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Plant RNAs are crucial for plant gene expression and protein synthesis. They

modulate the spatial structure of themselves and associated molecules, thereby

influencing transcription, translation and gene expression regulation. Molecular

biology experiments enhance our understanding of plant RNA-RNA interactions

(RRIs), yet their complex structure and dynamic properties render these

experiments expensive and time-consuming. Recent advances in deep learning

have transformed plant RNA research and improved RRI prediction efficiency.

However, these methods still struggle with poor prediction accuracy. To address

this, this study proposes an interpretable graph representation model for accurate

plant RRI prediction. The model enriches sample information by extracting features

of different bases from plant RNA data and reconstructs these features using an

algorithmic hierarchy approach to capture more complex patterns. A graph

representation based on a masking strategy and regularization enhances RNA

feature extraction. Furthermore, an RRI modeling approach combining

Kolmogorov-Arnold Networks (KAN) and multi-scale fusion is proposed to deeply

resolve the complex dynamic interaction mechanisms of RRIs and improve model

interpretability. Performance evaluations and case studies on publicly available

datasets demonstrate that the proposed model can accurately identify potential

RRIs, indicating its potential as a powerful tool for plant gene function annotation.

Our data and code are available at: https://github.com/Lqingquan/IGRL-RRI.
KEYWORDS

plant RNA-RNA interactions, plant gene functions, graph representation learning,
interpretability, regularization
Introduction

Plant RNAs are essential for genetic information transfer and protein synthesis in

organisms. They modulate the high-level structure of themselves and their interacting

molecules and fine-tune transcription, translation, and gene expression regulatory

networks. An increasing number of studies have demonstrated that different plant RNAs
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can interact to form regulatory networks and participate in

numerous life activities (Chen et al., 2019; Cao et al., 2021; Wang

et al., 2022). Plant long non-coding RNAs (lncRNAs) can bind to

mRNAs via base complementary pairing, regulating their stability

or translation efficiency. For instance, some lncRNAs prolong

mRNA half-life by forming double-stranded structures (Cao et al.,

2021). In plants, lncRNAs also play a key role in stress response. For

example, the COOLAIR lncRNA affects flowering time in

Arabidopsis thaliana by regulating the expression of the

FLOWERING LOCUS C (FLC) gene to adapt to different

environmental conditions. Circular RNAs (circRNAs), on the

other hand, can counteract the inhibitory effect of microRNAs

(miRNAs) on the mRNAs of target genes by binding miRNA

molecules. For example, circRNA_CDR1 can be involved in the

regulation of neurodegenerative diseases by binding miRNA-7 and

promoting the expression of its target genes (Xue, 2022). In rice

(Oryza sativa), certain circRNAs can act as competing endogenous

RNAs (ceRNAs) for miRNAs, regulating gene expression and

thereby affecting plant tolerance to abiotic stresses such as salt

stress and drought.

Plant RRIs orchestrate gene expression networks through three

key mechanisms: chromatin structure regulation, post-transcriptional

modification, and signaling pathway modulation. In rice, chromatin-

bound RNAs establish R-loops via long-range interactions, regulating

55% of cross-chromosomal gene interactions (Xiao et al., 2022). In

plant immunity, conserved trans-lncRNA pairs in tea plants enhance

fungal pathogen resistance through jasmonic acid pathway

suppression, with observed conservation across multiple crops (Sun

et al., 2024). Furthermore, m6A modifications balance defense-gene

expression and growth regulation, enabling optimized plant

responses to biotic stressors while demonstrating RNA epigenetic

editing’s agricultural potential (Ge et al., 2025). Collectively, these

findings elucidate RRI molecular mechanisms while identifying

actionable targets for developing stress-resilient crops. Although

plant RNA-RNA interactions (RRIs) are crucial for gene regulation,

their experimental validation is often expensive and time-consuming.

Moreover, traditional bioinformatics methods have limitations when

dealing with complex structures and large-scale data. However, the

development of high-throughput sequencing technology and the

resulting accumulation of RRI data have made computational

prediction feasible. Modern computational methods, especially

machine learning and deep learning, are becoming important tools

for understanding RRI mechanisms. The main methods for inferring

potential RRIs include experimental parsing techniques, a

combination of experimental and high-throughput sequencing

techniques, and computational methods such as machine learning

and deep learning.

Experimental techniques can uncover the structural and

functional properties of RNA interactions by directly measuring

physical evidence of plant RRIs. Current experimental methods

mainly rely on advanced techniques like RIC-seq, which captures

RNA spatial interactions in living cells through RNA-binding

protein (RBP)-mediated neighbor-joining. For example, Cao et al.

used RIC-seq to resolve enhancer RNA (eRNA)-promoter RNA

interactions in plants. This revealed how chromatin conformation
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regulates gene transcription and showed that long non-coding

RNAs like CCAT1-5L regulate key gene expression through RNA

complex formation (Cao et al., 2021). However, RIC-seq mainly

depends on RNA-binding proteins. It cannot directly resolve RNA

structure stability and dynamic changes. To better reveal RRI

structures, cryo-EM combined with molecular dynamics

simulation has become a key tool. Wu et al. used cryo-EM to

analyze the 3D structure of chloroplast RNA polymerase. They

found it comprises 20 protein subunits and plays a key role in

photosynthesis gene transcription (Wu X-X. et al., 2024). Zhang

et al. determined the cryo-EM structure of Arabidopsis RNA

polymerase V (Pol V), revealing its transcription elongation

complex features. Pol V functions in the RNA-mediated DNA

methylation pathway by binding to KTF1 and recruiting the

Argonaute4/6-siRNA complex. Its active center differs from Pol

II, resulting in lower transcriptional activity. But its unique

structure allows stable chromatin binding, promoting DNA

methylation (Zhang et al., 2023). Crosslinking and neighbor-

joining techniques are also widely used in studying spliceosome

assembly and transcriptional regulation. The TREX (Targeted

RNase H-mediated Extraction) technique has been used to study

snRNA-pre-mRNA interactions in plant splicing and reveal intron

splicing mechanisms. In Arabidopsis thaliana, crosslinking

techniques (e.g., ChIP-seq) combined with Hi-C technology

showed that RNA polymerase V and siRNA-Argonaute

complexes regulate DNA methylation through chromatin loop

formation. This affects plant stress tolerance (Zhang et al., 2023).

