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Quantitative determination
of blended proportions in
tobacco formulations using
near-infrared spectroscopy
and transfer learning
Qinlin Xiao1,2, Ruifang Gu1, Li Li1, Jing Wen1, Xixiang Zhang1,
Yi Shen1, Yang Liu1, Lan Xiao1, Qinqin Tang1, Jun Yang1,
Yong He2* and Juan Yang1*

1Technology Center, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China, 2College of
Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
Accurate detection of blending proportions in tobacco formulations is crucial for

ensuring the quality consistency and flavor stability of cigarette products. In

recent years, modeling approaches based on near-infrared spectroscopy (NIRS)

have attracted significant attention for the quantitative analysis of tobacco

blending. However, due to variations in tobacco composition and spectral

characteristics across different cigarette brands, the generalization ability of

NIRS-based models often declines when applied to cross-brand prediction

tasks. To address this issue, this study takes the detection of blending

proportions of tobacco silk in tobacco formulations as the research focus, and

investigates transfer learning strategies aimed at enhancing the cross-brand

adaptability of NIRS-based models. A partial least squares regression (PLSR)

model was first developed using NIRS data from four different tobacco brands,

achieving high prediction accuracy on the combined dataset (RMSEP = 1.20%).

However, when the model trained on a single brand was applied to predict other

brands, the prediction performance decreased notably. To improve model

adaptability, three approaches were explored: Transfer Component Analysis

(TCA), Correlation Alignment (Coral), and model updating. The results show

that TCA-PLSR achieved substantial reductions in prediction error in most

transfer tasks involving large discrepancies in feature distributions. Coral-PLSR

demonstrated superior performance in transfer tasks involving similar spectral

feature distributions. Additionally, in transfer tasks characterized by substantial

distribution differences, the Updated-TCA-PLSR model, which incorporates a
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small proportion of target domain samples into the source domain before

domain adaptation, yielded accurate predictions of tobacco silk blending

proportions. These findings demonstrate that transfer learning and model

updating offer practical, flexible, and robust approaches for enhancing the

performance of NIRS-based models, supporting more accurate and consistent

quality control in industrial-scale formulated tobacco production.
KEYWORDS

near-infrared spectroscopy, transfer learning, blended proportions, tobacco silk,
quantitative detection
1 Introduction

The cigarette industry, as a significant component of the global

economy, plays a crucial role in contributing to fiscal revenue and

employment. Its sustainable development is closely linked to the

stability and growth of the broader socio-economic landscape (Yach

and Bettcher, 2000; Zhu et al., 2022). According to data from the

World Health Organization, China is not only the largest producer

but also the largest consumer of tobacco products globally (Zhu

et al., 2024). With the continuous rise in consumer expectations for

cigarette quality and the industry’s growing emphasis on product

consistency and stability, quality control has become a central

concern in cigarette manufacturing. In cigarette production, the

blending proportions of components in the formulated cut tobacco

—such as tobacco silk, cut stem, and expanded tobacco silk, and

reconstituted tobacco shred—have a direct impact on the overall

quality of the final product. These components determine not only

the chemical composition and combustion characteristics of

cigarettes but also significantly influence the sensory experience

(Chen et al., 2015; Wu et al., 2022). Moreover, an optimized

blending ratio enhances resource utilization efficiency and reduces

manufacturing costs, thereby improving the overall economic

performance of the production process. Therefore, the accurate

detection of the blending proportions in formulated cut tobacco is

of great significance for ensuring the consistency and stability of

cigarette quality, meeting diverse market demands, and promoting

the sustainable use of tobacco resources.

Traditional approaches to determining the blending

proportions of components in formulated cut tobacco primarily

rely on manual weighing and chemical analysis. Manual separation

and weighing of each component is highly subjective and inefficient,

with results susceptible to operator variability (Bi et al., 2019).

