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Artificial intelligence for science is a methodology that integrates artificial
intelligence into scientific research to improve the precision and efficiency of
data analysis and experimental processes. Specifically in potato late blight severity
grading, due to the demand for both accuracy and cost-effective deployment,
traditional methods are limited by subjective evaluation and timeconsuming
manual measurement. In this paper, a lightweight grading model based on an
enhanced YOLOv8-UNet3Plus network is proposed to enable objective and
accurate potato late blight severity grading. In detail, the YOLOV8 network is
optimized by integrating Spatial and Channel Reconstruction Convolution module,
Bi-directional Feature Pyramid Network and Powerful-loU loss, the UNet3Plus
network is optimized by embedding Ghost convolution and Multi-Scale Local
Response Attention. Experiments on real-world potato late blight datasets
demonstrate that our model achieves an precision of 95.73% for leaf localization
and an mean Intersection over Union of 82.65% for infected region segmentation
with reduced parameters and computational cost. This Al4Science-based model
provides an effective solution for potato late blight severity grading.

KEYWORDS

Al for science, potato late blight, lightweight model, feature fusion, plant disease
phenotyping, deep learning

1 Introduction

In recent years, artificial intelligence for science (AI4Science) has transformed the
scientific facility fundamental research and achieved numerous breakthroughs in many
frontier fields (Wang et al., 2023; Xu et al,, 2021). Through deeply integrating the latest
artificial intelligence with scientific methods, this approach advances the analysis and
processing of complex scientific data in different fields, such as biological sciences
(Bhardwaj et al., 2022), plant disease (Shoaib et al., 2023) et al. Currently, the
application of Al4Science has shown remarkable potentials in the field of plant disease
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phenotype data research, particularly for diseases such as potato late
blight (Mohanty et al., 2016; Kamilaris and Prenafeta-Boldu, 2018).

Potato late blight, caused by Phytophthora infestans, is a severe
disease that affects global agricultural production, leading to annual
yield losses of 20%-30% (Fry et al., 2015). To mitigate these severe
agricultural losses and develop resistant varieties (Lu et al., 2021),
precise grading of late blight severity is essential for effective disease
management and breeding programs (Elumalai and Faritha Banu,
2023). However, conventional manual grading methods are time-
consuming and highly dependent on subjective experience, which
increases grading costs and leads to inconsistent evaluation results.
Compared with manual grading limitations, AlI4Science could
combine advanced data processing techniques and intelligent
analysis methods to improve the accuracy of potato late blight
severity grading (Li et al., 2022; Yang et al., 2024a).

As one of the core technologies of Al4Science, deep learning has
demonstrated notable advantages in plant disease research with its
efficient high-dimensional data processing and automatic feature
learning capabilities. Based on these advantages, recent advances in
deep learning have brought various powerful models for plant
disease research, including HRNet (Wang et al., 2019), ConvNeXt
(Liu et al, 2022; Woo et al,, 2023; Tang et al,, 2023), and ViT
(Bhuyan and Singh, 2024; He et al, 2024). These models have
achieved high accuracy in the tasks, however, their application in
agricultural research is constrained by high computational
complexity. Therefore, developing a lightweight intelligent
grading method with high accuracy is significant for the analysis
of late blight disease of potato (Howard et al., 2019).

To achieve this goal, an accurate and lightweight model for
potato late blight severity grading was proposed in this paper.
Specifically, by utilizing an improved YOLOv8 network (Miao
et al,, 2025; Lu et al, 2024; Li et al,, 2025) and an enhanced
UNet3Plus network (Huang et al., 2020; Chen et al, 2025), our
method enabled precise leaf localization and fine-grained
segmentation of the infected regions. Then, we combine the
localization and segmentation results to evaluate the severity
grading for each leaf based on infection area ratios.

Besides the development of lightweight and effective grading
model, high-quality datasets and scientific evaluation metrics are
equally crucial for ensuring reliable potato late blight severity
grading. To achieve accurate grading, the inoculation assay with
Phytophthora infestans was conducted at 6-8 weeks post potato
planting (seedling stage with 7-10 compound leaves). Specifically, the
3rd, 4th, and 5th fully expanded compound leaves from the top of each
plant were detached. A 40 uL droplet of zoospore suspension (2 x 10*
spores/mL) was pipetted onto one side of the mid-vein on the abaxial
surface of each leaflet. Three biological replicates were included per
material, with each replicate consisting of at least 6 compound leaves.
Phenotypic observations and photographic documentation were
performed at 5 days post-inoculation (dpi). Based on these images,
this paper developed the first open-source potato late blight leaf disease
dataset for leaf localization and infected region segmentation, which
was further enriched through systematic data augmentation methods.
Furthermore, according to infected area proportion, a quantitative
grading metric was established to evaluate potato late blight severity. As
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shown in Figure 1, the metrics defines six severity levels (0-5): level 0
(negligible infection, < 0.1%), level 1 (initial symptoms, 0.1% - 10%),
levels 2-3 (moderate infection, 10% - 50%), and levels 4-5 (severe
infection, > 50%). Representative leaf images illustrate the distinct
characteristics of each severity level.

The main contributions of this paper are summarized
as follows:

1. An open-source dataset of potato late blight leaf disease was
constructed for leaf localization and infected region
segmentation, providing a reliable foundation for deep
learning research in the field of potato late blight disease.

2. An improved YOLOvV8-UNet3Plus network is proposed for
potato late blight severity grading, which implements
accurate and cost-effective disease assessment.

3. A quantitative severity grading system is established based
on the proportion of infected leaf area, which provides
scientific and objective evaluation metrics for potato late
blight grading.