Combinatorial experiments and high-throughput sequencing

technologies can accurately capture RRIs and their higher-order

structures in living cells. These technologies integrate chemical

labeling, cross-linking techniques, and high-throughput

sequencing. Wu et al. used N3-ketoaldehyde labeling and

multifunctional chemical cross-linking agents to capture RRIs and

higher-order RNA structures in living cells. This method does not

rely on RBPs for local binding. By crosslinking labeled RNA

molecules and using high-throughput sequencing, this approach

generated single-base resolution RNA interaction profiles (Wu T.

et al., 2024). It is suitable for RRI studies in higher organisms and

has important applications in microbiology. Chao et al.

immobilized RNA-interacting complexes using chemical cross-

linking and mapped global RRIs in Salmonella typhi and

Klebsiella pneumoniae. They combined neighboring junctions

with deep sequencing to systematically construct RNA-RNA

networks in microorganisms. This revealed key RNA regulatory

centers and their roles in metabolism and pathogenicity, making it

particularly applicable to the functional study of prokaryotic non-

coding small RNAs (Westermann et al., 2016). In addition to

capturing RRIs using chemical crosslinking and high-throughput

sequencing, incorporating RNA-protein complexes can provide

more comprehensive interaction information. CLASH

(Crosslinking, Ligation, and Sequencing of Hybrids) immobilizes

RNA-protein complexes through chemical crosslinking. It uses

neighbor-joining technology to connect spatially neighboring

RNA molecules (e.g., miRNAs and target mRNAs) into chimeric

fragments. High-throughput sequencing then directly resolves the
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RNA-RNA pairs. Zhang et al. developed the CoPRA model, a deep-

learning-based tool for predicting protein-RNA binding affinity. Its

primary goal is to address limitations of traditional methods in

predicting protein-RNA interactions. For the first time, the model

combines a dual-scope pretraining strategy with a multimodal

fusion architecture, which significantly enhances prediction

accuracy (Han et al., 2025). Improving the joining efficiency of

spatially neighboring RNA molecules is crucial for accurately

constructing interworking networks during RRI resolution.

Douglas M. Anderson’s team developed the Stitch RNA system, a

nuclease-mediated mRNA trans-joining technology. Centered on

ribozyme-mediated RNA splicing reactions, this system enables

traceless trans-joining of segmented mRNA fragments in living

cells, generating intact functional mRNAs that translate into large

proteins. In the Dysferlin-KO mouse model, injecting the Dysferlin

gene delivered by the Stitch RNA system significantly restored

protein expression in the quadriceps muscle and other body

parts, improving muscle function (Lindley et al., 2024).

The rise of deep learning has made computational prediction

methods crucial for analyzing RRIs. For instance, preMLI model

uses the Transformer architecture to pre-train on large RNA

sequence datasets, learning universal sequence representations. It

also employs deep feature mining to fine-tune on plant-specific

data, enhancing cross-species prediction accuracy. In miRNA-

lncRNA interaction predictions between Arabidopsis and rice,

this method improved AUC values by over 10% compared to

existing methods (Gao et al., 2021). However, relying solely on

sequence information may not fully capture the complex

interactions of RNA molecules in biological networks. To address

this limitation, computational methods incorporating network

topology information, such as graph convolutional networks

(GCNs), have become significant. GCNs can integrate multimodal

features and construct heterogeneous plant RNA networks. These

include sequence similarity, co-expression networks, and functional

annotation information. By combining GCNs with a random walk

algorithm, node-embedded features can be learned to predict RRI

relationships. Yu et al. integrated three computational methods

(WGCNA, GGM, BC3NET) to predict functional roles of protein-

coding genes and non-coding RNAs including lncRNAs and

circRNAs in rice. By analyzing 348 RNA-seq samples, the team

constructed a co-expression network revealing regulatory

mechanisms underlying key biological processes: floral

development, cell wall metabolism, and stress response pathways

(Yu et al., 2017). Despite the power of GCNs in modeling RRI

networks, RRIs are inherently dynamic and influenced by

developmental processes, environmental changes, and stress factors.

Generative Adversarial Networks (GANs) have emerged as a

promising tool for predicting RRIs. They simulate the dynamics of

RRIs under different physiological conditions through adversarial

learning between the Generator and Discriminator. When combined

with Attention Mechanisms, GANs can capture critical RRI features

within regulatory time windows. For example, in studying plant

responses to environmental stress, GANs can predict how RRIs

dynamically remodel under varying stress conditions. This method
Frontiers in Plant Science 03
successfully predicted the dynamic interaction network between

miRNAs and target mRNAs in maize under drought stress. Wang

et al. developed RPI-CapsuleGAN, integrating GANs and capsule

networks with a convolutional attention module to enhance feature

interpretability in biomolecular interaction prediction. The model

demonstrated superior RNA-protein interaction performance while

resolving tensions between biological data scarcity andmodel stability

through adversarial training. Although designed for RNA-protein

systems, its framework is adaptable to plant RNA-RNA interaction

studies where dynamic networks (e.g., miRNA-lncRNA-circRNA

crosstalk during drought/salt stress) challenge conventional static

models in capturing temporal regulatory patterns (Wang et al., 2023).

While GNNs demonstrate potential for plant RRI prediction,

three key challenges persist. First, inherent topological sparsity (e.g.,

low node degrees) and experimental noise compromise message

propagation in conventional GNNs, yielding suboptimal RNA

representations. Second, feature distribution shifts and structural

heterogeneity across species severely degrade generalization in

single-species-trained models. Third, while random masking-

based augmentation enhances topological robustness, it risks

erasing critical interaction patterns.

Currently, deep learning techniques like graph neural networks

(GNNs) perform well in plant RRI prediction tasks but still face

many challenges. Pre-trained models mainly rely on sequence

information, making it difficult to fully capture the structural and

dynamic features of RRIs. The collected RNA-RNA data may also

contain noise, which can affect model performance. Furthermore,

plant RRI datasets typically exhibit three key characteristics: high

structural diversity, incomplete information, and substantial cross-

species variability. Traditional single-scale approaches struggle to

capture complex dependencies effectively. Therefore, this study

proposes an interpretable graph representation model to better

uncover unknown RRIs. We enrich the sample information by

extracting multidimensional features from RNA sequences. These

features are then reconstructed using an algorithmic approach to

capture more complex patterns. Next, a portion of the RNA-RNA

graph is randomly masked according to the Bernoulli distribution

and input into a GNN encoder. This step reduces the noise effect

and enhances the model’s self-supervised learning capability. We

also apply L2 regularization to optimize graph representation

learning and minimize the impact of node density imbalance in

the RNA-RNA graph on message propagation, thereby improving

RNA representation quality. Finally, multi-scale fusion framework

synergistically integrates local base-pairing features with global

topological patterns, significantly improving robustness against

information loss. Additionally, a degree decoder incorporating

KAN is introduced. This decoder predicts differences between

pre- and post-RNA-RNA maps by modeling deep nonlinear

mappings, thus enhancing the model ’s adaptability and

interpretability. In summary, our contributions are as follows:
(1) We propose an interpretable graph representation

model that accurately identifies unknown RRIs with

compelling results.
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(2) We enhance initial RNA representation by extracting base-

level multidimensional features, integrating multiple

algorithmic reconstructions to uncover higher-order

feature associations.

(3) We design a graph representation method that combines a

Bernoulli masking strategy with L2 regularization to

improve noise immunity, optimize message propagation,

and enhance RNA representation.