While physicochemical analyses—such as total nitrogen, sugar

content, and cellulose—have also been used to infer blending

ratios, these techniques are time-consuming, labor-intensive, and

not suitable for high-throughput industrial applications (Li et al.,

2013; Wu et al., 2022). Therefore, there is a critical need for rapid,

accurate, and non-destructive methods for component

quantification in formulated tobacco.
02
Near-infrared spectroscopy (NIRS), which utilizes overtone and

combination absorptions of hydrogen-containing functional groups

(C–H, N–H, O–H), offers a promising solution due to its speed,

non-destructive nature, and ability to capture compositional

information (Cen and He, 2007; Pu et al., 2020). In recent years,

NIRS has received extensive attention in the tobacco industry,

particularly in the detection of physicochemical indicators of

tobacco leaves (Liang et al., 2022) and tobacco leaf quality

grading (Bin et al., 2016; Li et al., 2020; Liu et al., 2020). In the

detection of blending proportions in formulated cut tobacco, Liu

et al. (2021) applied NIRS combined with linear non-negative

regression to determine the proportion of cut stem. Using

orthogonal partial least squares discriminant analysis, pure cut

stem, pure tobacco silk, and formulated cut tobacco samples

containing different blending proportions of cut stem, achieving

relative errors of less than 5% between predicted and actual values,

are successfully classified. Similarly, Wu et al. (2022) utilized NIRS

to analyze the proportion of cut stems. By employing a partial least

squares regression model, rapid quantification of the cut stems

blending ratio was achieved, with relative errors within 3.88% for

external validation samples. These studies demonstrate that NIRS

enables rapid and accurate analysis of blending proportions in

formulated cut tobacco. However, existing NIRS models are

typically developed and validated within a single brand or

formulation context, limiting their generalizability across different

tobacco products. Variations in raw material origin, processing

techniques, and formulation ratios across brands can significantly

affect spectral characteristics, thereby reducing model robustness.

The conventional approach to addressing this challenge involves

recollecting samples and retraining new models whenever

conditions change (Xiao et al., 2022), but this process is time-

consuming and labor-intensive, making it difficult to meet

industrial demands for rapid detection and quality monitoring.

Therefore, enhancing model transferability to enable adaptation to

spectral data from different cigarette brands and batches has

become a critical issue that needs to be urgently addressed.

Transfer learning has emerged as a significant branch of

machine learning, allowing models to leverage knowledge learned

from one domain or task to improve performance in a different but
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related domain or task (Zhuang et al., 2020; Tan et al., 2022). This

approach provides an effective means to enhance the generalization

ability and adaptability of models, particularly in situations with

limited labeled data. Among various transfer learning strategies,

feature-based domain adaptation methods such as transfer

component analysis (TCA) and correlation alignment (Coral)

have shown promising results. These methods aim to reduce

distributional discrepancies between source and target domains

by aligning data representations in a common feature space,

thereby improving model stability and cross-domain applicability.

Furthermore, model updating strategies—by incrementally

introducing a small number of new samples into the training set

—can enable gradual adaptation to changing data distributions,

leading to improved prediction accuracy and robustness. Such

approaches have been successfully applied in spectral analysis

tasks across various domains, including agriculture and food

quality assessment, where spectral data often exhibit high

dimensionality and domain shift issues (Pan et al., 2011; Wan

et al., 2020; Tao et al., 2022; Wan et al., 2022; Pan et al., 2024a;

Wang et al., 2025).

Despite the progress in transfer learning and spectral analysis, to

date, no research has been reported on applying transfer learning

strategies to improve model adaptability and generalization in the

field of blend ratio detection for formulated cut tobacco. Current

studies on NIRS-based detection models for tobacco primarily focus

on specific datasets, limiting their applicability to broader industrial

scenarios involving multiple cigarette brands. Therefore, this study

aims to explore the potential of integrating transfer learning strategies

into blend ratio detection models to enhance their cross-brand

applicability. Taking the detection of tobacco silk proportion in

formulated cut tobacco across different cigarette brands as a case

study, this research aims to: (1) Analyze the spectral characteristics of

formulated cut tobacco from various brands to understand inter-

brand differences; (2) Evaluate the feasibility of building a robust

NIRS-based model for detecting tobacco silk proportions; (3)

Investigate the limitations of directly applying models trained on a

single brand to other brands; and (4) Investigate the feasibility of

integrating TCA, Coral, and model updating strategies to enhance the

transferability of blend ratio detection models across different

cigarette brands. This work seeks to provide a practical and

scalable solution for quality control and monitoring in the cigarette

industry by advancing the methodological framework for spectral

analysis of formulated cut tobacco.
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2 Materials and methods