2 Methods
2.1 System framework

The proposed model consists of three core processing stages: (1)
leaf localization based on enhanced YOLOVS; (2) infected region
segmentation based on enhanced UNet3Plus; (3) disease severity
grading. Through the integration of these stages, our model
effectively implements potato late blight severity grading.
Specifically, the processing pipeline shown in Figure 2 transforms
input data through sequential stages to generate severity grading
results, which can be summarized as follows:

1. Leaf localization: The enhanced YOLOvV8 network
processes the input data and generates feature maps
containing localization information that enable precise
localization of leaves and provide foundational data for
downstream analysis.

2. Infected region segmentation: The enhanced UNet3Plus
network generates fine-grained segmentation maps that
differentiate between healthy and infected regions,
providing quantitative data for disease severity assessment.

3. Disease severity grading: In this final stage, the severity level
is computed by calculating infected area proportions based
on both the leaf localization feature maps and infected
region segmentation feature maps, generating quantitative
severity grades for each leaf.

2.2 YOLOv8-optimized leaf localization

YOLOVS is a lightweight single-stage object detection model
that implements efficient and accurate leaf localization (Yang et al.,
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FIGURE 1
Infection levels of potato late blight. (A) Level: 0. (B) Level: 1. (C) Level: 2. (D) Level: 3. (E) Level: 4. (F) Level: 5.

Leaf localization
based on enhanced

YOLOvVS8 network

Feature maps containing
localization information

Disease severity
grading

Infected region
segmentation based on
enhanced UNet3Plus

network

Input data Severity grading result

Feature maps containing
segmentation information

FIGURE 2
Framework of lightweight potato late blight severity grading.
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FIGURE 3
Network structure of leaf location based on YOLOVS.

2024b; Orchi et al.,, 2023; Muthulakshmi et al., 2024). Structurally,
Figure 3 illustrates the architecture of enhanced YOLOVS, which
consists of three main components:

1. Backbone: By extracting features from input images
through convolutional operations and C2f modules, this
component constructs multi-level feature maps to provide
fundamental information for the neck network.

2. Neck: The backbone and head networks are connected through
this intermediate component, where feature pyramid
architecture is adopted for feature fusion and enhancement.

3. Head: Based on features extracted by preceding networks,
the head generates final leaf localization results, providing
foundational data support for subsequent severity grading.

Based on the baseline YOLOv8n which is the lightest model in
the YOLOVS series, an enhanced network for leaf location is
proposed with the following innovations, whose detailed
parameters are presented in Table 1:

1. ScConv module is integrated into the backbone to
implement a lightweight model.

2. BiFPN structure is adopted in the neck to enhance
localization capability for leaves which have different sizes.

3. PIoU loss function is adopted to improve the accuracy of
leaf bounding box regression.

2.2.1 ScConv-optimized YOLOv8 backbone
network

The ScConv module (Li et al., 2023; Jiang et al, 2024) is a
lightweight module that reduces feature redundancy through two
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units: SRU (Spatial Redundancy Unit) and CRU (Channel
Redundancy Unit), whose structure is shown in Figure 4. To
implement lightweight leaf localization, this paper embeds the
ScConv module into the Bottleneck of YOLOv8’s C2f module. In
detail, as shown in the comparison between YOLOV8 bottleneck
and ScConv-bottleneck in Figure 5, ScConv replaces the second 3x3
convolution in the bottleneck, which effectively reduces network
parameters. Specifically, the processing pipeline of ScConv module
in this paper consists of the following steps:

Step 1: The input feature map is reconstructed along spatial
dimensions in the SRU. Given an input feature map X & REH*W,
SRU first applies group normalization (GN) to the input features, as
formulated in Equation I:

Xg,c,h,w—,ug

2
\/Og €

Here, g denotes the group index; %, and f3;represent learnable

Xg,c,h,w=]@ +ﬁg (1)

affine transformation parameters; Uy and o, indicate the mean and
standard deviation of the g-th group; € serves as a small constant for
numerical stability.

Next, as shown in Equation 2, a spatial attention mechanism is
utilized to generate attention map A from the normalized features
X, where W, is a trainable convolutional kernel, * denotes
convolution operation, and o(-) is the sigmoid function.

A, = 6(WX) ®)

After the above processing, the element-wise multiplication (®)
between attention map A, and input feature X produces the
reconstructed feature map X; as defined in Equation 3:

X, =A,0X 3)
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TABLE 1 Parameters of improved YOLOv8 network. 2.2.2 BIFPN-OptImIZGd YOLOV8 neck network
] ] BiFPN (Bidirectional Feature Pyramid Network) is a feature
Network Input size Output size . . . e .
layer fusion architecture that combines bidirectional paths and skip
connections for multi-scale feature processing (Tan et al., 2020;
Input - 640640 ’ Feng et al, 2025). Through this design, BiFPN enhances feature
convolutional 640 x 640 320 x 320 64 fusion efficiency and multi-scale object detection capability.
layerl Considering these advantageous characteristics, BiFPN is
convolutional 320 x 320 160 x 160 128 incorporated into the neck of YOLOv8 to handle the wide-
layer2 ranging scale variations in potato leaves. Figure 6 shows the FPN
Bottleneck 160 x 160 160 x 160 128 and PAN structure which is used in original YOLOVS, and Figure 7
presents the BiFPN structure. As illustrated, compared to the
convolutional 160 x 160 80 x 80 256 . . . .
Jayer3 original FPN and PAN structure, BiFPN introduces additional
cross-scale connections and weighted feature fusion, which
Bottleneck 80 x 80 80 x 80 256 . . .
oenee * 8 enables more effective information flow between different scales
convolutional 80 x 80 40 x 40 512 and enhances the model’s ability to handle multi-scale features.
layer4 In reconstructing the neck network, 1 x 1 convolution is
Bottleneck 40 x 40 40 x 40 512 initially applied to process the input features, which aims to
convolutional 10 % 40 20 % 20 1024 achieve two objectives: (1) enhance the non-linear representation
layer5 and semantic expression capabilities; (2) adjust the number of
channels, which ensures dimensional compatibility between
Bottleneck 20 x 20 20 x 20 1024 ] ) T
feature maps and BiFPN input. Subsequent to this initial
SPPF 2020 20x20 1024 processing, the features then enter two sequential pathways: top-
convolutional 20 x 20 20 x 20 512 down and bottom-up.
layer6 Top-down pathway: This pathway utilizes upsampling
upsample 20 x 20 40 x 40 512 operations to increase feature resolution. At each layer, the
upsampled features are combined with backbone features through
BiFPN layer 40 x 40 40 x 40 512 . . . o )
element-wise addition to merge semantic and spatial information.
Bottleneck 40 x 40 40 > 40 512 Let P4 & RG*HWi denote the output feature map of the top-down
convolutional 40 x 40 40 x 40 256 pathway at the i-th layer, which is computed in Equation 5:
layer7
wy - P+ w, - U(PY
upsample 40 x 40 80 x 80 256 P = Conv | L2 (Pii) (5)
w +w, +€
BiFPN layer 80 x 80 80 x 80 256
Here, P; is the backbone feature map; U( -) is the upsampling
Bottleneck 80 x 80 80 x 80 256 operation; w; and w; are learnable weights; € is a small constant for
convolutional 80 x 80 40 x 40 512 stability and Conv(-) is a convolutional layer.
layer8 Bottom-up pathway: Features at different scales are fused
BiFPN layer 40 x 40 40 x 40 512 through downsampling operations in this pathway. Each layer in
the bottom-up pathway combines information from three sources:
Bottleneck 40 x 40 40 x 40 512 .
(1) top-down features; (2) previous bottom-up features; (3)
C"“I"’l“ﬁ"nal 4040 2020 S12 backbone features. Let P?* & R%*H*Wi denote the output feature
ayer9 . S
Y map of the bottom-up pathway at the i-th layer, which is evaluated
BiFPN layer 20 x 20 20 x 20 512 in Equation 6:
Bottleneck 20 x 20 20 x 20 1024 W bu
e wy - S+ w, - D(PY) + w; - P 6)
Detection [80 x 80,40 x 40,20 [80 x 80,40 x 40,20 6 i =Lony Wyt Wyt s €
% 20] x 20]

where D(-) is the downsampling operation, and ws is the

. . . weight for backbone features.
Step 2: Via convolution layers and global average pooling . .

. . Finally, these refined features are sent to the head for multi-scale
(GAP), X, is processed through channel-wise refinement to )
. . leaf detection.
generate a channel attention vector A, in the CRU. Subsequently,

as formulated in Equation 4, the element-wise multiplication

2.2.3 PloU-based loss function

between A.and X; generates the final output Y:
In this paper, due to the CIoU loss’s limitation in evaluating

Y=A40X (4)  bounding box quality for irregularly shaped objects like leaves, the
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Framework of potato late blight severity grading

(A)

Comparison of YOLOvV8 bottleneck and ScConv-Bottleneck.

FIGURE 5
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P2 | |
P1I A ]
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FIGURE 6
Structure of YOLOV8's FPN and PAN.

Powerful-IoU(PIoU) loss (Liu et al., 2024) is adopted to replace
the CIoU for better leaf location. Compared with CIoU loss, PIoU
loss calculates the relative positions between predicted and target
boxes” enclosing matrix, which achieves a more precise balance
between box size and position accuracy. Based on this optimized

Frontiers in Plant Science

—_——

FPN-PAN
neck

calculation method, PIoU demonstrates particularly effective
performance in handling leaves with irregular shapes and
varying scales.

Specifically, the PIoU loss function combines the standard IoU
loss with a geometric penalty term, as shown in Equation 7:
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FIGURE 8
PloU-based losses.

Lpou = LIoU + (1 —¢) @)

where LIoU is the intersection-over-union loss between
predicted and ground truth boxes, and 1 —e " " is the geometry-
sensitive penalty component. The penalty coefficient P is defined in
Equation 8:

P:l ﬂ_'—%*—%*—d_hz (8)
4\ wgt  wy  hy  hy

Here, as shown in Figure 8, which illustrates PIoU-based
bounding box calculation, wg and hg are the width and height of
the ground truth box. The width difference terms dw, and dw,
measure the maximum width excess: dw; = max(w;) — wg
represents the excess between the ground truth box and its
minimum enclosing rectangle containing the prediction box, dw,
= max(w,) — wg represents the excess between the prediction box
and their joint minimum enclosing rectangle. The height difference
terms dh; and dh, are defined similarly for the height dimension.
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BiFPN
neck

2.3 UNet3Plus-optimized infected region
segmentation

UNet3Plus is a fine-grained semantic segmentation model that
implements pixel-level infected region segmentation.
Architecturally, the network consists of two parts:

1. Encoder: The input image sequentially passes through five
encoding stages, each of which contains a convolutional
layer and a 2 x 2 max pooling layer. Specifically, at each
stage, the feature map size is reduced by half, and the
number of channels is doubled. Through these encoding
operations, a multi-scale feature pyramid is formed.

2. Decoder: The decoder contains five stages. By utilizing
feature fusion and convolution operations, each decoder
stage integrates features from three sources: (1) the encoder
at the same level; (2) upsampled features from other
decoder layers; and (3) upsampled features from all
deeper encoder stages. Through these decoding
operations, pixel-wise infected region segmentation
results are generated by the final layer.

Based on the UNet3Plus network, two modifications are
implemented in this paper, which can be visualized in the
structural diagram presented in Figure 9: (1) The convolution
modules are replaced with Ghost convolution in both encoder
and decoder, which reduces the model parameters; (2) Multi-
Scale Local Response Attention(MLSRA) is integrated into the
decoder’s feature fusion module to enhance the infected region
segmentation performance. Table 2 presents the network
parameters in the infected region segmentation model.