(4) We propose an RRI modeling method based on KAN and

multi-scale fusion to deeply analyze the complex dynamic

interaction mechanisms of RRIs while enhancing

model interpretability.
Materials and methods

Materials

Non-coding RNAs (ncRNAs) play crucial roles in post-

transcriptional regulation. miRNAs and lncRNAs dynamically

interact to regulate key biological processes such as gene

silencing, cellular differentiation, and stress response through

sequence complementarity or protein-mediated mechanisms

(Chen et al., 2019; Zhou et al., 2020). This study construct a

cross-species plant ncRNA interactions based on a previous

experimental framework (Kang et al., 2020). This incorporates

interaction data from model organisms (e.g., Arabidopsis thaliana,

Oryza sativa) and economically important crops (e.g., Glycine max,

Zea mays), as detailed in Table 1. Additionally, we use sequence

pattern features and secondary structure topology features, similar

to those in prior work (Kang et al., 2022), as the initial RNA

representations in this study.
Methods

RRIs are central to gene expression regulation and are involved

in key biological processes such as post-transcriptional

modification, splicing regulation, translational repression, and

chromatin remodeling. Non-coding RNAs (e.g., lncRNAs,

circRNAs) form dynamic interaction networks with other RNA

molecules to regulate complex functions like cell fate determination,

disease genesis, and viral replication. However, traditional

experimental methods (e.g., crosslinked immunoprecipitation
tiers in Plant Science 04
sequencing, dual luciferase reporter assays), while able to validate

specific RRIs, are low-throughput, reliant on prior assumptions, and

struggle to resolve genome-wide RRI networks. Consequently,

developing efficient computational methods to discover unknown

RRIs is crucial, as existing computational models face challenges in

prediction accuracy.

This study proposes an interpretable graph representation

model designed to precisely uncover unknown RRIs. Base-level

features are extracted from RNA sequences to capture multi-

dimensional information, including sequence and structural

details. This enriches the input representation and enhances the

model’s ability to detect potential interactions. A hierarchical

feature reconstruction mechanism is introduced to reorganize the

feature space, modeling higher-order and more complex feature

interactions to boost representation capabilities. During model

training, some RNA-RNA graphs are randomly masked using a

Bernoulli distribution and fed into a GNN encoder to improve noise

resistance and enhance self-supervised learning. L2 regularization

optimizes graph representation learning and reduces the impact of

node density imbalances on message propagation, ensuring high-

quality RNA representations. A cooperative encoder integrates the

outputs of each GNN layer to mitigate message loss from random

masking. Additionally, a degree decoder incorporating KAN is

introduced. This decoder predicts differences between pre-and

post-RNA-RNA graph through deep nonlinear mapping

modeling, thereby enhancing the model’s adaptability and

interpretability. The following sections detail these principles

and techniques.
Model overview
As shown in Figure 1, the IRGL-RRI framework comprises

three core modules: (A) RRI Data Preparation, (B) Graph-Based

Feature Extraction, and (C) Training & Inference. Module A

processes plant RNA sequences and secondary structures through

k-mer frequency analysis and RNAFold-based feature extraction.

Known RRIs from [Database Name] are used to construct the initial

RNA-RNA graph. Module B implements Bernoulli sampling-based

graph masking followed by regularized graph representation

learning, producing two-layer feature embeddings. Module C

integrates multi-scale features from GNN outputs through

hierarchical fusion. A KAN decoder enforces biological

plausibility constraints, with dual loss functions co-optimized

during training. These modules operate synergistically within a

unified computational framework. The masking strategy mitigates

noise through stochastic node/edge masking, while graph
TABLE 1 Plant species and sample information in this study.

Species Type Family Number of positive samples Number of negative samloes

A. thaliana Dicotyledon Cruciferae 2500 2500

G. max Dicotyledon Leguminosae 2500 2500

O. sativa Monocotyledon Gramineae 2500 2500

Z. mays Monocotyledon Gramineae 2500 2500
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regularization addresses message propagation biases from node

degree heterogeneity. During feature extraction, these

components collaboratively enhance RNA representation quality.

Multi-scale fusion synthesizes hierarchical GNN outputs,

preserving both local and global semantic information. The KAN

decoder maintains node density consistency through nonlinear

topological transformations. During RRI modeling, these

components jo int ly boost predict ion accuracy whi le

enhancing interpretability.

Performing masking on RNA-RNA graph
Currently, deep learning-driven RRI prediction models focus on

multimodal feature fusion (e.g., sequence conservation, secondary

structure thermodynamics, spatial proximity) as well as advanced

topological modeling (e.g., graphical neural networks parsing

chromatin ring structure). While these approaches improve

model fitting to specific datasets, they face challenges in

generalization, noise robustness, and complexity. Existing

techniques are often reliant on experimental databases like

StarBase and LncRNASNP (Wang Q. et al., 2024), which have

species bias and limited tissue coverage, hindering cross-tissue and

cross-species predictions. Additionally, high-throughput

experimental data from methods such as RIC-seq and CLASH

(Wu T. et al., 2024) have high false-positive rates. Complex network

structures, including GCN-attention mechanism fusions, are

powerful but vulnerable to noise and overfitting, compromising

model interpretability.

To address these challenges and building on previous work

(Hou et al., 2022), this study incorporates a stochastic masking

strategy into the RRI modeling process to enhance model

robustness and generalization. Specifically, feature-level masking

randomly masks k-mer segments or structural features (e.g., stem-

loop regions) of RNA sequences using a Bernoulli distribution,

prompting the model to uncover coevolutionary information

among residues. Topology-level masking, on the other hand,

imitates the sparsity of Hi-C data by randomly removing known

RRIs from RNA-RNA graphs and combines with GAE for

structural reconstruction, thereby improving adaptability to

incomplete graph structures.

The RNA-RNA graph is represented as G = V , E,Xf g, where V
denote the RNA sets, E represents the known interaction edges, and

X is the initial feature matrix of the nodes. When applying the

masking mechanism, we set a masking ratio a and randomly select

a set R of root nodes from the graph via a Bernoulli distribution as

Equation 1.

R = Bernoulli(G,a) (1)

This directs the model to focus on global structural information

during training, thereby enhancing its robustness to noise and data

incompleteness. The masking ratio a ranges from 0 to 1.

Using a random traversal approach, we sample paths from pre-

selected root nodes to target graph structures as shown in Equation

2. During this process, known RRIs along the path are progressively

removed to construct partially missing graphs. This method further

enhances the model’s ability to learn under incomplete graph
Frontiers in Plant Science 05
conditions.

Emask ∼ Random  Walk(R, lwalk) (2)

where the set of edges randomly removed from the RNA-RNA

graph is denoted as Emask. After removing these edges, the

remaining edges form the set E − Emask, which constitutes the

masked RNA-RNA graph Gmask . Subsequently, Gmask is input

into the IRGL-RRI model. A GCN encoder with integrated

regularization is then used to learn the RNA representations.

