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ALD-YOLO: a lightweight
attention detection model
for apple leaf diseases
Hong Deng, Yiyi Chen and Yilu Xu*

School of Software, Jiangxi Agricultural University, Nanchang, China
As an important economic crop, apples are significantly affected by disease

infestations, which can lead to substantial reductions in apple yield and

economic losses. To rapidly and accurately detect apple leaf diseases, we

propose a lightweight attention detection model ALD-YOLO based on the

YOLOv8 architecture. To improve overall efficiency, we design the Faster_C2F

module within the Backbone and Neck by optimizing YOLOv8’s primary C2F

(Faster Implementation of CSP Bottleneck with 2 convolutions) modules with the

more computationally effective FasterNet Block. To strengthen the model’s

ability to capture multi-scale feature information and focus on smaller disease

targets, the EMA (Efficient Multi-Scale Attention) module is introduced at the

input end where the Neck connects to the detection module of the Head,

forming a new Faster_C2F_EMA module. Two novel C2F modules can achieve

the optimal balance of detection accuracy and efficiency. Furthermore, to

reduce the model’s parameters and retain more image information, most

convolution modules in the YOLOv8 architecture are replaced by a lightweight

downsampling module ADown. In comparison with YOLOv8n and YOLOv8s,

experimental results on the AppleLeaf9 dataset showed that ALD-YOLO

increased mAP by 1.4% and 0.6%, and reduced GFLOPs by 29.63% and 79.93%,

respectively. The CPU inference testing showed that the improvement of our

model in frames per second reached up to 119.23% compared to YOLOv8s.

Therefore, our model delivers more stable and efficient detection of apple leaf

diseases, even on edge devices.
KEYWORDS

apple leaf diseases, C2F, attention mechanism, YOLO, object detection
1 Introduction

Globally, apples are one of crucial economic crops with extensive cultivation and

enormous market demand. At present, China leads the world in apple cultivation area and

production, making apples one of its most important economic crops and fruits. However,

as the apple industry rapidly grows and expands, leaf diseases have become a significant

factor affecting apple yield and quality. Diseases, such as apple scab, gray spot, apple leaf

rust, and powdery mildew, often occur during apple cultivation due to climate or
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environmental conditions, severely impacting the yield and quality

of apples. Consequently, there is a significant demand for accurate

methods to identify apple leaf diseases.

Currently, most identification relies on in-field assessments by

agricultural experts or experienced farmers’ judgments, which are

subjective, time-consuming, labor-intensive, and inefficient. In

particular, inexperienced farmers are prone to misdiagnosis and

the misuse of pesticides, which not only fail to effectively prevent

diseases but also reduce the quality and yield of apples, leading to

environmental pollution and unnecessary economic losses. Thus,

rapid and accurate identification of apple leaf diseases is of

paramount importance.

Since the emergence of the deep convolutional network AlexNet

(Krizhevsky et al., 2017), deep learning has made an unprecedented

breakthrough in the field of computer vision. Deep learning has

been widely applied to the identification of plant diseases owing to

its ability to automatically extract image features and its robust

performance. Based on AlexNet and GoogLeNet (Liu et al., 2018),

proposed a deep neural network model which employed

convolutional neural networks to diagnose various leaf diseases.

Their experimental results indicated that the proposed CNN-based

model attained an accuracy of 97.62% on the test set, which was

superior to the traditional methods. Zhong and Zhao (2020)

developed a model based on the DenseNet-121 deep

convolutional network, which integrated regression, multi-label

classification, and focal loss functions to identify apple leaf

diseases. This approach identified six types of apple leaf diseases

and achieved better results compared to traditional multi-

classification methods based on the cross-entropy loss function.

In the realm of accurately localizing apple leaf diseases,

mainstream deep learning-based object detection methods are

primarily categorized into Two-Stage and One-Stage approaches.

Two-Stage methods, such as the R-CNN series (Girshick et al.,

2014; Girshick, 2015; Ren et al., 2016), involve two separate network

models: one for generating region proposals and another for

classifying these regions. This category typically offers high

accuracy but low efficiency for large objects and complex scenes.

(Bari et al., 2021) developed a Faster R-CNN model for real-time

diagnosis of rice leaf diseases, achieving high accuracies: 98.09% for

rice blast, 98.85% for brown spot, 99.17% for hispa, and 99.25% for

healthy leaves. This model improves traditional methods by

providing precise and efficient disease diagnosis. (Wang et al.,

2023) proposed a leaf detection method using an improved Faster

R-CNN with a CBAM (Convolutional Block Attention Module)

(Woo et al., 2018) and DIoU-NMS (Non-maximum suppression).

This method achieved an average precision of 95.7%,

outperforming Faster R-CNN and YOLOv5 by 2.9% and 7.0%,

respectively. Despite the improvement in accuracy, the slow

computational speed remains a challenge for real-time detection

on the resource-constrained devices, such as the mobile equipment.

