remove any observations that are left

empty. Finally, we discard classes with fewer than 3 observations,

since we split the data by observations. This filtering results in 919

classes for flowers, 726 for leaves, 500 for fruits, and 314 for stems,

yielding a total of 979 unique classes.

5. Splitting the data: We split the data by observations;

however, achieving balanced splits is challenging as (i) we aim to

ensure a specific proportion of observations in each data split (i.e.,

60%:20%:20% for training, validation, and test sets respectively) to

maximize the diversity of data within them, and, simultaneously,

(ii) we seek to ensure the same proportions of each plant organ’s
frontiersin.org
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images in the splits to achieve certain split sizes and balance in

terms of organs. These objectives are inherently contradictory, as

observations contain varying numbers of organ images (Figure 3).

Consequently, we frame the splitting process as a constrained

optimization problem, which we solve for each class separately to

ensure stratification by labels:

minimize o
s∈S

( xsk k1−lsN)2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
optimize observation counts

+ o
o∈O
o
s∈S

(cTo xs − ls cok k1)2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
optimize organ counts

subject to o
s∈S

xs = 1

(2)

where N is the number of observations, S is a set of data splits,

O is the set of organ types, co∈NN is a vector containing the counts

of organ o images for each observation, xs∈ 0, 1f gN is a decision

vector for a split s, where the i-th element is 1 if the i-th observation

belongs to split s, and ls∈ [0, 1] is the desired size of split s (0.6 for

training and 0.2 for validation and test). Here in Equation 2, the first

term of the problem minimizes the divergence between the actual

and intended number of observations in each split. The second term

minimizes the divergence between the actual and intended counts

of each organ’s images in each split. The problem’s constraint

ensures that each observation is placed only in one data split.

After solving this problem, we assign observations to splits

according to the resulting vectors xs. If an organ split in a particular

class ends up empty because all images were assigned to other splits,
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we manually transfer a single image from the largest split to ensure

that training, validation, and testing can be performed for that class.

This correction is practically expected when a class has, for example,

3–4 images of the organ. Overall, this procedure produces

reasonably balanced splits, as shown in Figure 5. Table 1

summarizes the total counts of observations and organ images

across the splits.

6. Saving unimodal datasets: We save each data split separately

for each modality to enable pre-training of unimodal models for

MFAS. Each dataset consists of shuffled images and their

corresponding labels. We map the labels to values in the range

[0,978], as the original label values are impractical for use. We convert

each image to RGB, resize to 256 × 256 resolution, and encode in

JPEG format. This standardization ensures uniform model input

dimensions and reduces computational and I/O load. We choose

a square shape for resizing due to the observation that the

average aspect ratio of images in the dataset closely approximates

1. During data loading, we also normalize pixel channel values to the

range [−1, 1] to meet the input requirements of MobileNetV3Small.

7. Saving multimodal datasets: In this step, we prepare the data

for training the multimodal architecture. To accomplish this, the

four modalities must be combined. Each class in the splits

encompasses a varying number of images of distinct organs. A

straightforward approach would entail generating all possible

combinations of flower × leaf × fruit × stem for each class.

However, given the unequal distribution of organ images across
FIGURE 1

PlantCLEF2015 dataset summary. (a) Distribution of plant organs in the dataset. (b) Class distribution in the dataset, considering only the relevant
organs: flowers, leaves, fruits, and stems.
FIGURE 2

Distribution of plant organs among classes in PlantCLEF2015.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1616020
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lapkovskis et al. 10.3389/fpls.2025.1616020
classes, this would yield numerous similar tuples, potentially

burdening computational resources without significant learning

gains. Instead, we only generate N = max(nflower, nleaf, nfruit, nstem)

random image combinations per class, where nmrepresents the

number of images of modality m in the class. We create random

vectors x(m) for each modality m by permuting sequences of

modality images and then repeating their elements to match the

length of N. Then, we generate sets of key-value pairs Ri =

f(m, x(m)
i j∀m)g for our multimodal dataset, where i ∈ {1,…,N}.

