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1 Introduction

Leaf senescence, the orchestrated degradation of cellular and tissue components that

precipitates aging and eventual death, represents an adaptive mechanism allowing plants to

efficiently reallocate resources and respond to fluctuating environmental conditions (Woo

et al., 2019; Guo et al., 2021; Ahmad et al., 2024). The onset of senescence is marked by

chlorophyll degradation, leading to leaf yellowing, a process driven by extensive metabolic

reprogramming at various stages of senescence (Woo et al., 2019). Plants have developed

intricate signaling networks to sense senescence-related cues, including abiotic and biotic

stressors, age, and developmental signals. Consequently, an array of regulatory pathways,

encompassing epigenetic modifications, (post) transcriptional, and (post) translational

regulations, are activated (Woo et al., 2019; Guo et al., 2021; Zhang et al., 2021).

Senescence-associated genes (SAGs) serve as pivotal key hubs in transmitting senescence

signals, and their expression and function are regulated by multiple transcription factor

(TF) families, such as WRKYs and NACs (Bengoa Luoni et al., 2019; Cao et al., 2023;

Ahmad et al., 2024). However, the precise molecular mechanism underlying leaf senescence

is still largely unexplored.

Phytohormones are pivotal in modulating leaf senescence and can be categorized into

senescence promoters and retardants (Jibran et al., 2013; Guo et al., 2021; Asim et al., 2023).

Besides these well-established roles of phytohormones, small signaling peptides have

emerged as indispensable regulators in various aspects of plant developmental and

adaptive processes (Xie et al., 2022; Ji et al., 2025; Xiao et al., 2025; Zhang et al., 2025).

Typically composed of fewer than 100 amino acids, small signaling peptides are usually

synthesized in the cytoplasm as prepropeptides, and they undergo processing or post-

translational modifications in the endoplasmic reticulum (ER) and Golgi apparatus.

Subsequently, they are transported to the apoplast, where they execute their

physiological functions (Olsson et al., 2019). Then apoplast localized small signaling

peptides are usually recognized by their specific membrane-bound receptors or co-

receptors that usually belongs to the leucine-rich repeat receptor-like kinases (LRR-

RLKs) family (Ji et al., 2025; Xiao et al., 2025; Zhang et al., 2025). The peptide-receptor
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module orchestrates either long-distance or local signaling cascades,

thereby modulating developmental and adaptive responses through

multiple regulatory mechanisms, including (post) transcriptional,

(post) translational, and epigenetic modifications (Ji et al., 2025;

Xiao et al., 2025; Zhang et al., 2025). Research has demonstrated

that small signaling peptides from Arabidopsis thaliana such as

CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED

(CLE) (Han et al., 2022; Zhang et al., 2022a, 2022b), SERINE-

RICH ENDOGENOUS PEPTIDE (SCOOPs) (Zhang et al., 2024a),

PHYTOSULFOKINE (PSK) (Yamakawa et al., 1999; Matsubayashi

et al., 2006; Komori et al., 2009), and INFLORESCENCE

DEFICIENT IN ABSCISSION-LIKE6 (IDL6) (Guo et al., 2022)

are integral in managing leaf senescence by modulating distinct

signaling pathways, thereby providing novel mechanistic insights

into the regulation of leaf senescence.
2 CLE peptides delay leaf senescence
via ethylene and ROS pathways

CLE proteins generally possess an N-terminal signal sequence

that guides them into the secretory pathway, a central variable

domain, and one or multiple conserved CLE motifs at the C-

terminus, which are typically post-translationally modified to

produce functional polypeptides (Fletcher, 2020; Xie et al., 2022).

