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Point cloud registration is a critical technology for 3D reconstruction and

personalized management of fruit trees. While ensuring the accuracy and

completeness of 3D point cloud reconstruction, the simplest and most

efficient approach is to acquire and register point clouds from two stations

separated by 180°. For this, we propose BranchMatch, a low-overlap viewpoints

acquisition and registration method tailored for tall-spindle individual apple trees

during dormancy. The method requires only two point clouds captured from

stations 180° apart. Then, it leverages key branch segments in a single viewpoint,

utilizing their spatial and geometric structure features in combination with a

dynamically weighted feature discriminant function to perform feature matching

and initial rigid-body transformation under low overlap conditions. Subsequently,

an iterative closest point algorithm, enhanced with local feature matching

optimization based on the tree-specific point cloud, is applied to refine the

registration and prevent over-registration. Experiments conducted on multiple

individual apple trees with two low-overlap point clouds (180° apart)

demonstrate a registration success rate of 90%. Compared to the spherical

markers registration method, BranchMatch achieves average rotation and

translation errors of 1.93 mrad and 4.33 mm, respectively, with a pointwise

error of 2.70 mm. Furthermore, compared to multi-site high-overlap registration

methods under similar conditions, BranchMatch significantly reduces

computational costs while maintaining registration accuracy and

reconstruction completeness, highlighting its efficiency and reliability in

individual tree registration.
KEYWORDS

individual tree, key branch segments, low-overlap, terrestrial laser scanning,
3D reconstruction
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1 Introduction

The apple (Malus domestica) is one of the most economically

significant and widely cultivated fruit crops globally, making

advancements in its orchard management critical to the

agricultural economy (Vasylieva and Harvey, 2021; Wang and

Liu, 2022). In modern apple production, the tall-spindle

architecture has become the dominant tree form, as it enables the

high-density planting strategies essential for maximizing fruit

quality and yield (Robinson et al., 2006; Karkee et al., 2014; Ho

et al., 2024). Effective management of these trees relies heavily on a

detailed understanding of their underlying branching structure,

which informs key operations such as strategic pruning and yield

forecasting. The dormancy period offers a unique opportunity for

this kind of structural analysis, as the absence of leaves and fruit

reveals the complete woody framework of the tree—making it the

optimal time for both assessment and pruning interventions

(Chattopadhyay et al., 2016; He and Schupp, 2018; Kolmanič

et al., 2021).

To address the need for accurate and efficient structural analysis

of apple trees, 3D reconstruction based on Light Detection and

Ranging (LiDAR) technology has emerged as a powerful tool

(Dassot et al., 2011; Miller et al., 2015; Zhang et al., 2023). While

mobile laser scanning (MLS) systems—such as UAV-based or

backpack-mounted devices—are effective for rapid, large-scale

orchard mapping, the millimeter-level accuracy required for

detailed individual-tree analysis remains challenging to achieve

with these systems (Liang et al., 2016; Calders et al., 2020; Wang

L. et al., 2023). In contrast, Terrestrial Laser Scanning (TLS)

provides superior data fidelity and resolution, making it the most

widely accepted and reliable choice for fine-scale, branch-level

reconstruction tasks (Shimizu et al., 2022; Zhang et al., 2024).

To ensure the accuracy and completeness of 3D reconstruction,

it is common practice to register point clouds acquired from

different viewpoints (Monji-Azad et al., 2023). However, the

complex orchard environment introduces challenges such as

occlusions and structural deformations, making accurate and

e ffic i en t po in t c loud reg i s t r a t ion for f ru i t t r e e s a

persistent challenge.

The most reliable registration method involves marker-based

approaches, where spherical markers are manually placed before

data acquisition, requiring all viewpoints to capture these markers

in their point clouds. Key points are extracted via fitting

calculations, and correspondences (e.g., distances, angles) between

markers across viewpoints are used for registration (Wilkes et al.,

2017; Zhou et al., 2020). While accurate, this method increases

operational complexity due to manual marker placement.

To mitigate this limitation, marker-free techniques utilize

sensors or specially designed platforms to record scan station

positions and orientations (Henning and Radtke, 2008; Yang R.

et al., 2020). These approaches improve efficiency and, can be

applied to multitemporal assessments and permanent monitoring

of trees within the same plots. Nevertheless, both marker-based and

position-based methods increase acquisition burdens.
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In scenarios lacking standardized targets or positioning tools,

registration must rely on the point cloud data of the scene itself

(Cheng et al., 2018), necessitating robust algorithmic frameworks.

One approach involves using point cloud feature descriptors to

match key points based on the inherent characteristics of the data.

Zhang et al. (2021) employed the Fast Point Feature Histogram

(FPFH) to capture the geometric distinctiveness of individual trees,

enabling coarse registration of multi-view point clouds by matching

similar feature descriptors across viewpoints. Peng et al. (2023)

further improved FPFH-based registration for airborne and

terrestrial point clouds, combining feature correlation scoring

with Bhattacharyya distance and employing Random Sample

Consensus (RANSAC) to select reliable matching pairs. While

these methods are robust and flexible, their performance heavily

relies on feature quality, making them sensitive to noise and

computationally demanding. Another approach leverages the

geometric features of trees combined with spatial information to

establish correspondences. Bucksch and Khoshelham (2013)

extracted global skeletons from fruit tree point clouds, using them

to map points in the source point cloud to line segments in the

target point cloud, followed by transformation estimation through

distance minimization. Zhou et al. (2014) further defined a distance

measure and mapping cost function between two skeleton

segments, refining them using the Gauss-Newton method to

complete the registration. These methods provide a domain-

specific strategy for tree point cloud registration, enabling semi-

automatic or automatic alignment through skeleton points or lines.

That said, they require complete skeleton extraction, which is

challenging due to occlusion, density variations, and complex

branching structures.

Both approaches eliminate the need for external markers or

prior information but require high-quality single-view data and

typically depend onmulti-view acquisitions with substantial overlap

(≥3 viewpoints). These approaches utilize geometric or textural

features from overlapping regions to establish correspondences and

merge partial scans into complete models (Yang et al., 2022).

However, in orchard environments, physical obstructions (e.g.,

irrigation systems, support structures), limited scanner mobility,

and operational efficiency demands often hinder multi-view high-

overlap data collection (Shao et al., 2020), necessitating alternative

low-overlap registration strategies.

What’s more, in recent years, deep learning-based methods

have emerged as another powerful paradigm for point cloud

registration. These approaches leverage neural networks to learn

salient features and correspondences directly from data, often

achieving impressive performance on general-purpose

benchmarks (Dai et al., 2022; Cheng et al., 2024). However, their

practical application to the high-fidelity registration of individual

trees in orchard environments currently faces several significant

limitations. First, these models are highly data-dependent, requiring

large-scale, annotated datasets for training that are not readily

available for high-resolution, multi-view tree scans (Cheng et al.,

2018; Lv et al., 2024). Furthermore, their ability to generalize is a key

concern; models trained on generic 3D objects may not perform
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well on the unique and complex geometric structures of dormant

trees. This challenge is particularly acute in the extreme low-overlap

scenarios addressed by our study (Yang H. et al., 2020; Wang et al.,

2024). Finally, the high computational costs associated with

training, coupled with a lack of sufficient validation in multi-

station orchard scenarios (Dong et al., 2020; Deng et al., 2021),

make classical geometry-based methods a more practical and

reliable choice for our specific application at present.