Graph regularization technique
In this study, graph regularization is used to optimize the

message passing process on RNA-RNA graphs, improving RNA

node representation. The core idea is to apply L2 regularization

before RNA feature transmission to reduce the impact of uneven

node density. For the feature matrix X = ½x1, x2,⋯, xn�T ,where xi is
the feature vector of RNA i and n is the total number of RNAs, a

learnable parameter matrix W is constructed to transform xi,

producing the transformed vector hi, calculated as Equation 3:

hi = xiW (3)

Then a scaling factor c ∈ R is introduced to regulate the

number of hidden feature patterns during propagation as

Equation 4:

ni
! = c

hi
!

hi
!���
���

(4)

On this basis, the neural network first normalizes the

transformed feature vectors to obtain the normalized

representation ni, and further uses this to generate the final node

embedding vectors as Equation 5:

zi
! =

1
di + 1

ni
! +oj∈N(i)

1
ffiffiffiffiffiffiffiffiffiffiffi
di + 1

p ffiffiffiffiffiffiffiffiffiffiffi
dj + 1

p nj
! (5)

This process stabilizes feature propagation and enhances the

model’s ability to capture structural information. Subsequently,

message propagation and updating are performed on the feature

matrix Z and the adjacency matrix A as Equation 6:

GRCN(X,A, c) = cD̂−1
2Â D̂−1

2g(XW) (6)

where each RNA vector is normalized using function g(½h1
!
, h2
!

,⋯, hn
!�T) = ½ h1

!
h1
!���
���
, h2
!
h2
!���
���
,⋯, hn

!

hn
!���
���
�T t o o b t a i n t h e n o d e

embedding Z = ½z1, z2,⋯, zn�T ∈ Rn�f . Â = A + IN denotes the

adjacency matrix with self-loops added by incorporating the unit

matrix. The degree matrix of Â is represented as D̂ .

Multi-scale fusion modeling of RRI
Most GNN-based models use inner products or concatenation

to reconstruct RRIs after extracting features of RNA-RNA pairs.

However, GNN performance depends heavily on complete

neighborhood information and accurate graph structure

representation. Practical strategies like Bernoulli-distribution-
frontiersin.org
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based edge masking in RNA-RNA graphs can lead to incomplete

local structure information for some RNA nodes. This affects the

accuracy of node embeddings and weakens the model’s ability to

discern inter-node relationships. Traditional decoding methods also

struggle to capture higher-order graph features in data-incomplete

scenarios. To address these issues, this study introduces a multi-

scale fusion mechanism. It combines node representations from

different GNN layers through feature concatenation or inner

products to compensate for performance loss due to missing

structural information. However, random masking graphs as

GNN inputs can introduce noise across layers, limiting fusion

effectiveness and leaving a lack of mature solutions to this issue.

Drawing on previous research (Tan et al., 2023), this study

employs a multi-scale fusion technique for RRI modeling. This

technique uses interaction coding of RNA embedding vectors from

each GNN layer and fuses them via the Hadamard product, as

shown in Equation 7. This approach enhances the modeling of both

local and global graph structural information, improving model

robustness and representation accuracy in scenarios with

incomplete information.

qij =
K

u, v = 1
z(u)i o ̇ z(v)j

�����
(7)

where qij denotes the final representation of the RNA pair<i,j>,

o ̇ represents the Hadamard product, || denotes concatenation, and

K indicates the GCN layer number.

Multi-scale feature fusion critically enhances model robustness

and expressive power for biological graph modeling. Recent studies

demonstrate the Hadamard product’s effectiveness in amplifying

local structural signals while minimizing information loss in sparse

biological graphs. Compared to weighted averaging, it achieves

superior sparse data modeling through signal amplification and

noise suppression. Additionally, it prevents high-order semantic

loss from linear fusion, and enables dynamic scale-adaptive feature

weighting through subsequent mapping (Cheng et al., 2025).

Biological evidence confirms that RNA functional regulation

fundamentally depends on local structural interactions (base

pairing, secondary structures) (Wu H. et al., 2024). This validates

the biological relevance of element-wise interaction modeling (e.g.,

Hadamard product) for RNA interaction tasks. Our multi-scale

fusion framework synergistically combines Hadamard products and

concatenation to: 1) amplify local interaction signals, 2) preserve

multi-granular topological semantics, and 3) optimize global feature

representation for precise RRI prediction.

RNA-RNA graph modeling requires node representations

that incorporate multi-scale semantic features. Lower-level

features capture local topological relationships, whereas higher-

level features characterize global network patterns. Given plant

RNA data’s inherent structural heterogeneity and sparse

interactions, our framework implements multi-scale fusion

during hierarchical feature propagation. Aggregating multi-

scale GNN outputs preserves local neighborhood details while

incorporating global contextual information, generating

comprehensive RNA representations.
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KAN-integrated degree-aware decoder
To enhance model robustness in sparse graph structures or

information masking scenarios, this study introduces a Degree-

Aware Decoder integrated with the KAN technique. In RNA-RNA

graphs, some nodes exhibit significant pre-/post-prediction

variations. The Degree-Aware Decoder addresses this by guiding

the model to better capture these discrepancies in embedded

representations while improving model interpretability.

Specifically, Degree-Aware Decoder takes embeddings with

topological information such as node degree as input and uses a

KAN layer for nonlinear feature mapping. The KAN layer employs

B-spline functions to achieve continuously differentiable local

fitting and adaptively models node-degree information using

trainable multi-group coefficient matrices with scale parameters.

To boost model generalization, the Degree-Aware Decoder

incorporates a dropout layer and an ELU activation function,

enhancing nonlinear expression and robustness. This mechanism

improves prediction stability under information deficiency or

experimental noise and provides auxiliary signals for identifying

key RNA nodes, offering better util ity and biological

interpretability. The Degree-Aware Decoderis defined as Equation

8:

gf(di) = ELU(Dropout(KAN(dv))) (8)

where f denotes the parameters of the degree decoder, di
denotes the degree of RNA i, KAN( · ) denotes the nonlinear

transformation implemented by KANs, Dropout( · ) denotes the

regularization operation, and ELU( · ) denotes the activation

function, which introduces nonlinearity.

Objective function
During model training, a key loss arises from errors in modeling

masked RRIs. Specifically, we randomly mask the RNA-RNA graph

and input it into the GNN encoder to generate RNA molecule

embeddings. The model then reconstructs the relationships

between masked edges using fusion mechanisms like the cross-

Hadamard product. The following objective function minimizes

this RRI modeling loss, guiding the model to more accurately

recover underlying RRI patterns by BCE loss as Equations 9 and 10:

LBCE = −(L+ + L−) (9)

where

L+ =
1
E+j jo(u,v∈E+)loghw (zu, zv),  L−

=
1
E−j jo(i,j∈E−)log(1 − hw (zi, zj)) (10)

and zu   and zv represent the RNA embeddings obtained by

GCN encoder, E+ denotes the set of connected RNA-RNA pairs

in the graph, and E− represents the set of unconnected RNA-RNA

pairs in the graph as Equation 11:

Ldegree =
1

VMj j + VDj joi∈VM∪​VD
ff(zi) − degreemask(i)