We shuffle these sets and store them together with the

corresponding labels to subsequently use them for our

multimodal models. If a class entirely lacks a modality m, the

respective vector x(m) is not constructed, and (m, x(m)
i ) is omitted in

records Ri for that class. The formats of stored images and labels

follow the specifications in step 6.
2.4 Proposed model setup and
configuration

2.4.1 Unimodal model training
We systematically evaluate different training hyperparameters

and the impact of fine-tuning on unimodal models by progressively

unfreezing inverted residual blocks (IRBs). As a result, each base

MobileNetV3Small model is appended with an intermediate dense

layer (with batch normalization) and a classifier layer. Initially, we

train only these appended layers using the default Adam optimizer

with an exponentially decaying LR and early stopping (ES), after

which the best weights are restored based on validation loss.

Subsequently, we fine-tune from the top layer down to and

including the 4th IRB for the leaf and fruit models, and all layers
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for the flower model. Fine-tuning did not yield performance

improvements for the stem model, so it is omitted there. During

fine-tuning, ES is delayed until the 40th epoch. Table 2 provides the

complete list of unimodal model hyperparameters.

To minimize the impact of class imbalance, we employ a

weighted cross-entropy loss (Equation 3)

L = −
1
Nb
o
Nb

i=1
o
c∈C

wcyi,c log (ŷ i,c), (3)

where Nb is a batch size, C is a set of all classes, yi,c is a binary

indicator, ŷ i,c is predicted class probability, and wc is a weight for a

class c ∈ C. The indicator yi,c is computed according to Equation 4

yi,c =
1 if  c is a true class of  i

0 otherwise
,

(
(4)

and the weight wc as shown in Equation 5:

wc =
N
Cj j � Nc, (5)

where Nc is the number of instances of a class c within the

training data, and N is the total number of instances.

Additionally, we shuffle the data at each epoch and randomly

apply image augmentations that have been shown to enhance

performance, as outlined in Table 3.

To fully utilize the available data, we train two versions of each

model: one on the training set only, and another on the combined

training and validation sets. The first model version is used during

MFAS execution (Section 2.4.2) and while tuning the final model

(Section 2.4.3). Once hyperparameter tuning is complete, the

validation set is no longer required; so, we merge it with the
FIGURE 3

Distribution of plant organs among observations in PlantCLEF2015.
FIGURE 4

Data preprocessing steps to convert PlantCLEF2015 into standalone unimodal datasets and Multimodal-PlantCLEF.
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training set and retrain the models on this combined data for

evaluation purposes. Without a validation set, we cannot apply ES

based on validation performance; therefore, we determine an

appropriate number of training epochs based on the first model

version, increasing it slightly to account for the additional data. The

number of epochs used for retraining on the combined sets is

provided in Table 2.
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2.4.2 Multimodal fusion architecture search
execution

In the MFAS algorithm procedure, each multimodal

architecture is trained using the Adam optimizer with a learning

rate of 0.001 and a weighted cross-entropy loss, where class weights

are calculated according to Equation 5 The number of neurons per

fusion layer is set to 64. Each architecture is trained for 2 epochs

with a batch size of 256. As batching significantly impacts training

speed, we cache batches and shuffle them each epoch in buffers of

12, rather than creating new random batches each time. Given the

limited number of epochs per architecture during the algorithm’s

execution, this approach offers a favorable trade-off between

maintaining batch randomness and optimizing training speed.

Given the imbalanced nature of the dataset, we score the

architectures using the F1macro metric on the validation set. We

prefer F1macro over F1weighted, as it treats classes uniformly and is

independent of the number of samples in each class. Due to that,

F1macro also allows a more straightforward comparison of

performance among different subsets of modalities (Section 2.5.3).
FIGURE 5

Distribution of organs across different splits of Multimodal-PlantCLEF.
TABLE 1 Counts of observations and organs in Multimodal-PlantCLEF
data splits.

Splits: Training Validation Test

Observations 16737 (59.21%) 5788 (20.48%) 5740 (20.31%)

Flowers 21859 (60.09%) 7273 (19.99%) 7243 (19.91%)

Leaves 9357 (59.84%) 3172 (20.29%) 3107 (19.87%)

Fruits 5096 (59.97%) 1678 (19.75%) 1724 (20.29%)

Stems 3196 (59.05%) 1119 (20.68%) 1097 (20.27%)
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Similar to Perez-Rua et al. (2019), we initialize our temperature

scheduler with tmax = 10, tmin = 0.2, and temperature decay d = 4.