In summary, in terms of field efficiency, the optimal strategy is

to capture data from only two diametrically opposed (180°) stations.

This approach, however, presents the most extreme registration

challenge due to minimal data overlap. The difficulty of reliably

automating this process has largely prevented the adoption of this

otherwise ideal workflow. Overcoming this registration bottleneck

is therefore a key step toward making high-precision 3D

reconstruction more practical. The inherent limitations of this

low-overlap scenario introduce several critical challenges:
Fron
1. A more robust feature extraction and matching method is

needed for the geometrically ambiguous branch structures

encountered with sparse overlap between diametrically

opposed viewpoints.

2. A novel registration approach is required to minimize

reliance on the overlap between viewpoints of tree-shaped

point clouds.

3. A lack of individual tree point cloud datasets hinders registration

accuracy evaluation under varying overlap conditions.
To address these challenges, this study focuses on acquiring

high-precision 3D point cloud data of tall-spindle individual apple

trees using terrestrial laser scanning (TLS). By leveraging the

structural features of key parts of the tree, we aim to achieve
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marker-free, low-overlap registration for individual apple trees,

enabling high-accuracy 3D reconstruction and advancing fruit

tree management. The main contributions are as follows:
1. A feature matching method based on local spatial-geometric

branch features, incorporating a dynamically weighted

discriminant function to reliably identify corresponding

branch segments under low-overlap conditions.

2. An automatic registration method using structural axes and

central points of key tree components, enabling accurate

reconstruction from two 180° viewpoints.

3. The Apple-Trees benchmark dataset, comprising 10 trees

captured from 40 viewpoints, covering diverse tall-spindle

morphologies for registration evaluation.
2 Benchmark dataset

2.1 Data acquisition

The Apple-Trees dataset was collected from a commercial

orchard in Shunyi District, Beijing, China (40.21°N, 116.54°E).

The orchard features Aztec Fuji apple trees, a tall-spindle variety

commonly grown in northern orchards. The 5–7 years-old trees,

averaging 300–350 cm in height, were planted in rows with 1 m

spacing between trees and 3 m between rows. Drip irrigation tapes

were installed at 0.5 m above the ground to facilitate precise

irrigation, as shown in Figure 1.

Data acquisition was conducted in March 2024 during the

dormancy period to avoid interference from fruits and dense

foliage (Figure 1A). The Trimble TX8 terrestrial LiDAR was
FIGURE 1

Data acquisition environment and setup. (A) Orchard environment and equipment. (B) Schematic of station positions. In (A), (1), (2), and (3) represent
the drip irrigation tape, TX8 terrestrial LiDAR, and spherical markers, respectively. In (B), the brown objects represent target trees, and the solid dots
denote stations. Data collection was performed using interval selection and station reuse, ensuring that each tree was captured from four
viewpoints, with opposite viewpoints separated by 180°.
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selected as the data acquisition device for the experiment, as similar

terrestrial LiDAR systems are widely recognized as effective and

precise tools for acquiring point cloud data during high-precision

3D reconstruction (Guan et al., 2020; Sun et al., 2021). The device

has a 360° × 317°field of view, a measurement range of 0.6–120 m,

and an accuracy of up to 2 mm. Double leveling was achieved using

both external and built-in electronic leveling bubbles.

To compile the dataset, 10 apple trees were randomly selected

from three rows using interval selection (Figure 1B). For each

selected tree, data were collected from four stations positioned in

a rectangular arrangement around the tree. Stations were positioned

approximately 2 m from the tree rows and 2.3 m from the selected

trees, considering the orchard layout. Station pairs S1-S4 and S2-S3

provided low-overlap 180° viewpoints, while S1-S2 and S1-S3

offered high-overlap viewpoints for algorithm evaluation.

The raw data collected by the instrument was processed using

Trimble RealWorks software, where point clouds were extracted via

spatial sampling at a 2 mm resolution. Since the collected raw data

includedmultiple trees, extensive ground areas, and other environmental

features, it was necessary to manually extract the regional point cloud of

each target tree to enable a fair and independent evaluation of the

algorithm’s performance on the tree structure itself. To minimize the

impact on the practical application process, this manual step was limited

to a simple regional segmentation to obtain all points within the single

fruit tree’s area (including the ground points). Additionally, to ensure the

evaluation focused solely on the tree’s complex geometry and to enhance

the method’s generalizability, the geometrically simple and distinct drip

tape point clouds were also manually removed.

Following obtaining the point cloud of the experimental region

(Figure 2A), a series of automated preprocessing steps are sequentially

applied to prepare the data for the core matching algorithm, as

illustrated in Figure 2. The first and most critical step is to establish

a consistent spatial reference by fitting a ground plane using the

RANSAC method (Fischler and Bolles, 1981). This plane serves as

the basis for all subsequent height-dependent feature calculations.

Once this coordinate system is established, the ground points are

removed to reduce computational load and focus the analysis on the

tree’s structure (Figure 2B). Subsequently, a statistical outlier removal

filter is applied to eliminate sparse noise points that may have resulted
Frontiers in Plant Science 04
from sensor errors or environmental factors. The filter was configured

with a number of neighbors k = 5 and a standard deviation multiplier

of 0.1 (Figure 2C). Finally, to enhance computational efficiency for the

subsequent registration steps, the point cloud is downsampled using a

voxel grid filter with a voxel size of 8 mm, which standardizes the point

density while preserving the essential geometric details of the trunk and

branches (Figure 2D).
2.2 Ground truth

To establish baseline alignment data, spherical markers were

additionally deployed as a ground truth method for point cloud

registration (Liang et al., 2018). Specifically, markers were arranged

to cover the region of interest (Figure 1A), and precisely leveled LiDAR

scans captured all scene elements, including the markers. The collected

point clouds were imported into Trimble RealWorks, where spherical

markers were automatically identified, and their centers were fitted to

establish correspondences. The software calculated an optimal

transformation matrix (rotation and translation) by minimizing

alignment errors, producing a ground truth dataset with an average

distance error of 0.59 mm. This accuracy serves as the benchmark for

subsequent experimental evaluations.

What’s more, the complete point clouds, registered from all four

stations using this ground truth method, also serve as the baseline

reference for deriving the structural parameters of each sample tree.

Table 1 provides detailed information for each tree in the Apple-

Trees dataset, including statistics on the point clouds and these key

structural parameters.
3 Methodology

The BranchMatch method requires two 180°-separated point

clouds of an individual tree as input and outputs a rigid-body

transformation matrix for registration, enabling 3D reconstruction.

The process consists of three main steps: branch matching, coarse

registration, and fine registration. The overall procedure is

illustrated in Figure 3.
FIGURE 2

Point cloud preprocessing. (A) Raw point. (B) Ground plane fitted and removed. (C) Statistical filtering. (D) Voxel filtering.
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3.1 Branch matching

Point cloud registration typically relies on identifying

correspondences within overlapping regions (Liu et al., 2017).