2.1 Sample preparation

In this study, raw materials of formulated cut tobacco were

collected from four cigarette brands (#1, #2, #3, and #4) provided by

China Tobacco Sichuan Industrial Co., Ltd. The materials included

tobacco silk, cut stem, expanded tobacco silk, and fermented cut

stem. Specifically, Brand #1 consisted of tobacco silk, cut stem,

fermented cut stem, and expanded tobacco silk; Brand #2 included

tobacco silk and fermented cut stem; Brand #3 contained tobacco

silk and cut stem; and Brand #4 comprised tobacco silk and cut

stem. Notably, while the tobacco silk components differed across

brands, the cut stem, fermented cut stem, and expanded tobacco silk

were the same for all brands. All raw materials were dried at 45°C

for 4 hours and then ground into fine powders (60 mesh). The

powders were subsequently conditioned at 22°C and 60% relative

humidity until their moisture content reached 6–8%, after which

the prepared materials were sealed and stored.

To simulate the variations encountered in actual cigarette

production, the blending proportions of the samples were

adjusted within defined ranges based on the standard

formulations of each brand, as outlined in Table 1. According to

the designed ratio, precise quantities of each powdered raw material

were weighed to obtain a total mass of around 20 g. During the

weighing process, the mass of each component and the total sample

mass were accurately recorded. Based on this information, the

actual blending ratio of each sample was calculated. The weighed

powders were then thoroughly homogenized using a standardized

mixing protocol to ensure uniform distribution of each component,

thereby enhancing the representativeness and consistency of the

blended samples.
2.2 Spectra acquisition

The near-infrared spectra of the samples were collected using an

Antaris™ II Fourier transform near-infrared spectrometer

(Thermo Fisher Scientific, USA). A suitable amount of powdered

tobacco sample was taken using a sampling spoon and placed into a

clean sampling cup. The sample was evenly leveled and gently

compressed using a sample press to ensure a minimum thickness of

10 mm. The sampling cup was then positioned on the rotating stage
frontiersin.or
TABLE 1 Number of samples and blending ratio ranges for each brand.

Brand Number of samples Tobacco silk(%) Cut stem (%) Fermented cut stem (%) Expanded tobacco silk (%)

#1 210 59-100 0-20 0-20 0-25

#2 199 75-100 — 0-25 —

#3 200 75-100 0-25 — —

#4 183 75-100 0-25 — —
“—” indicates that the component is not present in the formulation for the corresponding brand.
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of the NIR spectrometer for spectral acquisition. Each sample was

scanned twice, and the average spectrum was used for subsequent

analysis. The spectrometer parameters were set as follows: a

scanning range of 10,000 cm-1 to 4,000 cm-1, a spectral resolution

of 8 cm-1, and 64 scans per measurement.
2.3 Data analysis methods

2.3.1 Principal component analysis
Principal Component Analysis (PCA) is a widely used statistical

method for dimensionality reduction and feature extraction in

high-dimensional data. The underlying principle of PCA is to

perform a linear transformation that projects the original high-

dimensional variables onto a new set of orthogonal components,

known as Principal Components (PCs), in such a way as to

maximize the variance in the data while minimizing redundant

information (Greenacre et al., 2022). The variance explained by

each principal component quantifies the proportion of the total

variability in the data attributed to that component, reflecting its

ability to explain the underlying features of the dataset. PCA

effectively identifies the key structural features of the data, reduces

noise interference, and enhances the interpretability of the analysis.

In this study, PCA is employed to reduce the dimensionality of the

spectra, facilitating the visualization and analysis of the spectral

characteristics of formulated cut tobacco from different

cigarette brands.
2.3.2 Regression model
The regression model is widely used in the fields of statistics and

machine learning to establish mathematical relationships between a

dependent variable and one or more independent variables.

Through regression analysis, the correlation between the

independent variable x and the response variable y can be

quantified, allowing for the construction of a regression model f

(x) that enables the prediction of corresponding y values from new

samples based on their x values (Xiao et al., 2020). In the field of

spectral analysis, regression models are employed to analyze the

relationship between spectral data x and target properties y,

enabling the prediction of physicochemical parameters of

unknown samples based on their spectral input.

In this study, partial least squares regression (PLSR) was

employed to construct a predictive model relating the spectral

data of formulated cut tobacco samples to the blending

proportions of tobacco silk. PLSR is a multivariate regression

technique based on latent variable decomposition, which is

particularly effective in handling high-dimensional spectral data,

multicollinearity among variables, and limited sample sizes. By

simultaneously extracting relevant information from both the

independent and dependent variables, PLSR aims to maximize

the covariance between the two data matrices while reducing

dimensionality. This property enables the model to capture the

most informative components for prediction, thereby improving its

generalization ability and robustness (Huang et al., 2017; Shao et al.,

2024). To prevent overfitting and enhance model stability, 10-fold
Frontiers in Plant Science 04
cross-validation was adopted to determine the optimal number of

latent variables.