In this study, we execute the MFAS algorithm for 5 iterations,

with 4 progression levels each, and set the number of sampled

architectures to 50. It is important to note that exploring all 2592

initial architectures at the start of the algorithm is time-consuming;

therefore, they were evaluated in 20 parallel batches. Subsequently,

the algorithm was restarted with the obtained results and a pre-

trained surrogate, continuing from the second progression level

with the 50 best architectures sampled from the first level.
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2.4.3 Final model training
To identify the final architecture after executing the MFAS

algorithm, we select the 10 most performant configurations and

train each for 100 epochs. We employ ES with a patience of 10 and

an initial LR of 0.001, which decays exponentially, reaching 95% of

its value every 200 steps. We also apply batch normalization after

each fusion layer, while retaining the other hyperparameters used

during the architecture search.

Subsequently, we carefully tune the hyperparameters of the best

architecture. Initially, the optimal number of neurons per layer is

investigated. As suggested by Perez-Rua et al. (2019), small weight

matrices are utilized during the algorithm to enhance its speed and

reduce memory consumption. However, when focusing on a single

architecture, this limitation is no longer applicable. Next, we test

various configurations of LR, its decay, dropout rates, and other

regularization techniques to identify the optimal setup.

Additionally, we explore fine-tuning this model to potentially

enhance its performance further.

After hyperparameter tuning, we combine the training and

validation sets and retrain the model. We also use the

corresponding versions of the unimodal models trained on the

merged sets. To enhance the model’s robustness to missing

modalities, we implement the multimodal dropout (MD)

technique proposed by Cheerla and Gevaert (2019). Inspired by a

regular dropout, MD involves dropping entire modalities during

training. In our case, this means replacing the pixel values of an

organ image with zeros. This encourages the model to build

representations robust to missing modalities. Each modality of a

sample is dropped with a similar probability. We utilize a low

dropout rate of 0.125 because many classes are completely devoid of

certain modalities. Given the challenge of validating this technique

during training, we train two versions of the final model: one with

MD and one without. Subsequently, we evaluate both.
2.5 Model evaluation

2.5.1 Establishing baseline
We establish the baseline for the proposed model as a late fusion

of all unimodal models. This serves as a straightforward approach to

fusion. This enables the demonstration that the performance

difference between the final model and the baseline is attributed

to the unique fusion configuration of the final model.

We implement the late fusion using the averaging strategy

(Baltrusaitis et al., 2019). In this approach, the final prediction for

an instance x is calculated according to Equation 6

ĉ = arg max   
c∈C

1
Mxj j om∈Mx

pm(cjx)
" #

, (6)

where C is a set of all class labels,Mx is a set of unimodal models

corresponding to modalities of x, and pm denotes the probability of c

predicted by a model m, given x. Note that in cases where an

instance x lacks a modality, the corresponding model is not

included in Mx.
TABLE 3 Image augmentations for unimodal models.

Models: Flower Leaf Fruit Stem

Contrast True False True False

Horizontal flip True True True True

Vertical flip False True False False
Contrast adjustment computes a mean µ for each image channel c and sets it for each pixel as
(c − µ) × k + µ, where k ∼ U(0.75,1.25).
TABLE 2 Hyperparameters of unimodal models.

Models: Flower Leaf Fruit Stem

Optimizer Adam Adam Adam Adam

Initial LR 10−3 5−4 5−4 10−3

LR decay rate 0.95 0.95 0.95 0.95

LR decay steps 200 200 200 200

Batch size 256 256 256 256

Epochs 1000 1000 1000 1000

ES patience 10 10 10 10

Classifier L1 10−5 0 0 0

Classifier L2 10−5 10−3 10−3 10−2

Classifier dropout 0.4 0.1 0.2 0.0

Intermediate neurons 1024 1024 512 1024

Intermediate layer L2 0 10−5 0 0

Fine-tuning:

Fine-tuning True True True False

Initial LR 10−4 10−4 8−5 —

ES from epoch 40 40 40 —

Fine-tuned layers All Up to
4th IRB

Up to
4th IRB

—

Retraining on combined training and validation sets:

ES False False False False

Epochs 160 140 120 110

Fine-tuning epochs 160 120 180 —
Hyperparameters remain unchanged during fine-tuning or retraining on combined datasets
unless specified otherwise.
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2.5.2 Comparison with the baseline
The evaluation of the proposed model relies on standard

performance metrics and comparison against the baseline to

determine if the automatic fusion setting of the model leads to

improvements. Subsequently, we apply McNemar’s test (Dietterich,

1998) to ascertain if there exists a statistically significant difference

between the two models.