Transcriptomic analyses indicate differential expression of CLE

genes in mature and senescent leaves, implying their involvement

in leaf senescence (Lyu et al., 2019; Han et al., 2022). Specifically,

CLE14 and CLE42 peptides are crucial in delaying leaf senescence

(Zhang et al., 2022a, 2022b). The expression level of CLE14 and

CLE42 is induced by multiple senescence clues, such as salinity,

drought, and darkness (Zhang et al., 2022a, 2022b). Mutants

deficient in CLE14 or CLE42 gene function exhibit early leaf

senescence, whereas transgenic plants overexpressing CLE14 or

CLE42 genes show delayed senescence (Zhang et al., 2022a,

2022b). Exogenous application of synthetic 12-amino-acid CLE

motifs can mimic the endogenous functions of CLE peptides

(Zhang et al., 2019; Kang et al., 2022). Similarly, leaves treated

with synthetic CLE14 or CLE42 peptides also display a delayed

senescence phenotype (Zhang et al., 2022a, 2022b). Notably, CLE14

and CLE42 peptides activate distinct signaling pathways to

modulate leaf senescence (Figure 1A) (Zhang et al., 2022a,

2022b). CLE14 peptide upregulates the expression of

JUNGBRUNNEN1 (JUB1), a NAC family transcription factor,

which in turn enhances the expression of reactive oxygen species

(ROS) scavenging genes, thereby reducing ROS levels and delaying

senescence (Zhang et al., 2022a). Conversely, CLE42 peptide

downregulates the expression of ACC synthases (ACSs), key

enzymes in ethylene biosynthesis, resulting in lower ethylene

levels (Zhang et al., 2022b). The decreased ethylene level in leaves

leads to the accumulation of EIN3-BINDING F-BOX (EBF)

proteins, which mediate the degradation of ETHYLENE-

INSENSITIVE3 (EIN3) protein via the proteasome pathway (Guo

and Ecker, 2003), thereby impairing EIN3 function and ethylene
Frontiers in Plant Science 02
responses, ultimately delaying leaf senescence (Figure 1A). The

LRR-RLK PHLOEM INTERCALATED WITH XYLEM (PXY)

partially transmits CLE42 signal to regulate leaf senescence.

Overall, CLE peptides modulate leaf senescence through distinct

signaling mechanisms (Figure 1A) (Han et al., 2022; Zhang et al.,

2022a, 2022b).
3 SCOOP peptides antagonistically
regulate leaf senescence

SCOOPs are classified into the phytocytokine peptide family.

The precursors of SCOOPs, known as PROSCOOPs, undergo

proteolytic processing at the N-terminus to yield the bioactive C-

terminal SCOOP peptides (Gully et al., 2019). In Arabidopsis

thaliana genome, over 50 SCOOP peptide members have been

identified (Yang et al., 2023), and they play pivotal roles in plant

immune responses (Gully et al., 2019; Hou et al., 2021; Rhodes et al.,

2021; Stahl et al., 2022; Jia et al., 2024; Wu et al., 2024), root

development (Guillou et al., 2022a; Wang et al., 2024), flowering

timing (Guillou et al., 2022b), and leaf senescence (Zhang et al.,

2024a; Brusslan, 2025). PROSCOOP expression varies at different

stages of leaf development, with PROSCOOP10 showing

upregulated expression at early senescence stage, while

PROSCOOP12 being markedly upregulated in later senescence

stages, indicating their roles in leaf senescence process (Zhang

et al., 2024a). Mutations in PROSCOOP10 results in delayed leaf

senescence, while exogenous application of synthetic SCOOP10

peptide induces premature senescence (Zhang et al., 2024a).

Furthermore, overexpression of PROSCOOP10 similarly promotes

premature senescence. Conversely, application of synthetic

SCOOP12 peptide or overexpression of PROSCOOP12 delays

senescence, suggesting antagonistic functions of SCOOP10 and

SCOOP12 peptides in leaf senescence regulation (Zhang

et al., 2024a).

The LRR-RLK receptor , MALE DISCOVERER 1-

INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2), has been

identified as a receptor for SCOOP10 and SCOOP12 peptides (Hou

et al., 2021; Rhodes et al., 2021). MIK2 is predominantly expressed

in senescing leaves. The mik2 mutant exhibits accelerated

senescence, while MIK2 overexpression transgenic lines show

delayed senescence, indicating that MIK2 is crucial for leaf

senescence (Zhang et al., 2024a). Microscale thermophoresis

(MST) assays corroborate the competitive binding of SCOOP10

and SCOOP12 peptides to MIK2 receptor. Further investigations

reveal that SCOOP10 peptide inhibits MIK2 phosphorylation,

whereas SCOOP12 peptide enhances MIK2 phosphorylation.