2.3.3 Transfer component analysis
Transfer Component Analysis (TCA) is an unsupervised feature

transformation-based transfer learning method that aims to reduce

distributional divergence between source and target domains by

learning a common latent subspace (Pan et al., 2011). Specifically,

TCA maps the source and target datasets with different

distributions into a reproducing kernel Hilbert space (RKHS),

where it minimizes the distance between their data distributions

while preserving intrinsic data structures (Panigrahi et al., 2021).

The distance between distributions is quantified using maximum

mean discrepancy (MMD), a non-parametric metric defined in

RKHS. In this study, TCA is applied to the transfer task of blending

ratio prediction for formulated cut tobacco across different cigarette

brands. Specifically, spectral data from the source domain (i.e.,

samples from one brand) and target domain (i.e., samples from a

different brand) are jointly mapped into the learned subspace. A

regression model is then trained on the transformed source domain

features and subsequently used to predict the blending proportions

of the target domain samples. In this work, the primal kernel type

was selected, and the target dimension was adjusted to 30.

2.3.4 Correlation alignment
Correlation alignment (Coral) is an unsupervised transfer

learning method based on statistical moment matching. The core

idea is to minimize the covariance matrices of the source and target

domain features, thereby reducing the domain shift and improving

the applicability of the model to the target domain (Sun et al., 2016,

2017). Specifically, Coral first calculates the covariance matrices of

the source and target domain data, then minimizes the Frobenius

norm difference between the two domains, solving for a linear

transformation matrix. This matrix transforms the source domain

features to make the covariance matrix of the source domain data as

similar as possible to that of the target domain data. In this study,

Coral is applied to the transfer task of detecting the blending ratio of

formulated cut tobacco for different cigarette brands. Using the

Coral method, the spectral data from the source domain brand are

transformed, and a regression model is constructed based on the

transformed source domain features to predict the target

domain brand.

2.3.5 Updated model development
Model updating is a model transfer strategy that incorporates a

small portion of target domain data into the source domain to

enhance model adaptability. Prior studies have demonstrated that

introducing even a limited amount of target domain data into the

source domain before model training can improve the model’s

predictive performance on the target domain (Tao et al., 2022; Wan

et al., 2022; Pan et al., 2024b). This strategy enables the model to

simultaneously learn the underlying patterns of the source domain

while adapting more effectively to the distributional characteristics

of the target domain. In this study, we investigate the feasibility of

model updating as a strategy to enhance prediction performance
frontiersin.org
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and further explore its integration with domain adaptation methods

(TCA and Coral). Two scenarios are considered. In the first

scenario, only model updating is applied: a small portion of target

domain samples is incorporated into the source domain to form an

updated source domain, while these samples are simultaneously

excluded from the original target domain to construct a new,

disjoint target domain. PLSR models are then built using the

updated source domain and used to predict the new target

domain. In the second scenario, model updating is combined

with TCA or Coral: the updated source and modified target

domains (as described above) are first used to perform TCA or

Coral-based domain alignment. Subsequently, PLSR models are

constructed on the transformed source domain and used to predict

the new target domain.
2.4 Model evaluation

To assess the performance of the tobacco silk blending ratio

detection models constructed based on all cigarette brands, this

study first merged the samples from all brands and sorted them

according to the blending proportions of tobacco silk. For all the

sorted samples, every three consecutive samples were grouped, with

the first and third samples forming the training set and the second

sample serving as the prediction set, resulting in a 2:1 ratio of

calibration to prediction samples. To evaluate the transfer

performance of the model between different brands, this study

used samples from a single brand as the source domain dataset

(calibration set), and samples from another brand as the target

domain dataset (prediction set), designing a total of 12 transfer

tasks. Considering the data distribution differences between the

source and target domains, several transfer strategies were

introduced to enhance the model’s generalization ability and

transferability: TCA, Coral, data updating, and data updating

combined with TCA or Coral.

