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The fungal pathogen Botrytis deweyae, first identified as the causative agent of

gray mold disease in China, has become a critical biotic constraint limiting the

sustainable production of Polygonatum cyrtonema Hua in major cultivation

regions. To investigate the physiological reactions and transcriptome gene

changes of P. cyrtonema after B. deweyae infection, in this study, we

investigated the defense enzyme activity, transcriptome differential genes

(DEGs), and differential metabolites (DAMs) of P. cyrtonema. When B. deweyae

invaded the leaves of P. cyrtonema, the activities of phenylalanine deaminase

(PAL), catalase (CAT), and peroxidase (POD) increased. The most responsive

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the

transcriptome were plant-pathogen interaction, plant hormone signal

transduction, the mitogen-activated protein kinase (MAPK) signaling pathway,

and phenylpropanoid biosynthesis (phenylpropanoid biosynthesis) metabolic

pathways. Among the DEGs, AP2 ERF-ERFs, WRKYs, and C2H2 were highly

predictive of transcription factors (TFs), with WRKYs being important TFs in the

P. cyrtonema MAPK pathway. In the metabolome, coumaric acid, a-linolenic
acid, and jasmonic acid (JA) are important metabolites that respond to B.

deweyae infection. Correlation analysis between the transcriptome and

metabolome revealed that phenylpropanoid metabolism and a-linolenic acid

metabolism pathways are associated with the most significant response of P.

cyrtonema to B. deweyae infection, with phenylpyruvate being an important

metabolite in the phenylpropanoid metabolic pathway. Additionally, the

observed upregulation of a-linolenic acid and JA synthesis suggests potential

activation of JA-dependent induced systemic resistance (ISR) against B.

deweyae, possibly mediated through downstream MYC transcription factors.
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These findings indicate that JA signaling contributes significantly to P. cyrtonema

defense response against fungal infection. Our findings provide foundational

insights that may support the development of disease-resistant cultivars or

biostimulant strategies for P. cyrtonema and related medicinal plants.
KEYWORDS

Botrytis deweyae, metabolome, transcriptome, disease resistance, Polygonatum
cyrtonema Hua
1 Introduction

Polygonatum cyrtonema Hua is a perennial herbaceous plant

belonging to the family Asparagaceae (Qin et al., 2024). It is also an

important economic crop that combines food and medicinal uses

(Wang et al., 2019). In recent years, with the continuous expansion of

planting areas, gray mold disease causing by Botrytis. spp has become

quite severe inWanzhou District, Chongqing. B. cinerea (the canonical

gray mold pathogen) has been extensively characterized regarding its

pathogenicity mechanisms on many hosts (Chen et al., 2021). Our

recent research has revealed that B. deweya causes a significantly higher

disease incidence—ranging from 30% to 45%—compared to its

congeners (Ma et al., 2023). The field of this species has been

severely impacted due to the scarcity of varieties that are resistant to

Botrytis. Moreover, the wild type of P. cyrtonema has been classified as

an endangered species (Suyal, 2024). Given these challenges, it is of

utmost importance to identify and develop resources that are resistant

to Botrytis in order to address the production issues and ensure the

sustainable cultivation of P. cyrtonema.

When pathogen infection occurs, pathogen-related molecular

patterns (PAMPs) and DAMPs can activate the plant PTI immune

response (Couto and Zipfel, 2016). Within a short period, plants

can undergo rapid defense responses, including the activation of the

mitogen-activated protein kinase (MAPK) cascade, an increase in

reactive oxygen species (ROS) levels, and the initiation of the

salicylic acid (SA) and jasmonic acid (JA) signaling pathways

(Yuan et al., 2021). ROS accumulation activates protein kinase-

mediated programmed cell death (PCD) (Petrov et al., 2015). To

avoid excessive ROS buildup, plants use a mechanism to maintain

appropriate cellular ROS levels, thereby protecting normal tissues.

Cysteine catalase (CAT), peroxidase (POD), and superoxide

dismutase (SOD) are important protective enzymes for

eliminating ROS in plants and play crucial roles in response to B.

cinerea infection (Meng et al., 2022).

The main mechanism of the immune response against B. cinerea

involves the activation of PTI by DAMPs (Lai and Mengiste, 2013),

which is the product of pathogenic microorganisms degrading host

cell components. The PTI pathway induced by DAMPs requires the

participation of the genes MPK3 and MPK6 in the MAPK signaling

pathway (Galletti et al., 2011). MPK3/MPK6 enhances the stability of

these two transcription factors (TFs) by directly phosphorylating the
02
ERF6 and WRKY33 TFs, thus increasing resistance to gray mold

disease (Meng et al., 2013). The MAPK pathway of tobacco also

increases resistance to gray mold disease through the WRKY

transcription factor (Adachi et al., 2016). WRKY 33 can target

genes involved in JA/ethylene (ET) signaling and phytohormone

biosynthesis (Wang et al., 2020). Sorbic acid (SA), JA, and ET are

considered to be the three most important regulators of the plant

disease resistance signal transduction process. The SA signaling

pathway can be used by plants to increase resistance to gray mold

disease (Mishra et al., 2024). JA is involved in the basic resistance of

gray mold fungus, which can induce the synthesis of plant alkaloids

and phenolic acids. These substances can combine with pathogenic

bacterial proteins to produce toxic effects, thus inhibiting their spread

(Wang et al., 2020). Various plants contain antibacterial substances in

their bodies (Mangalagiri et al., 2021); when pathogenic bacteria are

perceived, the phenylpropionamide metabolic pathway quickly starts

synthesizing phenols, mushrooms, and flavonoids (Gao et al., 2024;

Ye et al., 2016). By disrupting the cell membrane structure of B.

cinerea and reducing total lipid content, the artemether phenol in

potatoes inhibits mycelial growth (Zhang et al., 2019). The expression

of betaine in tobacco leaves significantly improved resistance to gray

mold (Polturak et al., 2017). The accumulation of coumaric acid and

malic acid in ginseng leaves inhibits the growth of B. cinerea (Liu

et al., 2020).