However, in diametrically opposed 180° scans, these regions are

confined to sparse transitional boundaries—narrow zones where

front and rear projections partially intersect. These sparse common

points in such boundaries exhibit feature ambiguity due to

occlusion and geometric complexity, limiting the effectiveness of

both conventional methods (e.g., FPFH) and learning-based

approaches (Fu et al., 2023).

To address this, the proposed method eliminates dependency

on explicit overlap by leveraging the structural consistency of trees.

By focusing on these anatomically consistent components, such as

trunks and primary branches, which are typically observable from

both views despite low overlap, the algorithm locates corresponding

structural parts in each point cloud and constructs robust initial

alignments under challenging low-overlap conditions.

For the trunk, the same parts across viewpoints can be identified

using height above ground. However, relying solely on the trunk

often fails to meet 3D registration requirements. Therefore, branch

morphological and spatial distribution characteristics are utilized to

assist registration. Branches exhibit significant morphological

differences and distinctive spatial distributions, providing a

critical basis for matching point clouds from different perspectives.

Describing trunks and branches typically requires referencing

the ground as a baseline and employing 2D circular or 3D

cylindrical fitting to extract structural information (Pfeifer et al.,

2004; Xu et al., 2022). However, trunks and branches often appear

as ellipses or irregular shapes in thin cross-sections, and noise

complicates precise differentiation. While 2D circle fitting is

computationally intensive and error-prone, cylindrical fitting,

which incorporates multi-layer information, improves stability

and accuracy, outperforming single-layer fitting (Raumonen et al.,
Frontiers in Plant Science 05
2013; Li et al., 2022). Thus, this paper adopts cylindrical fitting for

better localization.

Here we detail the branch matching process, covering the

segmentation of key branch segments, the filtering of potential

pairing branches, and the final selection of the best match.

Firstly, branch segments in the same key region of both point

clouds are segmented. This initial step is designed to simplify the

complex matching problem by focusing on short, geometrically

simple segments rather than the entire intricate branching

structure. Specifically, we isolate the tree’s middle-lower sections

based on height above the ground (Figure 4A), where the trunk and

branches are thicker and less affected by wind, and the trunk reflects

the tree’s overall growth trend. Given the trunk’s larger radius, we

can use RANSAC to fit a cylinder (Fischler and Bolles, 1981) and

identify the trunk, obtaining its axis. This axis then serves as a

reference to segment the branch segments within a specific

distance (Figure 4B).

To define the area of branch segments suitable for robust

matching, we conducted field measurements and statistical

analysis on the 5–7-year-old tall-spindle apple trees used in our

study. Our analysis indicated that while branch-trunk junction

shapes vary significantly in the region up to 0.07 m from the

trunk, the zone between 0.07 m and 0.14 m is optimal. Within this

region, branches consistently display more pronounced cylindrical

characteristics with fewer secondary branches, which reduces

geometric ambiguity for our matching algorithm. In addition, as

these segments are located closer to the trunk, they are less

susceptible to wind-induced motion, further improving their

geometric stability. This region is also more likely to contain

branches segments that are both visible from both opposing

viewpoints, thereby reducing mismatches due to single-view

visibility in the 180° setup. Meanwhile, the standardized tall-

spindle horticultural system, through continuous pruning, ensures

that this key structural geometry remains highly consistent across
TABLE 1 Statistics on the Apple-Trees benchmark dataset.

Tree ID
Tree
height
(cm)

Basal trunk
diameter

(cm)

No. of
primary
branches

Max.
branch
diameter

(cm)

Avg.
branch
diameter

(cm)

Number of points of each scan
(excluding ground points)

S1 S2 S3 S4

#1 351 6.3 14 3.1 2.1 255,180 264,954 265,352 278,387

#2 353 7.9 11 3.3 2.0 311,608 335,566 310,395 290,280

#3 314 6.4 18 2.5 1.7 211,552 231,864 253,044 246,309

#4 336 5.1 11 2.7 1.8 253,859 289,802 258,970 232,020

#5 327 6.2 9 1.7 1.4 185,871 164,238 188,364 161,512

#6 368 6.3 9 2.5 1.8 200,625 233,390 208,178 162,251

#7 366 5.6 11 2.6 1.8 240,547 242,450 289,745 293,047

#8 247 5.7 8 2.8 1.7 104,469 109,095 136,006 115,101

#9 287 7.3 10 2.2 1.6 192,990 207,089 204,775 214,273

#10 334 6.3 10 3.0 1.8 273,238 273,121 268,062 306,510
fr
Basal Trunk Diameter was determined from a horizontal cross-section at a height of 0.25 m above the fitted ground plane; Primary branches were defined and counted as first-order branches with
a basal diameter > 1cm; Avg. Branch Diameter is the average of these measured basal diameters.
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the representative age range of our subjects and is less influenced by

species-specific variations. Consequently, this region is identified as

the key branch area for registration.

Secondly, potential pairing branches are filtered among the key

branch segments obtained earlier. For the initial screening, the
Frontiers in Plant Science 06
Euclidean clustering method (Miao et al., 2023) was employed to

filter clusters based on point count. Larger clusters, which likely

contain curved branch segments or secondary branch junctions,

and smaller clusters, typically representing thinner branches or

incomplete point clouds, were both excluded due to their poor
FIGURE 3

Workflow of the BranchMatch method. The process includes (a) Data acquisition, (b) Data preprocessing, (c) Branch matching, (d) Coarse
registration, (e) Fine registration and (f) Registration results. The transformation matrix is computed through steps a.-e., and the final results aligns
the source and target point clouds (f).
FIGURE 4

Segmenting and filtering potential pairing branches. (A) Mid-to-lower point cloud extraction. (B) Fitting the mid-to-lower trunk and segmenting
branchs by distance from the cylinder axis. (C) Filtering potential pairs using cluster size and inlier ratio. The chain lines represents the axis line
obtained by fitting.
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conformity to cylindrical shapes. Next, cylindrical fitting was

performed on clusters of moderate size, and the quality of the fit

was evaluated by the proportion of inliers (Salehi et al., 2022;

Martıńez-Otzeta et al., 2023). Clusters with an inlier ratio below

30% were discarded, while those exceeding the threshold were

labeled as “potential pairing branches.” Thus, we filtered potential

pairing branches S = s1, s2,…, snf g from the source point cloud and

T = t1, t2,…, tmf g from the target point cloud, as illustrated in

Figure 4C. At this stage, there are m� n possible pairing

combinations between S and T .

Finally, the best match is selected from the possible pairing

combinations. To identify structural correspondences under low-

overlap conditions, we introduce a branch matching strategy based

on local geometric attributes. Specifically, three key features are

extracted and quantified for each candidate branch segment: the

radius r of the fitted branch cylinder, the angle q between its axis

and the trunk cylinder axis, and the height h of its centroid above

the ground, as shown in Figure 5. These features jointly characterize

the spatial and morphological properties of each branch, offering

sufficient distinctiveness and consistency across viewpoints.

