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Brazil
Shunhao Qing,
Northwest A&F University Hospital, China

*CORRESPONDENCE

Peisen Yuan

peiseny@njau.edu.cn

Cheng He

hecheng@njau.edu.cn

RECEIVED 23 April 2025

ACCEPTED 23 July 2025
PUBLISHED 02 September 2025

CITATION

Yuan P, Jiang L, Cheng Z, Tan Y, Yang Y and
He C (2025) Lightweight grading method for
potato late blight severity based on enhanced
YOLOv8-Unet3Plus network.
Front. Plant Sci. 16:1616864.
doi: 10.3389/fpls.2025.1616864

COPYRIGHT

© 2025 Yuan, Jiang, Cheng, Tan, Yang and He.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 02 September 2025

DOI 10.3389/fpls.2025.1616864
Lightweight grading method
for potato late blight severity
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Yujia Yang2 and Cheng He2*

1College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China, 2State Key Laboratory
of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University,
Nanjing, China
Artificial intelligence for science is a methodology that integrates artificial

intelligence into scientific research to improve the precision and efficiency of

data analysis and experimental processes. Specifically in potato late blight severity

grading, due to the demand for both accuracy and cost-effective deployment,

traditional methods are limited by subjective evaluation and timeconsuming

manual measurement. In this paper, a lightweight grading model based on an

enhanced YOLOv8-UNet3Plus network is proposed to enable objective and

accurate potato late blight severity grading. In detail, the YOLOv8 network is

optimized by integrating Spatial and Channel Reconstruction Convolutionmodule,

Bi-directional Feature Pyramid Network and Powerful-IoU loss, the UNet3Plus

network is optimized by embedding Ghost convolution and Multi-Scale Local

Response Attention. Experiments on real-world potato late blight datasets

demonstrate that our model achieves an precision of 95.73% for leaf localization

and an mean Intersection over Union of 82.65% for infected region segmentation

with reduced parameters and computational cost. This AI4Science-based model

provides an effective solution for potato late blight severity grading.
KEYWORDS

AI for science, potato late blight, lightweight model, feature fusion, plant disease
phenotyping, deep learning
1 Introduction

In recent years, artificial intelligence for science (AI4Science) has transformed the

scientific facility fundamental research and achieved numerous breakthroughs in many

frontier fields (Wang et al., 2023; Xu et al., 2021). Through deeply integrating the latest

artificial intelligence with scientific methods, this approach advances the analysis and

processing of complex scientific data in different fields, such as biological sciences

(Bhardwaj et al., 2022), plant disease (Shoaib et al., 2023) et al. Currently, the

application of AI4Science has shown remarkable potentials in the field of plant disease
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phenotype data research, particularly for diseases such as potato late

blight (Mohanty et al., 2016; Kamilaris and Prenafeta-Boldú, 2018).

Potato late blight, caused by Phytophthora infestans, is a severe

disease that affects global agricultural production, leading to annual

yield losses of 20%-30% (Fry et al., 2015). To mitigate these severe

agricultural losses and develop resistant varieties (Lu et al., 2021),

precise grading of late blight severity is essential for effective disease

management and breeding programs (Elumalai and Faritha Banu,

2023). However, conventional manual grading methods are time-

consuming and highly dependent on subjective experience, which

increases grading costs and leads to inconsistent evaluation results.

Compared with manual grading limitations, AI4Science could

combine advanced data processing techniques and intelligent

analysis methods to improve the accuracy of potato late blight

severity grading (Li et al., 2022; Yang et al., 2024a).

As one of the core technologies of AI4Science, deep learning has

demonstrated notable advantages in plant disease research with its

efficient high-dimensional data processing and automatic feature

learning capabilities. Based on these advantages, recent advances in

deep learning have brought various powerful models for plant

disease research, including HRNet (Wang et al., 2019), ConvNeXt

(Liu et al., 2022; Woo et al., 2023; Tang et al., 2023), and ViT

(Bhuyan and Singh, 2024; He et al., 2024). These models have

achieved high accuracy in the tasks, however, their application in

agricultural research is constrained by high computational

complexity. Therefore, developing a lightweight intelligent

grading method with high accuracy is significant for the analysis

of late blight disease of potato (Howard et al., 2019).

To achieve this goal, an accurate and lightweight model for

potato late blight severity grading was proposed in this paper.

Specifically, by utilizing an improved YOLOv8 network (Miao

et al., 2025; Lu et al., 2024; Li et al., 2025) and an enhanced

UNet3Plus network (Huang et al., 2020; Chen et al., 2025), our

method enabled precise leaf localization and fine-grained

segmentation of the infected regions. Then, we combine the

localization and segmentation results to evaluate the severity

grading for each leaf based on infection area ratios.

Besides the development of lightweight and effective grading

model, high-quality datasets and scientific evaluation metrics are

equally crucial for ensuring reliable potato late blight severity

grading. To achieve accurate grading, the inoculation assay with

Phytophthora infestans was conducted at 6–8 weeks post potato

planting (seedling stage with 7–10 compound leaves). Specifically, the

3rd, 4th, and 5th fully expanded compound leaves from the top of each

plant were detached. A 40 µL droplet of zoospore suspension (2 × 104

spores/mL) was pipetted onto one side of the mid-vein on the abaxial

surface of each leaflet. Three biological replicates were included per

material, with each replicate consisting of at least 6 compound leaves.

Phenotypic observations and photographic documentation were

performed at 5 days post-inoculation (dpi). Based on these images,

this paper developed the first open-source potato late blight leaf disease

dataset for leaf localization and infected region segmentation, which

was further enriched through systematic data augmentation methods.

Furthermore, according to infected area proportion, a quantitative

grading metric was established to evaluate potato late blight severity. As
Frontiers in Plant Science 02
shown in Figure 1, the metrics defines six severity levels (0-5): level 0

(negligible infection, ≤ 0.1%), level 1 (initial symptoms, 0.1% - 10%),

levels 2-3 (moderate infection, 10% - 50%), and levels 4-5 (severe

infection, > 50%). Representative leaf images illustrate the distinct

characteristics of each severity level.