During the long-term coevolution of plants and pathogens, due

to the complex infection strategies of pathogenic bacteria, plants

have evolved different strategies to cope with various pathogen

invasions. Different plants exhibit different methods of resisting

pathogen infections. Transcriptomics technologies help visualize

gene expression differences through (Gene Ontology) (GO)

enrichment and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment, allowing the study of the molecular

mechanisms underlying the response of host plants to pathogens

(Zhang et al., 2013). Metabolomics is a method used to qualitatively

and quantitatively analyze metabolites produced in the body

through analytical methods such as mass spectrometry and

chromatography (Meng et al., 2024). The correlation analysis of

metabolomics and transcriptomics not only reveals changes in plant

metabolites but also facilitates a deeper investigation into the causes

of these changes, i.e., variations in gene transcription levels, thus

helping elucidate the relevant mechanisms of interaction.
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Previously, we first reported gray mold disease caused by B.

deweyae in P. cyrtonema (Ma et al., 2023). To investigate the

physiological responses and transcriptomic gene changes of P.

cyrtonema under B. deweyae infection. In this study, through an

integrated approach combining defense enzyme activity profiling,

transcriptomic analysis, and metabolomic characterization, we

systematically investigated the molecular response mechanisms of

P. cyrtonema to B. deweyae. Our findings demonstrate that the

MAPK signaling cascade activates pivotal transcription factors and

defense enzyme system (POD, PAL, and CAT) orchestrate early

defense responses, while a-linolenic acid dependent JA biosynthesis

pathway coordinates phytohormone-mediated resistance through

metabolic reprogramming. These pathogen-responsive

mechanisms are further modulated by F-box E3 ubiquitin ligases

via dynamic protein regulation. Our systematic deciphering of this

defense network provides crucial insights for molecular-guided

breeding of disease-resistant P. cyrtonema cultivars.
2 Results and discussion

2.1 Symptoms of gray mold in
Polygonatum cyrtonema

The leaves were inoculated at 0 h to maintain a healthy and

disease-free state, and disease spots started appearing 24 h after

inoculation (Figure 1A). The diseased parts were watery and

mottled. As the inoculation time increased, the disease spots

expanded into ellipsoids and grew white aerial hyphae. At 96 h,
Frontiers in Plant Science 03
the leaves withered, and the whole plant was close to

death (Figure 1B).
2.2 Defense enzyme activity is enhanced
after inoculation with Botrytis deweyae

When B. deweyae invaded the leaves of P. cyrtonema, the

activities of all three defense enzymes were greater than those of

the control leaves (t-test, all p-values <0.01), with the activity of the

PAL enzyme rapidly increasing from 0 to 12 h and then slowly

decreasing before increasing to the maximum value of 199.02 U/g

(units per g protein) at 84 h (Figure 2A). The CAT activity increased

from 0 to 24 h and then decreased to the minimum value of 5134.56

U/g at 48 h, followed by a rapid increase to the maximum value of

12177.37 U/g at 84 h (Figure 2B). The POD enzyme activity started

increasing at 12 h and generally tended to increase, reaching

167.407 U/g at 60 h, after which it started to decrease

(Figure 2C). Compared to the symptoms of P. cyrtonema leaves

inoculated with B. deweyae, P. cyrtonema leaves between 72 h and

84 h may have already lost their resistance capability, and they

gradually withered and died at 84 h of infection.
2.3 Comparative analysis of transcriptome
sample data

A total of 75.60 Gb of clean data were obtained from 12

samples, the amount of clean data from each sample reached 5.77
FIGURE 1

Diseases symptoms of gray mold in Polygonatum cyrtonema at different time points. (A) Symptoms of potted plants (for transcriptome sequencing);
(B) Symptoms of single leaf disease (for enzyme activity assay).
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Gb, the Q30 percentage was 89.81% or greater, and 80,417 unigenes

were obtained after assembly. Among them, 22,756 unigenes had a

length of more than 1 kb (Supplementary Table S1), and 40,844

unigenes were annotated by functional annotation.

For each sample, boxplots of gene expression levels were plotted

to examine the dispersion of gene expression levels across

individual samples, compare the overall gene expression levels of

different samples (Supplementary Figure S1A), assess the dispersion

of samples, and note that the principal component analysis (PCA)

distances within the group were relatively close. In contrast, the

main components of Tpoly1 and Tpoly4 were alike for the

treatment groups, whereas Tpoly1, Tpoly2, and Tpoly3 showed

variation (Supplementary Figure S1B).

In the three groups, 10,963 genes were differentially expressed

in the gene set; 6,497 genes were upregulated, and 4,466 genes were

downregulated. The number of differentially expressed genes

(DEGs) in group G2 was the highest among the three comparison
Frontiers in Plant Science 04
groups, with 4268 genes, while the lowest number of DEGs in G3

was only 1534 (Figure 3A).

To determine the relationships among the three DEGs, a Venn

diagram analysis was performed on the DEGs in the three gene sets of

G1, G2, and G3, and Euler plots were drawn using the BIC network

platform (Figures 3B, C). The results revealed 734 co-expressed

upregulated DEGs and 142 co-expressed downregulated genes.

2.3.1 Pathways related to plant immune
responses are annotated by KEGG

Among the 1102 + 734 upregulated DEGs in the G1 and G2

gene sets, the KEGG classification map revealed that 11 genes

associated with cellular processes were annotated to the

peroxisome pathway, and the MAPK signaling pathway was the

most enriched in the environmental information processing

signaling pathway and plant hormone signal transduction. In

total, 21 genes involved in ubiquitin-mediated proteolysis were
FIGURE 3

Statistics of the number of differentially expressed genes. (A) Histogram of the number of differentially expressed genes; (B) Euler plot of differentially
up-regulated gene set; (C) Euler plot of differentially down-regulated gene set.
FIGURE 2

Changes in defense enzyme activity of Polygonatum cyrtonema leaves after inoculation with Botrytis deweyae. (A) phenylalanine deaminase (PAL)
activity; (B) catalase (CAT) activity, and (C) peroxidase (POD) activity. Different lowercase letters indicate statistically significant differences among
post-inoculation treatments (p < 0.05) based on Tukey’s honestly significant difference (HSD) test following ANOVA.
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annotated to genetic information processing, and 36 genes were

involved in phenylpropanoid biosynthesis. Moreover, 82 genes were

associated with the plant-pathogen interaction pathway

(Figure 4A). Carbon metabolism and plant-pathogen interactions

were the most enriched pathways in the KEGG analysis.

Phenylpropanoid biosynthesis, a-linolenic acid metabolism,

flavonoid biosynthesis, and sphingolipid metabolism pathways

were also enriched (Figure 4B).

2.3.2 Oxidoreductase activity pathway was
enrichment

In the GO classification diagram, DEGs were the most

abundant metabolic process, and 120 genes related to response to

stimulus, 37 genes related to signaling and detoxification, and four

genes related to immune system processes were annotated. In terms

of cell composition (CC), a single cell enriched the most gene

entries. The binding and catalytic activities were annotated to the

molecular function (MF) with the largest number of DEG entries,

and 15 genes involved in antioxidant activity were annotated

(Supplementary Figure S2).

Owing to the large number of plant disease resistance genes

involved in BP and MF, GO enrichment analysis and GO

enrichment hierarchy analysis were conducted. The GO

enrichment bubble diagram revealed that the tricarboxylic acid

cycle had the largest number of DEG entries annotated in BP, and

10 genes involved in response to chitin were significantly enriched,

which were significantly enriched with the host immune response;

additionally, defense response genes were annotated (Figure 5A).

The GO enrichment chord diagram revealed the gene expression of

chitin in response to pathogens, in which DN10131 was

significantly upregulated (Figures 5B, C), triggered the immune

response of plants, and participated in the process of response to
Frontiers in Plant Science 05
oxidative stress, which indicated that it plays an important role in

plant immune signaling. In the MF bubble map, 69 genes were

annotated to protein kinase activity, and the highest enrichment

was protein serine/threonine kinase activity, which may act as PRRs

on plant cell membranes. In total, 13 peroxidase activity genes and

four phenylalanine ammonia-lyase activity genes were also enriched

in small amounts (Figure 6A). DN1051 (GO:0003824), DN10922,

and DN10613 were involved in the redox process, and DN10131

and DN10068 were upregulated in the G1 and G2 groups

(Figures 6B, C).