To be more specific, in this study, we utilize accuracy, precision,

recall, and F1 score as performance metrics, as specified in

Equations 7–10:

Accuracy =
TP + TN

TP + TN + FP + FN
, (7)

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1 = 2� Precision� Recall
Precision + Recall

, (10)

where with respect to each class, TP (true positives) represents

the number of correctly identified instances, TN (true negatives)

denotes the number of correctly rejected instances, FP (false

positives) signifies the number of incorrectly identified instances,

and FN (false negatives) indicates the number of incorrectly

rejected instances.

For each class, we compute macro averages of each metric,

excluding accuracy. We omit micro averaging since it accumulates

all TP, TN, FP, and FN values before calculating the metric, resulting

in a value equivalent to accuracy. In contrast, macro averaging

calculates each metric for individual classes and then averages these

values across all classes. The difference between accuracy and

macro-averaged metrics provides insight into the performance

variation across classes. In conjunction with these metrics, top-5

and top-10 accuracies are also calculated.
2.5.3 Robustness to missing modalities
We collect the same metrics discussed in Section 2.5.2 for

individual unimodal models, to enable a comparison between

unimodal models and multimodal models. Moreover, we collect

the mentioned metrics for the proposed model and the baseline on

different subsets of modalities. This allows us to evaluate the

robustness of the proposed model in the absence of certain

modalities. To evaluate the statistical significance of the

differences between these metrics, we apply McNemar’s test.
3 Results

This section presents the findings from our comprehensive

evaluation of the proposed model. We have structured our results

to provide a clear and systematic presentation under various

conditions and compared them to an established baseline.
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3.1 Performance of unimodal models

After the training procedure, we evaluated the unimodal

models. Table 4 illustrates the resulting performance metrics.

According to Table 4: (i) It is evident that the fruit and flower

modalities exhibit higher scores across all metrics compared to

leaves and especially stems. This is in line with expectations,

considering that stems are the least discriminative organs (Nhan

et al., 2020). (ii) Accuracy demonstrates higher values compared to

macro metrics. This discrepancy should be attributed to differences

in performance among classes. The dataset’s imbalance has affected

the overall performance. (iii) Despite that, similar yet lower

precision and recall values suggest that models’ performance is

consistent on more common classes but poorer on less common.

(iv) Relatively high top-N accuracies indicate that the models are

typically close to identifying the correct class.
3.2 Finding final architecture

As a result of the search for an optimal fusion point, we sampled

and trained the 10 best configurations, which are presented in

Table 5. Figure 6 illustrates that all architectures achieved

approximately 47%–60% in validation F1macro scores. Notably, the

second-best architecture identified by the MFAS algorithm (ranked

2nd in Table 5) proved to be the most effective in this test, achieving

a validation F1macro of 60.35%. Consequently, we have selected this

architecture for further hyperparameter tuning.
3.3 Final model

To train the final model, we adjust various hyperparameters of

the second architecture from Table 5. This architecture is visualized

in Figure 7, and the full list of chosen hyperparameters is presented

in Table 6. Surprisingly, neither full randomization nor

augmentations led to improved performance during multimodal

model training. As a result, we continue using cached batches

shuffled in buffers of 12 for each epoch, as done during the MFAS

execution. Additionally, fine-tuning the model did not enhance

generalization and is therefore omitted.

With all the aforementioned adjustments, the model reached a

validation F1macro score of 68.62%. Figure 8 illustrates the increase
TABLE 4 Performance metrics for unimodal models.

Modalities: Flower Leaf Fruit Stem

Accuracy 0.6796 0.4294 0.4936 0.2698

Top-5 accuracy 0.8597 0.6508 0.7129 0.4622

Top-10 accuracy 0.9082 0.7293 0.7773 0.5652

Precisionmacro 0.5998 0.2304 0.3215 0.1298

Recallmacro 0.5794 0.2334 0.3444 0.1449

F1macro 0.5702 0.2181 0.3143 0.1247
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in F1macro for this configuration following hyperparameter tuning.