The main contributions of this paper are summarized

as follows:
1. An open-source dataset of potato late blight leaf disease was

constructed for leaf localization and infected region

segmentation, providing a reliable foundation for deep

learning research in the field of potato late blight disease.

2. An improved YOLOv8-UNet3Plus network is proposed for

potato late blight severity grading, which implements

accurate and cost-effective disease assessment.

3. A quantitative severity grading system is established based

on the proportion of infected leaf area, which provides

scientific and objective evaluation metrics for potato late

blight grading.
2 Methods

2.1 System framework

The proposed model consists of three core processing stages: (1)

leaf localization based on enhanced YOLOv8; (2) infected region

segmentation based on enhanced UNet3Plus; (3) disease severity

grading. Through the integration of these stages, our model

effectively implements potato late blight severity grading.

Specifically, the processing pipeline shown in Figure 2 transforms

input data through sequential stages to generate severity grading

results, which can be summarized as follows:
1. Leaf localization: The enhanced YOLOv8 network

processes the input data and generates feature maps

containing localization information that enable precise

localization of leaves and provide foundational data for

downstream analysis.

2. Infected region segmentation: The enhanced UNet3Plus

network generates fine-grained segmentation maps that

differentiate between healthy and infected regions,

providing quantitative data for disease severity assessment.

3. Disease severity grading: In this final stage, the severity level

is computed by calculating infected area proportions based

on both the leaf localization feature maps and infected

region segmentation feature maps, generating quantitative

severity grades for each leaf.
2.2 YOLOv8-optimized leaf localization

YOLOv8 is a lightweight single-stage object detection model

that implements efficient and accurate leaf localization (Yang et al.,
frontiersin.org
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FIGURE 2

Framework of lightweight potato late blight severity grading.
FIGURE 1

Infection levels of potato late blight. (A) Level: 0. (B) Level: 1. (C) Level: 2. (D) Level: 3. (E) Level: 4. (F) Level: 5.
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2024b; Orchi et al., 2023; Muthulakshmi et al., 2024). Structurally,

Figure 3 illustrates the architecture of enhanced YOLOv8, which

consists of three main components:
Fron
1. Backbone: By extracting features from input images

through convolutional operations and C2f modules, this

component constructs multi-level feature maps to provide

fundamental information for the neck network.

2. Neck: The backbone and head networks are connected through

this intermediate component, where feature pyramid

architecture is adopted for feature fusion and enhancement.

3. Head: Based on features extracted by preceding networks,

the head generates final leaf localization results, providing

foundational data support for subsequent severity grading.
Based on the baseline YOLOv8n which is the lightest model in

the YOLOv8 series, an enhanced network for leaf location is

proposed with the following innovations, whose detailed

parameters are presented in Table 1:
1. ScConv module is integrated into the backbone to

implement a lightweight model.

2. BiFPN structure is adopted in the neck to enhance

localization capability for leaves which have different sizes.

3. PIoU loss function is adopted to improve the accuracy of

leaf bounding box regression.
2.2.1 ScConv-optimized YOLOv8 backbone
network

The ScConv module (Li et al., 2023; Jiang et al., 2024) is a

lightweight module that reduces feature redundancy through two
tiers in Plant Science 04
units: SRU (Spatial Redundancy Unit) and CRU (Channel

Redundancy Unit), whose structure is shown in Figure 4. To

implement lightweight leaf localization, this paper embeds the

ScConv module into the Bottleneck of YOLOv8’s C2f module. In

detail, as shown in the comparison between YOLOv8 bottleneck

and ScConv-bottleneck in Figure 5, ScConv replaces the second 3×3

convolution in the bottleneck, which effectively reduces network

parameters. Specifically, the processing pipeline of ScConv module

in this paper consists of the following steps:

Step 1: The input feature map is reconstructed along spatial

dimensions in the SRU. Given an input feature map X ∈ RC�H�W ,

SRU first applies group normalization (GN) to the input features, as

formulated in Equation 1:

X̂ g, c, h,w = gg
Xg, c, h,w − mgffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2
g + e

q + bg (1)

Here, g denotes the group index; gg and bgrepresent learnable
affine transformation parameters; mg and sg indicate the mean and

standard deviation of the g-th group; e serves as a small constant for

numerical stability.

Next, as shown in Equation 2, a spatial attention mechanism is

utilized to generate attention map As from the normalized features

X̂ , where Ws is a trainable convolutional kernel, ∗ denotes

convolution operation, and s(·) is the sigmoid function.

As = s (Ws*X̂ ) (2)

After the above processing, the element-wise multiplication (⊙)

between attention map As and input feature X produces the

reconstructed feature map Xs as defined in Equation 3:

Xs = As ⊙X (3)
FIGURE 3

Network structure of leaf location based on YOLOv8.
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Step 2: Via convolution layers and global average pooling

(GAP), Xs is processed through channel-wise refinement to

generate a channel attention vector Ac in the CRU. Subsequently,

as formulated in Equation 4, the element-wise multiplication

between Acand Xs generates the final output Y:

Y = Ac ⊙Xs (4)
Frontiers in Plant Science 05
2.2.2 BiFPN-optimized YOLOv8 neck network
BiFPN (Bidirectional Feature Pyramid Network) is a feature

fusion architecture that combines bidirectional paths and skip

connections for multi-scale feature processing (Tan et al., 2020;

Feng et al., 2025). Through this design, BiFPN enhances feature

fusion efficiency and multi-scale object detection capability.

Considering these advantageous characteristics, BiFPN is

incorporated into the neck of YOLOv8 to handle the wide-

ranging scale variations in potato leaves. Figure 6 shows the FPN

and PAN structure which is used in original YOLOv8, and Figure 7

presents the BiFPN structure. As illustrated, compared to the

original FPN and PAN structure, BiFPN introduces additional

cross-scale connections and weighted feature fusion, which

enables more effective information flow between different scales

and enhances the model’s ability to handle multi-scale features.