2.3.3 The key transcription factor WRKY regulates
fungal infections

Transcription factors (TFs) were predicted for the 734 co-

expressed upregula ted genes us ing a Venn diagram

(Supplementary Figure S3A), and heatmaps were generated for

the top three types of TFs with the most gene entries

(Supplementary Figure S3B), among which the first three gene

families were AP2ERF-ERF, WRKY, and C2H2. Numerous studies

have identified the important roles of TFs in plant defense. One of

the most studied MYB TFs is Botrytis susceptible 1 (BOS1), which

restricts necrosis triggered by B. cinera (Mengiste et al., 2003). In

addition, WRKY33 is phosphorylated by MPK3/MPK6 to regulate

the biosynthesis of phytoalexin in response to pathogen infection

(Ren et al., 2008). Arabidopsis CCCH protein C3H14 contributes to

basal defense against B. cinerea mainly through the WRKY33-

dependent pathway (Wang et al., 2020). WRKY transcription

factors act as key regulators in plant disease resistance signaling

pathways (e.g. strawberry, tomato) (Shu et al., 2021), responding to

biotic stress by regulating genes involved in innate immunity,

hormone signaling pathways, and phytoalexin synthesis (Lee

et al., 2023).
FIGURE 4

Classification and enrichment of KEGG. (A) KEGG pathway classification line diagram. The ordinate represents the KEGG pathway annotated by
KEGG Ortholog database, and the horizontal axis represents the number of genes annotated; (B) KEGG enrichment bubble diagram. The ordinate
represents the KEGG pathway. The abscissa represents the Rich factor. The larger the Rich factor, the greater the enrichment. The larger the point,
the greater the number of differential genes enriched in the pathway. The redder the color of the dots, the more significant the enrichment.
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FIGURE 6

DEGs classification enrichment of biological processes (BP). (A) BP enrichment Bubble diagram; (B) BP enrichment chord diagram. The line color
represents the different pathways to which the annotation is reached. The size of the dot represents the number of genes, the larger the size, the
greater the enrichment; (C) BP enrichment Network diagram.
FIGURE 5

DEGs classification enrichment of Molecular function (MF). (A) MF enrichment Bubble diagram. The ordinate represents the KEGG pathway. The
abscissa represents the rich factor. The larger the rich factor, the greater the enrichment. The larger the point, the greater the number of differential
genes enriched in the pathway. The redder the color of the dots, the more significant the enrichment; (B, C) MF enrichment Network diagram. The
left half represents different genes and their relative expression levels, the darker the color, the more obvious the up-regulation of the modified
genes, and the right half represents the annotation to different MF pathways, which are represented by different color patches and connecting lines.
Frontiers in Plant Science frontiersin.org06
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2.3.4 Three co-expression patterns were
identified to be functionally linked to
susceptibility development

To assess genes with the same expression pattern, a co-

expression trend analysis of three sets of DEGs was conducted.

The expression dynamics can be clustered into 11 expression

patterns (Supplementary Figure S4). According to the co-

expression trend diagram, three patterns with consistent

upregulated expression trends were selected for subsequent

analysis (Supplementary Figure S4 A, H, and K). Among the 189

genes whose expression was consistent, those related to plant-

pathogen interactions, plant hormone signal transduction, and

the MAPK signaling pathway were significantly enriched

(Figure 7A), which was the result of interactions between P.

cyrtonema and B. deweyae.

Metabolites or metabolite intermediates associated with

antibacterial activity, such as phenylpropanoid biosynthesis,

flavonoid biosynthesis, ubiquinone, and other terpenoid-quinone

biosynthesis, and a-linolenic acid metabolism, were enriched in the

other two modes. Additionally, sphingolipid metabolism was also

enriched in the other two modes (Figures 7B, C).
Frontiers in Plant Science 07
2.3.5 MAPK signaling pathway mediates primary
defense responses

When attacked by B. deweyae, the receptor protein kinase

BAK1/FLS senses pathogenic effector factors and triggers the

MAPK signaling immune response (Figure 1), including ROS

mechanisms and the activation of transcription processes to resist

pathogens. This indicated that brassinosteroid-related receptor

kinase 1 (BAK1) and LRR receptor-like serine/threonine protein

kinase (FLS) play key roles in activating MAPK signaling as two

LRRs, while WRKY TFs activate downstream genes for B. deweyae

resistance, with WRKY 33 being the most annotated transcription

factor, which activates the camalexin synthesis process downstream.

WRKY 22 TFs mediate cell death by activating the transcription of

the senescence receptor kinase FRK1 (Supplementary Figure S5).

The MAPK signaling pathway is an essential component of plant

immunity, mediating hypersensitive response (HR) and associated

cell death (Adachi et al., 2016). MPK3/MPK6 phosphorylates

WRKY transcription factors including WRKY22, WRKY23,

WRKY29, WRKY46 and WRKY53, which mediate the pathogen

induced plant defense response (Xie et al., 2021). In our previous

analysis of TFs, we propose that this conserved MAPK-WRKY
FIGURE 7

Enrichment diagram of co-expressed trend gene KEGG. (A) 189 gene KEGG enrichment Bubble Diagram; (B) 133 gene KEGG enrichment Bubble
Diagram; (C) Bubble Diagram of KEGG enrichment of 317 gene. The ordinate represents the KEGG pathway. The abscissa represents the rich factor.
The larger the rich factor, the greater the enrichment. The larger the point, the greater the number of differential genes enriched in the pathway. The
redder the color of the dots, the more significant the enrichment.
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regulatory module likely functions in P. cyrtonema to coordinate

defense against fungal pathogens.

2.3.6 Protein-protein interaction network
associated with defense-enriched pathways

Based on the KEGG andGO classification information, the protein

interaction network diagram nodes were edited, and the functions and

interactions of each gene were displayed, among which the ubiquitin-

mediated protein hydrolysis gene DN1274_c1_g1 (ko04120) showed

binding relationships with multiple disease resistance genes, including

the MAPK signaling pathway, a-linolenic acid metabolism pathway,

and plant hormone signaling pathway. This indicated that protein

ubiquitination is crucial for activating and regulating gene expression

in the immune pathways of P. cyrtonema. Four genes (DN3411_c0_g1/

DN21425_c0_g1/DN53217_c0_g1/DN880_c2_g1) (ko00600)

involved in sphingolipid metabolism most strongly interacted with

DN1274_c1_g1, and these four genes were found to be closely related.

The two genes involved in MAPK signaling, including DN1158_c0_g1

(ko04626) and DN65_ c0_g1 (ko04016), also presented a high degree

of correlation in the network diagram, and multiple pathways, such as

chitin and sphingoesteric acid metabolism, promoted MAPK

signaling (Figure 8).