One-Stage methods, exemplified by the YOLO (You Only Look

Once) series (Redmon, 2016; Redmon and Farhadi, 2017; Farhadi and

Redmon, 2018; Bochkovskiy et al., 2020), perform object localization

and classification in a single pass with faster speed. However, YOLO

algorithms may exhibit higher false detection rates for small objects.
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To address this problem, Wang et al. (2022) designed the MGA-

YOLO network for apple leaf disease, which integrated Ghost

modules and the CBAM into YOLO to reduce model size and

enhance feature extraction, while also adding an extra prediction

layer for large objects. The model outperformed similar methods in

accuracy, model size, and speed. However, MGA-YOLO was limited

to the whole-leaf recognition, which may result in diagnostic

inaccuracies when multiple diseases occur simultaneously on a

single leaf. Kumar et al. (2023) utilized an improved YOLOv5 to

identify rice leaf diseases by introducing a bidirectional feature

pyramid (BI-FAPN) for feature extraction and enhancing detection

across different disease scales. Xue et al. (2023) proposed YOLO-Tea

which replaced the spatial pyramid pooling fast (SPPF) module in

YOLOv5 with the receptive field block (RFB) module, and

incorporated self-attention and convolutional block attention

modules. This method yielded a 7.6% improvement in the AP@0.5

metric over the original YOLOv5. de Moraes et al. (2023) developed

the Yolo-Papaya model by incorporating the Convolutional Block

Attention Module into YOLOv7, achieving an mAP of 86.2% across

nine categories of papaya fruit diseases. The model maintains a stable

number of parameters and inference time compared to other

detectors, setting a bench-mark for future research in this area.

Ganesan and Chinnappan (2022) proposed a ResNet-YOLO

classifier for rice leaf disease detection, which replaced ResNet’s

fully connected layer with YOLO. Using preprocessing, adaptive K-

means, and FS-SSO techniques, this model showed a 2.08% to 5.3%

accuracy improvement over CNN, ResNet, YOLO, and its benchmark

model Res-YOLO. However, it required additional image

preprocessing and more computational resources and longer

training time.

The above literature indicates that deep learning has achieved

high accuracy in plant disease detection. However, it is still

challenging for deep learning to reduce model parameters,

training time, and the need for computational resources and data

samples. Ensuring stable inference speed on resource-limited

devices and addressing overfitting in case of sample scarcity are

also crucial challenges (Turkoglu et al., 2022; Hosny et al., 2023). Li

et al. (2024) developed an improved YOLOv8s-based lightweight

method for corn leaf disease recognition. However, this method fails

to adequately account for the computational interference caused by

complex backgrounds in natural scenes, which may comprise

recognition performance.

Inspired by these studies, we propose a novel lightweight model

based on YOLOv8 for apple leaf disease detection. Our model not

only accurately detects small lesions on leaves in natural

environments but also ensures practical inference speed on

resource-constrained devices by reducing computational complexity.
2 Materials and methods

2.1 YOLOv8 model

YOLOv8 is a groundbreaking state-of-the-art (SOTA) model

that has gained a stellar reputation in the field of object detection.
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YOLOv8 is available in five versions network depths and parameter

counts: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and

YOLOv8x. Considering accuracy, computational speed, and

deployment cost, we have chosen YOLOv8s as the baseline model

for this study. Based on the advantages of previous YOLO models,

YOLOv8 introduces new optimizations aiming at enhancing overall

model performance and demonstrating exceptional adaptability to

various environmental complexities. YOLOv8 significantly differs

from its predecessor, YOLOv5, in the following aspects. Firstly, the

C3 (CSP Bottleneck with 3 convolutions) module has been replaced

with the C2F module. The C2F module offers a more efficient

design by reducing the number of parameters and improving

computational efficiency while maintaining strong feature

extraction capabilities. Secondly, to avoid the intensive

convolution operations during the up-sampling process, the

detection head has been restructured using a decoupled

architecture, further improving computational efficiency.

Additionally, YOLOv8 adopts a flexible anchor-free strategy,

which exhibits more stable performance in various object

detection tasks compared to the traditional anchor-based

approaches. This strategy is particularly important in scenarios

that require high detection precision, such as pedestrian and

vehicle detection.

As illustrated in Figure 1, the YOLOv8 architecture comprises

three components: Backbone, Neck, and Head. The Backbone

employs a series of convolutional operations, residual connections,
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and bottleneck structures to reduce network size and improve

performance by extracting raw feature information from input

images. The extracted feature information is then passed to the

Neck, which further optimizes and refines the features by fusing

feature maps from different stages of the Backbone, enhancing feature

representation. Finally, the Head processes the feature outputs from

the Neck to generate the detailed location and type of detected

objects. In our study, we focus on improving the YOLOv8

architecture, particularly its C2F module, to achieve an optimal

balance between detection accuracy and computational efficiency.
2.2 ALD-YOLO model

The structure of the proposed ALD-YOLO model is shown

in Figure 2.