To prepare the model for evaluation, we merge the training and

validation sets and train two versions of the model—one with MD

and one without it.
3.4 Comparison with the baseline

We collect the performance metrics for both versions of the

proposed model and the baseline on the test set, which are displayed

in Table 7.

These results indicate that both versions of the proposed model

significantly outperform the baseline across all explored metrics,

suggesting that our automated fused model is substantially more

effective and reliable for plant classification on the given dataset

compared to a straightforward late fusion approach. The

improvement is particularly notable in the model without MD,
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achieving, for instance, +0.1459 in recall and +0.1371 in F1 score.

Conversely, a more modest improvement is observed in the model

with MD, with, for example, +0.0846 in recall and +0.08 in F1 score.

This suggests that, overall, the model without MD generalizes better

when evaluated over the entire test set, where modalities in

instances are missing only if they are entirely absent in their

corresponding classes across all splits. However, in real-world

scenarios, the available set of modalities may differ from those

represented in certain classes in our dataset. For this reason, we

assess the models on subsets of modalities in Section 3.5.

3.4.1 McNemar’s test results
We also conducted McNemar’s tests to compare the

performance of two model pairs: (i) the proposed model versus

the baseline, and (ii) the proposed model with MD versus the

baseline. The tests yielded statistics of c2
1 = 534.12 and c2

1 = 228.74,

both of which are statistically significant (p < 0.001). These results
TABLE 5 Best multimodal fusion configurations sampled by MFAS.

Nr. 1st fusion 2nd fusion 3rd fusion 4th fusion F1macro

1 ReLU(B1,A,A,O) s(B11,B1,B6,B6) s(B6,B6,B11,A) ReLU(I,I,I,B6) 0.4610

2 s(B11,B1,B11,O) ReLU(O,O,B6,A) ReLU(O,B11,B6,B11) ReLU(I,I,O,B1) 0.4561

3 ReLU(I,I,I,B11) — — — 0.4469

4 ReLU(B11,B6,O,B6) ReLU(O,B11,A,B1) s(B6,B6,B11,A) ReLU(I,I,I,B6) 0.4468

5 ReLU(B11,B6,O,B6) ReLU(O,B11,A,B1) s(B6,B11,B11,B11) ReLU(I,I,I,B6) 0.4468

6 ReLU(B11,B6,O,B6) s(B11,B1,B6,B6) s(B6,B6,B11,A) ReLU(I,I,I,B6) 0.4459

7 ReLU(B1,B1,O,B11) s(I,B11,B6,I) ReLU(B1,B1,I,B11) ReLU(I,I,A,B6) 0.4434

8 ReLU(B11,B6,O,B6) ReLU(A,A,O,A) s(B6,B6,B11,A) ReLU(I,I,I,B6) 0.4421

9 s(B11,B1,B11,O) ReLU(O,O,B6,A) ReLU(O,B11,B6,B11) ReLU(I,O,I,B6) 0.4418

10 ReLU(B6,B6,O,B11) s(I,B11,B6,I) ReLU(B1,B1,I,B11) ReLU(I,I,A,B6) 0.4387
ReLU and s denote activation functions of fusion layers, whereas their parameters denote layers fused from flower, leaf, fruit and stem unimodal models, respectively. A – first activation, I –
intermediate dense layer, O – output layer, BN – N-th inverted residual block.
The F1macrovalues were achieved by the models after 2 epochs during the search process.
FIGURE 6

Validation F1macro scores for MFAS sampled multimodal architectures across epochs.
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indicate a significant difference in performance metrics between

each version of our proposed model and the baseline.
3.5 Comparison on subsets of modalities

One can observe from Tables 4, 7 that both our proposed model

and late fusion significantly outperform each individual unimodal

model. However, these observations do not fully consider the fact
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that the unimodal models are evaluated on isolated unimodal

datasets, whereas the multimodal model is evaluated on a

multimodal dataset containing missing modalities and

duplications. To address this and in order to have a fair

comparison, we evaluate both our proposed models and the

unimodal models on isolated modalities from the multimodal

dataset. Furthermore, while cases where a single or all organs are

available represent two extremes, there exists a considerable

number of image combinations within the dataset where 2–3

modalities are available. Therefore, it is essential to evaluate the

performance of our proposed model and the baseline on all possible

subsets of 2–3 modalities. Finally, we assess our models in cases

where all modalities are available. Table 8 summarizes the results of

these evaluations.