2.3.1 Lightweight encoder-decoder module
based on Ghost convolution

To implement lightweight model’s construction, Ghost
convolution (Tang et al., 2022; Han et al., 2020, 2022) is utilized to
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Network structure of infected region segmentation.

replace the conventional convolution operations in both encoder and
decoder of UNet3Plus, which reduces the number of parameters and
computational cost (Zhang et al., 2024; Bui and Do Le, 2025).
Specifically, the Ghost convolution consists of three steps:

Step 1: The Ghost convolution module first extracts enriched
feature representations through combining standard and
lightweight convolutions, as shown in Equations 9.

F = CheapConv(PrimaryConv(X)) @ PrimaryConv(X) (9)

Here, PrimaryConv(-) and CheapConv(-) represent standard
convolution and depthwise separable convolution respectively, and
@ denotes feature concatenation.

Then the LightSE module of the Ghost convolution module
enhances these concatenated features with cross-dimensional
dependencies, as shown in Equations 10:

F, = LightSE(F) (10)

Step 2: For efficient feature transformation, depthwise separable
convolution is utilized in the Ghost convolution. For input channels
C;,, output channels C,,, and kernel size k, depthwise separable
convolution reduces the parameter count from O(C;, x C,,, X k?) to
O(C;,, x k*), which significantly reduces computational complexity.

After the above processing, the Ghost convolution applies
channel attention to highlight informative features, as shown in
Equations 11 and 12, where o represents the sigmoid function, GAP
() denotes global average pooling, and © indicates channel-wise

multiplication.
Attn = o(GAP(F1)) (11)

output = X © Attn (12)

Similar to the initial step, the subsequent stage of the Ghost
module also utilizes both primary and cheap convolutions in
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parallel to process output, as shown in Equations 9, maintaining
structural consistency and enhancing feature diversity.

Step 3: By incorporating residual connection, the network
enhances feature propagation capability and mitigates
information loss, as formulated in Equations 13:

Y = output + Shortcut(X) (13)

2.3.2 Decoder architecture based on MSLRA

In order to improve infected region segmentation accuracy for
leaves of different scales and reduce computational complexity,
Multi-Scale Local Response Attention (MSLRA) is proposed and
integrated into the decoder’s feature fusion module to replace the 1
x 1 convolution. The proposed MSLRA, based on Coord attention
(Hou et al., 2021), incorporates a multi-scale local response
mechanism that extracts local features through multi-scale
windows to generate attention maps, which strengthens the
ability to focus on important features at different scales
and orientations.

To implement this mechanism, MSLRA processes input features
X € RO®W through coordinated spatial enhancement and multi-
scale enhancement, which effectively captures both global context and
local details. In detail, the processing pipeline consists of two main steps:

Step 1: The input features are first compressed by applying
global average pooling separately along height and width
dimensions, as shown in Equations 14. Here, 2, and z,, preserve
the structural patterns.

X(h,w) € R}

M=

z(h) =4
1

X(h,w) € RV

M= 3

z,(w) =4

h=1
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TABLE 2 Parameters of improved UNet3Plus network.

Network Input size Output c
layer size
Input - 256 x 256 3
convolutional 256 x 256 256 x 256 64
layerl
downsamplel 256 x 256 128 x 128 64
convolutional 128 x 128 128 x 128 128
layer2
downsample2 128 x 128 64 x 64 128
convolutional 64 x 64 64 x 64 256
layer3
downsample3 64 x 64 32x32 256
convolutional 32 x 32 32 x 32 512
layer4
downsample4 32x32 16 x 16 512
convolutional 16 x 16 16 x 16 1024
layer5
upsample4 16 x 16 32 %32 1024
convolutional 32 x 32 32 x 32 64
layer6
Feature [256 x 256,128 x 128,64 x 64,32 x 32 x32 320
fusion module 32,16 x 16]
upsample3 32 %32 64 x 64 320
convolutional 64 x 64 64 x 64 64
layer7
Feature [256 x 256,128 x 128,64 x 64,32 x 64 x 64 320
fusion module 32,16 x 16]
upsample2 64 x 64 128 x 128 320
convolutional 128 x 128 128 x 128 64
layer8
Feature [256 x 256,128 x 128,64 x 64,32 x 128 x 128 320
fusion module 32,16 x 16]
upsamplel 128 x 128 256 x 256 320
convolutional 256 x 256 256 x 256 64
layer9
Feature [256 x 256,128 x 128,64 x 64,32 x 256 x 256 320
fusion module 32,16 x 16]
convolutional 256 x 256 256 x 256 3

layer10

Subsequently, these features are concatenated along the channel
dimension and processed through a reduction convolution with
compression ratio r to generate intermediate features z € RXHW),

Based on these intermediate features, the attention weights are
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computed as shown in Equation 15, where W), and W,, denote 1 x 1
convolutional kernels and o represents the sigmoid activation.

a, = O'(Wh*z;j) € RAx1
(15)

a, O'(Ww*z;,) e RWx!

Finally, by utilizing element-wise multiplication (®) and outer
product (@) operations between the attention weights and input
features, enhanced features Y are generated as shown in Equation 16.

Y =XQ(a, ® a,) € ROV (16)

Step 2: The enhanced features Y from Step 1 are passed through
four distinct pathways, each of which consists of two steps. Firstly,
each pathway uses adaptive average pooling(AAP) to generate
feature maps of different sizes: [1 x 1,3 x 3,5 x 5,7 x 7], which
enables the model to focus on various scales of information.
Subsequently, in each pathway, the number of channels of feature
maps is reduced by Convi,; and activated by ReLU activation.
Then, the number of channels of the feature maps is restored to its
original dimension by Conv;; to expand the feature representation,
as shown in Equation 17.

att; = Conv, . (ReLU(Conv,;(AAP(Y)))) (17)

Next, as shown in Equation 18, in order to form a unified
feature representation, a learnable weighted mechanism is utilized
to fuse the attention maps which are generated from the four
pathways. Here, A represents the learnable weight for each pathway.