First, we replaced the C2F modules in the Backbone and Neck

sections with Faster_C2F, thereby reducing the number of

parameters and speeding up computation. This modification is

inspired by the FasterNet (Chen et al., 2023) design, which enhances

efficient image processing speed by reducing network depth

and complexity.

Secondly, we constructed a new Faster_C2F_EMAmodule in the

Neck section by introducing the Efficient Multi-Scale Attention

(EMA) (Ouyang et al., 2023) module. By effectively focusing on

feature maps with various scales, the EMA module can significantly
FIGURE 1

The architecture of YOLOv8 model.
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expand the model’s receptive field. This advantage allows the model

to better recognize and process objects with different sizes, which is

crucial for object detection tasks. Thus, we incorporated this attention

mechanism into the input layers of the Detect components.

Finally, to further optimize the network’s performance, we

replaced the convolutional layers in the original YOLOv8 network

structure with the ADown module (Wang et al., 2024). The ADown

module can not only improve detection accuracy but also

significantly reduce computational load. By employing feature

map concatenation, the ADown module enhances feature

extraction and fusion, providing greater stability when handling

complex image tasks. However, considering the large size of the

input image, a simple Conv operation provides a more suitable

lightweight solution. Therefore, we retained the Conv operations in

the first two layers of the Backbone to ensure the initial construction

and downscaling of feature maps.

More details can be seen in the following sections.
2.3 Faster_C2F module

In the original YOLOv8, the C2F module is a key component

that not only facilitates efficient feature extraction but also

significantly enhances the model’s detection capabilities through

multi-level feature enhancement and fusion strategies. However,

despite its excellent performance in feature processing, we identified

some limitations, such as the potential redundancy in channel

information due to the repetitive stacking of Bottleneck modules.

Additionally, the original YOLOv8 tends to miss small objects in
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complex scenes, such as those with dense objects or

partial occlusions.

To balance the speed and accuracy, we replaced the Bottleneck

module in C2F module with the core component of FasterNet,

known as the FasterNet block. In practical model deployment, we

must consider the computational performance of the terminal

device. If the model is too complex and computationally

demanding, it may not maintain a stable and efficient processing

speed. FasterNet is a lightweight neural network model designed

specifically for efficient object detection tasks. Partial Convolution

(PConv) is a key component of the FasterNet block, which is an

efficient method for spatial feature extraction that can significantly

reduce redundant computation and memory access.

As shown in Figure 3, FasterNet consists of an embedding layer,

multiple stages with FasterNet blocks, andmerging layers, etc. First, the

Embedding layer divides the input image into multiple patches. Then,

each stage contains a series of FasterNet blocks. And each merging

layer is used to reduce spatial dimensions and increase channel depth.

The architecture of FasterNet Block is shown in Figure 4. Initially,

the input data is fed into a PConv unit where convolutions are

applied to only one-fourth of the input feature map’s channels.

Subsequently, a 1 × 1 convolution is executed, followed by Batch

Normalization and a ReLU activation function. Another 1 × 1

convolution is then performed to make the input and output have

the same number of channels. This processing ensures the continuity

of information and the integration of multi-scale features, which may

improve the model’s performance in complex environments.

With the deepening of convolutional neural network architecture,

each successive layer progressively extracts and fuses image features,
FIGURE 2

The structure of ALD-YOLO model.
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resulting in deeper feature maps with a substantial amount of highly

correlated feature representations. These highly similar features can

lead to redundant computations. Additionally, frequent memory access

increases latency and consumes more memory bandwidth.

To address these issues, PConv skips convolution operations on

certain channels and directly utilizes the redundant information in

the feature maps. This strategy can not only reduce the model’s

computational demand, which will be suitable for edge devices with

constrained computational resources, but also enable the model to

capture a broader spectrum of features.

In Figure 5, PConv divides the input feature map into two

segments. One-quarter of the channels are used to refine local

features by a 3 × 3 convolution layer, while the remaining three-

quarters of the channels preserve the raw feature representations to

retain global contextual information without undergoing

convolutional processing. Consequently, the processed and

unprocessed channels are concatenated altogether.

As shown in Figure 5, the input and output channels are the

same, where h represents the height, w represents the width, and cp
represents the number of one-quarter of channels. The convolution

kernel size is k × k. Thus, the Floating Point operations (FLOPs) for

the PConv operation are calculated as h� w � k2 � c2p .
Frontiers in Plant Science 05
With a typical partial ratio r = 1
4, it signifies that the number of

channels involved in computation for PConv is only one-quarter of

the total number of channels. Therefore, the FLOPs of PConv are

notably reduced to 1/16 of those for standard convolution

calculations. Likewise, PConv also requires fewer memory accesses

as h� w � 2cp + k2 � c2p. When the dimension of input significantly

exceeds the number of convolution kernel parameters, the memory

access of PConv becomes approximately 1/4 of standard convolution.