It is important to note that the metrics in Table 8 account for

the absence of target modalities by excluding instances that miss

any of the required modalities.

The results indicate that the baseline significantly outperforms

our proposed model without MD in most cases. The proposed

model exhibits superior metrics only in 3 out of 4 scenarios

involving 3 modalities and when all modalities are available;

however, one of the cases with 3 modalities lacks statistical

significance, and another shows lower significance compared to

other comparisons. Notably, there are instances where our model

achieves a 0% F1 score, specifically in cases involving only fruits

and/or stems, while subsets that include leaves demonstrate higher

scores, and those incorporating flowers yield significantly better

results than any other subsets. The distribution of scores among the

unimodal models suggests a different trend, with the informal

notation F1flower > F1fruit > F1leaf > F1stem in unimodal models

versus F1flower > F1leaf > F1stem ≥ F1fruit in the proposed model,

implying that the proposed model may be sensitive to the imbalance

in modalities, leaning more toward learning from the more

common modalities. Consequently, to enhance performance on

subsets with less-represented modalities, techniques such as
FIGURE 7

The proposed multimodal model architecture.
TABLE 6 Hyperparameters of the proposed model.

Hyperparameter Value

Optimizer Adam

Initial LR 5−4

LR decay rate 0.9

LR decay steps 200

Batch size 256

Epochs 100

ES patience 10

Classifier dropout 0.4

Fusion dropouts [0.0, 0.0, 0.0, 0.4]

Fusion neurons [512, 512, 512, 512]

MD 0.0 or 0.125

Fine-tuning False

Retraining on combined training and validation sets:

ES False

Epochs 100
Hyperparameters remain unchanged during retraining on combined datasets unless
specified otherwise.
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augmenting the data with additional instances of underrepresented

modalities or applying weighted loss based on the modalities of a

predicted instance should be considered. Overall, the findings

suggest that the proposed model without MD is more effective

when the majority of modalities are available; however, since it

consistently trains with the maximum number of available

modalities, this approach ultimately leads to reduced robustness

when modalities are missing. The model never observes instances

with missing modalities, and therefore, cannot generalize well to

such cases.

Conversely, the proposed model with MD significantly

outperforms the baseline in the majority of cases, indicating the

effectiveness of the MD technique in enhancing robustness to

missing modalities. Surprisingly, its performance with a single

flower modality is very similar to that of the baseline and even

better with the leaf modality, despite the baselines, in this case,

being standalone unimodal models specifically designed for

individual modalities. This observation highlights the model’s

ability to resist noise from idle modality-specific parts. Notably,

this version of our model surpasses the one without MD in all cases

except for the scenario where all modalities are available. This

suggests that the robustness to missing modalities afforded by MD

comes at a slight cost to performance across all modalities.
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Similarly, to a regular dropout, MD appears to prevent complex

co-adaptations (Hinton et al., 2012) to all available modalities, thus

improving generalization to missing modalities. However, the

model without MD consistently trains on all available modalities

simultaneously, which facilitates the learning of interconnections

between them. The model with MD rarely encounters the full set of

modalities during training, resulting in reduced performance due to

less-learned correlations between modalities.

Overall, our approach outperforms the late fusion of unimodal

models. However, if robustness to missing modalities is crucial, it is

essential to employMD or similar techniques. Conversely, to maximize

performance when the full set of available modalities is present, the

model should consistently train with all the available modalities visible.
4 Discussion

4.1 Accuracy

Our proposed multimodal DL model, which utilizes plant organ

images fused through the MFAS algorithm, demonstrates high

effectiveness in automating plant classification, achieving an

accuracy of 82.61% and significantly surpassing the defined

baseline. Table 9 indicates that our model achieves the highest

accuracy among similar research.

To be more specific, for example, Ghazi et al. (2017) employed

all organs from the PlantCLEF2015 dataset. Along with advanced

scoring methods, they achieved an accuracy of 80.18%. Similarly, de

Lutio et al. (2021) sampled a large dataset comprising 56608 high-

quality images of 977 species from the iNaturalist database.