2.3.7 Verify differentially expressed genes in key
pathways by qPCR

Real-time PCR verification of the screened DEGs was conducted,

and the correlation between the RNA-seq data and relative

quantitative data was evaluated. The results of the qPCR analysis of

the 12 DEGs are shown in Figure 9; the genes confirmed included the

receptor protein kinase gene in MAPK signaling pathway

DN65_c0_g1 (ko04016), the DN14157_c0_g1 (ko00940) gene of

phenylpropanoid biosynthesis or catalytic activity (GO:0003824),

the DN1401_c0_g1 (ko00600) gene of sphingomate metabolism,
Frontiers in Plant Science 08
and the phenylpropanoid biosynthesis DN13372_c0_g1 (ko00940)

or antioxidant activity (GO:0016209).
2.4 Metabolomic analysis in response to
Botrytis deweyae infection

2.4.1 Sample difference grouping and test results
We used the LC-QTOF platform for qualitative and quantitative

metabolomics analysis of 16 samples and detected 24,245 peaks under

default mode, of which 4,975 metabolites were annotated. By

conducting PCA of correlations between samples to evaluate

biological reproducibility within the group (Supplementary Figure

S6A), the Spearman rank correlation coefficient (r) was used as an

indicator of biological reproducibility (Supplementary Figure S6B).

Based on the results of the PCA variable analysis and correlation

assessment, the differential metabolite (DAMs) data obtained from this

metabolomics study were found to be reliable and can be used for

downstream DAMs screening. Based on the results of OPLS-DA

(Supplementary Figure S7). Permutation testing confirmed the

robustness of the OPLS-DA model. All permuted R2Y and Q2Y

values (blue dots) fell below the original model’s metrics (red star),

indicating the model’s validity (p < 0.001). The intercepts of the

regression lines (Q2< 0.05) further support non-overfitting

(Supplementary Figure S8). The models built in the three comparison

groups were all valid and could be used for subsequent analysis.
2.4.2 KEGG enrichment analysis of differential
metabolites

The DAMs in each differential group were annotated using the

KEGG database, and the substances with antifungal activity in the

three groups were annotated to the biosynthesis of other secondary

metabolites. Most of the annotated metabolites were antibiotic
FIGURE 8

PPI protein interaction diagram of DEGs. The size of each node represents the number of Edge count, the width of the line represents the degree of
interaction score, and is automatically scored by the database. The shape of the line represents the interaction relationship, and the node shape
reflects the function of genes in the KEGG and GO pathways.
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metabolites, such as neomycin, kanamycin, and gentamicin.

Flavonoid biosynthesis, indole alkaloid, quinoline alkaloid, and

alkaloid-related metabolites were also annotated to the three

groups. Arachidonic acid metabolism, a-linolenic acid

metabolism, and cutin, suberin, and wax biosynthesis were the

most annotated DAMs in lipid metabolism. Other DAMs, such as

diterpenoid biosynthesis and carotenoid biosynthesis, were

annotated to the metabolism of terpenoids and polyketides

(Figure 10). Eight DAMs were annotated to the phenylpropanoid

biosynthesis pathway in the M2. Although KEGG analysis revealed

apparent enrichment of neomycin, kanamycin, and gentamicin,

these compounds are not synthesized in plants. This observation

likely reflects conserved primary metabolic components shared

between plants and bacteria, such as enzymes and intermediates

involved in amino sugar and nucleotide sugar metabolism (e.g.,

UDP-glucose). To improve pathway resolution and avoid such
Frontiers in Plant Science 09
artifacts, propose future studies will employ complementary tools

like MapMan or Reactome for functional enrichment analysis,

which may better distinguish plant-specific metabolic processes.

The abundance score (DA score) reflects the overall changes in

all metabolites in the metabolic pathway, and a positive score

indicates that the expression of all annotated metabolites in the

pathway is upregulated, and vice versa. The DA scores for the three

comparison groups are shown in Supplementary Figure S9. The five

pathways with the greatest enrichment in each difference group

were assessed by association analysis and combined with the results

of enrichment network diagram analysis. In the M1 comparison

group, the sulfur- relay system had the highest score, and the

biosynthesis of alkaloids, plant hormone signaling, and the

biosynthesis of cutin, serine, and wax were also upregulated. The

enrichment network diagram showed that indole alkaloids and

other biosynthesized alkaloids were the most annotated
FIGURE 9

Functional annotation of differential metabolite KEGG in comparative groups. (A) M1 comparison group; (B) M2 comparison group; (C) M3
comparison group. The left ordinate represents the metabolic reaction, the right ordinate axis repre-sents the metabolic pathway, and the same
color indicates the same metabolic pathway. The abscissa axis value represents the proportion of each metabolite.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1617308
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yin et al. 10.3389/fpls.2025.1617308
differentially expressed metabolites (with 11 metabolites in total)

(Supplementary Figure S9A). In the M2 comparison group, b-
lactam resistance had the highest score, and the metabolites

associated with phenylpropanoid biosynthesis increased in score

(Supplementary Figure S9B). In the M3 comparison group, the

highest score was for a-linolenic acid metabolism, accounting for

11 metabolites, followed by microterpene biosynthesis

(Supplementary Figure S9C). Furthermore, the bubble plot of

KEGG enrichment factor for DAMs confirmed significant

enrichment of cutin, serine, and wax biosynthesis (Supplementary

Figure S10A, B) and alpha-linolenic acid metabolism

(Supplementary Figure S10C) in the metabolome of P cyrtonema.
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The results of the KEGG enrichment analysis of the transcriptome

revealed that a-linolenic acid metabolism was the most significant

metabolite involved in disease resistance.
2.5 Integrative transcriptome-metabolome
association analysis

2.5.1 Correlation assessment of differential genes
and metabolites

Subsequently, PCA was performed separately for the three

differential groups, and the degree of association between the
FIGURE 10

qRT-PCR validation of differentially expressed genes in the transcriptome of Polygonatum cyrtonema post infection. The Spearman’s rho values
quantify the rank-based correlation between RNA-seq and qRT-PCR measurements at each time point (P value < 0.05). Different letters indicate
statistically significant differences of RNA-seq and qRT-PCR among the three comparison groups at p < 0.05 according to Tukey’s test.
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DAMs and the DEGs was evaluated by reducing the dimensionality

of the DAMs to a few independent variables. The results of the

analysis are shown in Supplementary Figure S12. By comparing the

pathways associated with genes in the transcriptome and the

pathways associated with metabolites in the metabolome, the

number of common pathways involved was obtained, as shown in

Supplementary Figure S12, with 79, 78, and 83 common metabolic

pathways in the three differential groups, respectively.