4
Att = atty (18)
k=1
Finally, this unified attention map is combined with the original
input feature map Y to generate the final output, as formulated in
Equation 19.

Output = Y @ Att (19)

2.4 Severity grading

In the above two stages, the leaf localization stage generates
bounding box G for each leaf, and the infected region segmentation
stage implements pixel-wise segmentation, categorizing pixels into
background pixels, healthy pixels and infected pixels. Subsequently,
for each detected leaf, the severity parameter S is calculated based on
the segmented pixels within its corresponding bounding box G, as
shown in Equation 20, where Illness represents the infected area and
Health denotes the healthy area.

Illness

=—— 1009 20
Health + Illness o (20)
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Based on the severity parameter S, the infection level R of each
leaf is graded according to Equation 21:
0,$ <0.001
1,0.001 < $§<0.1
2,0.1<8§<0.25
21
3,0.25<8§<0.50

4,0.50 < $<0.67

58>0.67

3 Experimental results
3.1 Experimental environment

The hardware environment is 14 vCPU Intel(R) Xeon(R)
Platinum 8362 CPU @ 2.80GHz; Memory 45GB; RTX3090 GPU
24GB. The software environment is ubuntu20.04 operating system,
Python 3.8, Pytorch 1.10.0, and Cuda 11.3.

3.2 Dataset

The dataset consists of approximately 4,700 potato late blight
leaf samples across 6 severity levels, which were collected by the
equipment shown in Figure 10. In this equipment, an adjustable
lifting mechanism is featured to capture leaves at different scales,
and a flexible lighting system is featured to adapt to varying
shooting conditions. With this professional equipment, the
collected images are of high quality and show clear gradation in
both disease coloration and infection coverage, providing solid
support for potato late blight grading.

Camera holder

Fluorescent lamp |
HESREE AR  (adjustable height)

Dark color
curtain

Shooting platform
(placing leaves)

FIGURE 10
Potato late blight data acquisition equipment.
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Furthermore, the data augmentation methods are applied in
this paper to enrich the potato late blight dataset. As a fundamental
technology in deep learning (Shorten and Khoshgoftaar, 2019), data
augmentation enriches the original dataset through various
transformation methods (Pandian et al., 2019; Wagle et al., 2021).
To meet practical application requirements, different augmentation
strategies were adopted for leaf localization and infected region
segmentation tasks because of the differing characteristics and
challenges of each task.

For leaf localization, we utilized the built-in data augmentation
strategy of YOLOVS, which includes standard transformations such
as random cropping, scaling, and color adjustments. These
augmentations are sufficient for our task because leaf localization
primarily requires robustness to variations in leaf position, size, and
lighting conditions, which are effectively addressed by YOLOv8’s
default augmentations.

For infected region segmentation, more diverse and intensive
augmentations were used because of the task’s higher complexity
and sensitivity to variations in infection patterns. The following
augmentation methods were applied with specific justifications:

1. Horizontal flip(probability 0.5): This augmentation could
not only helps the model generalize to different orientations
of leaves and infection patterns but also doubles the
effective training data by creating mirrored versions of
each image.

. Vertical flip(probability 0.5): This strategy ensures the
model learn invariant features regardless of vertical
orientation, which is particularly important for capturing
spatial symmetry in segmentation tasks.

3. Random 90° rotation(probability 0.5): To enable robust
segmentation of irregularly oriented infections which may
appear at any angle on leaves, we employed 90° rotation
augmentation. This method could not only maintain the
pathological feature integrity but also provide essential
orientation diversity for model training.

. Random translation, scaling, and rotation(probability 0.5,
rotation angle less than 45°, scale ratio 0.1): By simulating
real-world variations in camera distance, angle, and leaf
positioning, these augmentations ensure the model handle
off-center leaves and improve the generalization ability to
field conditions.

These augmentations were chosen to address the specific
challenges of infected region segmentation, such as the irregular
shapes and sizes of infections, their varying locations on leaves, and
the need for precise pixel-level predictions. By introducing
controlled variability, the model becomes more robust to the
diverse appearances of diseased regions in practical scenarios,
ultimately improving generalization to unseen data.

Through these augmentation methods, the dataset was enriched
to approximately 140,000 leaf samples. Figure 11 demonstrates
representative augmentation results of a sample image, illustrating
the effectiveness of these transformation methods. What’s more, in
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FIGURE 11

10.3389/fpls.2025.1616864

Data augmentation results. (A) Original sample. (B) Augmented sample. (C) Augmented sample. (D) Augmented sample.

order to ensure effective model training and reliable evaluation, the
dataset was split into training and testing sets with ratio of 7:3.

3.3 Results evaluation

Evaluation metrics provide quantitative measures to assess
model performance in deep learning (Sokolova and Lapalme,
2009). Therefore, appropriate metrics selection enables objective
comparison among different models and identifies optimal
solutions for specific tasks.

3.3.1 Leaf localization

For leaf localization, this paper used Precision, Recall, F1-score
and mean Average Precision at 50% Intersection over Union
(mAP50) that range between 0 and 1 (Powers, 2011; Ronneberger
et al,, 2015). In detail, higher values of these metrics indicate better
performance. Mathematically, these metrics are defined as
Equations 22-25 where TP; denotes the number of true positive
samples, FP; represents the number of false positive samples, FN;
indicates the number of false negative samples, and AP50; is the
Average Precision at IoU threshold 0.5 for class i.