Due to inherent fitting errors arising from occlusions, noise, and

viewpoint differences, residual discrepancies frequently exist

between the feature values of truly corresponding branches. To

account for this, we first compute the differences in radius, angle,

and height for all m� n possible pairing combinations, and

compare them against empirically determined thresholds (tolr = 5

mm, tolq = 15°, tolh = 50 mm). These thresholds were established

through data-informed tuning on a representative subset of

manually annotated branch pairs. They are conservatively chosen

to accommodate noise and fitting uncertainty while effectively

eliminating structurally implausible matches. Only pairs satisfying

all three threshold conditions are retained for further evaluation.

Although threshold-based filtering eliminates most implausible

matches, finer ambiguities may still arise when multiple source

branches fall within the threshold bounds of the same target branch.

To resolve such cases, enforce one-to-one correspondence, and

account for the differing sensitivities of the three features, we
Frontiers in Plant Science 07
introduce a feature discriminant function with dynamic weights

to compute a fused residual (Equation 1):

score = (weightr
Dr
tolr

) + (weightq
Dq
tolq

) + (weighth
Dh
tolh

) (1)

where Dr, Dq and Dh represent the residuals of the radius, angle,
and height, respectively, such as Dr = rs − rtj j for radius residual.

The corresponding weighting factors are weightr , weightq and weig

hth, calculated as follows Equation 2:

weightr = − 1
weightsum

ln ( Dr
tolr

)

weightq = − 1
weightsum

ln ( Dq
tolq

)

weighth = − 1
weightsum

ln ( Dh
tolh

)

weightsum = − ln ( Dr
tolr

) − ln ( Dq
tolq

) − ln ( Dh
tolh

)

8>>>>>>><
>>>>>>>:

(2)

The core idea of this dynamic weighting strategy is to assign

higher weights to features with smaller residual, thereby emphasizing

the contribution of geometrically consistent features to similarity

assessment. Unlike static weighting, this adaptive strategy adjusts

feature importance based on different structural configurations,

enabling more effective differentiation between correct and false

matches. Specifically, a normalized dynamic weighting strategy is

employed using a negative logarithmic function. Each feature’s

residual is normalized by dividing by its predefined threshold, and

the negative logarithm of the normalized residual is applied to

compute dynamic weights. The final score, which indicates fused

residual of multiple features, is calculated using these weights, where

lower scores correspond to smaller residual and higher similarity.

Ultimately, for each branch in the target point cloud, only the source

point cloud pairing with the smallest score is retained, ensuring a

high-confidence one-to-one match.

As a final validation step, the quality of the cylindrical fit is used

as a global confidence measure. Among all candidate pairs retained

after scoring, the pair with the highest number of inlier points in its

fitted cylinder is selected. This tie-breaking criterion ensures that

the final correspondence used for transformation estimation is
FIGURE 5

The best match. (A) Target point cloud branch parameters. (B) Source point cloud branch parameters. Branch segments are characterized using
three feature parameters: r, q, and h.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1616611
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1616611
based on structurally robust and reliably measurable segments,

adding an additional layer of stability to the matching process.
3.2 Coarse registration

The essence of point cloud registration is solving

the transformation matrix T that aligns the source point cloud P =

p*i , 1 ≤ i ≤ N*
P

n o
w i t h t h e t a r g e t p o i n t c l o u d Q =

q*i , 1 ≤ i ≤ N*
q

n o
. This process can be expressed by Equation 3:

q*i

1

" #
= T

p*i

1

" #
(3)

where p*i and q*i represent the coordinates of the i-th point in

the source and target point clouds, respectively. T, as a rigid-body

transformation in space, is typically considered 6 degrees of

freedom (DoF) transformation, consisting of 3-DoF for rotation

and 3-DoF for translation.

T =
R t

0 1

" #
=

R11 R12 R13 tx

R21 R22 R23 ty

R31 R32 R33 tz

0 0 0 1

2
666664

3
777775 (4)

Since most TLS devices, including the TLS used in this study,

provide high accuracy in the horizontal direction (Cai et al., 2019;

Zang et al., 2021), rotations around the X and Y axes can be

neglected during the matrix solution, and the matrix T simplifies to
_T (Equation 5):

_T =
R(f) t

0 1

" #
=

cos f − sin f 0 tx

sin f cos f 0 ty

0 0 1 tz

0 0 0 1

2
666664

3
777775 (5)
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The simplified matrix _T is a 4-DoF problem, and Wang X. et al.

(2023) have also compared 6-DoF and 4-DoF estimation methods

for TLS point cloud registration, with the latter demonstrating

significantly higher accuracy. The transformation matrix _T can be

further decomposed into a 1-DoF rotation around the vertical axis

and a 3-DoF translation in space. Specifically, rotational alignment

in the XOY plane is achieved using the best matching branch,

followed by translational alignment in 3D space using

trunk information.

The first step is rotation in the XOY plane, i.e., around the

vertical axis. In low-overlap viewpoints, the structural information

of matched branches and trunks exhibits higher consistency. To

leverage this, cylinders are fitted to the best matching branch, and

their axes are extracted. These axes are then projected onto the XOY

plane, with their intersection point denoted as O(xo, yo, 0). The

angle between the projected axes determines the required rotation

angle a . Specifically, the center of rotation is first shifted from the

origin to O. The source point cloud is then rotated around O, after

which the rotated point cloud is translated back to the origin.

Through this series of combined transformations, the

transformation matrix can be calculated (Equation 6). As shown

in Figure 6, this step aligns the two point clouds by rotation.

T1 =

cosa − sina 0 xo(1 − cos (a)) + yo sin (a)

sina cosa 0 yo(1 − cos (a)) − xo sin (a)

0 0 1 0

0 0 0 1

2
666664

3
777775 (6)

The next step is a straightforward translation operation,

aligning corresponding points after rotational alignment. Given

that the basal trunk generally lacks lateral branches, has a larger

diameter, retains more complete point clouds, and approximates a

cylinder, its structural center is selected as the reference for

translation. Specifically, a trunk section at the same height is

extracted from both viewpoints—at a height between 0.20 m and

0.30 m above the ground plane, a range chosen to avoid
FIGURE 6

Coarse registration rotation. (A) Projection of the axes of matched branch segments. (B) Rotation to align the axes.
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irregularities near the root collar while remaining below the first

major branches—approximating different observations of the same

bottom trunk. And then a cylindrical model is fitted to this section

by RANSAC, and from its resulting axis, the geometric center of this

trunk segment is computed, denoted as Gsrc(xs, ys, zs) in the source

point cloud and Gtgt(xt , yt , zt) in the target point cloud (Figure 7).

These centers serve as the corresponding points for translation. At

this stage, the coordinate difference between the corresponding

points represents the translation component of the transformation

matrix, which can then be obtained (Equation 7):

T2 =

1 0 0 xt − xs

0 1 0 yt − ys

0 0 1 zt − zs

0 0 0 1

2
666664

3
777775 (7)

With this, the complete rotation translation matrix for coarse

registration can be constructed as Tc = T2T1.
3.3 Fine registration

To further improve the registration accuracy and quality, fine

registration is performed using the point-to-point iterative closest

point (ICP) algorithm (Besl and McKay, 1992), which minimizes

the Euclidean distance between corresponding points to iteratively

achieve optimal alignment. However, we observed that in practice,

excessive pursuit of local minimization can lead to overfitting, a

phenomenon we term “over-registration.” This issue may cause the

final alignment deviating from the true geometric structure (Kelbe

et al., 2016), as illustrated in Figure 8.