Utilizing images and spatio-temporal context, their multimodal

model achieved accuracies of 79.12% without satellite imagery

and 79.73% with it. Furthermore, Lee et al. (2018), also using the

PlantCLEF2015 dataset, achieved an accuracy of 68.5%. Ge et al.

(2016) and Nguyen et al. (2016) extracted flower species from the

PlantCLEF2015 dataset and achieved an accuracy of 52.1% and
FIGURE 8

Validation F1macro across epochs before and after the proposed model hyperparameter tuning.
TABLE 7 Performance metrics for the proposed model and baseline.

Metric Proposed
model

Proposed model
with MD

Baseline

Accuracy 0.8261 0.7856 0.7228

Top-5 accuracy 0.9546 0.9219 0.8982

Top-10 accuracy 0.9754 0.9528 0.9420

Precisionmacro 0.7838 0.7397 0.6652

Recallmacro 0.7743 0.7130 0.6284

F1macro 0.7595 0.7024 0.6224
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67.45% respectively. These results are significantly lower than ours,

underscoring the effectiveness of our approach.

Extending the related work, we might observe some other

multimodal studies achieving better results; however, this is often

due to less complex experimental setups. For instance, Zhang et al.

(2012) achieved an accuracy of 93.23%, but on a dataset comprising

very small images. Similarly, Liu et al. (2016) achieved top-1, top-5

and top-10 accuracies of 71.8%, 91.2% and 96.4% without

geographical data, and 50%, 100% and 100% with it, respectively.

However, their dataset included only 50 species, each with 10 leaf and

10 flower images, collected in controlled conditions. Likewise, Salve

et al. (2018) demonstrated a high GAR score, but their dataset

consisted of only 60 species with 10 images each, all collected in

laboratory conditions. Furthermore, Nhan et al. (2020) achieved a

maximum 98.8% accuracy by utilizing all PlantCLEF2015 organs and

91.4–98.0% depending on model configurations, on only flowers,
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leaves, fruits, and stems, but they sampled only 50 species from the

dataset, each containing all organs, thus not experiencing missing

modalities as we did. Seeland andMäder (2021) achieved a maximum

accuracy of 94.25% on the PlantCLEF2015 dataset; however, their

results were based on a very small selection of images and classes.

In addition to these comparisons, our proposed method

demonstrates robustness to missing modalities, as evidenced by

its comparison with the baseline.
4.2 Computational cost

While our approach involves much one-time computational

cost during training to identify an optimal architecture, the

resulting model is highly efficient during inference. With only 10

million parameters, our model is lightweight and easily deployable
TABLE 8 Comparison of F1macro for the proposed and baseline models on subsets of modalities.

Modalities # of Predictions Proposed Model Proposed Model with MD Baseline

Flower 8097 0.3315** 0.5512** 0.5663

Leaf 6714 0.0535** 0.2133* 0.2012

Fruit 4614 0.0000** 0.1259** 0.2894

Stem 3531 0.0000** 0.0374** 0.1203

Flower, Leaf 6325 0.5120** 0.6285** 0.5159

Flower, Fruit 4357 0.2987** 0.5332 0.4574

Flower, Stem 3229 0.3384** 0.5684** 0.3655

Leaf, Fruit 4130 0.0604** 0.3665 0.3512

Leaf, Stem 3420 0.0674** 0.3588** 0.2686

Fruit, Stem 2675 0.0000** 0.2933** 0.3370

Flower, Fruit, Leaf 3887 0.5814 0.6004** 0.4787

Flower, Stem, Leaf 3129 0.5641* 0.6534** 0.4248

Flower, Fruit, Stem 2450 0.4540** 0.6114** 0.4197

Leaf, Fruit, Stem 2611 0.1289** 0.4921** 0.4092

Flower, Leaf, Fruit, Stem 2397 0.7197** 0.6768** 0.4665
* and ** denote statistical significance, with p < 0.05 and p < 0.001, respectively, as determined by McNemar’s test when compared to the baseline.
TABLE 9 Comparison with similar studies.