In Figure 6, we replace the Bottleneck block with the efficient

FasterNet Block to construct the optimal C2F module, namely

Faster_C2F. In our new C2F module, after an initial convolution,

the input feature map is converted into the intermediate feature

map, which is then divided into two parts: one part is passed

directly to the subsequent Concat module, while the other part is

processed through multiple FasterNet Blocks. The final feature map

produced by the FasterNet Blocks is then concatenated with the

unprocessed feature map in the Concat module. The concatenated

feature map is subsequently passed through a final convolution for

further processing, resulting in the final output feature map.

The Faster_C2F structure reduces the overall parameter count

and improves computational efficiency compared to the previous

design due to the use of FasterNet Block. Consequently, all C2F
FIGURE 4

The FasterNet block architecture.
FIGURE 3

FasterNet structure.
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modules of the network architecture are replaced with the proposed

Faster_C2F module, except for the input layers of the Head.
2.4 Faster_C2F_EMA module

To enhance the representation ability of the model and address the

issue of feature loss in small-scale objects, we introduced an attention

mechanism into the Neck part of the model, thereby constructing a

new C2F module. The EMA module is a novel attention mechanism

specifically designed for computer vision tasks such as object detection

and image classification. The core idea of this module is to establish

both short and long-range dependencies through multi-scale parallel

sub-networks. In Figure 7, the EMA module divides the input feature

map X ∈ RC�H�W into G sub feature maps, where C denotes the

number of channels, H and W represent the height and width,

respectively, and G means the number of sub feature maps. Then,
Frontiers in Plant Science 06
each sub-feature map Xi ∈ RC=G�H�W is fed into a triple-branch

network in which two 1 × 1 convolutional kernels and a 3×3

convolutional kernel are operated in parallel.

In the 1 × 1 convolutional branch, global average pooling is first

appliedtoencodethechannelinformationoftheinputfeaturemapacross

two spatial dimensions (height and width), followed by a shared 1x1

convolution and a Sigmoid function for the first spatial attentionmap.

In the 3 × 3 convolutional branch, global average pooling is used

after the convolution operation to encode the global spatial

information of the entire feature map and convert it to match the

size of the channel features. The processed feature map is then

combined. with the one generated by the 1 × 1 convolutional branch

to produce the second spatial attention map.

Finally, the two attention maps from the two branches are

summed and then element-wise multiplied with the original feature

map, allowing the model to capture pixel-level pairwise

relationships and emphasize the global context of all pixels.
FIGURE 6

The Faster_C2F structure.
FIGURE 5

Partial convolution.
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Overall, by integrating information across different spatial

dimensions, EMA facilitates feature interactions over larger

spatial ranges while retaining positional information. It enhances

model performance while maintaining low computational

overhead, offering higher efficiency compared to other attention

mechanisms. This makes EMA particularly suitable for deployment

on resource-constrained devices.

As illustrated in Figure 8, we integrate the EMA mechanism

into the FasterNet Block to construct a new FasterNet-EMA block.

By incorporating the EMA module, we achieve cross-spatial

information aggregation and establish long- and short-term

dependencies. This enables the acquisition of multi-scale

representations and enhances the extraction capabilities for

smaller objects.

In Figure 9, based on Faster_C2F mentioned above, the new

Faster_C2F_EMA module is constructed by substituting the

FasterNet Block with the FasterNet-EMA Block. In comparison to

the original Faster_C2F, the incorporation of the EMA attention

mechanism facilitates the extraction of more comprehensive feature

information. However, considering that excessively incorporating
Frontiers in Plant Science 07
EMA attention may not necessarily lead to further improvements in

accuracy and could instead affect computational efficiency, we only

replaced the original C2F module with the Faster_C2F_EMA block

at the input end connecting the Neck and Head.
2.5 ADown module

Downsampling is a crucial technique in deep learning models that

reduces the spatial dimensions of feature maps, enabling networks to

extract image features at more abstract levels while alleviating

computational burdens. Thus, as shown in Figures 1 and 2, the most

Conv modules in our network are replaced by a special ADown

module used for downsampling operations. In Figure 10, ADown

employs a dual-path architecture aimed at optimizing the information

extraction process through differential processing.

The input feature map is split along the channel dimension into

two parts, each of which undergoes distinct convolutional operations.

The first part focuses on local information extraction. To

achieve this, it processes the input feature map using a 3 × 3
FIGURE 8

FasterNet-EMA block.
FIGURE 7

The structure of efficient Multi-Scale attention.
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convolution operation with a stride of two. This design ensures

attention to local structures and details. It can effectively retain and

capture local features even when reducing spatial resolution.

Consequently, this part emphasizes the retention of detailed

information during downsampling, while extracting rich

local features.