2.5.2 Annotation of differential genes and
metabolites

The DEGs and metabolites in the three comparison groups were

uniformly annotated on the KEGG pathway, and the top 30

pathways with significantly enriched differential genes/metabolites

were plotted as a bar chart. Bubble plots were made using the KEGG

pathways coenriched by transcriptomics and metabolomics. In the

MG1 grouping bar chart, metabolic pathways related to keratin,

serine, and wax biosynthesis were significantly different. As shown

in the KEGG pathway bubble plot on the right (Supplementary

Figure S13A), sphingolipid metabolism, flavonoid biosynthesis,

phenylpropanoid biosynthesis, a-linolenic acid metabolism, and

plant hormone signaling were significantly enriched. These

pathways were also enriched in the MG2 group (Supplementary

Figure S13B). In the MG3 group, genes and metabolites related to

a-linolenic acid metabolism presented the greatest significance,

whereas the DEGs and metabolites related to plant hormone

signaling and keratin, serine, and wax biosynthesis presented

increased significance (Supplementary Figure S13C).

2.5.3 Jasmonic acid signaling and zeatin
networks

In this study, the networks involved in Jasmonic acid (JA)

synthesis and sphingolipid metabolism were annotated.

Sphingolipids are a class of structurally complex lipid molecules

containing long-chain sphingosine groups, with galactosyl

sphingosine and sphingosine being key intermediate products in

the sphingolipid metabolism pathway of P. cyrtonema (Figure 11A).

Both metabolite levels increased after B. deweyae infected P.

cyrtonema, and their gene expression also increased, which

aligned with the transcriptome network diagram. Another

annotated pathway was the synthesis of the plant hormone JA; we

found (Figure 11B) that JA synthesis is influenced by abscisic acid

(ABA), brassinolide, abscisate, and zeatin and is closely related to

genes associated with zeaxanthin and JA. JA is an endogenous

hormone that plays a very important role in plant disease resistance,

and its gene expression is regulated by WRKY TFs, which can

trigger HR-mediated disease resistance in plants (Shu et al., 2021).

Zeatin is a novel plant hormone that can regulate various

physiological mechanisms, such as growth, development,

phototropism, and stress tolerance. Although abiotic stresses such

as drought in wheat (Triticum aestivum) and cadmium toxicity in

Desmodesmus armatus have been extensively studied (Piotrowska-

Niczyporuk et al., 2024; Wang et al., 2023), research on their

responses to biotic stress—particularly pathogen infection—

remains relatively underexplored. In this experimental, the
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metabolic processes of zeatin are not significant, the network

diagram showed that most genes involved in its synthesis are the

same as those involved in JA synthesis, indicating that a synergistic

relationship may exist between JA and zeatin, which can coregulate

P. cyrtonema in the B. deweyae antidisease process, a hypothesis

requiring functional validation through future interrogation of their

crosstalk mechanisms.

2.5.4 Defense-related phenylpropanoids and
derivatives against Botrytis deweyae infection

According to the phenylpropion synthesis pathway diagram

(Figure 12), during B. deweyae infection, the activities of three

metabo l i t e s , pheny lpyruva te , p -coumar i c ac id , and

leucopelargonidin, significantly increase in P. cyrtonema.

Phenylpyruvate is the precursor for phenylalanine (Pen)

synthesis, which is primarily synthesized into Pen by transferases

such as aspartate aminotransferase (AST) and glutamate

dehydrogenase (GDH). The phenylpropanoid biosynthesis

pathway may indirectly influence the salicylate-mediated disease

resistance signaling pathway. Studies have shown that p-coumaric

acid has a significant inhibitory effect on the walnut anthracnose

pathogen Colletotrichum gloeosporioides. In this study, Pen

activated the downstream flavonoid biosynthesis pathway, where

the chalcone synthase (CHS) gene plays a crucial role. In another

pathway involved in flavonoid synthesis, leucopelargonidin

promotes the formation of dihydrokaemplerol under the action of

anthocyanin synthase (ANS), with rutin participating as a precursor

in the downstream flavonoid synthesis pathway. Pen acts as a key

substance in the phenylpropanoid metabolic pathway (Li et al.,

2017). The phenylpropanoid metabolism-based defense responses

towards pathogen attacks have been widely characterized in plants

(Cui et al., 2024; Xiao et al., 2022). It can directly or indirectly

activate plants to produce various secondary metabolites with

antibacterial effects, such as flavonoids and phenols, B. cinerea

quercetin dioxy genase (BcQdo) (catalyzing flavonoids degradation

gene) involves in B. cinerea virulence towards the Panax ginseng,

△BcQdo mutants showed increased flavonoids accumulation and

reduced disease development (Chen et al., 2022).

2.5.5 The a-Linolenic acid-to-jasmonate
signaling cascade

Linolenic acid (LnA) and linoleic acid (LA) are the main

unsaturated fatty acids in plants (Lim et al., 2017). They are

natural immune inducers in plants and can act as signaling

molecules to induce the natural, systematic, and lasting resistance

of plants to diseases (Dedyukhina et al., 2014). In this study, the

metabolite a-linolenic acid was detected in the metabolome, and its

activity significantly increased with increasing inoculation time

(Figure 13), indirectly correlated with the plant hormone JA

signaling pathway, with the metabolic levels of both showing a

positive correlation. In the hormone signaling pathway, the JAZ

(jasmonate ZIM-domain protein) protein complex, which is

composed of the negative regulator JAZ and inositol

pentophosphate molecules, has COI1 as a core member of the

JAZ receptor complex (Wang, 2015). JA receptor COI 1 can
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specifically bind to JAZ, causing JAZ to be ubiquitinated and

degraded by the proteasome, relieving the inhibition of JAZ in

the transcriptional regulation of the JA pathway and thus

participating in the transmission of downstream disease resistance

genes (Srivastava et al., 2018). In this study, an increase in the

expression of multiple JAZ genes regulated transcription and played

a dominant role in the JA signal-mediated disease resistance

process. Moreover, MYC2 acts as the core transcription factor of

the JA signaling pathway, not only exerting positive regulatory

effects on defense-related JA responses but also regulating the

expression of the plant defense gene PDF1.2 (plant defensin 1.2)

(Li et al., 2021), the genes COI1 and MYC2 were confirmed to

participate in the JA signaling pathway, with MYC2 showing a

significant association with B. squamosa resistance in onion (Allium

cepa) (Lee et al., 2022). Additionally, allene oxide synthase (AOS)

enzymes mediate the biosynthesis of JA from a-linolenic acid. The
AOS-overexpressing line exhibited enhanced JA accumulation,

which was associated with increased resistance to B. squamosa

(Kim et al., 2025), suggesting that a-linolenic acid metabolism plays

a crucial role in plant defense mechanisms. However, the regulatory

role of a-linolenic acid in JA biosynthesis is currently inferred
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primarily from omics data, and its precise molecular mechanisms

require further experimental dissection.
3 Conclusion and future research

In this study, when P. cyrtonema was subjected to B. deweyae

infection, and two receptor protein kinase genes, BAK 1 and FLS 2

(PRRs) on the cell membrane may perceive B. deweyae-related

effector molecules and potentially initiate MAPK signaling, as

suggested by upregulated MAPK gene expression in our

transcriptome data, which includes the activation of downstream

disease resistance genes by the transcription factor WRKY and the

induction of PCD and HR through the burst of ROS (Figure 14).