�� ��2
F (11)
frontiersin.org

https://doi.org/10.3389/fpls.2025.1617495
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liao et al. 10.3389/fpls.2025.1617495
where degreemask denotes the set of masked nodes in the masked

RNA graph and the degree of Gmask, the overall loss is calculated as

Equation 12:

L = LBCE + mLdegree (12)

where m is the adjustable parameter.
Results

Experimental setup

To evaluate the proposed model’s performance, we conducted

comparative experiments with mainstream graph neural network

models (GCN (Li et al., 2018), GAT (Veličković et al., 2018), GIN

(Xu et al., 2019) and two classical miRNA-lncRNA interaction

prediction methods (CIRNN (Zhang et al., 2020), LncMirNet (Yang

et al., 2020)). CIRNN integrates a convolutional neural network

(CNN) with an independent recurrent neural network (IRNN),

showcasing strong expressive power and computational efficiency

in non-coding RNA interaction prediction while supporting

personalized training on private user data. To ensure fair

comparison, we trained and predicted with CIRNN ten times on

our study’s dataset, averaging the results as the final performance

metric. Similarly, LncMirNet serves as a robust deep convolutional

neural network-based prediction framework. Its core concept

involves fusing four types of sequence-based information into a

unified feature matrix for model input (Yang et al., 2020), and it

provides pre-trained models enabling direct inference on the test

set. To maintain experimental fairness, all models were evaluated on

the same dataset. We utilized ten-fold cross-validation to assess the

proposed model’s performance.

Additionally, the IRGL-RRI model’s initial settings included a

masking rate of 0.6 and a random walk length of 0.2. Our masking

strategy design accounts for RNA-RNA graphs’ inherent sparsity

and noise characteristics, where random perturbations effectively
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simulate biological data imperfections to enhance model

robustness. Probability-controlled masking (optimal masking

ratio=0.6) balances information preservation and robustness

enhancement. Sensitivity analysis confirmed 0.6 as the optimal

masking ratio across multiple performance metrics. We therefore

established 0.6 as the default masking ratio. Following previous

studies (Liao et al., 2017; Ding et al., 2023; Wu et al., 2023; Cai et al.,

2024; Ma et al., 2024; Qiao et al., 2024; Wang et al., 2024b; Wang

et al., 2024c; Wang et al., 2024a; Wang R. et al., 2024; Wang Y. et al.,

2024; Wei et al., 2024a; Wei et al., 2024b; Xie et al., 2024; Ye et al.,

2024; Zhang et al., 2024; Zhao et al., 2024; Zhou et al., 2024; Feng

et al., 2025; Zhou et al., 2025), we employed AUC (area under the

curve), AUPR (area under the precision-recall curve), Accuracy

(ACC), Precision (PRE), F1 Score (F1), and Mathews Correlation

Coefficient (MCC) as evaluation metrics.
Performance evaluation

As shown in the Table 2 and Figures 2a, b, IRGL-RRI

demonstrated significant advantages in ten-fold cross-validation,

achieving a mean AUC of 96.10% ± 0.11. As shown in Figure 2c,

This represents a 0.75% improvement over the current best neural

network method, CIRNN (AUC 95.35%), and a 0.51% increase over

the top machine learning method, GCN (AUC 95.59%). In terms of

classification accuracy (ACC), our method achieved 95.25% ± 1.13,

surpassing CIRNN (88.23%) and GCN (94.21%). Particularly in

comprehensive discriminative ability (F1 95.12% ± 1.76), it

exceeded GCN’s F1 (92.84%) by 2.28 percentage points,

indicating better precision-recall balance.

The stability analysis revealed that our method’s metrics have

significantly lower standard deviations (e.g., AUC ± 0.11, F1 ± 1.76)

than those of the comparison methods (e.g., CIRNN’s F1 standard

deviation typically exceeds 3.5). This suggests that the dynamic

weighting mechanism and topology-adaptive decoder used in

feature construction effectively mitigate data noise interference.
TABLE 2 Results of IRGL-RRI in the ten-fold cross-validation (%).

Fold AUC AUPR ACC PRE F1 MCC

1 95.92 92.00 92.09 88.10 90.14 84.60

2 95.91 92.09 95.38 91.91 95.50 91.12

3 96.07 92.56 95.32 91.96 95.33 90.99

4 96.09 92.69 95.46 92.31 95.52 91.13

5 96.12 92.78 95.46 92.29 95.42 91.13

6 96.17 92.78 95.76 92.55 95.88 91.82

7 96.19 92.91 95.90 92.66 96.05 92.08

8 96.22 92.93 95.81 92.54 95.96 91.89

9 96.25 92.99 95.70 92.46 95.70 91.68

10 96.18 92.90 95.62 92.44 95.68 91.56

Average 96.10 ± 0.11 92.66 ± 0.33 95.25 ± 1.13 91.92 ± 1.37 95.12 ± 1.76 90.80 ± 2.21
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Through an innovative multi-scale k-mer feature fusion strategy,

arithmetic progression weighting to enhance functional structural

domain signals, and node-degree-based topological regularization

constraints, the scale-free nature of RNA interworking networks is

accurately captured. This performance breakthrough offers a more

reliable computational tool for RNA interaction analysis.
Comparison with other methods

To systematically assess the proposed model’s effectiveness, we

compared its performance with various mainstream methods,

including GNN approaches (GCN, GAT, GIN), deep neural
Frontiers in Plant Science 08
network methods (CIRNN (Hou et al., 2022), LncMirNet (Tan

et al., 2023)), and our proposed method. The comparison, evaluated

using AUC, ACC, and F1 score, revealed that our model achieved

the best performance across all three core metrics, with an AUC of

96.10%, accuracy of 95.25%, and F1 score of 95.12%, outperforming

the comparison models and demonstrating strong classification

ability and stability.

As shown in Figure 2c, among the GNN methods, the classical

GCN model also performed well, achieving an AUC of 95.59% and

an F1 score of 92.84%, but was slightly less accurate. In contrast,

GAT and GIN showed significantly lower performance, particularly

in the F1 score, suggesting they may be less sensitive to feature

structures or lack sufficient generalization ability for RRI prediction.
FIGURE 1

The IRGL-RRI model architecture comprises three core components: (A) RRI data preparation, (B) feature extraction through graph representation
learning, and (C) model training and inference workflow.
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Among the deep neural network approaches, CIRNN, which combines

a convolutional neural network (CNN) and an independent recurrent

neural network (IRNN), has strong feature modeling capabilities and

can perform personalized training on user-defined data in Figure 2c.

After ten independent trainings and predictions using the same dataset

as in this study, CIRNN achieved an average AUC of 95.35%, but its

accuracy (88.23%) and F1 score (87.12%) were much lower than those
Frontiers in Plant Science 09
of our model, indicating room for improvement in distinguishing

between positive and negative samples. Another deep method,

LncMirNet, performed poorly in this experiment (AUC 48.98%, ACC

52.99%), possibly due to insufficient transferability of its pre-trained

model on the current dataset.