In reconstructing the neck network, 1 × 1 convolution is

initially applied to process the input features, which aims to

achieve two objectives: (1) enhance the non-linear representation

and semantic expression capabilities; (2) adjust the number of

channels, which ensures dimensional compatibility between

feature maps and BiFPN input. Subsequent to this initial

processing, the features then enter two sequential pathways: top-

down and bottom-up.

Top-down pathway: This pathway utilizes upsampling

operations to increase feature resolution. At each layer, the

upsampled features are combined with backbone features through

element-wise addition to merge semantic and spatial information.

Let Ptd
i ∈ RCi�Hi�Wi denote the output feature map of the top-down

pathway at the i-th layer, which is computed in Equation 5:

Ptd
i = Conv

w1 · Pi + w2 · U(Ptd
i+1)

w1 + w2 + ϵ

� �
(5)

Here, Pi is the backbone feature map; U( · ) is the upsampling

operation; w1 and w2 are learnable weights; ϵ is a small constant for

stability and Conv(·) is a convolutional layer.

Bottom-up pathway: Features at different scales are fused

through downsampling operations in this pathway. Each layer in

the bottom-up pathway combines information from three sources:

(1) top-down features; (2) previous bottom-up features; (3)

backbone features. Let Pbu
i ∈ RCi�Hi�Wi denote the output feature

map of the bottom-up pathway at the i-th layer, which is evaluated

in Equation 6:

Pbu
i = Conv

w1 · P
td
i + w2 ·D(Pbu

i−1) + w3 · Pi
w1 + w2 + w3 + ϵ

� �
(6)

where D( · ) is the downsampling operation, and w3 is the

weight for backbone features.

Finally, these refined features are sent to the head for multi-scale

leaf detection.

2.2.3 PIoU-based loss function
In this paper, due to the CIoU loss’s limitation in evaluating

bounding box quality for irregularly shaped objects like leaves, the
TABLE 1 Parameters of improved YOLOv8 network.

Network
layer

Input size Output size c

Input – 640 × 640 3

convolutional
layer1

640 × 640 320 × 320 64

convolutional
layer2

320 × 320 160 × 160 128

Bottleneck 160 × 160 160 × 160 128

convolutional
layer3

160 × 160 80 × 80 256

Bottleneck 80 × 80 80 × 80 256

convolutional
layer4

80 × 80 40 × 40 512

Bottleneck 40 × 40 40 × 40 512

convolutional
layer5

40 × 40 20 × 20 1024

Bottleneck 20 × 20 20 × 20 1024

SPPF 20 × 20 20 × 20 1024

convolutional
layer6

20 × 20 20 × 20 512

upsample 20 × 20 40 × 40 512

BiFPN layer 40 × 40 40 × 40 512

Bottleneck 40 × 40 40 × 40 512

convolutional
layer7

40 × 40 40 × 40 256

upsample 40 × 40 80 × 80 256

BiFPN layer 80 × 80 80 × 80 256

Bottleneck 80 × 80 80 × 80 256

convolutional
layer8

80 × 80 40 × 40 512

BiFPN layer 40 × 40 40 × 40 512

Bottleneck 40 × 40 40 × 40 512

convolutional
layer9

40 × 40 20 × 20 512

BiFPN layer 20 × 20 20 × 20 512

Bottleneck 20 × 20 20 × 20 1024

Detection [80 × 80,40 × 40,20
× 20]

[80 × 80,40 × 40,20
× 20]

6
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Powerful-IoU(PIoU) loss (Liu et al., 2024) is adopted to replace

the CIoU for better leaf location. Compared with CIoU loss, PIoU

loss calculates the relative positions between predicted and target

boxes’ enclosing matrix, which achieves a more precise balance

between box size and position accuracy. Based on this optimized
Frontiers in Plant Science 06
calculation method, PIoU demonstrates particularly effective

performance in handling leaves with irregular shapes and

varying scales.

Specifically, the PIoU loss function combines the standard IoU

loss with a geometric penalty term, as shown in Equation 7:
URE 4FIG

Framework of potato late blight severity grading.
FIGURE 5

Comparison of YOLOv8 bottleneck and ScConv-Bottleneck.
FIGURE 6

Structure of YOLOv8’s FPN and PAN.
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LPIoU = LIoU + (1 − e−P
2

) (7)

where LIoU is the intersection-over-union loss between

predicted and ground truth boxes, and 1 − e−P
2
is the geometry-

sensitive penalty component. The penalty coefficient P is defined in

Equation 8:

P =
1
4

dw1

wgt
+
dw2

wgt
+
dh1
hgt

+
dh2
hgt

 !
(8)

Here, as shown in Figure 8, which illustrates PIoU-based

bounding box calculation, wgt and hgt are the width and height of

the ground truth box. The width difference terms dw1 and dw2

measure the maximum width excess: dw1 = max(wb) − wgt

represents the excess between the ground truth box and its

minimum enclosing rectangle containing the prediction box, dw2

= max(wp) − wgt represents the excess between the prediction box

and their joint minimum enclosing rectangle. The height difference

terms dh1 and dh2 are defined similarly for the height dimension.
Frontiers in Plant Science 07
2.3 UNet3Plus-optimized infected region
segmentation

UNet3Plus is a fine-grained semantic segmentation model that

implements pixel- level infected region segmentat ion.

Architecturally, the network consists of two parts:
1. Encoder: The input image sequentially passes through five

encoding stages, each of which contains a convolutional

layer and a 2 × 2 max pooling layer. Specifically, at each

stage, the feature map size is reduced by half, and the

number of channels is doubled. Through these encoding

operations, a multi-scale feature pyramid is formed.