The second part emphasizes the maintenance of global features.

Initially, a 3 × 3 max pooling operation is applied, followed by a 1 ×

1 convolution operation with a stride of 1. Keeping the stride at 1

preserves the original spatial resolution, mitigating potential loss of

important image information during downsampling and ensuring

the preservation of global features throughout the process.

Finally, the results of these two convolutional operations are

concatenated along the channel dimension. This concatenation

combines features from different branches, resulting in a final feature

map that retains fine-grained local features during downsampling.
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Compared to the original YOLOv8 convolution module, this

design strategy not only enhances the model’s representational

capacity but also optimizes the utilization of computational

resources, leading to a balance between detection accuracy and

computational efficiency.
2.6 Apple leaf dataset

To validate our method, we selected AppleLeaf9 (Yang et al.,

2022) as our benchmark dataset. You can download it from the

following link (https://github.com/JasonYangCode/AppleLeaf9). It

consists of four different datasets, covering eight types of typical

apple leaf diseases. Notably, 94% of the images collected in

outdoor environments.

As shown in Figure 11, four typical diseases (Rust, Grey spot,

Brown spot, and Alternaria leaf spot) are selected from the dataset,

since their pathological features are smaller in size than those of

other diseases. Therefore, it is suitable to use them to validate our

model. A total of 1146 images were randomly selected from the

dataset, and were then allocated to the training, testing, and

validation sets in the ratio of 8:1:1. The diseased regions on the

leaves were annotated using LabelImg. All visible target object

instances within the scene were labeled, with dual verification for

data annotation.
3 Results

3.1 Experimental setup

The experiments were conducted on the following

operating platform:
i. Hardware: NVIDIA GeForce RTX 4070 12GB GPU, RAM

32 GB;

ii. Software: Windows 11, Python version 3.8, CUDA 11.8,

PyTorch version 2.0.1, and Ultralytics YOLOv8

version 8.0.184.
During training, we utilized the default Mosaic data

augmentation, which randomly selects four original images, scales

each by a random ratio, and combines them to generate a new

composite image. The experimental setup was configured with 100

epochs and a batch size of 32. The initial learning rate (lr0) was set as

0.01, and the weight decay was 0.0005. We employed the Stochastic
FIGURE 10

The Adown structure.
FIGURE 9

Faster_C2F_EMA.
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Gradient Descent (SGD) optimizer and enabled AutomaticallyMixed

Precision (AMP), which contributes to improved training speed and

accuracy. Specific parameters are given in Table 1.
3.2 Experimental analysis

To validate the effectiveness of the proposed model, we trained

the dataset on similar YOLO models with consistent

hyperparameters. The comparative models included YOLOv6,

YOLOv7, YOLOv8, YOLOv9, and the latest YOLOv10. We

evaluated the models using the following metrics: Precision (P),

Recall (R), mean Average Precision (mAP), Giga Floating Point

Operations per second (GFLOPs), and model weights. These

evaluation metrics are defined as follows (Equations 1–4):

  Precision   = TP
TP+FP (1)
A B

DC

FIGURE 11

Four types of apple leaf diseases. ((A) Alternaria leaf spot. Lesions appear ochre to dark brown, developing ovoid or elliptical shapes with defined
margins. (B) Brown spot. Initial symptoms manifest as minute purplish-brown to deep brown blisters on leaf surfaces. They become progressively
yellow with disease advancement. (C) Grey spot. Fungal lesions are characterized by gray or grayish-brown centers with distinct dark brown edges.
(D) Rust. The characteristic spots have yellow-brown centers with pale yellow chlorotic halos. Corresponding raised pustules form on the surface of
the dorsal lobe.).
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TABLE 1 Training parameters.

Parameter Value

Epochs 100

Batch 32

Image_size 640

Optimizer SGD

Amp true

lr0 0.01

lrf 0.01

momentum 0.937

nbs 64

weight_decay 0.0005
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 Recall   = TP
TP+FN (2)

AP =
Z 1

0
P(R)dR (3)

mAP = oK
i=1

APi
K

(4)

where TP (True Positive) means the number of correctly

classified positive samples, FP (False Positive) means the number

of misclassified negative samples, and FN (False Negative) refers to

the number of incorrectly classified positive samples. K denotes the

number of classes. APi represents the AP value for the i-th class.

In Table 2, our model shows the superior performance over

other comparable models in various metrics except for the slightly

lower Precision. Specifically, in terms of the mAP metric, our model

shows improvements of 1.4% and 0.6% over the YOLOv8n and

YOLOv8s, respectively. For the Recall metric, our model surpasses

YOLOv8n and YOLOv8s by 2% and 0.7%, respectively. Especially,

compared to the latest YOLOv9 and YOLOv10, our model takes an

obvious advantage. In addition, we attempted to replace the original

backbone network of YOLOv8 with some lightweight network

models, such as MobileNetV3 (Howard et al., 2019) and StarNet

(Ma et al., 2024).