Model performance was evaluated based on the root mean

squared error of prediction (RMSEP). In the application of transfer

strategies, the transformed target domain was used as the prediction

set. Additionally, to comprehensively measure the model’s

robustness, the mean absolute error (MAE) and Pearson

correlation coefficient for the prediction set (Rp), as well as the

root mean squared error of calibration (RMSEC) and Pearson

correlation coefficient for the calibration set (Rc), were also used
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as evaluation metrics to provide a more comprehensive assessment

of model performance. The formulas for these metrics can be found

in the literature (Naser and Alavi, 2020).
2.5 Software tools

The model development and assessment, as well as PCA, were

performed in MATLAB R2019b (The Mathworks, Inc., Natick, MA,

USA). All of the graphs were drawn using MATLAB R2019b (The

Mathworks, Inc., Natick, MA, USA).
3 Results and discussion

3.1 Distribution of blending proportions of
tobacco silk across different cigarette
brands

Table 2 summarizes the descriptive statistical data of tobacco

silk blending proportions in formulated tobacco samples across

different cigarette brands, including the mean, maximum,

minimum, standard deviation, and coefficient of variation for

each brand. Figure 1 illustrates the distribution patterns of

tobacco silk blending proportions for each brand. It can be

observed that Brand #1 exhibits the widest distribution range,

with values primarily concentrated between 60% and 80%. In

contrast, the blending proportions for Brands #2, #3, and #4 are

predominantly distributed within the 75%–100% range. Notably,

Brand #2 and Brand #3 display highly similar distribution

characteristics, with average blending proportions around 88.9%

and coefficients of variation close to 7%.
3.2 Spectral diversity of formulated
tobacco from different cigarette brands

An initial analysis was conducted on the near-infrared spectra

of formulated tobacco samples across all cigarette brands. As

illustrated in Figure 2a, the spectral profiles exhibited similar

overall trends across brands, with consistent positions for spectral

peaks (6780 cm-1, 5760 cm-1, 5130 cm-1, 4700 cm-1, 4280 cm-1) and

troughs (6055 cm-1, 5360 cm-1, 4950 cm-1, 4500 cm-1, 4160 cm-1).

Specifically, the spectral region around 5760 cm-1 is associated with

the stretching vibrations of C–H bonds in aromatic compounds

(Salzer, 2008), while the region near 5130 cm-1 corresponds to C=O

stretching vibrations commonly found in esters and acids (Salzer,

2008). The region from 4000 to 4800 cm-1 is primarily related to

absorption by CH, NH, and OH functional groups, and the range of

5725–6110 cm-1 is dominated by first overtone stretching vibrations

of CH and SH groups—spectral features that are often linked to key

components of formulated tobacco such as sugars and nicotine (Bi

et al., 2019). Observable spectral differences across all samples are

largely attributed to their underlying physical and chemical
TABLE 2 Statistical information on the blending proportions of tobacco
silk in formulated tobacco across different cigarette brands.

Brand Min(%) Max(%) Mean(%) SD(%) CV

#1 59.996 96.718 70.682 7.452 10.543%

#2 75.532 100.000 88.921 6.202 6.975%

#3 75.085 99.912 88.985 6.510 7.316%

#4 77.226 99.862 89.513 5.743 6.416%
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properties, which form the basis for detecting tobacco silk blending

proportions using spectral data.

PCA was performed on the merged spectral dataset across all

brands. The results revealed that the first three PCs accounted for

99.55% of the total variance, with PC1, PC2, and PC3 contributing

77.35%, 20.91%, and 1.29%, respectively (Figure 2b), indicating that

these two components capture the majority of the spectral

variability in formulated tobacco. As shown in Figure 2c, PC1

exhibited high positive coefficients in the 4000–7062 cm-1 range,

suggesting a strong positive correlation and notable spectral

variation in this region, which is consistent with the observed

spectral trends in Figure 2a. This region is commonly associated

with the absorption characteristics of organic substances such as

moisture and proteins. PC2 demonstrated high positive coefficients

in the 7380–10000 cm-1 range, indicating that this spectral region is

closely associated with PC2 and also exhibits substantial spectral

variation. PC3 exhibits a relatively high principal component

loading around the 5000 cm-1 region. Collectively, the first three

PC effectively captured the majority of the relevant information

embedded in the spectral dataset.