In summary, our method significantly outperforms multiple

existing GNNs and deep learning models in the miRNA-lncRNA
FIGURE 2

(a) AUC and (b) AUPR scores of IRGL-RRI in the ten-fold cross-validation. (c) Comparison of all models and Significance analysis heatmap of model
performance based on (d) AUC and (e) F1 metrics.
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interaction prediction task. Its superior feature representation and

structure modeling strategy give it a leading edge in all metrics,

confirming its strong robustness and generalization ability.
Significance analysis

This study rigorously evaluated the statistical significance of

performance differences among various miRNA-lncRNA

interaction prediction models using AUC and F1 metrics. A one-

way ANOVA with post - hoc pairwise comparisons was applied to

determine if the mean performance differences across models were

statistically significant. This approach helps ascertain whether

performance variations stem from the models themselves rather

than chance.

Five independent experiments were conducted on six methods:

GCN, GAT, GIN, CRNN, LncHNet and IRGL-RRI. The

significance of AUC values for each model was analyzed, with

results presented in Figure 2d where each cell indicates the p-value

for AUC differences between two models. Most model pairs had p-

values below 1.0e-07, far less than the conventional significance

threshold (p< 0.05), indicating highly significant performance

differences. The IRGL-RRI model showed significant performance

advantages (p< 1.0e-07) over conventional methods like GCN,

GAT, GIN, and LncHNet. In Figure 2e, for F1 metrics, most

model pairs (e.g., GCN vs IGRL - RRI, GAT vs LncHNet) also

had p-values below 1.0e-07, aligning with the AUC trends and

further confirming IRGL- RRI’s superiority in balancing precision

and recall. However, a few model pairs (e.g., CIRNN vs GCN)

showed non-significant F1 differences (p =1.80e-01), likely due to

feature redundancy between models.

Overall, IRGL-RRI demonstrated significant statistical

advantages in both AUC and F1 analyses, particularly in handling

complex RRIs. The results consistently support IRGL-RRI’s

effectiveness, indicating its potential to enhance prediction

performance and its high application potential in miRNA-

lncRNA interaction prediction tasks.
Parameter experiments

This section presents an in-depth assessment of model

performance concerning several key adjustable hyperparameters.

We focus on the weighting coefficients of auxiliary tasks in the loss

function, the random masking sampling rate, and the random walk

step size. By systematically varying these parameters, we analyze

their effects on the model’s predictive effectiveness, thereby further

verifying the model’s robustness and adaptability.
Performance analysis of different sampling ratios
This study delves into the effect of masking sampling rates on

model performance. We incorporated a stochastic masking

mechanism based on the Bernoulli distribution before inputting

the miRNA-lncRNA interaction graph into the graph encoder. This

mechanism generates a self-supervised learning signal by masking
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edges with a certain probability, simulating missing information

scenarios. We set the sampling rate from 0.1 to 0.9 and fixed the

random walk step size at 2, assessing model robustness under

varying information loss degrees. Selecting the sampling rate

requires balancing information quantity and noise suppression. A

low rate may insufficiently train the model to capture interaction

patterns, while a high rate may introduce redundant perturbations,

damage key structural features, or cause overfitting.

Experimental results in Figure 3a indicate optimal model

performance at a 0.6 sampling rate, achieving an AUC of 96.10%,

an AUPR of 92.66%, and an F1 score of 95.12%, surpassing other

rates. When the rate is below 0.3, the model’s learning ability is

constrained; above 0.7, performance significantly declines, with

marked regression at 0.9, where the AUC and F1 score drop to

94.59% and 94.36%, respectively. This shows excessive masking

weakens graph structural integrity. In summary, a moderate

random masking ratio aids in constructing effective training

signals and enhances the model’s ability to generalize potential

relationships in miRNA-lncRNA interaction graphs. The

experiments confirm the mechanism’s effectiveness in guiding the

model to learn structural information and highlight the importance

of sampling rate regulation in model optimization.

Performance analysis of loss weight factor
To explore the auxiliary loss’s effect on the main task

performance in miRNA-lncRNA interaction prediction, we set

the auxiliary task weight coefficient (m) at 0.005, 0.006, and 0.007.

Experiments were conducted with a fixed 0.6 sampling rate and a

step size of 2. Results indicate that l = 0.006 optimizes several

metrics: AUC reaches 96.10%, AUPR hits 92.66%, and F1 scores at

95.12%, as shown in Figure 3b. This suggests balanced synergy

between primary and secondary tasks.

When m is too low (0.005), the auxiliary task’s optimization

influence is insufficient, limiting structural guidance. Conversely,

when m is too high (0.007), excessive noise may disrupt the main

task’s discriminative ability. Thus, proper auxiliary task weight

coefficient settings are crucial for enhancing model performance

and capturing complex biological relationships.

Impact of different walk length
We fixed the sampling ratio at 0.6 and explored the impact of

different wandering lengths on model performance, assessing their

moderating effect on information coverage and structure

representation during masking subgraph construction. We tested

randomized wander lengths of 1, 2, and 3, and results are visualized

in Figure 3c.

The model achieved optimal performance at a step length of 2,

with an AUC of 96.10%, AUPR of 92.66%, F1 score of 95.12%, and

MCC of 90.80%. At step 1, the limited masking range resulted in

incomplete structural context, restricting the model’s ability to

capture indirect relationships. At step 3, despite broader

information coverage, performance slightly declined, likely due to

noise and instability from distant neighbors. A step size of 2

effectively balances neighborhood relationship capture and noise

suppression. Unlike the short path (step 1), which only captures
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first - order interactions, this moderate length allows

comprehensive understanding of RNA molecular structural

features and potential connections while avoiding redundant

structural interference from longer paths. Thus, in the graph -

masking - based self - supervised learning framework, random

wandering step length is crucial for model learning efficiency and

prediction performance. Experimental results indicate that a step

length of 2 is optimal for this task.

Impact of different training rates
To evaluate masking efficacy across sparsity levels, we created

four datasets with different training rates (10%/40%/70%/100%)

representing: extreme sparsity, moderate sparsity, and complete

graphs. Experimental results in Table 3 demonstrate: 93%+ F1/

AUC at 70% retention, and robust performance under extreme

sparsity (10% retention: 90.63% AUC, 89.11% F1), confirming

severe information loss adaptability. Notably, Bernoulli masking

outperforms rule-based approaches in annotation-scarce plant

ncRNA studies, requiring no prior structural/functional annotations.
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Impact of different training rates
To evaluate the Bernoulli masking strategy’s efficacy in RRI

modeling, we conducted controlled experiments comparing it with

the baseline model (Original) using conventional random masking.

All experiments used identical datasets and training configurations.

Implementation of Bernoulli masking demonstrated significant

improvements across all metrics versus conventional masking. In
TABLE 3 Results across different training rates (%).