2. Decoder: The decoder contains five stages. By utilizing

feature fusion and convolution operations, each decoder

stage integrates features from three sources: (1) the encoder

at the same level; (2) upsampled features from other

decoder layers; and (3) upsampled features from all

deeper encoder stages. Through these decoding

operations, pixel-wise infected region segmentation

results are generated by the final layer.
Based on the UNet3Plus network, two modifications are

implemented in this paper, which can be visualized in the

structural diagram presented in Figure 9: (1) The convolution

modules are replaced with Ghost convolution in both encoder

and decoder, which reduces the model parameters; (2) Multi-

Scale Local Response Attention(MLSRA) is integrated into the

decoder’s feature fusion module to enhance the infected region

segmentation performance. Table 2 presents the network

parameters in the infected region segmentation model.

2.3.1 Lightweight encoder-decoder module
based on Ghost convolution

To implement lightweight model’s construction, Ghost

convolution (Tang et al., 2022; Han et al., 2020, 2022) is utilized to
FIGURE 7

Structure of YOLOv8-BiFPN.
FIGURE 8

PIoU-based losses.
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replace the conventional convolution operations in both encoder and

decoder of UNet3Plus, which reduces the number of parameters and

computational cost (Zhang et al., 2024; Bui and Do Le, 2025).

Specifically, the Ghost convolution consists of three steps:

Step 1: The Ghost convolution module first extracts enriched

feature representations through combining standard and

lightweight convolutions, as shown in Equations 9.

F = CheapConv(PrimaryConv(X))⊕ PrimaryConv(X) (9)

Here, PrimaryConv(·) and CheapConv(·) represent standard

convolution and depthwise separable convolution respectively, and

⊕ denotes feature concatenation.

Then the LightSE module of the Ghost convolution module

enhances these concatenated features with cross-dimensional

dependencies, as shown in Equations 10:

F1 = LightSE(F) (10)

Step 2: For efficient feature transformation, depthwise separable

convolution is utilized in the Ghost convolution. For input channels

Cin, output channels Cout, and kernel size k, depthwise separable

convolution reduces the parameter count fromO(Cin � Cout � k2) to

O(Cin � k2), which significantly reduces computational complexity.

After the above processing, the Ghost convolution applies

channel attention to highlight informative features, as shown in

Equations 11 and 12, where s represents the sigmoid function, GAP

(·) denotes global average pooling, and ⊙ indicates channel-wise

multiplication.

Attn = s (GAP(F1)) (11)

output = X⊙Attn (12)

Similar to the initial step, the subsequent stage of the Ghost

module also utilizes both primary and cheap convolutions in
Frontiers in Plant Science 08
parallel to process output, as shown in Equations 9, maintaining

structural consistency and enhancing feature diversity.

Step 3: By incorporating residual connection, the network

enhances feature propagation capability and mitigates

information loss, as formulated in Equations 13:

Y = output + Shortcut(X) (13)
2.3.2 Decoder architecture based on MSLRA
In order to improve infected region segmentation accuracy for

leaves of different scales and reduce computational complexity,

Multi-Scale Local Response Attention (MSLRA) is proposed and

integrated into the decoder’s feature fusion module to replace the 1

× 1 convolution. The proposed MSLRA, based on Coord attention

(Hou et al., 2021), incorporates a multi-scale local response

mechanism that extracts local features through multi-scale

windows to generate attention maps, which strengthens the

ability to focus on important features at different scales

and orientations.

To implement this mechanism, MSLRA processes input features

X ∈ RC�H�W through coordinated spatial enhancement and multi-

scale enhancement, which effectively captures both global context and

local details. In detail, the processing pipeline consists of twomain steps:

Step 1: The input features are first compressed by applying

global average pooling separately along height and width

dimensions, as shown in Equations 14. Here, zh and zw preserve

the structural patterns.

zh(h) = 1
W o

W

w=1
X(h,w) ∈ RH�1

zw(w) =
1
H o

H

h=1

X(h,w) ∈ RW�1

(14)
FIGURE 9

Network structure of infected region segmentation.
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Subsequently, these features are concatenated along the channel

dimension and processed through a reduction convolution with

compression ratio r to generate intermediate features z ∈ RC
r�(H+W).

Based on these intermediate features, the attention weights are
Frontiers in Plant Science 09
computed as shown in Equation 15, where Wh and Ww denote 1 × 1

convolutional kernels and s represents the sigmoid activation.

ah = s (Wh*z
0
h) ∈ RH�1

aw = s (Ww*z
0
w) ∈ RW�1

(15)

Finally, by utilizing element-wise multiplication (⊗) and outer

product (⊕) operations between the attention weights and input

features, enhanced features Y are generated as shown in Equation 16.

Y = X⊗ (ah ⊕ aw) ∈ RC�H�W (16)

Step 2: The enhanced features Y from Step 1 are passed through

four distinct pathways, each of which consists of two steps. Firstly,

each pathway uses adaptive average pooling(AAP) to generate

feature maps of different sizes: [1 × 1,3 × 3,5 × 5,7 × 7], which

enables the model to focus on various scales of information.

Subsequently, in each pathway, the number of channels of feature

maps is reduced by Conv1×1 and activated by ReLU activation.

Then, the number of channels of the feature maps is restored to its

original dimension by Conv1×1 to expand the feature representation,

as shown in Equation 17.

atti = Conv1�1(ReLU(Conv1�1(AAP(Y)))) (17)

Next, as shown in Equation 18, in order to form a unified

feature representation, a learnable weighted mechanism is utilized

to fuse the attention maps which are generated from the four

pathways. Here, lkrepresents the learnable weight for each pathway.

Att = o
4

k=1

lkattk (18)

Finally, this unified attention map is combined with the original

input feature map Y to generate the final output, as formulated in

Equation 19.

^Output = Y⊗Att (19)
2.4 Severity grading

In the above two stages, the leaf localization stage generates

bounding box G for each leaf, and the infected region segmentation

stage implements pixel-wise segmentation, categorizing pixels into

background pixels, healthy pixels and infected pixels. Subsequently,

for each detected leaf, the severity parameter S is calculated based on

the segmented pixels within its corresponding bounding box G, as

shown in Equation 20, where Illness represents the infected area and

Health denotes the healthy area.