1k TP;
Precision = = ———— 22
recision p 1221 TP, 1 FP, (22)
1k TP;
Recall = - ———L 23
ecd ka TP, + FN, (23)
- 2 x Precision x Recall (24)
— score =
Precision + Recall
1N
mAP50 = —EAPSOi (25)
N5

3.3.2 Infected region segmentation
For infected region segmentation task, precision, recall, F1-
score, and mean intersection over union (mlIoU) are used to
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evaluate the model performance (Long et al., 2017). Among these
metrics, mIoU is defined as Equation 26:

N TP,

1
oU=s—S— i 26
o N;TPZ-+FP,-+FN,- (26)

3.3.3 Model complexity

Model complexity is evaluated through the total number of
parameters and floating point operations (FLOPs). In detail, the
parameters represent the total trainable weights in the model and
FLOPs represent the computational cost of a single forward pass.
Both of them indicate a more lightweight and efficient model when
their values are lower. Mathematically, these metrics are calculated
as Equations 27 and 28, where L represents the total number of
layers, param,denotes the number of parameters in layer /, and flops;
represents the floating point operations in layer .

L
Parameters = > param, (27)
I=1
L
FLOPs = > flops; (28)

=1

3.4 Model training and parameters tunning

3.4.1 Training for leaf localization

To achieve high-precision leaf localization, this paper employs
the SGD optimizer with a learning rate warmup mechanism to
enhance training stability.

In order to evaluate the effectiveness of this leaf localization
training strategy, this paper analyzed the training process.
Specifically, Figure 12 reveals several distinctive characteristics in
train loss curves across different training phases between our
enhanced YOLOvVS and the baseline YOLOvS8 model, where the
horizontal axis represents epochs and the vertical axis represents
loss values. Starting from similar initial loss values around 3.62, our
model demonstrates superior convergence behavior in multiple
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FIGURE 12
Comparative loss curves of leaf localization.
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FIGURE 13

Comparative loss curves of infected region segmentation without optimized training strategy.

phases. Through the first 10 epochs, our model shows a steeper
descent trajectory to 2.0433. Then during the intermediate phase
(epochs 11-30), our model exhibits a more stable and consistent
descent pattern.

Notably, between epochs 20-25, the loss of our model decreases
steadily from 1.5894 to 1.4443, suggesting superior learning
stability. Finally, in the epochs 31-50, our model achieves a lower
loss value than the base model (1.0483 versus 1.0567), which
maintains consistent minor oscillations that demonstrate both
successful convergence and robust model stability. Based on these
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training results, it can be concluded that our model achieves better
feature extraction capabilities and demonstrates stronger

generalization ability.

3.4.2 Training for infected region segmentation

In the infected region segmentation task, Adam optimizer
(Duchi et al, 2011) combined with WeightDICE loss (Jadon,
2020) function is utilized as the basic training strategy to enable
adaptive parameter updates and enhance segmentation accuracy.
Initially, Figure 13 demonstrates the comparative loss curves
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FIGURE 14
Learning rate schedule under warmup-cosine annealing.
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FIGURE 15

Comparative loss curves of infected region segmentation with optimized training strategy.

between our model and the baseline under fixed learning rate,
where the horizontal axis represents training epochs and the vertical
axis represents loss values. In detail, our model initially showed
higher starting loss (57.29) and slower convergence compared to the
baseline model (48.75), which was primarily due to our adoption of
a lightweight network with fewer parameters that might make it
difficult to learn features quickly.

To address the slow convergence issue, an improved learning
rate scheduling strategy is designed as shown in Figure 14, where
the horizontal axis represents training epochs and the vertical axis
represents learning rate values. Specifically, the learning rate starts
from 0.0001, gradually increases during the first 10 epochs (warm-
up phase) to reach 0.001, then follows a cosine curve decreasing to
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0.0000225. This strategy was designed considering the
characteristics of lightweight models: the warm-up phase allows
the model to gradually adapt to data distribution, and cosine
annealing enables fine-tuning of parameters in later stages, which
maximizes the use of model capacity.

Based on the above improved strategy, Figure 15 demonstrates
the comparative training performance between our model and the
baseline, where the horizontal axis represents training epochs and
the vertical axis represents loss values, revealing that our model
effectively overcame the slow convergence challenge of
lightweight networks:

Initial training performance: Although our model showed a
higher initial loss (54.75) compared to the baseline (48.75) in the
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TABLE 3 Evaluation results of ablation experiments on leaf localization stage.

ScConv BiFPN PIOU Precision(%) Recall (%) F1 (%) mAP50(%)
- - - 95.54 90.89 93.15 93.16
v - - 94.99 88.91 91.84 91.85
v v - 94.92 89.06 91.89 93.30
v - v 96.66 90.16 93.29 91.90
v v v 95.73 92.78 94.22 94.23

TABLE 4 Parameter and FLOPs comparison of ablation experiments for
leaf localization.

ScConv BiFPN PIOU Params  FLOPs(G)
(M)
- - - 3.01 4.10
v - - 2.82 3.81
v v - 283 3.84
v - v 282 3.81
v v v 283 3.84

first epoch, it quickly achieved better performance by epoch 5 with a
loss of 30.18, surpassing the baseline’s 32.05, which demonstrates
the effectiveness of our warm-up strategy in overcoming early
training challenges.

Training Efficiency: During epochs 10-20, our model’s loss
steadily decreased from 26.33 to 22.08, outperforming the
baseline model’s range (28.63-25.66). This demonstrates that our
learning rate scheduling strategy enabled more efficient parameter
optimization during the middle training phase.

Convergence Performance: The most notable improvements
emerged during the later training stages (epochs 20-50), where our
model’s loss steadily decreased from 22.08 to 16.48. Such stable
optimization and superior final performance validate the
effectiveness of our learning rate scheduling strategy in addressing
the convergence challenges of lightweight models.