To address this issue and ensure the alignment is focused on the

key structural features, our primary strategy is to exclude the ground
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and trunk point clouds from the ICP process, which are more prone

to causing local minima convergence, and use only the remaining

branch point clouds for registration. This is because these

geometrically simple structures constitute a dominant portion of the

total point cloud, and their high consistency between scans can

dominate the registration’s error metric, masking misalignments in

the more complex branching architecture. In contrast, the

morphology of branches is more complex and diverse, making

them better representations of local features from different

viewpoints of the same tree. These features provide independent

constraints, helping to prevent convergence to local minima, while

enhancing registration stability and accuracy in low-overlap scenarios.

Additionally, to further refine this process and improve

stability, we introduce the “theoretical overlap ratio” parameter

from the CloudCompare core library. In our branch-only ICP

process, we empirically set this value to 90%. This directs the

algorithm to, in each iteration, effectively filter out the 10% of

point-pair correspondences with the largest Euclidean distances.

This supplementary measure further reduces the influence of

potentially unreliable correspondences, ensuring the registration

is robust against residual noise or minor misalignments. This two-

step process ensures that the final alignment is determined by the

most reliable correspondences on the tree’s branching structure,

yielding a high-fidelity result. By using this ICP algorithm

optimized for low-overlap cases, we obtain the transformation

matrix Tf for fine registration. This allows us to compute the

overall rotation-translation matrix for point cloud registration as

T = TfTc. And then ultimately align the source and target point

clouds according to Equation 3, completing the 3D reconstruction

of the apple tree point cloud.

In summary, by optimizing the processing flow and strategies, the

proposed method achieves marker-free, automated registration of

low-overlap point clouds for individual apple trees. Designed
FIGURE 7

Coarse registration translation. (A) Center points of matched trunk segments. (B) Translation to align the center points. Gsrc and Gtgt denote the
geometric centers of the matched basal trunk segments for the source and target point clouds, respectively.
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specifically for low-overlap scenarios, this method utilizes local

matching of the trunk and branches to effectively address the

challenges of feature extraction and registration from different

viewpoints, thereby completing the 3D reconstruction of point clouds.
3.4 Evaluation metrics

We tested our proposed registration algorithm on the Apple-

Trees dataset and quantitatively evaluated the registration results

using the ground truth. Based on the overall workflow and the

intermediate values and results that may arise during the process,

we use the following three evaluation metrics:
Fron
• Success rate (Wang X. et al., 2023). The overall success of

our registration pipeline hinges on the coarse registration’s

ability to establish the correct initial alignment. We

therefore define a successful trial based on a direct

measure of our core contribution: a registration is

considered a “success” if the best matching branch

identified by our BranchMatch algorithm matches the

manually annotated ground-truth correspondence. This

approach provides a meaningful evaluation of our

method’s matching robustness. The final success rate is

then calculated as the number of successful registrations

divided by the total number of trials.

• Matrix-based errors (Yang et al., 2016). To evaluate the

accuracy of the estimated transformation, we compare the

transformation matrix obtained by our BranchMatch

algorithm with the ground truth. As expressed in

Equation 4, each transformation matrix can be

decomposed into a rotation matrix R and a translation

vector t. Based on this, we define two error metrics:

• Rotation error is computed using the axis-angle

representation. Equation 8 gives the rotation angle b of a

single rotation matrix R, while Equation 9 calculates the
tiers in Plant Science 10
angular difference between the estimated rotation R and the

ground truth rotation ~R. Both are derived using

Rodrigues’ formula:
b = arccos
tr(R) − 1

2

� �
(8)

eR = arccos tr(~RRT)−1
2

� �
(9)

where tr(R) is the trace of matrix R.
• Translation error is defined as the Euclidean distance

between the estimated translation vector t and the

ground-truth translation ~t (Equation 10):
et = ∥ t −~t ∥ (10)
• Pointwise error (Chen et al., 2020). This metric reflects the

registration accuracy at the point level. It is calculated as the

average Euclidean distance between the transformed

coordinates in our method and the coordinates

transformed by the ground truth for all points in the

source point cloud, as shown in Equation 11:
ep =
1

N*
p
o
N*p

i=1
∥ (Rp*i + t) − (~Rp*i +~t) ∥ (11)

where N*
p is the number of points in the source point cloud, and

p*i is the i-th point.
4 Results and discussion

Our algorithm was implemented in C++ using the Point Cloud

Library (Rusu and Cousins, 2011) and CCCoreLib (Girardeau-

Montaut, 2006). All operations were performed on a computer

equipped with an Intel Core i5 CPU (16 threads) and 32 GB RAM.
FIGURE 8

Over-registration illustration. (A) Normal registration (top view). (B) Excessive translation (top view). (C) Excessive rotation (top view).
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4.1 Registration results

This study aims to register two 180°-separated, low-overlap

point clouds. The algorithm is tested on the Apple-Trees dataset

under these conditions. Due to its symmetry in source-target

selection, registration results are analyzed in two configurations:

S1 (target) with S4 (source) and S2 (target) with S3 (source).
4.1.1 Coarse registration results
Coarse registration, a critical step, provides an initial alignment

for fine registration. Figure 9 shows the coarse registration results

under S1-S4 and S2-S3 conditions. In S2-S3, Tree #3 and Tree #6

failed to match branches, resulting in an 18/20 success rate (90%).
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Figure 9 reveals that despite coarse registration, local

misalignments remain, primarily as slight rotational deviations.

However, the ground and trunk sections align almost perfectly,

confirming their high overlap across viewpoints. In contrast,

branches exhibit greater morphological variation, better capturing

local features. As a result, visual errors are smaller in trees with

thicker branches and clearer point clouds.

In addition to success rate, coarse registration requires accuracy.

For the proposed method, rotation plays a decisive role (Figure 9),

with rotational error indicating correct branch matching.

Translation error, primarily from trunk cylinder center point

inaccuracies due to ground and trunk fitting, has minimal impact.

Pointwise error, reflecting distances between corresponding points,

is a key metric for registration accuracy. Thus, Table 2 summarizes
FIGURE 9

Coarse registration results. (A) S4 (blue) to S1 (red) for Trees #1-#10. (B) S3 (green) to S2 (yellow) for Trees #1-#10; registration failed for Tree #3
and Tree #6.
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rotational and pointwise errors for each tree under both

alignment conditions.

Analyzing the data, the coarse registration achieved an average

rotation error of 104.33 mrad (~5.98°) and a pointwise error of

35.00 mm for 180°-separated viewpoints, satisfying ICP algorithm

requirements. Tree #6 (S1-S4) and Tree #9 (S2-S3) exhibited the

lowest errors, indicating the most accurate registration and aligning

with visual results in Figure 9. In contrast, Tree #5 showed the

highest errors in both configurations. Despite correct branch

matching, its registration accuracy is lower due to the challenge

of fitting its thin branches—as shown in Table 1, its maximum and

average basal branch diameters are only 1.7 cm and 1.4 cm,

respectively, the lowest in the dataset—leading to higher errors.