WRKY is the second most important transcription factor in disease

resistance responses after AP2ERF-ERF. Under B. deweyae stress,

ROS accumulation and WRKY 33 may activation-induced

expression of phytohormone-related genes involving WRKY 22

require the mediation of the WRKY transcription factor gene

family. Silencing the FaWRKY 25 gene can increase JA

biosynthesis and increase resistance to B. cinerea in strawberries
FIGURE 11

Network chart of differentially expressed genes and metabolites, (A) Network chart of sphingolipid metabolism; (B) Network chart of jasmonic acid
and zeatin metabolism. The red line represents a positive correlation (Correlation coefficient Pearson, CCP <0.05), and the blue line represents a
negative correlation.
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FIGURE 13

The antifungal signaling pathway of a-linolenic acid. Each gene is represented in the wireframe, the red shading represents the up-regulation of the
gene, the green represents the down-regulation, and the heat map represents the enrichment level of the gene at four time points, and the redder
the color indicates the more enrichment of the gene at that time point.
FIGURE 12

The synthesis of phenylalanine metabolites involved in the disease resistance pathway. Each gene is represented in the wireframe, the red shading
represents the up-regulation of the gene, the green represents the down-regulation, and the heat map represents the enrichment level of the gene
at four time points, and the redder the color indicates the more enrichment of the gene at that time point.
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(Jia et al., 2020), and overexpressing FaWRKY 25 leads to a decrease

in resistance. However, the silencing of WRKY-related genes in

Nicotiana benthamiana reduces resistance to B. cinerea (Ramos

et al., 2021). Although the overexpression of WRKY TFs can

activate the production of downstream disease-resistant

metabolites, for necrotrophic fungi such as Botrytis spp (Saha

et al., 2023), the PCD response of overexpressed WRKY TFs is

more advantageous for infection, indicating that there are

significant differences in disease resistance responses among

different types of fungi when facing gray mold infection. The

specific functions of the WRKY 33 and WRKY 22 transcription

factor family members identified in this study need to be

further investigated.

The invasion of B. deweyae led to an increase in defense enzyme

activity in P. cyrtonema leaves to different degrees, and all of these

activities were greater than those in the control group. CAT activity

reached its peak at 84 h and then rapidly decreased at 96 h. The PAL

and SOD enzyme activities were optimal between 72 and 84 h,

whereas the POD enzyme activity was the best between 60 and 72 h.

Compared to the disease progression of inoculated leaves, as the

leaves turn yellow and wither, the activity of protective enzymes

decreases (Figure 2). Moreover, multiple DEGs were enriched in the

peroxisomal transcriptome, and these genes have antioxidant

functions according to the KEGG database. In MF to GO

enrichment, there were 13 peroxidase activities (Figure 5), four

phenylalanine oxidase activities, two SOD enzyme activities, and

two CAT enzyme activities. CAT is present in animals, plants, and

microorganisms, and the overexpression of CAT genes can

significantly increase the disease resistance of potatoes (Figure 6).
Frontiers in Plant Science 14
In tobacco lacking CAT genes, cells undergo apoptosis due to an

increase in hydrogen peroxide levels (Adachi et al., 2016). Besides

participating in the antioxidant process, POD enzymes can also

catalyze the production of phenolic compounds that are toxic to

pathogens or synthesize lignin to form a physical barrier. The

activity of POD enzymes is positively correlated with the disease

resistance of the host and the overexpression of POD genes in plants

such as tea and tobacco can improve disease resistance (Lai et al.,

2016). PAL is a key and rate-limiting enzyme in the

phenylpropionamide metabolic pathway, providing precursors for

the synthesis of phytohormones (Lin et al., 2018), such as flavonoids

and terpenoids. The enrichment results of the 189 coexpressed

genes indicate that the PAL gene is involved in the biosynthesis of

terpenoids such as phenylpropanoids, flavonoids, and quinones. In

this study, during B. deweyae infection, multiple POD genes were

upregulated and participated in the disease resistance process.

These genes played a dominant role, and further research is

needed to determine the functions of these genes.

We analyzed the PPI network of DEGs in the transcriptome and

revealed that the DN1274_c1_g1 gene of ubiquitin-2, like Rad60

SUMO-like, interacts with multiple functional genes.

DN1274_c1_g1 is annotated as a ubiquitin-like domain of the

ubiquitinoid miniature modifier (Figure 8). The ubiquitin-like

domain (ULD) is part of a polypeptide, and its primary function

is to mediate protein hydrolysis. Ubiquitinoids are a family of

proteins with key structural characteristics similar to those of

ubiquitin. Studies on the class of ubiquitinoid protease genes

under biological stress conditions are limited, whereas CRL-type

and RING/U-box-type E3 ubiquitin ligases have been extensively
FIGURE 14

Proposed model for leaf of Polygonatum cyrtonema in response to Botrytis deweyae infection. (PRR)-triggered immunity; ROS, reactive oxygen
species; PCD, programmed cell death; HR, hypersensitive response; POD, peroxidase; PAL, phenylalanine deaminase; CAT, catalase, CHI, chalcone
isomerase; CHS, chalcone synthase; CYP73A, cinnamate 4-Hydroxylase; PLA2G, phospholipase A2 group; DAD1, defender against cell death 1; JA,
jasmonic acid; SA, salicylic acid; a-LnA, a-linolenic acid.
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studied in the context of plant disease resistance (Hu et al., 2014). In

this study, the interaction between DN1274_c1_g1 and the gene

regulating sphingolipid metabolism, DN65_c0_g 1, was the

strongest, and their coexpressed KEGG enrichment analysis

revealed that DN1274_ c1_ g 1 was associated with sphingolipid

metabolism. Sphingolipids are signaling molecules that can trigger

PCD in plants and are involved in various cellular processes, such as

apoptosis, cell proliferation, and autophagy (Mu et al., 2024). Along

with sphingolipid metabolism, multiple disease resistance signaling

pathways are regulated by the ubiquitination gene DN1274_c1_g1,

including peroxisomes, plant hormone signaling, and a-linolenic
acid, indicating that the response of B. deweyae to P. cyrtonema is

regulated by ubiquitinoid-like genes. Although our integrative

analysis reveals candidate regulators and metabolites potentially

involved in P. cyrtonema’s defense, further functional validation

through gene silencing or overexpression is required to

confirm causality.