Study Dataset Classes Modalities Method Accuracy

Proposed method Multimodal-PlantCLEF 979
Flower, leaf, fruit, stem MFAS using

MobileNetV3Small
82.61%

de Lutio et al. (2021) iNaturalist 977 Plant images, metadata, satellite imagery ResNet 79.73%

Lee et al. (2018) PlantCLEF2015 1000 Plant organ
HGO-CNN +
Plant-StructNet

68.5%

Ghazi et al. (2017) PlantCLEF2015 1000 Plant organ
GoogleNet +
VGG

80.18%

Nguyen et al. (2016) Modified PlantCLEF2015 967 Flower GoogleNet 67.45%

Ge et al. (2016) Modified PlantCLEF2015 967 Flower MixDCNN 52.1%
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to mobile devices. This parameter count could be further reduced

by employing fewer fusion layers if needed.

In comparison, de Lutio et al. (2021) utilize ResNet-50 with 25

million parameters, Lee et al. (2018) design a custom architecture

exceeding 50 million parameters, and Ghazi et al. (2017) employ VGG

andGoogleNet, which contain 138million and 6.8million parameters,

respectively. Contrarily, our model is significantly smaller, more

efficient, and more suitable for deployment on energy-constrained

devices. The reduced parameter count not only lowers memory and

storage requirements but also enables faster inference and reduced

power consumption, which are critical for edge computing

environments such as smartphones. This underscores the

importance of multimodality and an optimal fusion strategy.
4.3 Search efficiency

TheMFAS algorithm incorporates several optimizations—including

surrogate modeling, weight sharing, reduced model complexity, and

limiting training to a small number of epochs per configuration—that

enable efficient exploration of a large number of architectures. The

primary bottleneck in the original procedure occurs during the first

iteration, where all generated configurations must be trained to provide

data for the surrogate model. To address this, we divided the initial

architectures into 20 batches and trained them in parallel.

This approach allowed the algorithm to evaluate up to 2592 + 50 ×

19 = 3542 unique architectures within a time frame roughly equivalent

to training a single multimodal model for ((2592 / 20)+50 × 19) × 2 =

2159.2 epochs. Even if the first iteration were performed sequentially,

the process would involve 7084 epochs—a feasible one-time

computational cost for identifying an optimal architecture.

Moreover, these requirements could be further reduced by

decreasing the number of layers considered for fusion, the number

of iterations performed or the number of architectures explored.

In comparison, manual search for an optimal configuration

would require investigating a search space of size 4.51 × 1013,

making the MFAS algorithm not only efficient but also practical for

large-scale multimodal learning tasks.

In this study, we employed MFAS as it is a well-established

multimodal NAS algorithm that satisfied our efficiency

requirements when compared to alternative methods [e.g., (Xu

et al., 2021)]. By being the first to apply such methods to plant

classification, we establish a benchmark for future research in this

area. Future studies in plant classification can investigate other

multimodal NAS approaches to further enhance training efficiency.
4.4 Limitations

In this study, we modify the PlantCLEF2015 dataset, which is a

common practice in the literature (Seeland and Mäder, 2021; Nhan

et al., 2020; Nguyen et al., 2016; Ge et al., 2016). This modification

was necessary due to the lack of multimodal datasets and the

inherent limitations of the original PlantCLEF2015 dataset, which

is unsuitable for tasks requiring fixed inputs of specific plant organs.
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To address this gap and promote comparability and reproducibility

in future research, we contribute a preprocessing pipeline that

transforms PlantCLEF2015 into Multimodal-PlantCLEF.
5 Conclusions

This study has addressed a critical task in agriculture and ecology:

plant classification. By proposing a novel approach in this domain—a

multimodal DL model utilizing four plant organs automatically fused

via the MFAS algorithm, the study has demonstrated high

performance, outperforming other state-of-the-art models despite

the smaller size of the model. This underscores the effectiveness of

multimodality and an optimal fusion strategy. Moreover, with the

MD technique, the model exhibits robustness to missing modalities,

even when only a single modality is available. Additionally, we

contributed Multimodal-PlantCLEF, a restructured version of the

PlantCLEF2015 dataset tailored for multimodal tasks, to support

further research in this area. We believe that this proposed approach

opens up a promising direction in plant classification research. This

highlights the need for further exploration through the development

of more sophisticated algorithms capable of handling larger numbers

of species, thereby unlocking the full potential of this approach.

Future research could also consider incorporating a multimodal

fusion of vision transformers instead of CNNs for plant classification.
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