S =
Illness

Health + Illness
100% (20)
TABLE 2 Parameters of improved UNet3Plus network.

Network
layer

Input size Output
size

c

Input – 256 × 256 3

convolutional
layer1

256 × 256 256 × 256 64

downsample1 256 × 256 128 × 128 64

convolutional
layer2

128 × 128 128 × 128 128

downsample2 128 × 128 64 × 64 128

convolutional
layer3

64 × 64 64 × 64 256

downsample3 64 × 64 32 × 32 256

convolutional
layer4

32 × 32 32 × 32 512

downsample4 32 × 32 16 × 16 512

convolutional
layer5

16 × 16 16 × 16 1024

upsample4 16 × 16 32 × 32 1024

convolutional
layer6

32 × 32 32 × 32 64

Feature
fusion module

[256 × 256,128 × 128,64 × 64,32 ×
32,16 × 16]

32 × 32 320

upsample3 32 × 32 64 × 64 320

convolutional
layer7

64 × 64 64 × 64 64

Feature
fusion module

[256 × 256,128 × 128,64 × 64,32 ×
32,16 × 16]

64 × 64 320

upsample2 64 × 64 128 × 128 320

convolutional
layer8

128 × 128 128 × 128 64

Feature
fusion module

[256 × 256,128 × 128,64 × 64,32 ×
32,16 × 16]

128 × 128 320

upsample1 128 × 128 256 × 256 320

convolutional
layer9

256 × 256 256 × 256 64

Feature
fusion module

[256 × 256,128 × 128,64 × 64,32 ×
32,16 × 16]

256 × 256 320

convolutional
layer10

256 × 256 256 × 256 3
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Based on the severity parameter S, the infection level R of each

leaf is graded according to Equation 21:

R =

0, S ≤ 0:001

1, 0:001 < S ≤ 0:1

2, 0:1 < S ≤ 0:25

3, 0:25 < S ≤ 0:50

4, 0:50 < S ≤ 0:67

5, S > 0:67

8>>>>>>>>>>><
>>>>>>>>>>>:

(21)
3 Experimental results

3.1 Experimental environment

The hardware environment is 14 vCPU Intel(R) Xeon(R)

Platinum 8362 CPU @ 2.80GHz; Memory 45GB; RTX3090 GPU

24GB. The software environment is ubuntu20.04 operating system,

Python 3.8, Pytorch 1.10.0, and Cuda 11.3.
3.2 Dataset

The dataset consists of approximately 4,700 potato late blight

leaf samples across 6 severity levels, which were collected by the

equipment shown in Figure 10. In this equipment, an adjustable

lifting mechanism is featured to capture leaves at different scales,

and a flexible lighting system is featured to adapt to varying

shooting conditions. With this professional equipment, the

collected images are of high quality and show clear gradation in

both disease coloration and infection coverage, providing solid

support for potato late blight grading.
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Furthermore, the data augmentation methods are applied in

this paper to enrich the potato late blight dataset. As a fundamental

technology in deep learning (Shorten and Khoshgoftaar, 2019), data

augmentation enriches the original dataset through various

transformation methods (Pandian et al., 2019; Wagle et al., 2021).

To meet practical application requirements, different augmentation

strategies were adopted for leaf localization and infected region

segmentation tasks because of the differing characteristics and

challenges of each task.

For leaf localization, we utilized the built-in data augmentation

strategy of YOLOv8, which includes standard transformations such

as random cropping, scaling, and color adjustments. These

augmentations are sufficient for our task because leaf localization

primarily requires robustness to variations in leaf position, size, and

lighting conditions, which are effectively addressed by YOLOv8’s

default augmentations.

For infected region segmentation, more diverse and intensive

augmentations were used because of the task’s higher complexity

and sensitivity to variations in infection patterns. The following

augmentation methods were applied with specific justifications:
1. Horizontal flip(probability 0.5): This augmentation could

not only helps the model generalize to different orientations

of leaves and infection patterns but also doubles the

effective training data by creating mirrored versions of

each image.

2. Vertical flip(probability 0.5): This strategy ensures the

model learn invariant features regardless of vertical

orientation, which is particularly important for capturing

spatial symmetry in segmentation tasks.

3. Random 90° rotation(probability 0.5): To enable robust

segmentation of irregularly oriented infections which may

appear at any angle on leaves, we employed 90° rotation

augmentation. This method could not only maintain the

pathological feature integrity but also provide essential

orientation diversity for model training.

4. Random translation, scaling, and rotation(probability 0.5,

rotation angle less than 45°, scale ratio 0.1): By simulating

real-world variations in camera distance, angle, and leaf

positioning, these augmentations ensure the model handle

off-center leaves and improve the generalization ability to

field conditions.
These augmentations were chosen to address the specific

challenges of infected region segmentation, such as the irregular

shapes and sizes of infections, their varying locations on leaves, and

the need for precise pixel-level predictions. By introducing

controlled variability, the model becomes more robust to the

diverse appearances of diseased regions in practical scenarios,

ultimately improving generalization to unseen data.

Through these augmentation methods, the dataset was enriched

to approximately 140,000 leaf samples. Figure 11 demonstrates

representative augmentation results of a sample image, illustrating

the effectiveness of these transformation methods. What’s more, in
FIGURE 10

Potato late blight data acquisition equipment.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1616864
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yuan et al. 10.3389/fpls.2025.1616864
order to ensure effective model training and reliable evaluation, the

dataset was split into training and testing sets with ratio of 7:3.
3.3 Results evaluation

Evaluation metrics provide quantitative measures to assess

model performance in deep learning (Sokolova and Lapalme,

2009). Therefore, appropriate metrics selection enables objective

comparison among different models and identifies optimal

solutions for specific tasks.