Additionally, SCOOP12 peptide suppresses the expression of

SAGs-induced and MIK2 phosphorylation by SCOOP10

peptide. Collectively, SCOOP12 peptide antagonizes SCOOP10

peptide by modulating MIK2 phosphorylation and senescence

signaling pathways during late senescence stages, thereby finely

regulating the leaf senescence process (Figure 1A) (Zhang

et al., 2024a).
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4 PSK and IDA peptides participate in
leaf senescence regulation

PSKs constitute a group of disulfated pentapeptides,

encompassing four bioactive variants: PSK-a, -g, -d, and -e. These
peptides are perceived by plasma membrane-localized receptors,

known as PSK RECEPTORs (PSKRs), to modulate various

physiological processes including cellular proliferation and

expansion, plant reproduction, somatic embryogenesis, regeneration,

legume nodulation, leaf senescence, and stress resilience against biotic

and abiotic clues (Yamakawa et al., 1999; Matsubayashi et al., 2006; Li

et al., 2024). Exogenous application of the PSK-a peptide has been

observed to delay leaf senescence, potentially by regulating chlorophyll
Frontiers in Plant Science 03
integrity (Figure 1A) (Yamakawa et al., 1999). Mutation of PSKR

receptor accelerates the senescence process (Matsubayashi et al., 2006).

Nonetheless, conflicting evidence exists concerning the involvement of

PSKR1 receptors in leaf senescence (Matsubayashi et al., 2006; Yadav

et al., 2024). Crucially, the bioactivation of PSK peptides necessitates

tyrosine sulfation, catalyzed by the transmembrane enzyme

tyrosylprotein sulfotransferase (TPST). Consequently, a loss-of-

function mutation in TPST precipitates premature leaf senescence,

mirroring the effects observed with PSK peptide application

(Yamakawa et al., 1999; Matsubayashi et al., 2006; Komori et al., 2009).

The IDA/IDL peptides, initially identified for their critical role in

organ abscission, are also implicated in various biological processes,

including responses to biotic and abiotic stress (Wang et al., 2023).
FIGURE 1

Small signaling peptides regulate leaf senescence. (A) In leaf cells, the leaf senescence associated small signaling peptides are synthesized in
cytoplasm and undergo processing or post-translational modifications in the endoplasmic reticulum (ER) and Golgi apparatus. Subsequently, they
are transported to the apoplast, where they execute their physiological functions. Unknown receptors detect the CLE14 signal, leading to the
transcriptional activation of JUB1 expression. JUB1 subsequently enhances the transcription of ROS scavenging genes such as CAT3, APX1, and
APX3, resulting in a reduction of ROS levels and a postponement of leaf senescence. CLE42 interacts with PXY and unidentified receptors to inhibit
ACS2 expression, thereby decreasing ethylene levels. The reduced ethylene content induces the accumulation of EBF1 proteins, which disrupt the
function of EIN3 and ethylene responses, ultimately delaying leaf senescence. PSKR1 recognizes the PSK peptide signal to delay leaf senescence via
undefined mechanisms. SCOOP10 and SCOOP12 peptides antagonistically regulate leaf senescence in a MIK2-phosphorylation dependent manner.
During the early stage of leaf senescence, the SCOOP10 peptide inhibits the biosynthesis of the SCOOP12 peptide. Subsequently, SCOOP10 directly
binds to the receptor MIK2, inhibiting its phosphorylation and induces the SAGs expression, thereby promoting the senescence process. At the later
stages, PROSCOOP12 is translated and processed into the SCOOP12 peptide. The SCOOP12 peptide then outcompetes the binding of SCOOP10
with MIK2, facilitating MIK2 phosphorylation and suppresses the SAGs expression, consequently delaying leaf senescence. The IDL6 peptide
modulates leaf senescence via transcriptional regulation of WRKY TFs through unidentified receptors. Abscisic acid (ABA) and ethylene also activate
IDL6 signaling to influence leaf senescence. (B) Expression profiles of genes encoding LRR-RLKs and RAPID ALKALINIZATION FACTORs (RALFs),
PLANT PEPTIDE CONTAINING SULFATED TYROSINE1 (PSY1), ROOT MERISTEM GROWTH FACTORs (RGFs), and ELICITOR PEPTIDE PRECURSORs
(PROPEPs). Data is sourced from Lyu et al., 2019, and the heatmap is generated using TBtools (Chen et al., 2023b) with the average log FPKM values.
P: phosphorylation. Dashed line means indirect regulations.
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IDL6 transcription is markedly upregulated in leaves during both early