Figure 3 presents the PCA results of the spectra for formulated

tobacco from different cigarette brands. Subfigures (a) to (d)
Frontiers in Plant Science 06
correspond to the first three PC coefficients for Brands #1, #2, #3,

and #4, respectively. For all brands, the cumulative variance

explained by the first three PC exceeds 99%, indicating that these

components effectively capture the majority of spectral variation

across brands. The spectral feature distributions vary among

brands. For Brands #1, #2, and #3, PC1 accounts for more than

95% of the total variance and exhibits similar trends, with PC1

coefficients remaining relatively stable at around 0.25 across the

entire spectral range. In contrast, the PC1 of Brand #4 displays a

steadily increasing trend over the same region. Regarding PC2, the

overall patterns for Brands #1, #2, and #3 are relatively similar;

Brand #1 shows a higher variance explained by PC2 (3.70%)

compared to Brand #2 (1.74%) and Brand #3 (1.95%). Moreover,

the PC2 coefficients of Brand #1 exhibit notable fluctuations around

7200 cm-1 and 5300 cm-1. In comparison, Brand #4 shows the

highest variance contribution for PC2 at 7.07%, with PC2

coefficients gradually decreasing across the spectral range. For

PC3, the differences among brands are most pronounced: Brands

#2 and #3 share a similar trend, whereas Brands #1 and #4 display

distinctly different patterns. These observations further highlight

the spectral diversity among formulated tobacco samples from

different cigarette brands.
FIGURE 1

Distribution of tobacco silk blending proportions in formulated tobacco across different cigarette brands (Note: each column corresponds to a 5%
interval of tobacco silk proportion).
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3.3 Modeling tobacco silk proportions
based on combined data from all brands

To evaluate the feasibility of using NIRS for detecting the

blending proportions of tobacco silk in formulated tobacco, a

PLSR model was developed using spectral data and blending

proportions from all four cigarette brands. A total of 792 samples

were included for modeling and further analysis. Following the

procedure described in section 2.4, the complete dataset was

partitioned into calibration set and prediction set. PLSR model

was constructed based on the calibration set, with the optimal

number of latent variables determined via 10-fold cross-validation.

The resulting model was then applied to the prediction set. As

shown in Figure 4, both Rc and Rp reached 0.99, while RMSEC and

RMSEP were as low as 1.08% and 1.20%, respectively. These results

demonstrate the feasibility of establishing a reliable NIRS-based

model for quantifying tobacco silk blending proportions in

formulated tobacco. Despite the promising performance, it should

be noted that samples in the calibration set and prediction set both

originated from the dataset that included all four brands. In

practical scenarios, however, the model is often expected to

generalize to other brands not involved in the model

development. As discussed in sections 3.1 and 3.2, there are

notable differences in both tobacco silk blending proportions and
Frontiers in Plant Science 07
spectral features among different brands. Therefore, it is necessary

to further investigate the model’s adaptability and transferability

to ensure its robustness and applicability across diverse

cigarette brands.
3.4 Model transferability between different
brands

3.4.1 Performance of PLSR on transfer tasks
The performance of PLSR models on transfer tasks, in which a

single brand was used as the calibration set (source domain) and a

different brand was used as the prediction set (target domain), is

summarized in Table 3. It can be observed that the model

established based on the source domain brand exhibits

performance differences when applied to the target domain

brand, reflecting the impact of distributional discrepancies

between datasets on the model’s generalization ability. Overall, all

models achieved high prediction accuracy on the source domains,

with RMSEC below 0.80%. However, when applied to the target

domain, the model’s performance declined to varying degrees.

When Brand #1 was used as the source domain to build the

model and transferred to Brand #2, Brand #3, and Brand #4, the

model exhibited poor performance, with RMSEP values of 26.76%,
FIGURE 2

Spectral diversity of formulated cut tobacco: (a) Mean absorbance and standard deviation across all brands; (b) Variance explained by the first five
PCs of spectra; (c) The principal component coefficient of the first three PCs.
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36.12%, and 47.31%, respectively. These results suggest substantial

differences in feature distributions between Brand #1 and the other

datasets, leading to decreased prediction performance. The RMSEP

values on the target domain also reflect, to some extent, the degree
Frontiers in Plant Science 08
of distributional discrepancy between brands. Notably, the highest

RMSEP was observed for the transfer from Brand #1 to Brand #4,

indicating the largest feature divergence between these two datasets.