More critically, our model achieves high accuracy without

losing computational efficiency or model size. With a

computational complexity of 5.7 GFLOPs and a model size of

3.953 M, our model is more efficient than its counterparts. Such

lower computational complexity and smaller model size indicate

that our model is more practical for resource-constrained devices.

As shown in Table 2, our model demonstrated highest mAP@

0.5 score on average. In Table 3, we further present the mAP@0.5

values for different disease categories. For Alternaria leaf spot

detection, our model achieved better mAP@0.5 value than other

models. Notably, during different stages of disease development,

some leaf diseases, such as Alternaria Leaf Spot and Grey Spot,

present similar symptoms. However, our model can effectively
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distinguish between these diseases, minimizing diagnostic errors

and providing farmers with more reliable decision-making support.

Figure 12 shows the mAP metrics of different models after

different training epochs. In the early stages of training, YOLOv8s

has an initial advantage. However, as the number of epochs

increases, our model gradually catches up and eventually

surpasses it. As illustrated in Table 2 and Figure 12, after training

100 epochs, our model slightly outperforms YOLOv8s in terms of

mAP metric at the cost of lower GFLOPs and weight, indicating the

efficiency and robustness of our model.
3.3 Comparison of heatmaps with
YOLOv8s

In Figures 13-15, we compare our model with the baseline

model YOLOv8s through heatmap analysis. Our heatmaps were

generated using the HiResCAM method, with the synthesis from

multiple layers of the model. It is worth noting that the brown spot

disease is not included because its characteristics are obvious, and

all the comparative models can recognize it well. we observed that

the YOLOv8s model was prone to false detection and

misclassification when dealing with small target diseases. As

shown in Figures 13 and 14, the heatmaps revealed that

YOLOv8s sometimes failed to allocate sufficient attention for

some small or obscured disease areas. The possible explanation

was that the model gave more attention to larger targets during

training but lacked adequate learning for smaller targets due to their

less prominent features, low contrast, or occlusion.

Furthermore, YOLOv8s occasionally misclassified non-diseased

regions as diseased ones, indicating its weak ability to distinguish

features. In contrast, our proposed ALD-YOLO model can address

these challenges better.

In Table 3, YOLOv8s achieves the highest mAP for rust

detection among the comparative models. Nevertheless, in certain

scenarios, as shown in Figure 16, the YOLOv8 model has difficulties

in detecting small targets and handling overlapping bounding
TABLE 2 Performance comparison with other models.

Model Precision Recall mAP@0.5 GFLOPs Weights(M)

YOLOv6n 87.8% 81.9% 88.9% 11.4 10.214

YOLOv6s 87.1% 82.2% 87.8% 45.17 39.697

YOLOv7t 88.1% 88.2% 89.4% 13.2 12.013

YOLOv8n 89.5% 88.3% 91.7% 8.1 6.107

YOLOv8s 90.1% 89.6% 92.5% 28.4 21.481

YOLOv8-MobileNetv3 86.7% 84.5% 87.3% 6.1 6.22

YOLOv8-StarNet 88.9% 86.5% 88.1% 6.5 4.45

YOLOv9t 87.5% 85.4% 88.9% 10.7 5.973

YOLOv10n 84.6% 84.2% 87.5% 6.7 5.631

Ours 89.5% 90.3% 93.1% 5.7 3.953
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boxes. In contrast, our proposed ALD-YOLO model can provide a

more stable localization and identification of Rust disease on apple

leaves while maintaining a similar detection accuracy. Moreover, in

other categories of diseases, our model also ensures a certain

advantage. Therefore, our model can effectively solve the problem

of overlapping bounding boxes and detecting small targets.
3.4 Ablation experiment

Compared to the original YOLOv8s model, we achieved

significant improvements in both computational efficiency and

detection accuracy through a series of optimizations and

modifications. To further investigate the roles of different

modules, based on YOLOv8s, we designed four alternative models
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for comparison. Table 4 lists different models, with checked marks

indicating the inclusion of specific modules.

Table 5 presents the results of the ablation studies. Model A

replaced all C2F modules in YOLOv8s with Faster_C2F. Compared

with YOLOv8s, Model A showed a slight decrease in mAP@0.5,

from 92.5% to 90.3%, but it reduced the computational load

significantly, with GFLOPS dropping from 28 to 6.3. Thus, Model

A can substantially enhance computational efficiency at the cost of

slightly reducing the detection accuracy.

Model B further explored the effect of replacing all C2F modules

with Faster_C2F_EMA. However, compared to Model A, Model B

did not demonstrate any performance improvement, and there was

no significant advantage in terms of parameter count or

computational load (GFLOPS).

Model C achieved a mAP@0.5 of 91.9% by substituting the

original Conv module in YOLOv8s with ADown.