The results of the comparative metabolome analysis revealed

that the gene and metabolic levels of phenylpropanoid synthesis

and a-linolenic acid metabolism significantly increased after B.

deweyae infection (Figure 11). The phenylpropanoid metabolic

pathway is an important pathway involved in plant basal disease

resistance, and its downstream products play crucial roles in

resisting B. deweyae infection and self-antioxidation processes,

which participate in the resistance of P. cyrtonema against B.

deweyae (Figure 14), whereas other phenylpropanoid metabolites

indirectly activate the SA-mediated disease resistance response,

activating the transcription of disease resistance genes to prevent

further invasion by B. deweyae. Furthermore, in the KEGG

pathway, a-linolenic acid metabolism and phenylpropanoid

biosynthesis are mediated by activating hormone signaling to

facilitate disease resistance processes, specifically the transcription

of downstream disease resistance genes mediated by SA and the

defense regulatory mechanisms mediated by JA. Genes and

metabolites involved in a-linolenic acid metabolism remain

highly active throughout the infection process. The production of

LA affects the production and colonization of Aspergillus sp. spores

(Upchurch, 2008). SA can activate the expression of plant disease

process-related proteins and regulate the activity of disease-

resistance proteins to improve plant resistance (Mishra et al.,

2024). The exogenous application of SA can inhibit the

germination of rice blast spores and reduce the occurrence of rice

blast disease (Wang et al., 2011). These findings may suggest that P.

cyrtonema could synthesize bioactive antifungal compounds

through pathways such as phenylpropanoid and a-linolenic acid

metabolism, potentially inhibiting the growth and development of

B. deweyae mycelia. Tissue-specific and low-abundance responses

may have been underrepresented due to the limitations of bulk

RNA-seq and untargeted metabolomics. Thus, further validation

through overexpression or silencing of key genes is required to

confirm the underlying mechanisms.

The interaction network diagram of genes and metabolites

revealed that genes regulating zeaxanthin synthesis are also

involved in JA biosynthesis (Figure 11). Zeatin is a plant growth

regulator that plays a significant role in regulating plant growth,
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development, and stress resistance. Whether there is a synergistic

effect between zeatin and JA in the disease resistance process needs

to be investigated (Figure 14). Although untargeted metabolomics

identified significant alterations in phytohormones (e.g., JA, zeatin)

in P. cyrtonema following B. deweyae infection, these findings

remain provisional due to methodological limitations. To enhance

reliability, future studies will employ targeted LC-MS/MS with

authentic standards for precise quantification of these hormones.

Additionally, the metabolism of sphingolipid and sphingomyron is

enriched in the transcriptome and metabolome, and whether these

genes participate in activating the PCD mechanism of P. cyrtonema

requires further assessment. These findings provide foundational

insights that may support the development of disease-resistant

cultivars or biostimulant strategies for P. cyrtonema and related

medicinal plants.
4 Materials and methods

4.1 Sample preparation

Tubers of identical age and variety were collected from the P.

cyrtonema plantation in Longju Town, Wanzhou District,

Chongqing (30ngqingnn 108ngqingnnse Three independent

biological replicates (n=3) were established, with each replicate

representing one individual plant. After treatment with 50%

carbendazim, plants were allowed to grow for three months,

three fully expanded leaves per plant were uniformly inoculated

by creating standardized micro-wounds using sterile needles (0.3

mm diameter). Three precisely positioned wounds were

introduced per leaf, inoculated with inverted 5-mm fungal

cakes, and wrapped with cling film. Tissue from the lesion

margins of these three leaves was pooled to create one

composite biological sample per replicate plant. All plants were

maintained in a greenhouse (95% ± 1% RH; 27 ± 1°C) under 12-h

light/dark cycles.
4.2 Defense enzyme extraction and activity
determination

For each harvest time point (0, 12, 24, 36, 48, 60, 72, 84, and 96

hours post-inoculation), three independent biological replicates

were collected (n=3 per time point). Each biological replicate

consisted of lesion-edge tissue pooled from three inoculated

leaves of a single P. cyrtonema plant. The activities of the three

enzymes were determined by the BC 0205 kit for catalase (CAT),

the BC 0215 kit for phenylalanine deaminase (PAL), and the BC

0095 kit for peroxidase (POD) provided by Solarbio Science &

Technology Co., Ltd. (Beijing). The measured data were processed

and statistic ally analyzed using Excel 2016 and SPSS 20.0 software,

differences between inoculated plants (treatment) and uninoculated

controls were analyzed using welch two-sample t-tests. Temporal

changes within the treatment group across post-inoculation time

points (0–96 h) were assessed via one-way ANOVA with Tukey’s
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HSD post hoc test (a = 0.05), and the graphs were plotted using

GraphPad Prism 8. Enzyme activities were calculated as follows:

CAT   activity(U=g   FW)

= ½DA240  �  Vt
(e  �   d)

� 106� ÷ (
Vs

Ve  �  W
) ÷ T

PAL   activity(U=g   FW) = DA290 � Vt ÷ 0:1 ÷ (
Vs

Ve  �  W
) ÷ T

POD   activity(U=g   FW) = DA470 ÷ 0:01� Vt ÷ (
W

Ve  �  Vs
) ÷ T

U/g FW: One unit of enzyme activity (U) is defined as the

amount of enzyme that catalyzes the degradation of 1 mmol of

substrate per minute per gram of tissue under standard

assay conditions.

FW: Fresh weight; DA: Change in absorbance; Vt: Total reaction
volume (mL); Vs: Volume of enzyme extract added (mL).

Ve: Total extraction volume (mL); T: Reaction time (min); W:

Sample fresh weight (g).
4.3 Transcriptome sequencing analysis

4.3.1 Sample collection
Samples were collected at 0 h, 24 h, 48 h, and 96 h after

inoculation, with healthy tissues from the interface between

diseased and healthy tissues (3 × 5 mm) collected in centrifuge

tubes and stored in liquid nitrogen. Metabolomic samples were

preserved using the same method, while transcriptomic analysis was

performed on three biological replicates per group (n=3), and

metabolomic analysis was performed on biological replicates per

group (n=4). The repetitive groups and grouping of each sample are

listed in Supplementary Table S2.

4.3.2 RNA extraction and quantitative detection
Total RNA was extracted from the samples using an RNAprep

Pure Plant Kit (Tiangen, Beijing, China). The RNA concentration

and purity were measured using a NanoDrop 2000 system (Thermo

Fisher Scientific, Wilmington, DE). The integrity of the RNA was

assessed using an RNA Nano 6000 detection kit from Agilent

Bioanalyzer 2100 Systems (Agilent Technologies, CA, USA). After

confirming that the RNA was sufficient for detection, one part was

used for sequencing, and the other part was used for

qPCR validation.

4.3.3 Sequence acquisition and annotation
Paired-end 150 bp (PE 150) mode sequencing was performed

using the Illumina NovaSeq 6000 sequencing platform. Gene

functions were annotated by comparing with the KOG/COG

(Clusters of Orthologous Groups of proteins), KO (KEGG

Ortholog database), and GO databases. Data were analyzed using

the bioinformatics analysis workflow provided by the Biomarker

Cloud Platform BMKCloud (www.biocloud.net).
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4.3.4 Differential expression gene screening
Genes whose expression levels significantly differ among

different samples are called DEGs, and the set of genes obtained

from differential expression analysis is known as the set of DEGs,

referred to as “A vs. B” (A is the control and B is the experimental

treatment). The grouping of DEGs identified in this study is shown

in Supplementary Table S3.

Differential expression gene screening was performed using

differential analysis software based on the count value of genes in

each sample, and DESeq 2 was used (Love et al., 2014).While detecting

DEGs, the screening criteria were set as a differential expression ratio

(fold change) ≥ 2 and a false discovery rate (FDR) < 0.01. The greater

the absolute value of log2FC, the more significant the difference

between the two groups of samples of genes with smaller FDR values.