Moreover, a failure analysis of the S2-S3 configuration provides

further insight into the algorithm’s mechanics. The two failures,

Tree #3 and Tree #6, occurred for different, viewpoint-dependent

reasons. For Tree #3, its failure can be attributed to its extreme

structural complexity; with the highest branch count (18), the S2-S3

perspective resulted in severe inter-branch occlusion. For Tree #6,

the challenge was structural ambiguity; several of its primary

branches had highly similar geometric features, a result of

deviating from standard pruning guidelines. This ambiguity,

combined with its small crown width, created a geometrically

confusing profile from the S2-S3 perspective, leading to matching

failure. Crucially, the success of both trees in the S1-S4

configuration validates our design philosophy. It demonstrates

that our algorithm’s success is not dependent on overlap

percentage, but on its ability to leverage the holistic architectural

information provided by a given viewpoint. When a perspective like

S1-S4 provides clear, unambiguous structural cues—even for a

dense or atypical tree—BranchMatch can robustly and efficiently

succeed under challenging low-overlap conditions.
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4.1.2 Fine registration results
Following coarse registration, ICP-based optimization was

applied for branch-focused fine registration. Figure 10 shows the

results: missing point clouds from single viewpoints were filled,

revealing finer tree details, with remaining gaps due to external

occlusions like drip irrigation tapes. A local zoom-in of side and top

views at various heights shows a near “perfectly halved” distribution

in low-overlap regions. This confirms that the proposed method

effectively mitigates over-registration while achieving high-

accuracy alignment.

Beyond visual assessment, quantifying fine registration errors is

essential. Matrix-based errors evaluate rotation and translation

performance, while pointwise errors measure Euclidean distance

discrepancies between corresponding points. Table 3 presents fine

registration errors for both S1-S4 and S2-S3 conditions.

As shown in Table 3, the algorithm achieves high accuracy in

registering low-overlap apple tree point clouds 180° apart. The

average rotation error is just 1.93 mrad (~0.11°), ensuring precise

alignment without distortion or significant misalignment. The

average translation error is 4.33 mm, demonstrating millimeter-

level precision despite orchard complexities and intricate

branching. The average pointwise error is 2.70 mm, with errors of

1.82 mm, 1.17 mm, and 1.03 mm in the X, Y, and Z directions,

respectively, indicating a uniform distribution without significant

bias. Notably, the pointwise error magnitude reflects local

alignment quality. In complex branch structures, the reduced

pointwise error (variance: 0.59 mm) indicates the algorithm’s

strong adaptability to high-complexity scenarios.

Further analysis of individual tree registration results reveals

that Tree #2 during the S2-S3 alignment exhibits the highest

pointwise error, reaching 4.20 mm, significantly above average.

This is due to its intricate branching and low-overlap affecting

alignment accuracy. Nevertheless, as shown in Figure 10B, the

overall error remains within an acceptable range. Visual

assessment confirms well-aligned global structure and local

details, with no significant geometric distortions, demonstrating

the algorithm’s robustness in error control under complex

conditions. In simpler scenarios, accuracy improves further. For

example, Tree #8 achieves a pointwise error of just 1.11 mm in the

S2-S3 alignment, demonstrating the algorithm’s superior

performance when registering trees with distinct features in less

complex environments.

The results confirm the effectiveness and robustness of the

proposed algorithm in handling complex, low-overlap point clouds.

Error analysis highlights its capability to manage challenges from

intricate structures and local occlusions, demonstrating its potential

to replace traditional marker-based methods. Overall, the algorithm

achieves high-precision two-station registration for apple tree point

clouds, enabling 3D reconstruction.

4.1.3 Evaluation of reconstructed model utility
To quantitatively evaluate the practical utility of the 3D models

generated by our two-station method, we compared them against

the more complete four-station ground-truth reconstructions. The
TABLE 2 Statistics on coarse registration error.

Tree ID
eR (mrad) ep (mm)

S1-S4 S2-S3 S1-S4 S2-S3

#1 143.58 131.44 54.07 53.13

#2 106.27 27.40 47.15 17.14

#3 24.53 – 15.45 –

#4 54.43 41.79 26.92 13.89

#5 221.32 469.19 57.47 113.47

#6 11.35 – 11.79 –

#7 81.94 48.10 29.56 18.05

#8 35.59 21.09 14.63 9.47

#9 106.74 18.20 28.86 6.30

#10 120.84 214.13 47.12 65.46

Average 104.33 35.00
eR represents the rotation error of matrix-based errors, while ep denotes the pointwise error.
“-” denotes registration failure.
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data for both models underwent identical preprocessing steps

before we assessed both the geometric completeness and the

accuracy of key extracted structural parameters. For the

completeness metric, we used a point-to-point nearest neighbor

distance; a point in the ground-truth model was considered

“covered” if its nearest neighbor in the two-station model was

within a 5 mm threshold. This threshold was chosen as a reasonable

tolerance, as it is slightly larger than the scanner’s instrumental

accuracy (up to 2 mm) and our method’s average pointwise

registration error (2.70 mm). For the accuracy of the key

structural parameters, we assessed the Absolute Error (AE) for

each individual sample, calculated against its ground-truth value.

The results, summarized in Table 4, confirm that our efficient

approach yields high-fidelity models suitable for subsequent
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phenotyping tasks. Specifically, in terms of completeness, the two-

station models achieved an average coverage rate of 95.6%,

indicating that the vast majority of the tree’s structure is

successfully captured. Furthermore, the accuracy of the extracted

parameters is exceptionally high. The Mean Absolute Error (MAE)

for tree height was only 0.03 cm (RMSE 0.04 cm), for basal trunk

diameter it was 0.11 cm (RMSE 0.14 cm), and for the maximum

primary branch diameter, the MAE was just 0.17 cm (RMSE 0.18

cm). The close agreement between the MAE and RMSE values is

particularly noteworthy, as it indicates a uniform error distribution

without significant outliers, which speaks to the stability and

reliability of the proposed method.

These results provide strong quantitative evidence that the

models produced by our proposed method successfully balance
FIGURE 10

Fine registration results. (A) S4 (blue) to S1 (red) for Trees #1-#10. (B) S3 (green) to S2 (yellow) for Trees #1-#10; registration failed for Tree #3 and
Tree #6.
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acquisition efficiency with reconstruction accuracy, making them

highly valuable for practical applications in precision agriculture.
4.2 Comparison with alternative strategies
and methods

To comprehensively validate the effectiveness of low-overlap

point cloud registration for two stations 180° apart, we compare its

results with those of high-overlap multi-station registration and

other registration algorithms.

4.2.1 High-overlap multi-station registration
For multi-station high-overlap registration, we employ a

cumulative registration strategy. As shown in Figure 11, for three-

station registration, using S1 as the target, S3 and S4 are sequentially

aligned: first, S3 to S1; then, S4 to the combined S1+S3’

(transformed S3). Similarly, four-station registration aligns S2-S3-

S4 to S1 sequentially. This strategy starts with small-angle
Frontiers in Plant Science 14
viewpoints and progressively accumulates aligned point clouds,

ensuring high overlap.