When Brand #2 was used as the source domain, the model achieved

favorable prediction performance on Brand #3, with an Rp of 0.9982

and a low RMSEP of only 1.96%, indicating that the feature

distributions between Brand #2 and Brand #3 are relatively

similar, thereby enabling the model to generalize well to the

target domain. In contrast, transfers from Brand #2 to Brand #1

and Brand #4 resulted in higher RMSEP values of 9.76% and

10.64%, respectively, reflecting relatively poorer generalization

performance. Similarly, when Brand #3 served as the source

domain, the transfer to Brand #2 yielded good performance

(RMSEP = 1.11%), consistent with the reverse direction (Brand

#2→ Brand #3). However, transfers from Brand #3 to Brand #1 and

#4 were less effective, with RMSEP values exceeding 10%. When

Brand #4 was used as the source domain, the model demonstrated

suboptimal transfer performance to all other datasets, with RMSEP

values consistently greater than 9%. In particular, the transfer to

Brand #1 yielded an RMSEP of 17.83%, suggesting a pronounced

difference in feature distribution between Brand #4 and Brand #1.

In summary, in a few transfer tasks (e.g., Brand #2 → #3 and

Brand #3 → #2), the model demonstrated satisfactory predictive

performance on the target domain (RMSEP < 2%), suggesting high

similarity in data distributions and effective direct model transfer.

However, for the majority of transfer tasks, the direct application of
FIGURE 3

The first three PC with the highest variance contribution in the spectra of formulated tobacco from different cigarette brands: (a) Brand #1, (b) Brand
#2, (c) Brand #3, (d) Brand #4.
FIGURE 4

Results of the tobacco silk blending proportions detection model
based on all cigarette brands.
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models across brands resulted in considerable prediction bias,

revealing the detrimental effects of feature distribution shifts on

transfer learning performance. Therefore, it is essential to explore

appropriate model transfer strategies to enable models trained on a

single brand to be effectively applied to other brands.

3.4.2 Performance of TCA-PLSR and Coral-PLSR
on transfer tasks

To improve the cross-domain adaptability of the model, TCA

and Coral were applied to transform the spectra before establishing

the PLSR model, and the results were compared with the PLSR

model without any transfer strategy. The results are shown in

Table 4. Compared to the PLSR model (Table 3), the TCA-PLSR

model demonstrates markedly improved performance in most of

the transfer tasks, except for the Brand #2→ #3 and Brand #3→ #2

tasks, with both RMSEP and MAE showing varying degrees of

reduction. In the transfer tasks of Brand #3 → #4 and Brand #4 →

#3, compared to the PLSR model, the RMSEP of TCA-PLSR

decreased by 87.98% and 89.09%, respectively, indicating that

TCA effectively reduced the distribution deviation between Brand

#3 and Brand #4 through subspace alignment, thereby enhancing

the model’s cross-domain adaptability. Furthermore, in the mutual

transfer tasks between Brand #1 and Brand #2, Brand #1 and Brand

#3, and Brand #2 and Brand #4, TCA-PLSR outperforms both the

PLSR and Coral-PLSR models in terms of RMSEP and MAE,

further validating the robustness and transfer effectiveness of

TCA-PLSR in most tasks.

In the transfer tasks of Brand #2 → #3 and Brand #3 → #2,

Coral-PLSR demonstrated superior performance, compared to the

PLSR model, RMSEP was reduced by 54.08% and 55.86%,

respectively, accompanied by substantial decreases in MAE to

0.81% and 0.43%, which demonstrates the effectiveness of Coral-

PLSR in certain model transfer tasks. It is noteworthy that in the
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transfer tasks of Brand #1 → #4, Coral-PLSR resulted in markedly

poor performance, with RMSEP and MAE reaching as high as

91.23% and 86.82%, respectively, substantially higher than those of

PLSR (47.31% and 33.48%). The application of Coral in this case

adversely affected the model’s predictive accuracy on the target

domain. Combined with the spectra analysis presented in Section

3.2, it is observed that the spectral features of Brand #2 and Brand

#3 are similar, whereas the spectral features of Brand #1 and Brand

#4 differ substantially. This suggests that Coral may not be suitable

for model transfer tasks involving datasets with large

distributional discrepancies.