4.3.5 Differential gene enrichment analysis
The KEGG database resources (Kanehisa et al., 2011) (http://

www.kegg.jp), and the KOBAS database (Xie et al., 2011) were used

to conduct DEGs enrichment analysis. The clusterProfiler software

was used to analyze the enrichment of DEGs in KEGG pathways,

and the GO enrichment analysis of DEGs was performed using the

clusterProfiler package based on Wallenius non-central

hypergeometric distribution (Wu et al., 2021), with P < 0.05 as

the threshold. Combined with the differential expression analysis

results, the differential gene sequences were aligned to the STRING

database (http://stringdb.org/) to obtain the protein-protein

interaction (PPI) relationships of the DEGs in B. deweyae, which

were then visualized using Cytoscape 3.10.1 (Shannon et al., 2003).
4.3.6 Differential gene qPCR verification
The DEGs used for qPCR validation were selected from the

original material that passed detection for reverse transcription. The

reverse transcription reaction was performed with the MightyScript

First Chain cDNA Synthesis Master Mix (B639251) kit, following

instructions provided by Shanghai Biotech Co., Ltd. (MightyScript).

After the reaction ended, the samples were stored at –20°C until use.

Primers were designed using Primer Premier 6 software with target

gene band sets between 150–250 bp, and the gene sequences are

shown in Supplementary Table S4. The internal reference gene of

ubiquitin-conjugating enzyme-E2-10 (UBQ-E2-10) and elongation

factor 1-alpha isoform (EF-1a2) were selected to correct the relative
expression levels of the genes. The Q-PCR mixture was prepared as

follows: 20 mL, including 10 mL of Master premix (SGE xcel

FastSYBR, B 532955, Sangon Biotech), 0.3 mL each of the

upstream and downstream primers, and 2 mL of cDNA, using

RNase-Free ddH2O, was added to 20 mL, and three repetitions were

set for each sample. Real-time fluorescence qPCR was performed on

a Gentier 96E (Xi’an Tianlong Technology Co., Ltd.).

The one-step real-time fluorescence qPCR protocol was as follows:

predenaturation at 95°C for 15 s, reaction at 95°C for 5 s, and reaction

at 58°C for 30 s for 38 cycles; the melting curve program was as

follows: 95°C for 15 s, followed by 60°C for 1 min. If the Ct value was

between 15 and 25, the melting curve was a single peak, and if the Tm

value was between 80 and 90, the target gene was considered to be
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successfully amplified. After obtaining the data using Gentier 96E, the

software provided by Gentier 96E was used to preliminarily collate

and analyze the experimental data. The 2-DDCt method was used to

obtain the relative expression value, and the calculation formula was as

follows: The graphs were drawn with GraphPad Prism 8.

DD Ct = (Ct of the target gene in the experimental group-Ct of

the internal reference gene in the experimental group) - (Ct of the

target gene in the control group-Ct of the internal reference gene in

the control group).
4.4 Metabolomic profiling methods

Untargeted metabolomic profiling of all 16 samples was

performed using an LC-QTOF platform. The LC/MS system for

metabolomics analysis is composed of Waters Acquity I-Class

PLUS ultra-high performance liquid tandem Waters Xevo G2-XS

QTof high resolution mass spectrometer. Mass spectrometry data

were acquired in MSe mode under the control of the MassLynx V

4.2 (Waters) software for high-resolution mass spectrometry (Wang

et al., 2016). Data processing operations such as peak extraction and

peak alignment were performed using the Progenesis QI software,

and identification was conducted based on the online METLIN

database, public database, and Baimaike self-built database.

Themetabolome was functionally annotated using spectral libraries

(Mass BankMETLINNIST, etc.), metabolic pathway databases (KEGG

PlantCyc MetaCyc), compound information databases (PubChem

ChemSpider, etc.), and metabolomics experimental information

management databases (SetuoX SesameLIMS). The classification and

information on the pathway of the identified compounds were searched

in the KEGG HMDB and lipidome databases.

DAMs were grouped using the “A vs B”method (A as the control

and B as the experimental treatment) to screen for DAMs, with

samples divided into groups for differential comparison

(Supplementary Table S5). The grouping information showed that

the fold changes (FC) were calculated and compared, and a t-test was

conducted to determine the differences for each compound. The ropls

package in Rstudio was used for orthogonal projections to latent

structures- discriminant analysis (OPLS-DA) modeling to verified

through permutation testing (n = 200). Briefly, class labels were

randomly shuffled, and new OPLS-DA models were reconstructed

using the permuted groupings. The R2Y (goodness-of-fit) and Q2Y

(predictive ability) values from each permuted model were recorded.

These values were plotted against those of the original model in a

scatter plot to confirm that the original model’s performance

exceeded random chance (p < 0.05). Differential multiples from the

OPLS-DA model were used as screening criteria with the following

conditions: FC ≥ 2, p-value < 0.05, and Variable Importance in

Projection (VIP) > 1. Hypergeometric distribution testing was

conducted to calculate the enrichment significance of DAMs in

KEGG pathways. The screened DAMs were mapped to the KEGG

network database for comparison, and the metabolites with the

highest degree of matching for metabolic pathway annotation and

analysis were selected.
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4.5 Association analysis between the
transcriptome and metabolome

To establish functional linkages between genes and metabolites,

we performed rigorous correlation analyses by integrating

transcriptomic and metabolomic datasets, the comparison group

information is provided in Supplementary Table S6. Following UV-

scaling pretreatment of KEGG-annotated differentially expressed

genes (DEGs) and differentially accumulated metabolites (DAMs),

two-way orthogonal partial least squares (O2PLS) analysis was

conducted using the OmicsPLS package in RStudio to model

intrinsic correlations between the two datasets. Principal

component analysis (PCA) was additionally employed to evaluate

sample dispersion patterns across both transcriptomic and

metabolomic datasets, providing complementary assessment of

data structure variation. KEGG pathway enrichment analysis for

both metabolomic and transcriptomic data was performed using

Fisher’s exact test. The resulting p-values were adjusted via the

Bonferroni correction method, with a corrected p-value (p adjust) ≤

0.05 considered statistically significant for pathway enrichment.

Based on KEGG enrichment pathways, we generated distinct bar

charts and bubble plots for transcriptomic and metabolomic

datasets, respectively. The pathway mapping of DEGs and DAMs

was visualized using component information extracted from the

KEGG Markup Language. Subsequently, Pearson correlation

coefficients (PCC) were calculated between all differentially

expressed genes and metabolites across comparison groups.

Networks were filtered using dual thresholds: |PCC| > 0.80 with

corresponding correlation p-value < 0.05. we constructed an

interaction network of JA pathway-related genes and metabolites

using Cytoscape software (version 3.10.1), and a hypothetical model

diagram of P. cyrtonema in response to B. deweyae infection using

the illustrations software https://BioRender.com).
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