Based on Model A, Model D replaced the C2F modules

connected to the Head with Faster_C2F_EMA, Compared to

Model A, with two different C2F modules, Model D improved

mAP@0.5 from 90.6% to 91.3%, indicating that the suitable use of

attention mechanism can improve the accuracy. From the beginning

of our study, we always considered how to balance precision and

efficiency, which is crucial in scenarios where the computational

resources are limited. Therefore, based on experimental results, we

only applied EMA to the selected C2F modules.

Finally, our proposed ALD-YOLO surpassed the original

YOLOv8s with a mAP@0.5 of 93.1% by incorporating the

ADown module into Model D. Moreover, GFLOPS and

parameter count decreased significantly, reaching 5.7 GFLOPS

and 1.89 M, respectively, suggesting that the ADown module can

not only improve the model’s accuracy but also enhance the

computational efficiency.

In summary, by combining two optimized C2F modules with an

efficient downsampling module, our proposed model significantly

reduces GFLOPS while maintaining high detection accuracy.

Compared to the original YOLOv8s model, our model achieved a

0.6% increase in mAP@0.5, reduced GFLOPs from 28.4 to 5.7,

decreased the parameter count from 11.13 M to 1.89 M, and
TABLE 3 The mAP@0.5 for different disease categories.

Model Rust Grey spot Brown spot Alternaria leaf spot

YOLOv6n 95.4% 75.9% 99.2% 85.0%

YOLOv6s 95.5% 72.8% 98.5% 84.3%

YOLOv7t 95.0% 74.7% 99.2% 88.5%

YOLOv8n 95.9% 84.7% 98.4% 88.0%

YOLOv8s 96.4% 87.2% 97.9% 88.6%

YOLOv8-MobileNetv3 93.8% 70.0% 98.0% 87.3%

YOLOv8-StarNet 95.4% 79.1% 99.2% 78.9%

YOLOv9t 94.3% 76.8% 99.3% 85.3%

YOLOv10n 93.4% 75.6% 96.6% 84.4%

Ours 95.3% 88.7% 97.4% 90.9%
FIGURE 12

The mAP metrics of different models after different training epochs.
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lowered the weight from 21.481 M to 3.953 M, thereby offering

better cost-effectiveness in practical applications.

In our task, the network backbone (Backbone) plays a

crucial role in extracting feature representations from input

images. The quality of these features directly determines the
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effectiveness of subsequent detection tasks. Table 6 illustrates

the performance differences among the backbone networks of

various models.

In Table 6, it can be observed that our model significantly

improves computational efficiency and reduces resource
FIGURE 13

Heatmap-Grey spot.
FIGURE 14

Heatmap-Rust.
FIGURE 15

Heatmap-Alternaria leaf spot.
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consumption. Our model has only 631,904 parameters, far fewer

than YOLOv8s’s 5,079,712, which not only reduces model

complexity but also enhances deployment flexibility. Moreover,

our model has a GFLOPs of merely 1.65, demonstrating a lower

computational demand compared to other models. Time refers to

the overall execution time of forward pass for the entire backbone

when processing input images with 640x640 size. As shown in

Table 6, the execution time does not scale linearly with GFLOPs.

The reason is that the execution time is related to practical hardware

constraints, such as parallel execution efficiency, memory
FIGURE 16

Model detection performance comparison. (A1–D1 respectively represent the original images of four different diseases. A2–D2 respectively represent
the detection results inferred using the YOLOv8s model. A3–D3 respectively represent the detection results inferred using the ALD-YOLO model.).
TABLE 4 Ablation experiment scheme.

Model Faster_C2F Faster_C2F_EMA ADown

A ✓

B ✓

C ✓

D ✓ ✓

Ours ✓ ✓ ✓
Checked marks indicating the inclusion of specific modules.
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bandwidth, and cache locality. However, GFLOPs is derived from a

series of formulaic computations.
3.5 Inference testing

Considering that practical deployment scenarios may involve

devices with limited computational resources, we conducted

inference testing on two computers with different configurations.

First, we deployed the model on a low-performance server using

Ubuntu 22.04 system, an Intel Xeon Platinum CPU with a basic

frequency of 2.5 GHz. Since this device lacked a graphics card, we

performed inference using the CPU. Before each experiment, we

have reduced the impact of background application interference to

a minimum. and warmed up the device with a few rounds of test

data to ensure CPU stability.

In Table 7, the YOLOv8s model achieves an inference speed of

2.6 frames per second (FPS), whereas our optimized model reaches

5.7 FPS with a 119.23% increase in speed. This significant

improvement in speed makes our model applicable in a wider

range of scenarios, especially on resource-constrained devices.

We also conducted the same test on another computer running

Windows 11 and an Intel Core i5-13490F CPU with 4.2 GHz.