3.5 Ablation experiments

3.5.1 Ablation experiments of leaf localization

To validate the effectiveness of our proposed components in leaf
localization, Tables 3 and 4 summarize the ablation experiments of
this paper, where ‘- indicates that the corresponding module is not
used in the model and vV denotes that the corresponding module is
used in the model. According to the results, the baseline YOLOv8
achieves 95.54% precision and 90.89% recall. When integrating
ScConv, the model significantly reduces computational complexity,
although at the cost of a slight decrease in detection metrics.
Subsequently, incorporating BiFPN with ScConv improves the F1
score to 95.94% and maintains computational efficiency, surpassing
the baseline performance. Similarly, the integration of PIOU
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enhances the model’s precision to 96.66%, which demonstrates
the highest precision among all configurations. It can be attributed
to PIOU’s explicit optimization of localization accuracy. However,
this combination shows relatively lower recall compared to our full
model, indicating potential over-suppression of positive detections.

Finally, by combining all three components, our model achieves
optimal performance with 95.73% precision, 92.78% recall, and
97.40% F1 score. While the precision of our model is 0.93% lower
than the YOLOV8-ScConv-PIOU variant, the difference is offset by
two critical advantages:

1. The 2.62% improvement in recall and 0.93% higher F1
score demonstrate our model’s superior overall
detection capability.

. This precision-recall trade-off directly results from BiFPN’s
multi-scale feature fusion mechanism, whose intentional
preservation of more potential leaf regions across different
scales could address the critical agricultural requirement of
minimizing missed detections in real scenarios.

Most importantly, our model’s superior performance is
achieved with reduced computational complexity (2.83M
parameters and 3.84G FLOPs) compared to the baseline model.
These experimental results confirm the success of our proposed
modifications in both enhancing detection capability and reducing
computational costs.

3.5.2 Ablation experiments of infected region
segmentation

To evaluate the effectiveness of our proposed components in
infected region segmentation, Tables 5 and 6 summarize the
indicates that the
corresponding module is not used in the model and ‘" denotes that

>

ablation experiments of this paper, where ‘-

the corresponding module is used in the model. Firstly, the baseline
UNet3Plus achieves a foundation performance with 79.27%
precision, 72.35% recall, and 75.65% F1-score. When integrating
GhostConv into the network, an improvement in precision could be
observed to 81.22% with a slight decrease in recall to 70.49%.
Notably, this modification brings significant benefits in
computational efficiency, reducing the model complexity from
26.98M parameters and 800.48G FLOPs to 8.45M parameters and
455.84G FLOPs. In a separate experiment, incorporating MSLR
demonstrates more substantial improvements in both precision
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TABLE 5 Ablation experiments metrics for lesion segmentation.

GhostConv = MSLR  Precision  Recall F1 mIOU
(%) (VA (VA (V]
- - 79.27 7235 75.65 86.95
v - 81.22 70.49 75.47 78.35
- v 82.78 74.89 78.64 83.52
v/ v/ 85.10 75.44 79.98 82.65

TABLE 6 Parameter and FLOPs comparison of ablation experiments for
lesion segmentation.

GhostConv MSLR Params(M) FLOPs(G)
- - 26.98 800.48
v - 8.45 455.84
- v 23.41 479.54
v v 488 134.40

(82.78%) and recall (74.89%), which lead to an enhanced F1-score
of 78.64%.

Building upon these individual improvements, our model,
which combines both components, achieves optimal performance
with 85.10% precision, 75.44% recall, and 79.98% F1 score. What’s
more, this superior performance is achieved with dramatically
reduced computational complexity (4.88M parameters and
134.40G FLOPs) compared to the baseline model. These
experimental results validate the effectiveness of our proposed
modifications in both enhancing segmentation capability and
reducing computational costs.

3.6 Comparative experiments

3.6.1 Comparative experiments of leaf
localization

Table 7 presents a comprehensive comparison of different models
for leaf localization. As shown in the comparison results, our model
achieves optimal performance across multiple metrics, demonstrating
the highest mAP50 of 97.40% and F1-score of 94.23% with reduced
computational resources (3.89G FLOPs). Among the baseline models,

TABLE 7 Evaluation metrics for leaf localization stage.

10.3389/fpls.2025.1616864

YOLOVI11 achieves the second-best performance with 96.56% mAP50
and 93.92% F1-score, followed by YOLOV8 with 95.75% mAP50 and
93.16% Fl-score. What’s more, YOLOv10 exhibits the lowest
performance across all metrics, with both precision and recall
around 72%. Additionally, despite achieving the highest precision of
99.78%, FCOS (Tian et al., 2019; Yehia et al., 2024) shows significantly
lower recall (74.09%), resulting in a reduced Fl-score of 85.04%.
Moreover, FCOS requires substantially higher computational
resources with 32.12M parameters, approximately 11.37 times larger
than our model’s 2.83M parameters. Notably, DETR achieves near-
perfect precision of 99.64% but limited recall of 79.28%, resulting in an
intermediate F1-score of 88.30%. This performance comes at the cost
of heavy computational overhead, which makes it impractical for
field deployment.

From the above experiments, we found that there exists a
consistent precision-recall trade-off in highparameter models.
Both FCOS and DETR sacrifice 20%-25% recall for less than 4%-
5% precision improvement, which is a suboptimal balance for
agricultural applications that prioritize comprehensive detection
over individual prediction confidence. This phenomenon primarily
stems from the fundamental architectural biases of FCOS detector
and Transformer-based DETR, which intrinsically prioritize
highconfidence predictions at the expense of diminished
sensitivity to small targets. Therefore, their inherent limitations in
cross-scale leaf detection sensitivity consequently result in 15%-20%
lower recall rates compared to YOLO-series models.