Tree #4 is used as an example to visually compare the results of

two-, three-, and four-station registrations (Figure 11). While multi-

station registration slightly reduces errors and improves point cloud

completeness, the improvement is minimal. In practical orchard

settings, the two-station registration already captures nearly all

parts of the tree, including detailed features, and is sufficient for

various subsequent analyses.

Additionally, a comparison is made between two-station

registration and cumulative registration with three- and four-

station for all 10 trees in the dataset. Table 5 presents the

recorded results for three key alignment quality metrics, along

with the average total time required for the entire process

(including all registration steps):

As shown in Table 5, three- and four-station registrations

reduce pointwise errors by only 0.41 mm and 0.39 mm compared

to two-station registration. The success rate remains unchanged for

the three-station setup, while it even decreases for the four-station
TABLE 3 Statistics on fine registration error.

Case Tree ID
Matrix-based errors Pointwise errors

eR (mrad) et (mm) ep-x (mm) ep-y (mm) ep-z (mm) ep (mm)

S1-S4

#1 0.97 3.53 2.08 1.37 0.22 2.52

#2 1.74 3.93 2.26 0.45 0.44 2.38

#3 1.30 3.11 2.56 0.32 0.27 2.62

#4 3.58 6.08 3.21 1.71 1.61 4.14

#5 1.65 4.77 1.35 0.43 1.21 1.90

#6 1.74 3.13 0.67 1.42 1.61 2.41

#7 1.31 3.84 1.55 1.12 0.20 2.01

#8 1.30 1.15 2.24 0.80 1.10 2.65

#9 2.68 6.04 1.78 0.47 0.55 2.06

#10 1.48 4.64 1.30 0.96 2.52 3.04

S2-S3

#1 1.54 3.30 1.90 1.69 0.40 2.59

#2 3.00 7.94 2.99 2.64 1.00 4.20

#3 – – – – – –

#4 1.54 1.46 0.63 1.46 1.20 2.09

#5 0.86 3.85 3.23 0.45 0.59 3.33

#6 – – – – – –

#7 2.43 6.44 0.89 1.41 1.82 2.69

#8 1.37 2.84 0.20 0.44 0.95 1.11

#9 3.27 7.30 2.83 1.85 0.78 3.55

#10 2.90 4.53 1.05 2.09 2.04 3.35

Average 1.93 4.33 1.82 1.17 1.03 2.70
eR and et represent the rotation and translation errors, respectively.
ep-x, ep-y, and ep-z represent the pointwise error in each direction, i.e., the error in the coordinates of the points along the x, y, and z axes. while ep denotes the pointwise error.
“-” denotes registration failure.
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configuration. Meanwhile, registration time nearly doubles,

highlighting the significant computational complexity and time

cost escalation with increasing input point clouds.

In theory, adding stations with smaller angular differences can

increase local overlap and substantially improve registration

performance. However, in our experiments, such improvements

were minimal. This is primarily due to the robustness of the

proposed BranchMatch algorithm under low-overlap conditions.

By leveraging structurally stable features—particularly the trunk

and key branch segments—the method achieves reliable matching

even with two diametrically opposed scans, enabling accurate

transformation estimation. Under such conditions, the structural

benefits gained from additional viewpoints are significantly reduced,
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which further demonstrates the efficiency of the two-station strategy.

In addition, further analysis shows that multi-station registration,

while benefiting from higher overlap, introduces cumulative errors.

As the number of stations increases, early-stage errors are amplified,

potentially disrupting branch matching and lowering the overall

success rate. In this study, errors and failures were most frequently

observed at the final station, further highlighting the negative impact

of cumulative errors. Therefore, while multi-station registration

improves point cloud completeness, its accuracy gains are limited

or even diminished, with increased computational costs and

reduced robustness.

In summary, the proposed method achieves high success rates

by matching structural features, even with high-overlap data,
TABLE 4 Comparison of key structural parameters extracted from the two-station model vs. the four-station ground-truth model.

Tree ID

Completeness
(%)

AE. Tree height (cm)
AE. Basal Trunk Diameter

(cm)
AE. Max. Branch Diameter

(cm)

S1-S4 S2-S3 S1-S4 S2-S3 S1-S4 S2-S3 S1-S4 S2-S3

#1 95.88 96.59 0.02 0.05 0.16 0.18 0.21 0.20

#2 94.87 96.29 0.06 0.03 0.10 0.25 0.27 0.23

#3 94.76 – 0.07 – 0.09 – 0.12 –

#4 96.14 95.09 0.04 0.01 0.13 0.20 0.15 0.11

#5 98.38 96.76 0.04 0.05 0.28 0.01 0.06 0.31

#6 92.97 – 0.05 – 0.06 – 0.11 –

#7 95.63 96.58 0.01 0.05 0.08 0.06 0.24 0.11

#8 95.36 96.86 0.02 0.03 0.03 0.04 0.13 0.05

#9 96.01 93.22 0.03 0.04 0.11 0.18 0.18 0.16

#10 94.69 94.31 0.04 0.03 0.08 0.07 0.19 0.21

Avg 95.58 0.03 0.11 0.17
AE stands for Absolute Error, calculated as the absolute difference between the two-station and four-station model values. The “Avg” row represents the Mean Absolute Error (MAE) for
structural parameters of all successful registrations. “-” denotes registration failure.
FIGURE 11

Registration results for Tree #4. (A) Two-station. (B) Three-station. (C) Four-station.
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demonstrating adaptability to varying overlap conditions. Besides,

given the 90% success rate and higher time costs of multi-station

registration, two-station registration offers a better efficiency-

accuracy balance.

4.2.2 Other registration algorithms
To further validate the performance of our method, we

conducted a direct comparison with several state-of-the-art

(SOTA) registration algorithms on our Apple-Trees dataset. This

was necessary due to the lack of publicly available point cloud

datasets of trees captured from opposing, low-overlap viewpoints.

We selected two representative deep learning-based methods,

GCNet (a SOTA method on the 3DMatch dataset) (Zhu et al.,

2022) and GeoTransformer (a SOTA method on the 3DLoMatch

dataset) (Qin et al., 2022), as well as a robust traditional baseline,

SAC-IA + ICP (using a standard ICP algorithm) (Rusu et al., 2009).

For GCNet, we used the official 3DMatch pre-trained model.

The model employs a 4-layer KPConv encoder. It was trained for 40

epochs with a batch size of 1, using a voxel downsampling size of 1

cm and 256 sampled key points per fragment. A multi-stage GNN

with 256-dimensional intermediate features and a cross-attention

module is used to perform fine-grained correspondence estimation.

For GeoTransformer, we also used its official 3DMatch pre-trained

model. This model utilizes a 4-stage KPConv-FPN backbone with a

2.5 cm voxel size to extract 256-dimensional superpoint features. It

was trained for 40 epochs using an Adam optimizer with an

exponential decay learning rate schedule (g = 0.05).