Metrics/training rates 10% 40% 70% 100%

AUC 90.63 92.37 94.32 96.10

AUPR 86.31 89.10 90.12 92.66

ACC 89.23 91.19 92.15 95.25

F1 89.11 90.52 93.94 95.12

PRE 84.26 87.93 90.89 91.92

MCC 83.32 86.21 89.64 90.80
front
FIGURE 3

(a) Impact of masking ratios on model performance. (b) Effect of loss weighting factors (m) on optimization dynamics. (c) Sensitivity analysis of
random walk lengths in graph sampling.
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Table 4, key metrics showed notable gains: F1-score (+5.56%) and

Matthews correlation coefficient (+6.70%), indicating enhanced

discriminative power and robustness. The mechanism achieved

96.10% AUC and 95.12% F1-score, confirming its ability to

maintain representation stability under information loss or

perturbations. The annotation-free masking strategy exhibits

strong versatility across RNA interaction networks with varying

types and sparsity levels. These results validate the masking design’s

methodological value for biological graph applications.
Ablation study

This study systematically assessed four key components in the

RRI prediction model: the path perturbation mechanism, GNN

encoder with graph-structure normalization, information fusion-

driven decoder, and the nonlinear mapping from KAN. Ablation

and comparison experiments were designed to analyze each

component’s contribution to model performance across

different combinations.

For encoders, “GCN” is the standard graph convolutional

network, while “L2” represents a graph encoder with L2

normalization, enhancing node representation stability and

discriminative power through unit sphere mapping. For decoders,

“RD” (RRI Decoder) uses Hadamard operations on miRNA-

lncRNA pairs based on the GNN’s last-layer output, whereas

“CD” (Collaborative Decoder) adds a multi-layer embedding

fusion mechanism to capture higher-order features. In

perturbation strategies, “EP” is edge-based masking via Bernoulli

distribution, and “PP” uses path-based perturbation with structural

reconstruction in randomly wandered subgraphs, emphasizing local

path semantics. “KAN” and “MLP” represent the final output

mapping modules, with KAN offering superior nonlinear

modeling and feature interaction.

Results in Table 5 show that omitting L2 normalization in the

encoder or the fusion mechanism in the decoder significantly

reduces model discriminative performance. This highlights

normalization’s importance for stable structural feature learning

and multilayer fusion’s role in boosting prediction accuracy. Path-

level perturbation (PP) outperforms traditional RRI perturbation

(RP) by providing more locally semantic masking signals,

enhancing self-supervised learning. Notably, replacing KAN with

standard MLP decreases model performance (AUC from 96.10% to

95.69%), underscoring KAN’s advantage in modeling nonlinear

feature interactions and adapting to complex RNA-RNA networks.
Frontiers in Plant Science 12
Case study

Gma-miRN1313, a plant-specific miRNA, holds diverse

biological functions in soybean (G. max). In abiotic stress

response, its predicted target genes are GmNHX1 and GmP5CS,

which maintain ionic homeostasis and osmoregulation, hinting at

its possible role in alleviating salt and drought stresses. Similarly,

Arabidopsis miR-398 enhances oxidative stress tolerance by

suppressing the CSD gene, and soybean miRNAs regulate

glutathione metabolism-related genes to respond to low

phosphorus stress (YuLian et al., 2017). In symbiotic nitrogen

fixation, Gma-miRN1313 targets GmNSP2, a key transcription

factor in the nodulation signaling pathway, suggesting it may

influence root nodule formation. This is akin to miR172c

promoting nodulation by targeting GmNNC1. The COI1-MYC2

module’s role in jasmonate signaling-mediated symbiosis regulation

indicates miRNAs can modulate symbiotic processes via hormonal

signaling interactions (Liu et al., 2025). In seed lipid metabolism,

Gma-miRN1313’s target genes are enriched in lipid synthesis

pathways like GmDGAT1 and GmFAD2, implying it may affect

fatty acid synthesis and accumulation in seeds. Likewise, miR156

regulates fatty acid metabolism by targeting SPL transcription

factors, and circRNAs also regulate lipid metabolism via the

miRNA axis, pointing to a conserved miRNA mechanism in

metabolic regulation (Meng et al., 2024). As shown in Table 6,

IRGL-RRI revealed 9/10 lncRNAs associated with Gma-miRN1313.

Gma-miR169h, a soybean miR169 family member, plays crucial

roles in adversity responses. The miR169 family, highly conserved

in plants, regulates responses to abiotic stresses (drought, salt, low

temperatures) by targeting NF-YA transcription factors (Xu et al.,

2021). They affect plant acclimatization by repressing NF-YA

expression. In maize (Z. mays), miR169 enhances salt tolerance

by modulating reactive oxygen species (Xing et al., 2022). While

direct studies on Gma-miR169h are lacking, it’s hypothesized to

similarly aid soybean’s adversity response. In soybean, miR169c is

up-regulated under drought stress, boosting transpiration but

reducing drought tolerance by inhibiting GmNF-YA9. At low

temperatures, miR169c down-regulation relaxes GmNFYA-C

repression, activating genes like GmENOD40 to maintain

rhizobial function. Under salt stress, maize miR169 enhances

tolerance by regulating ROS metabolism, suggesting Gma-
TABLE 5 Results of ablation experiments (%).

GCN L2 CD RD RP PP KAN MLP AUC AUPR

✔ ✔ ✔ ✔ 94.52 91.26

✔ ✔ ✔ ✔ 95.82 92.42

✔ ✔ ✔ ✔ 95.59 92.34

✔ ✔ ✔ ✔ 95.24 92.04

✔ ✔ ✔ ✔ 96.10 92.66

✔ ✔ ✔ ✔ 95.69 92.12
fronti
TABLE 4 Results across different masking strategies (%).

Metrics/
masking
strategies

AUC AUPR ACC PRE F1 MCC

Bernoulli 96.10 92.66 95.25 91.92 95.12 90.80

Original 94.21 90.46 89.63 85.01 89.56 84.10
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miR169h may also help soybeans acclimate to salt stress via a

similar mechanism. As shown in Table 7, IRGL-RRI revealed 5/5

lncRNAs associated with Gma-miR169h.

Gmax_Glyma.10G164400.1 is a lncRNA located on soybean

chromosome 10. It exceeds 200 nucleotides in length, lacks a

significant open reading frame (ORF), and meets the classical

lncRNA definition (Gao et al., 2023). The lncRNA’s promoter

region and splice sites are highly conserved, suggesting it may

function via RNA secondary structure or protein binding, similar to

functional lncRNAs like HOTAIR in animals. Although

Gmax_Glyma.10G164400.1 has low sequence conservation,

evidence shows that some lncRNAs achieve functional

conservation through conserved RBP sites or genomic locations

(Huang et al., 2024), implying Gmax_Glyma.10G164400.1 may be

regulated similarly.

Bioinformatics analysis indicates that the target genes of this

lncRNA are enriched in chromatin remodeling pathways, such as

SWI/SNF complex members. This suggests it may regulate gene

expression by recruiting histone modifiers or epigenetic complexes.