3.6.2 Comparative experiments of infected region
segmentation

Table 8 presents a comprehensive comparison of different
models for infected region segmentation. As demonstrated in the
comparison results, our model achieves optimal performance with
the highest precision (85.10%), recall (75.44%), and Fl-score
(79.98%), and requires significantly lower computational
resources (134.90G FLOPs and 4.88M parameters). Among the
baseline models, UNet3Plus demonstrates the highest mIOU of
86.95% and the second-best Fl-score of 75.65%, but requires
substantially higher computational cost (800.48G FLOPs),
approximately 5.9 times larger than our model. UNet and SegNet
(Badrinarayanan et al., 2017) exhibit moderate performance with
Fl-scores of 72.03% and 74.76% respectively, and PSPNet (Zhao
et al, 2017) shows the lowest performance with an Fl-score
of 59.29%.

Model Params(M) FLOPs(G) Precision(%) Recall(%) F1(%) mAP50(%)
FCOS 32.16 19.88 99.78 74.09 85.04 83.26
DETR 4128 1027 99.64 79.28 88.30 86.79
YOLOVS 3.01 4.10 95.54 90.89 93.16 95.75
YOLOV10 271 420 7243 72.68 72.56 78.65
YOLOv11 2.62 434 96.67 91.31 93.92 96.56
This paper 2.83 3.89 95.73 92.78 9423 97.40
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TABLE 8 Evaluation metrics for infected region segmentation stage.

10.3389/fpls.2025.1616864

Model Params(M) FLOPs(G) Precision(%) Recall(%) F1(%) mlOU(%)
UNet 39.39 32221 76.18 68.31 72.03 84.01
SegNet 29.44 160.83 82.75 68.18 74.76 75.99
PSPNet 525.50 201.98 67.96 52.58 59.29 67.41
UNet3Plus 26.98 800.48 79.27 72.35 75.65 86.95
This paper 488 134.90 85.10 7544 79.98 82.65

3.6.3 Comparative experiments of attention
mechanism

Table 9 presents a comprehensive comparison of different
attention mechanisms under identical experimental conditions.
By using the same Ghost convolution-based UNet3Plus
architecture, all models were evaluated with consistent
hyperparameters, which includes learning rate, training epochs
and optimizer settings. In addition, each attention mechanism

TABLE 9 Comparative experiments on attention mechanisms.

Model Precision Recall(%) F1(%) mIOU(%)
(%)

SE 82.76 70.33 76.07 77.94

ECA 83.48 68.73 75.37 78.25

CoordA 83.93 73.56 78.40 80.84

This paper 85.10 75.44 79.98 82.65

FIGURE 16
Visualization of leaf localization results.

Frontiers in Plant Science

16

was integrated at the same position in the network architecture to
ensure fair comparison.

As shown in the comparison results, our model achieves
optimal performance across multiple metrics, with the highest
precision (85.10%), recall (75.44%), and Fl-score (79.98%).
Among the baseline mechanisms, CoordA demonstrates the
second-best performance with a precision of 83.93%, recall of
73.56%, and Fl-score of 78.40%. For the other baseline
mechanisms, SE (Hu et al., 2018) achieves an Fl-score of 76.07%
(precision 82.76%, recall 70.33%), and ECA (Wang et al., 2020)
yields an F1-score of 75.37% (precision 83.48%, recall 68.73%).

3.7 Results visualization

3.7.1 Results visualization of leaf localization
Figure 16 illustrates representative leaf localization results from
test set samples. Specifically, the generated bounding boxes
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precisely encompass the target leaves and minimize background
inclusion, which effectively handles variations in leaf size, shape,
and orientation. Through these visualization results, our model’s
robust leaf localization capability has been validated.

3.7.2 Results visualization of infected region
segmentation

Figure 17 demonstrates that the segmentation results achieve
high consistency with ground truth annotations. Based on these
visualization results, our model exhibits three significant
advantages: (1) accurate boundary delineation of irregular
infected regions, particularly in areas with complex morphological
characteristics; (2) reliable segmentation of small infection spots,

FIGURE 17

10.3389/fpls.2025.1616864

even for early-stage lesions with subtle features; (3) effective
suppression of false positives in healthy tissue areas, maintaining
high specificity in disease identification. These results
comprehensively demonstrate our model’s superior capability in
fine-grained infected region segmentation.

3.7.3 Results visualization of severity grading

Figure 18 illustrates the practical application of our potato late
blight severity grading model. Validated by the consistent grading
results, the area-based grading method demonstrates two principal
advantages: (1) scientific and accurate severity grading through
precise quantification of infected regions, and (2) efficient batch
processing capability for applications.

Visualization of infected region segmentation results. (A) Segmentation labels. (B) Predicted results.

FIGURE 18

Visualization of severity grading results. (A) Ungraded data. (B) Grading results.
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4 Conclusions

1. Dataset for potato late blight leaf disease is collected in this
paper, focusing on leaf localization and infected region
segmentation tasks. This dataset establishes a reliable
foundation for deep learning research in potato late
blight disease grading.

. The severity grading metric based on infected leaf area
proportion is established, which transforms traditional
experience-based assessment into standardized evaluation.
This metric enables objective evaluation of potato late
blight severity through precise calculation of
infection ratios.

. A lightweight deep learning model utilizing enhanced
YOLOvV8-UNet3Plus network is proposed to enable
accurate potato late blight severity grading. In terms of
individual components, the enhanced YOLOV8 achieves
superior leaf localization performance with an F1-score of
94.23% and mAP of 97.40% and an 5.86% reduction in
parameters. Similarly, the enhanced UNet3Plus
demonstrates improved infected region segmentation
with an accuracy of 82.65% and an 87.17% reduction in
parameters. Through these optimization, our model
demonstrates exceptional efficiency and accuracy for
potato late blight severity grading.
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