3.3.1 Leaf localization
For leaf localization, this paper used Precision, Recall, F1-score

and mean Average Precision at 50% Intersection over Union

(mAP50) that range between 0 and 1 (Powers, 2011; Ronneberger

et al., 2015). In detail, higher values of these metrics indicate better

performance. Mathematically, these metrics are defined as

Equations 22–25 where TPi denotes the number of true positive

samples, FPi represents the number of false positive samples, FNi

indicates the number of false negative samples, and AP50i is the

Average Precision at IoU threshold 0.5 for class i.

Precision =
1
ko

k

i=1

TPi
TPi + FPi

(22)

Recall =
1
ko

k

i=1

TPi
TPi + FNi

(23)

F1 − score =
2� Precision� Recall
Precision + Recall

(24)

mAP50 =
1
No

N

i=1
AP50i (25)
3.3.2 Infected region segmentation
For infected region segmentation task, precision, recall, F1-

score, and mean intersection over union (mIoU) are used to
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evaluate the model performance (Long et al., 2017). Among these

metrics, mIoU is defined as Equation 26:

mIoU =
1
No

N

i=1

TPi
TPi + FPi + FNi

(26)
3.3.3 Model complexity
Model complexity is evaluated through the total number of

parameters and floating point operations (FLOPs). In detail, the

parameters represent the total trainable weights in the model and

FLOPs represent the computational cost of a single forward pass.

Both of them indicate a more lightweight and efficient model when

their values are lower. Mathematically, these metrics are calculated

as Equations 27 and 28, where L represents the total number of

layers, paramldenotes the number of parameters in layer l, and flopsl
represents the floating point operations in layer l.

Parameters =o
L

l=1

paraml (27)

FLOPs =o
L

l=1

flopsl (28)
3.4 Model training and parameters tunning

3.4.1 Training for leaf localization
To achieve high-precision leaf localization, this paper employs

the SGD optimizer with a learning rate warmup mechanism to

enhance training stability.

In order to evaluate the effectiveness of this leaf localization

training strategy, this paper analyzed the training process.

Specifically, Figure 12 reveals several distinctive characteristics in

train loss curves across different training phases between our

enhanced YOLOv8 and the baseline YOLOv8 model, where the

horizontal axis represents epochs and the vertical axis represents

loss values. Starting from similar initial loss values around 3.62, our

model demonstrates superior convergence behavior in multiple
FIGURE 11

Data augmentation results. (A) Original sample. (B) Augmented sample. (C) Augmented sample. (D) Augmented sample.
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phases. Through the first 10 epochs, our model shows a steeper

descent trajectory to 2.0433. Then during the intermediate phase

(epochs 11-30), our model exhibits a more stable and consistent

descent pattern.

Notably, between epochs 20-25, the loss of our model decreases

steadily from 1.5894 to 1.4443, suggesting superior learning

stability. Finally, in the epochs 31-50, our model achieves a lower

loss value than the base model (1.0483 versus 1.0567), which

maintains consistent minor oscillations that demonstrate both

successful convergence and robust model stability. Based on these
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training results, it can be concluded that our model achieves better

feature extraction capabilities and demonstrates stronger

generalization ability.

3.4.2 Training for infected region segmentation
In the infected region segmentation task, Adam optimizer

(Duchi et al., 2011) combined with WeightDICE loss (Jadon,

2020) function is utilized as the basic training strategy to enable

adaptive parameter updates and enhance segmentation accuracy.

Initially, Figure 13 demonstrates the comparative loss curves
FIGURE 12

Comparative loss curves of leaf localization.
FIGURE 13

Comparative loss curves of infected region segmentation without optimized training strategy.
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between our model and the baseline under fixed learning rate,

where the horizontal axis represents training epochs and the vertical

axis represents loss values. In detail, our model initially showed

higher starting loss (57.29) and slower convergence compared to the

baseline model (48.75), which was primarily due to our adoption of

a lightweight network with fewer parameters that might make it

difficult to learn features quickly.

To address the slow convergence issue, an improved learning

rate scheduling strategy is designed as shown in Figure 14, where

the horizontal axis represents training epochs and the vertical axis

represents learning rate values. Specifically, the learning rate starts

from 0.0001, gradually increases during the first 10 epochs (warm-

up phase) to reach 0.001, then follows a cosine curve decreasing to
Frontiers in Plant Science 13
0.0000225. This strategy was designed considering the

characteristics of lightweight models: the warm-up phase allows

the model to gradually adapt to data distribution, and cosine

annealing enables fine-tuning of parameters in later stages, which

maximizes the use of model capacity.

Based on the above improved strategy, Figure 15 demonstrates

the comparative training performance between our model and the

baseline, where the horizontal axis represents training epochs and

the vertical axis represents loss values, revealing that our model

effectively overcame the slow convergence challenge of

lightweight networks:

Initial training performance: Although our model showed a

higher initial loss (54.75) compared to the baseline (48.75) in the
FIGURE 15

Comparative loss curves of infected region segmentation with optimized training strategy.
FIGURE 14

Learning rate schedule under warmup-cosine annealing.
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first epoch, it quickly achieved better performance by epoch 5 with a

loss of 30.18, surpassing the baseline’s 32.05, which demonstrates

the effectiveness of our warm-up strategy in overcoming early

training challenges.

Training Efficiency: During epochs 10-20, our model’s loss

steadily decreased from 26.33 to 22.08, outperforming the

baseline model’s range (28.63-25.66). This demonstrates that our

learning rate scheduling strategy enabled more efficient parameter

optimization during the middle training phase.

Convergence Performance: The most notable improvements

emerged during the later training stages (epochs 20-50), where our

model’s loss steadily decreased from 22.08 to 16.48. Such stable

optimization and superior final performance validate the

effectiveness of our learning rate scheduling strategy in addressing

the convergence challenges of lightweight models.
3.5 Ablation experiments

3.5.1 Ablation experiments of leaf localization
To validate the effectiveness of our proposed components in leaf

localization, Tables 3 and 4 summarize the ablation experiments of

this paper, where ‘–’ indicates that the corresponding module is not

used in the model and ‘✓’ denotes that the corresponding module is

used in the model. According to the results, the baseline YOLOv8

achieves 95.54% precision and 90.89% recall. When integrating

ScConv, the model significantly reduces computational complexity,

although at the cost of a slight decrease in detection metrics.