Notably, all other settings remain consistent. The experimental

results show that our model exhibits superior performance over the

baseline model YOLOv8s on two computers with different

operating systems and hardware configurations.
4 Discussion

In the traditional recognition of apple leaf diseases, there are

issues of low efficiency and over-reliance on subjective judgment.

To address these problems, we have proposed ALD-YOLO based on

the YOLOv8 model. Through a series of optimization measures, we
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have significantly enhanced the model’s operational efficiency while

ensuring its accuracy.

To ensure precise identification of apple leaf diseases under the

natural conditions, this paper introduces an efficient apple leaf

disease detection model based on multi-scale feature fusion. As

shown in Table 3, our proposed model not only surpasses all

comparative models in the mAP@0.5 metric, achieving the best

performance, but it also maintains minimal complexity with respect

to the number of model parameters and the size of weights. In the

ablation experiments, as listed in Table 5, we further substantiate

the efficacy of two novel C2f module in our ALD-YOLO model.

Moreover, we have found that integrating an efficient

downsampling module into the backbone and head components

enhances the model’s computational efficiency without losing

overall performance Compared to previous research, such as the

method proposed by (Sun et al., 2024) et al., our ALD-YOLO

achieves higher mAP for certain categories of diseases, along with a

smaller model size and fewer FLOPs. This makes the model more

suitable for deployment on edge computing devices, meeting the

demands for high efficiency and low power consumption in

agricultural IoT and similar scenarios.

However, as given in Table 2, the precision metric of our ALD-

YOLO is slightly lower than that of YOLOv8s. The potential reason

might be the lightweight design of our backbone. Generally, model

lightweighting requires parameter compression, presenting
TABLE 5 Results of the ablation study.

Model mAP@0.5 mAP@0.5-95 GFLOPS Param Weight

YOLOV8s 92.5% 63.1% 28.4 11.13M 21.481

A 90.6% 60.2% 6.3 2.30M 4.730

B 90.1% 59.5% 6.5 2.31M 4.781

C 91.9% 61.1% 7.4 2.59M 5.315

D 91.3% 60.6% 6.4 2.31M 4.759

Ours 93.1% 62.5% 5.7 1.89M 3.953
TABLE 6 Comparison of backbone with other models.

Backbone YOLOv8s A B C D Ours

Params 5079712 911456 915824 993104 911456 631904

GFLOPs 12.59 2.16 2.26 2.72 2.16 1.65

Time (ms) 209.5 109.87 130.84 117.22 110.78 116.26
TABLE 7 Inference testing results.

Model Platform Weight(M) Latency (s) FPS

YOLOv8s Ubuntu 21.5 0.38344 2.6

Ours Ubuntu 3.9 0.17261 5.7

YOLOv8s Windows 21.5 0.15933 6.3

Ours Windows 3.9 0.09008 11.1
fron
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inherent challenges in improving precision metrics. Consequently,

in future research, we will focus on advancing efficient and

lightweight backbone network.

5 Conclusions

Our ALD-YOLO model is built upon the YOLOv8 architecture

for efficient detection of apple leaf diseases. In the Faster_C2F

module, we have used the PConv to reduce redundant

computations in feature maps, thereby maximizing the model’s

efficiency. And in the Faster_C2F_EMA module, we further

introduce the EMA attention mechanism, which utilizes multi-

scale parallel sub-networks to enhance the model’s detection

accuracy for diseased areas with varying sizes. The ADown

module retains multi-scale spatial information during

downsampling and reduces computational complexity.

By incorporating a series of optimization strategies aimed at

achieving efficient and lightweight object detection, our model is

designed to deliver superior performance while minimizing

computational resources. Experimental results demonstrate that

ALD-YOLO outperforms comparable models in terms of multiple

metrics. Specifically, ALD-YOLO achieved a mAP of 93.1%, surpassing

the original YOLOv8n’s 91.7% and slightly exceeding YOLOv8s’s

92.5%. Additionally, compared to YOLOv8s, our model’s GFLOPs

significantly reduced from 28.4 to 5.7. In certain scenarios, ALD-YOLO

also shows superior performance in small object detection. In the CPU

inference tests, using two devices with different performance, our

model achieved 5.7 FPS and 11.1 FPS, which is 76.19% and 119.23%

faster than the original YOLOv8s model.

Furthermore, we identify several challenges when processing

pathological datasets. In the actual process of detecting diseases in

apple leaves, we have observed that certain leaf diseases may exhibit

similar symptoms at different stages of development, such as Grey

spot and Alternaria leaf spot, which increases the difficulty for the

model to accurately distinguish between these diseases. Moreover,

when multiple diseases occur simultaneously on the same leaf, this

complexity can also adversely affect the accuracy of the model. To

address these challenges, we will continue to optimize the network

structure to enhance the model’s ability to handle these similar

symptoms. Furthermore, we will expand our training dataset with

more categories of disease images to improve the generalization

ability of our model. In addition, we will continue to explore our

lightweight model to foster its deployment on edge devices.
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