A similar mechanism was found in the soybean leaf - shape -

regulatory gene Glyma.11G026400, which regulates petiole

morphology via ubiquitination and gibberellin pathways (Gao

et al., 2023). Gmax_Glyma.10G164400.1 shows high expression in
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soybean roots and significant up - regulation under salt stress. It

may be involved in salt stress responses by regulating

osmoregulatory genes (e.g., GmP5CS) or ion-transporting

proteins (e.g., GmNHX1), aligning with the reported roles of

plant lncRNAs like COOLAIR in stress responses.

In terms of tissue-specific expression, Gmax_Glyma.10G164400.1 is

highly specific to floral organs. It may compete for miRNA binding

through a ceRNA mechanism, regulating the stability of pollen-

development-related mRNAs. This mechanism is seen in animal

lncRNAs like MALAT1, which affect cell proliferation and embryonic

development (Kumar et al., 2024). Studies also indicate some lncRNAs

have cross-species functional conservation. For example, zebrafish and

human homologs can rescue embryonic developmental defects in

experiments, suggesting lncRNA function may depend on RNA

structure rather than sequence. As shown in Table 8, IRGL-RRI

revealed 5/8 miRNAs associated with Gmax_Glyma.10G164400.1.

In soybean, the lncRNA CNT2032787 remains largely unstudied.

However, bioinformatics analysis suggests it may play roles in

epigenetic regulation, metabolic modulation, and tumor progression

in plants. CNT2032787 might be located in open chromatin regions

and regulate gene expression by recruiting histone modification

complexes. Similarly to lncRNAs like CANT2, it may influence gene

expression by regulating proto-oncogene or oncogene activity.

Additionally, CNT2032787 may help tumor cells adapt to metabolic

stress by modulating metabolism-related pathways and may affect cell

growth and metastasis by binding to miRNAs and regulating target

gene expression. It could be involved in cellular processes linked to the
TABLE 8 Predicted miRNA associations with Gmax_Glyma.10G164400.1.

miRNA Association
status

miRNA Association
status

gma-
miR169s-5p

Present gma-miR169d Present

gma-
miR169u

Present Gma-
miR395o

Absent

gma-
miR169k

Present Gma-
miRN1289a

Absent

gma-
miR169j-5p

Present gma-miR9724 Absent
TABLE 7 Predicted lncRNA associations with Gma-miR169h.

lncRNA Association status lncRNA Association status

lcl|Gmax_Glyma.08G358000.1 Present CNT2033407 Present

lcl|Gmax_Glyma.07G152100.1 Present CNT2034870 Present

lcl|Gmax_Glyma.08G351600.1 Present
TABLE 6 Predicted lncRNA associations with Gma-miRN1313.

lncRNA Association status lncRNA Association status

lcl|Gmax_Glyma.01G097300.1 Present CNT2033862 Present

CNT2032785 Present lcl|Gmax_Glyma.14G201400.1 Present

lcl|Gmax_Glyma.19G136600.5 Present CNT2033385 Present

CNT2034110 Present lcl|Gmax_Glyma.15G036500.1 Present

CNT2033264 Present lcl|Gmax_Glyma.13G348900.4 Absent
TABLE 9 Predicted miRNA associations with CNT2032787.

miRNA Association
status

miRNA Association
status

gma-
miRN1313

Present gma-
miR169a

Present

gma-
miR169s-5p

Present gma-
miR169u

Present
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Wnt/b-catenin or TGF-b pathways. Clinically, CNT2032787 may

serve as a liquid biopsy marker, particularly in cancers where its

expression is significant, allowing non-invasive diagnosis via blood or

exosomal assays. It may also be a therapeutic target, especially when

combined with gene-editing techniques or epigenetic drugs. Future

studies could validate CNT2032787’s functions using CRISPR

technology or RNA interference and explore its diagnostic and

therapeutic applications (Ding et al., 2024). As shown in Table 9,

IRGL-RRI revealed 4/4 miRNAs associated with CNT2032787.

Before the training phase, we omitted Gma-miRN1313 and lcl|

Gmax_Glyma.10G164400.1, along with their related pairwise data,

from the training set. This ensured the evaluation’s independence.

Using the trained model, we predicted the potential interaction

between Gma-miRN1313 and lcl|Gmax_Glyma.10G164400.1.

Candidate lncRNAs and miRNAs were ranked by prediction

scores, and the top ten interactions were selected. Results indicated

that nine miRNAs interacting with Gma-miRN1313 were confirmed

in soybean-related databases. Seven of these miRNAs also showed

experimentally or database-supported interactions with lcl|

Gmax_Glyma.10G164400.1. These findings demonstrate the

model’s strong generalization ability, even with incomplete known

information. They also highlight its high accuracy and practical value

in identifying novel miRNA-lncRNA interactions.
Conclusion

This study presents an interpretable graphical representation

model for accurately predicting plant RRIs. RNAs are vital for gene

expression and protein synthesis, regulating spatial structures of

themselves and related molecules. Yet, experimental RRI validation

is costly and time-consuming. Although deep learning has enhanced

prediction efficiency, existing methods still need accuracy and

interpretability improvements. Here, we boost model performance

through multi-scale feature extraction, a Bernoulli masking strategy,

L2-regularized graph representation learning, and KAN-based

multiscale fusion. Base-level features like k-mer frequency and

secondary structure are extracted from RNA sequences, with

higher-order feature associations reconstructed via algorithmic

cascades to optimize initial RNA representations. The Bernoulli

masking strategy with L2-regularized graph representation learning

effectively resists noise and eases node density imbalance, enhancing

node propagation. Moreover, the KAN-Integrated degree-aware

decoder enables multiscale fusion of GNN layer outputs through

Hadamard products and concatenation, compensating for missing

information. It also models node-degree differences using B-spline

functions, boosting nonlinear mapping capacity. Experimental results

show our model surpasses existing methods in several metrics and

proves valuable in biological applications through case studies. With

interpretable graph representation learning, it promises to aid plant

non-coding RNA interaction research, including molecular breeding.

Future work could combine this model with CRISPR/Cas9 for result

validation and extend it to cross-species interaction analysis.

The IRGL-RRI model demonstrates application potential in: (1)

enhancing plant stress resilience, (2) decoding developmental
Frontiers in Plant Science 14
regulation, and (3) optimizing molecular breeding strategies. By

identifying key regulatory nodes, it provides pre-screening support

for gene-editing breeding and streamlines candidate target

discovery. The model’s potential in plant functional genomics

includes: 1. Constructing precise RNA-RNA graphs for stress

response analysis. 2. Identifying stress-specific interaction

modules to optimize breeding strategies 3. Enabling cross-species

RNA pattern comparisons to expand systems biology research.

Additionally, future work will prioritize model-CRISPR

integration through: (1) Designing sgRNA libraries targeting

predicted RRI hotspots; (2) Optimizing model parameters via

transfer learning using CRISPRi/a functional validation data; (3)

Establishing a plant RNA interaction-phenotype database for end-

to-end applications. Furthermore, the model’s interpretability

module generates mechanistic hypotheses for CRISPR targeting,

while experimental feedback calibrates feature weights, creating a

self-iterating intelligent research paradigm.
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