Subsequently, incorporating BiFPN with ScConv improves the F1

score to 95.94% and maintains computational efficiency, surpassing

the baseline performance. Similarly, the integration of PIOU
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enhances the model’s precision to 96.66%, which demonstrates

the highest precision among all configurations. It can be attributed

to PIOU’s explicit optimization of localization accuracy. However,

this combination shows relatively lower recall compared to our full

model, indicating potential over-suppression of positive detections.

Finally, by combining all three components, our model achieves

optimal performance with 95.73% precision, 92.78% recall, and

97.40% F1 score. While the precision of our model is 0.93% lower

than the YOLOv8-ScConv-PIOU variant, the difference is offset by

two critical advantages:
1. The 2.62% improvement in recall and 0.93% higher F1

score demonstrate our model ’s superior overall

detection capability.

2. This precision-recall trade-off directly results from BiFPN’s

multi-scale feature fusion mechanism, whose intentional

preservation of more potential leaf regions across different

scales could address the critical agricultural requirement of

minimizing missed detections in real scenarios.
Most importantly, our model’s superior performance is

achieved with reduced computational complexity (2.83M

parameters and 3.84G FLOPs) compared to the baseline model.

These experimental results confirm the success of our proposed

modifications in both enhancing detection capability and reducing

computational costs.
3.5.2 Ablation experiments of infected region
segmentation

To evaluate the effectiveness of our proposed components in

infected region segmentation, Tables 5 and 6 summarize the

ablation experiments of this paper, where ‘–’ indicates that the

corresponding module is not used in the model and ‘✓’ denotes that

the corresponding module is used in the model. Firstly, the baseline

UNet3Plus achieves a foundation performance with 79.27%

precision, 72.35% recall, and 75.65% F1-score. When integrating

GhostConv into the network, an improvement in precision could be

observed to 81.22% with a slight decrease in recall to 70.49%.

Notably, this modification brings significant benefits in

computational efficiency, reducing the model complexity from

26.98M parameters and 800.48G FLOPs to 8.45M parameters and

455.84G FLOPs. In a separate experiment, incorporating MSLR

demonstrates more substantial improvements in both precision
TABLE 3 Evaluation results of ablation experiments on leaf localization stage.

ScConv BiFPN PIOU Precision(%) Recall (%) F1 (%) mAP50(%)

– – – 95.54 90.89 93.15 93.16

✓ – – 94.99 88.91 91.84 91.85

✓ ✓ – 94.92 89.06 91.89 93.30

✓ – ✓ 96.66 90.16 93.29 91.90

✓ ✓ ✓ 95.73 92.78 94.22 94.23
TABLE 4 Parameter and FLOPs comparison of ablation experiments for
leaf localization.

ScConv BiFPN PIOU Params
(M)

FLOPs(G)

– – – 3.01 4.10

✓ – – 2.82 3.81

✓ ✓ – 2.83 3.84

✓ – ✓ 2.82 3.81

✓ ✓ ✓ 2.83 3.84
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(82.78%) and recall (74.89%), which lead to an enhanced F1-score

of 78.64%.

Building upon these individual improvements, our model,

which combines both components, achieves optimal performance

with 85.10% precision, 75.44% recall, and 79.98% F1 score. What’s

more, this superior performance is achieved with dramatically

reduced computational complexity (4.88M parameters and

134.40G FLOPs) compared to the baseline model. These

experimental results validate the effectiveness of our proposed

modifications in both enhancing segmentation capability and

reducing computational costs.
3.6 Comparative experiments

3.6.1 Comparative experiments of leaf
localization

Table 7 presents a comprehensive comparison of different models

for leaf localization. As shown in the comparison results, our model

achieves optimal performance across multiple metrics, demonstrating

the highest mAP50 of 97.40% and F1-score of 94.23% with reduced

computational resources (3.89G FLOPs). Among the baseline models,
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YOLOv11 achieves the second-best performance with 96.56% mAP50

and 93.92% F1-score, followed by YOLOv8 with 95.75% mAP50 and

93.16% F1-score. What’s more, YOLOv10 exhibits the lowest

performance across all metrics, with both precision and recall

around 72%. Additionally, despite achieving the highest precision of

99.78%, FCOS (Tian et al., 2019; Yehia et al., 2024) shows significantly

lower recall (74.09%), resulting in a reduced F1-score of 85.04%.

Moreover, FCOS requires substantially higher computational

resources with 32.12M parameters, approximately 11.37 times larger

than our model’s 2.83M parameters. Notably, DETR achieves near-

perfect precision of 99.64% but limited recall of 79.28%, resulting in an

intermediate F1-score of 88.30%. This performance comes at the cost

of heavy computational overhead, which makes it impractical for

field deployment.

From the above experiments, we found that there exists a

consistent precision-recall trade-off in highparameter models.

Both FCOS and DETR sacrifice 20%-25% recall for less than 4%-

5% precision improvement, which is a suboptimal balance for

agricultural applications that prioritize comprehensive detection

over individual prediction confidence. This phenomenon primarily

stems from the fundamental architectural biases of FCOS detector

and Transformer-based DETR, which intrinsically prioritize

highconfidence predictions at the expense of diminished

sensitivity to small targets. Therefore, their inherent limitations in

cross-scale leaf detection sensitivity consequently result in 15%-20%

lower recall rates compared to YOLO-series models.

3.6.2 Comparative experiments of infected region
segmentation

Table 8 presents a comprehensive comparison of different

models for infected region segmentation. As demonstrated in the

comparison results, our model achieves optimal performance with

the highest precision (85.10%), recall (75.44%), and F1-score

(79.98%), and requires significantly lower computational

resources (134.90G FLOPs and 4.88M parameters). Among the

baseline models, UNet3Plus demonstrates the highest mIOU of

86.95% and the second-best F1-score of 75.65%, but requires

substantially higher computational cost (800.48G FLOPs),

approximately 5.9 times larger than our model. UNet and SegNet

(Badrinarayanan et al., 2017) exhibit moderate performance with

F1-scores of 72.03% and 74.76% respectively, and PSPNet (Zhao

et al., 2017) shows the lowest performance with an F1-score

of 59.29%.
TABLE 5 Ablation experiments metrics for lesion segmentation.