and late senescence stages, indicating its involvement in leaf

senescence (Guo et al., 2022). The idl6 loss-of-function mutant

exhibits a pronounced delay in leaf senescence, and this delayed

senescence phenotype can be reversed by reintroducing the IDL6

gene into idl6 mutant plants. In contrast, leaves overexpressing IDL6

or treated with exogenous synthetic IDL6 peptide display an early

senescence phenotype. Transcriptomic analysis reveals thatWRKY53,

WRKY38, and WRKY62 TFs may act downstream of IDL6 in

promoting leaf senescence. Additionally, IDL6 may also play a role

in abscisic acid (ABA) and ethylene-mediated acceleration of leaf

senescence (Figure 1A) (Guo et al., 2022).
5 Future perspectives

Leaf senescence represents an essential evolutionary strategy

that enhances plant fitness and survival by facilitating nutrient

remobilization to support the growth of sink organs, such as roots,

stems, and flowers (Woo et al., 2019; Guo et al., 2021; Ahmad et al.,

2024). While these studies have elucidated the intricate roles of

small signaling peptides in leaf senescence (Figure 1A), several

unresolved questions remain to be explored in future researches.

The answers to these questions will accelerate the application of

small signaling peptides in agriculture to recycle of the nutrients.
Fron
1. Characterization of novel small signaling peptides in leaf

senescence. The expression level of several small signaling

peptide genes, such as RAPID ALKALINIZATION

FACTORs (RALFs), PLANT PEPTIDE CONTAINING

SULFATED TYROSINE1 (PSY1), ROOT MERISTEM

GROWTH FACTORs (RGFs), and ELICITOR PEPTIDE

PRECURSORs (PROPEPs) are also regulated during

senescence (Figure 1B) (Lyu et al., 2019), indicating the

presence of unidentified small signaling peptides involved

in the regulation of leaf senescence. Mass spectrometry

(MS) is a reliable method to identify and verify most

peptide members in plants. However, MS has limitations

in detecting low-abundance peptides in plants. Mass

spectrometry imaging (MSI) techniques offer advanced

capabilities with superior sensitivity and high spatial

resolution, enabling the visualization of the spatial

distribution of small peptides at various stages of leaf

senescence, even at single-cell resolution (Garcıá-Rojas

et al., 2024; Petr ̌ıḱ et al., 2024; Zhang et al., 2024b).

Integrating MSI with MS techniques will facilitate the

identification of previously uncharacterized small

signaling peptides involved in leaf senescence.

2. How to maintain the homeostasis of small signaling

peptides during leaf senescence? Plants synthesize a

multitude of small signaling peptides (Xie et al., 2022; Ji

et al., 2025; Xiao et al., 2025; Zhang et al., 2025) as well as

noncanonical peptides (NCPs) (Wang et al., 2020; Pei et al.,
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2022; Sami et al., 2024). These peptides appear to play

synergistic or antagonistic roles in leaf senescence

(Figure 1A), although their interactions in leaf senescence

are not clear. Therefore, it is crucial to understand how

plants precisely regulate the levels of these small signaling

peptides to achieve optimal cellular responses to senescence

cues. Notably, the specific function of NCPs in the process

of leaf senescence necessitates additional in-depth

investigation in future. In addition, the application of

PSK peptide has been shown to delay the senescence of

fruits (Aghdam et al., 2021a) and cut flowers (Aghdam

et al., 2021b), indicating a conserved regulatory function of

PSK peptide in senescence mechanisms. Remarkably,

numerous homologs of these senescence-associated small

signaling peptides have been identified across various plant

species (Ji et al., 2025; Zhang et al., 2025). Nevertheless,

their biological roles in the modulation of senescence

processes in other plant species remain to be elucidated.

3. Identification of novel receptors. Typically, plasma

membrane localized LRR-RLK receptors are capable of

perceiving small signaling peptides, thereby modulating

an array of signaling pathways (Furumizu and Aalen,

2023; Ji et al., 2025; Xiao et al., 2025; Zhang et al., 2025).

A couple of LRR-RLKs encoding genes, such as BARELY

ANY MERISTEMs (BAMs) and CLAVATA1 (CLV1) are

(de)activated in senescent leaves (Figure 1B), implying that

these receptors might convey CLE, SCOOP, IDL6, or PSK

signals to regulate leaf senescence. But their roles in leaf

senescence requires further investigations. Moreover, 4-

azidosalicylic acid-labeled peptides and CRISPR-based

genetic screening systems present opportunities for the

identification of novel receptors specific to leaf

senescence-related small signaling peptides, with high

specificity and throughput (Shinohara and Matsubayashi,

2017; Gaillochet et al., 2021). Additionally, various in vitro

analytical techniques, employing either labeled or label-free

ligands, can be utilized to validate interactions between

small signaling peptides and their corresponding receptors

(Sandoval and Santiago, 2020).