GeoTransformer performs coarse-to-fine matching via a global

transformer with geometry-invariant structural embeddings,

followed by local refinement. As a traditional baseline, we

implemented SAC-IA + ICP. For this method, the point cloud

was downsampled with a 1 cm voxel size, normals were estimated

with a 2 cm radius, and the FPFH feature radius was set to 5 cm. All

methods used the same preprocessed data to ensure a fair

comparison, and the results are summarized in Table 6.

The results clearly demonstrate the superior accuracy of

BranchMatch in the specific domain of single-tree, low-overlap

registration. The deep learning methods, particularly GCNet which

is trained primarily on high-overlap indoor scenes, exhibited the

largest errors. GeoTransformer, which includes optimizations for

low-overlap scenarios, performed best among the learning-based

approaches. The traditional SAC-IA method, while not requiring

large-scale training data, still showed a significant accuracy gap

compared to BranchMatch. This performance gap can be attributed
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to a fundamental difference in approach that BranchMatch

leverages domain-specific structural knowledge, whereas the

SOTA methods are general-purpose feature matchers.

The deep learning methods, trained on generic datasets, and

SAC-IA, which relies on local FPFH features, both struggle in this

challenging low-overlap scenario. This is because the severe

viewpoint change between 180° scans results in very few

repeatable local geometric patterns, and the inherent self-

similarity of branches creates significant matching ambiguity for

these general-purpose descriptors. This underscores the

effectiveness of our structure-based feature matching strategy in

achieving high-precision alignment where other general-purpose

methods struggle.

What’s more, due to the limitation of parameter sensitivity, we

also compare our results directly with those SOTA methods target

the tree point cloud registration methods reported in

existing literature.

Ma et al. (2021) developed a 3D reconstruction platform using

two depth cameras, generating high-quality single-view point

clouds based on recorded poses. Their automatic registration

method, leveraging global skeleton extraction, achieved sub-1 mm

pointwise errors for 55°-separated point clouds across various

weather conditions. However, multi-station data were still

required for complete tree reconstruction. For 180°-separated

point clouds, their method achieved an average error of 2.61 mm

(variance: 4.40 mm), while our method achieved 2.70 mm (variance:

0.59 mm), demonstrating superior robustness. Unlike their global

skeleton extraction, BranchMatch focuses on key segment

extraction, improving efficiency and accuracy. This design excels

in complex branching scenarios, avoiding global extraction errors
TABLE 5 Comparison of two-station low overlap registration and multi-station high overlap registration results.

Experiment setup Success rate
Avg. matrix-based errors Avg. pointwise error Avg. time

eR (mrad) et (mm) ep (mm) t (s)

two-station 90.00% 1.93 4.33 2.70 165.18

three- station 90.00% 1.72 3.76 2.29 380.04

four-station 80.00% 2.07 4.64 2.31 586.91
When calculating the average values for all metrics, failed cases are excluded. eR, et, and ep represent the average rotation error, translation error, and pointwise error, respectively.
TABLE 6 Comparison with SOTA registration methods on the Apple-
Trees dataset.

Method

Avg. matrix-based
errors

Avg. pointwise
error

eR (mrad) et (mm) ep (mm)

GCNet 21.77 48.17 20.05

GeoTransformer 9.54 18.63 7.48

SAC-IA + ICP
(original)

9.50 27.65 16.78

BranchMatch(ours) 1.93 4.33 2.70
Bold values denote the best result among all compared methods for the corresponding metric.
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and enhancing robustness. Additionally, BranchMatch requires no

specialized equipment or positional data, offering greater flexibility

in data collection.

We further compared our method with the forest plot-scale

registration approach of Wang X. et al. (2023) to highlight the

different design trade-offs for distinct applications. Their stem-

map-based method is optimized for plot-scale efficiency,

achieving high computational speed with a corresponding

accuracy of approximately 10 mm, which is well-suited for large-

area inventory. In contrast, our BranchMatch algorithm is tailored

for single-tree fidelity, intentionally prioritizing millimeter-level

accuracy (~2.7 mm) for precision tasks like robotic pruning,

where per-tree detail is critical. Furthermore, our method’s

demonstrated success in registering point clouds with low overlap

and in complex branching scenarios significantly expands the

applicability of high-precision, single-tree registration, providing

the superior accuracy and adaptability required for advanced

precision applications.
4.3 Limitations

A potential limitation, common to registration methods that

rely on fitting geometric primitives to real-world data, is their

theoretical susceptibility to error propagation. In our approach,

for instance, minor viewpoint-dependent variations—such as those

introduced by topographic inconsistencies—may result in small

discrepancies in the estimated ground plane across scans. These

initial deviations can propagate through subsequent steps,

potentially affecting the localization of trunks and key branches.

Such propagation may influence feature-based thresholding,

thereby increasing the risk of branch matching failures under

certain conditions.

Additionally, the BranchMatch method employs several

empirical thresholds (e.g., for cylindrical fitting and branch

features) tailored to the standardized architectural properties of

tall-spindle apple trees. Although these values were determined

through data-informed tuning and conservatively selected to

accommodate noise and natural variation, their optimality may

still vary with different data quality or sensor characteristics. This

represents a common limitation of parameter-dependent methods,

and future work could thus explore adaptive thresholding strategies

to enhance the method’s robustness and generalizability across

diverse scenarios.
5 Conclusion

This paper introduces BranchMatch, a high-precision and rapid

3D point cloud reconstruction method tailored for individual tall-

spindle apple trees during their dormant period. The method

focuses on marker-free point cloud registration in low-overlap

scenarios. The core of this research lies in the accurate

identification and utilization of critical geometric structural
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features of the apple tree. By employing a structure features-based

strategy and incorporating a dynamic weighted feature

discrimination function, BranchMatch enables precise matching

of key point cloud features, even in cases of complex tree trunks and

branches with low overlap. Furthermore, an ICP algorithm

optimized for low-overlap registration enhances both efficiency

and accuracy, preventing over-registration and further boosting

the method’s robustness.

Experimental results demonstrate the outstanding performance

of BranchMatch in terms of both accuracy and efficiency.

Compared to traditional marker-based registration methods,

BranchMatch achieves an average pointwise error of 2.70 mm

with a variance of 0.59 mm. In terms of computational efficiency,

the method only requires two point clouds captured 180° apart to

reconstruct a nearly complete tree model, outperforming traditional

multi-view, high-overlap registration methods. This makes it highly

suitable for large-scale orchard applications. Testing on the Apple-

Trees dataset further confirms the method’s adaptability and

robustness, laying a strong foundation for the future deployment

of automated orchard management systems.

In conclusion, BranchMatch provides a promising solution for

accurate 3D modeling of dormant, tall-spindle apple trees in

complex agricultural environments. By reducing the number of

measurement stations and overcoming the challenges posed by low-

overlap views, the method significantly improves data acquisition

and processing efficiency. Future work will focus on broadening the

applicability of the proposed method to include registration tasks

involving multiple types of individual fruit trees, entire orchard-

scale or forest-plots datasets, assessing its robustness across a wider

range of conditions, and validating its adaptability across data

acquired from sensors with different precision levels. Additionally,

when integrated with dynamic orchard management monitoring,

this approach could provide extensive data support and technical

solutions for smart agriculture and forestry.
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