GhostConv MSLR Precision
(%)

Recall
(%)

F1
(%)

mIOU
(%)

– – 79.27 72.35 75.65 86.95

✓ – 81.22 70.49 75.47 78.35

– ✓ 82.78 74.89 78.64 83.52

✓ ✓ 85.10 75.44 79.98 82.65
TABLE 6 Parameter and FLOPs comparison of ablation experiments for
lesion segmentation.

GhostConv MSLR Params(M) FLOPs(G)

– – 26.98 800.48

✓ – 8.45 455.84

– ✓ 23.41 479.54

✓ ✓ 4.88 134.40
TABLE 7 Evaluation metrics for leaf localization stage.

Model Params(M) FLOPs(G) Precision(%) Recall(%) F1(%) mAP50(%)

FCOS 32.16 19.88 99.78 74.09 85.04 83.26

DETR 41.28 10.27 99.64 79.28 88.30 86.79

YOLOv8 3.01 4.10 95.54 90.89 93.16 95.75

YOLOv10 2.71 4.20 72.43 72.68 72.56 78.65

YOLOv11 2.62 4.34 96.67 91.31 93.92 96.56

This paper 2.83 3.89 95.73 92.78 94.23 97.40
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3.6.3 Comparative experiments of attention
mechanism

Table 9 presents a comprehensive comparison of different

attention mechanisms under identical experimental conditions.

By using the same Ghost convolution-based UNet3Plus

architecture, all models were evaluated with consistent

hyperparameters, which includes learning rate, training epochs

and optimizer settings. In addition, each attention mechanism
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was integrated at the same position in the network architecture to

ensure fair comparison.

As shown in the comparison results, our model achieves

optimal performance across multiple metrics, with the highest

precision (85.10%), recall (75.44%), and F1-score (79.98%).

Among the baseline mechanisms, CoordA demonstrates the

second-best performance with a precision of 83.93%, recall of

73.56%, and F1-score of 78.40%. For the other baseline

mechanisms, SE (Hu et al., 2018) achieves an F1-score of 76.07%

(precision 82.76%, recall 70.33%), and ECA (Wang et al., 2020)

yields an F1-score of 75.37% (precision 83.48%, recall 68.73%).
3.7 Results visualization

3.7.1 Results visualization of leaf localization
Figure 16 illustrates representative leaf localization results from

test set samples. Specifically, the generated bounding boxes
TABLE 8 Evaluation metrics for infected region segmentation stage.

Model Params(M) FLOPs(G) Precision(%) Recall(%) F1(%) mIOU(%)

UNet 39.39 322.21 76.18 68.31 72.03 84.01

SegNet 29.44 160.83 82.75 68.18 74.76 75.99

PSPNet 525.50 201.98 67.96 52.58 59.29 67.41

UNet3Plus 26.98 800.48 79.27 72.35 75.65 86.95

This paper 4.88 134.90 85.10 75.44 79.98 82.65
TABLE 9 Comparative experiments on attention mechanisms.

Model Precision
(%)

Recall(%) F1(%) mIOU(%)

SE 82.76 70.33 76.07 77.94

ECA 83.48 68.73 75.37 78.25

CoordA 83.93 73.56 78.40 80.84

This paper 85.10 75.44 79.98 82.65
FIGURE 16

Visualization of leaf localization results.
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precisely encompass the target leaves and minimize background

inclusion, which effectively handles variations in leaf size, shape,

and orientation. Through these visualization results, our model’s

robust leaf localization capability has been validated.

3.7.2 Results visualization of infected region
segmentation

Figure 17 demonstrates that the segmentation results achieve

high consistency with ground truth annotations. Based on these

visualization results, our model exhibits three significant

advantages: (1) accurate boundary delineation of irregular

infected regions, particularly in areas with complex morphological

characteristics; (2) reliable segmentation of small infection spots,
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even for early-stage lesions with subtle features; (3) effective

suppression of false positives in healthy tissue areas, maintaining

high specificity in disease identification. These results

comprehensively demonstrate our model’s superior capability in

fine-grained infected region segmentation.

3.7.3 Results visualization of severity grading
Figure 18 illustrates the practical application of our potato late

blight severity grading model. Validated by the consistent grading

results, the area-based grading method demonstrates two principal

advantages: (1) scientific and accurate severity grading through

precise quantification of infected regions, and (2) efficient batch

processing capability for applications.
FIGURE 17

Visualization of infected region segmentation results. (A) Segmentation labels. (B) Predicted results.
FIGURE 18

Visualization of severity grading results. (A) Ungraded data. (B) Grading results.
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4 Conclusions
Fron
1. Dataset for potato late blight leaf disease is collected in this

paper, focusing on leaf localization and infected region

segmentation tasks. This dataset establishes a reliable

foundation for deep learning research in potato late

blight disease grading.

2. The severity grading metric based on infected leaf area

proportion is established, which transforms traditional

experience-based assessment into standardized evaluation.

This metric enables objective evaluation of potato late

bl ight sever i ty through precise ca lculat ion of

infection ratios.

3. A lightweight deep learning model utilizing enhanced

YOLOv8-UNet3Plus network is proposed to enable

accurate potato late blight severity grading. In terms of

individual components, the enhanced YOLOv8 achieves

superior leaf localization performance with an F1-score of

94.23% and mAP of 97.40% and an 5.86% reduction in

parameters. Similarly, the enhanced UNet3Plus

demonstrates improved infected region segmentation

with an accuracy of 82.65% and an 87.17% reduction in

parameters. Through these optimization, our model

demonstrates exceptional efficiency and accuracy for

potato late blight severity grading.
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