4. Construction of regulatory networks at the (post)

transcriptional and (post)translational levels. As

mentioned, the intricate signaling pathways involved in

small signaling peptides-mediated leaf senescence

regulation remain largely elusive (Figure 1A). Recently, a

comprehensive single-cell RNA sequencing (scRNA-seq)

transcriptomic analysis has facilitated the identification of

pivotal hub genes that governs leaf senescence (Guo et al.,

2025). Spatial transcriptomic technologies enable the

precise localization and quantification of spatial gene

expression across various plant tissues and developmental

stages (Yin et al., 2023; Sang and Kong, 2024). These

advanced RNA-seq methodologies will uncover

differentially expressed gene clusters that specifically
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respond to leaf senescence-related small signaling peptides.

Post-translational modifications (PTMs) of proteins,

including acetylation, crotonylation, glycosylation, lysine

lactylation, methylation, phosphorylation, SUMOylation,

and ubiquitylation, are ubiquitous in diverse biological

processes, ensuring rapid and tight regulation of signal

transduction and cellular responses during leaf senescence

(Woo et al., 2019; Zhang et al., 2021; Guo et al., 2021). The

advent of 4D proteomics (Chen et al., 2023a; Hao et al., 2023)

allows for in-depth proteomic exploration with high speed,

robustness, sensitivity, and selectivity. This technique will

offer crucial insights into protein abundance, stability, and

post-translational modifications in leaf senescence (Han et al.,

2022). Furthermore, epigenetic regulation plays a vital role in

leaf senescence (Ostrowska-Mazurek et al., 2020; Zhang et al.,

2021; Miryeganeh, 2022; Jeong et al., 2025). CRISPR-based

epigenetic tools, such as CRISPR interference (CRISPRi),

CRISPR/dCas9 activation (CRISPRa), and CRISPR-dCas9-

DNMT3A (Jogam et al., 2022; Liu et al., 2022; Qi et al., 2023),

can be employed to investigate the effects of small peptides on

senescence-related gene expression and epigenetic

regulations. In summary, leveraging advanced RNA-seq and

proteomic technologies will facilitate the construction of

unprecedented transcriptional and protein networks

mediated by small signaling peptides that control

leaf senescence.

5. How small signaling peptides integrate phytohormones and

environmental cues. Leaf senescence can be triggered by

various abiotic factors such as light, circadian rhythms,

drought, salinity, nitrogen deprivation, and high

temperatures (Woo et al., 2019; Tan et al., 2023; Wang

et al., 2025; Vander Mijnsbrugge et al., 2025). The reported

data primarily elucidated the biological functions of these

small signaling peptides in the regulation of age-dependent

leaf senescence. Importantly, the transcriptional levels of

CLE14/CLE42, IDL6, PROSCOOP10/12 were induced in

response to environmental stressors associated with

senescence, such as drought, salinity, and darkness (Guo

et al., 2022; Zhang et al., 2022a, 2022b; Zhang et al., 2024a).

This suggests that senescence associated small signaling

peptides may be involved in stress-induced leaf senescence,

although further research is warranted to confirm their

interactions. Moreover, phytohormones are pivotal in

modulating leaf senescence via intricate interactions (Guo

et al., 2021; Zhang et al., 2021; Huang et al., 2022). Notably,

small signaling peptides are implicated in the response to

phytohormones (Morcillo et al., 2024; Wang et al., 2024;

Chen et al., 2025; Ji et al., 2025; Mou et al., 2025). This may

indicate that senescence associated small signaling peptides

may also serve as crucial integrators to link with hormonal

pathways to regulate leaf senescence. Nonetheless, the

precise mechanisms remain to be elucidated.
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Garcıá-Rojas, N. S., Sierra-Álvarez, C. D., Ramos-Aboites, H. E., Moreno-Pedraza,
A., and Winkler, R. (2024). Identification of plant compounds with mass spectrometry
imaging (MSI). Metabolites 14, 419. doi: 10.3390/metabo14080419

Guillou, M. C., Balliau, T., Vergne, E., Canut, H., Chourré, J., Herrera-León, C., et al.
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