The performance differences observed among the transfer

learning methods can be attributed to their underlying

mechanisms. TCA outperformed particularly in tasks where the

feature distribution between the source and target domains differs

markedly. This is probably because TCA facilitates better feature

correspondence and knowledge transfer, thereby enhancing model

adaptability across heterogeneous domains by aligning the marginal

distributions in the projected space. In contrast, Coral-PLSR is more

effective in scenarios where the source and target domains exhibit

relatively similar distributions. Coral performs domain adaptation

by aligning the covariance matrices of the source and target

domains, under the assumption that their mean values are

already comparable. This approach has a lower computational

complexity compared to TCA and is less prone to overfitting

when the domain gap is small. However, Coral is also more

sensitive to sample perturbations and may fail to fully correct

domain discrepancies when the underlying feature distributions

are substantially different. Therefore, TCA is more suitable for

transfer tasks with large distribution shifts, while Coral is preferable

in cases with moderate or minimal domain differences.

In summary, TCA-PLSR performs more stably in most tasks

and effectively reduces transfer errors, while Coral-PLSR
TABLE 3 Performance of PLSR models on transfer tasks across different brands.

Transfer tasks
Source domain Target domain

Rc RMSEC (%) Rp RMSEP (%) MAE (%)

#1→#2 0.9953 0.72 0.8175 26.76 26.36

#1→#3 0.9960 0.67 0.9388 36.12 35.96

#1→#4 0.9953 0.72 0.1823 47.31 33.48

#2→#1 0.9997 0.15 0.4753 9.76 7.92

#2→#3 0.9997 0.14 0.9982 1.96 1.92

#2→#4 0.9996 0.17 0.7759 10.64 9.91

#3→#1 0.9998 0.14 0.5000 10.43 8.49

#3→#2 0.9996 0.19 0.9991 1.11 1.07

#3→#4 0.9995 0.20 0.3541 12.89 7.08

#4→#1 0.9929 0.68 0.5669 17.83 16.62

#4→#2 0.9977 0.39 0.9955 10.61 10.59

#4→#3 0.9901 0.78 0.9964 9.72 9.65
#1–#2 indicates that the model was developed using brand #1 and applied to estimate the tobacco proportions in brand #2. Similarly, #1–#3, #1–#4, and so on follow the same logic.
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demonstrates superior transfer effects in a few specific tasks. This

result indicates that different transfer strategies have their

applicability when addressing different source-target domain

pairs, and the optimal strategy should be selected based on the

data distribution of the specific transfer task to improve the model’s

adaptability and accuracy.

3.4.3 Performance of updated-PLSR, updated-
TCA-PLSR, and updated-Coral-PLSR on transfer
tasks

As discussed in section 3.4.2, TCA-PLSR and Coral-PLSR each

exhibit superior performance in different transfer tasks, indicating

that their effectiveness varies depending on the specific source–

target domain pairs. To further assess the feasibility of improving

transfer performance, this study explores the integration of model

updating with TCA and Coral across model transfer scenarios.
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Figure 5 illustrates the RMSEP of the Updated-PLSR and

Updated-TCA-PLSR when incorporating 1% to 10% of target

domain samples into the source domain across 10 transfer tasks.

Overall, the RMSEP of both Updated-PLSR and Updated-TCA-

PLSR generally decreases with the increasing proportion of target

samples introduced and tends to stabilize when the added

proportion exceeds 6%, indicating that model updating effectively

improves transfer prediction performance. However, in tasks

characterized by substantial distributional divergence between

source and target domains, the RMSEP of Updated-PLSR remains

relatively high even after incorporating additional samples. For

instance, in the Brand #1 → #4 task, the RMSEP of Updated-PLSR

remains elevated at 16.62% after adding 10% of target samples,

while the RMSEP of Updated-TCA-PLSR drops to 2.06%,

demonstrating that the integration of TCA with model updating

enhances the model’s ability to adapt to distributional shifts and
TABLE 4 Performance of TCA-PLSR and Coral-PLSR models on transfer tasks across different brands.

Model
Transfer
tasks

Source domain Target domain

Rc RMSEC (%) Rp RMSEP (%) MAE (%)

TCA-PLSR

#1→#2 0.8884 3.41 0.6162 14.85 14.39

#1→#3 0.9945 0.78 0.6810 18.22 17.43

#1→#4 0.8912 3.37 0.4160 18.76 17.84

#2→#1 0.9894 0.90 0.5171 6.46 6.98

#2→#3 0.9994 0.22 0.9974 2.89 7.77

#2→#4 0.9986 0.32 0.7272 6.58 7.16

#3→#1 0.9917 0.83 0.4736 7.43 8.16

#3→#2 0.9993 0.25 0.9980 0.64 6.97

#3→#4 0.9991 0.27 0.9643 1.55 6.37

#4→#1 0.9862 0.95 0.3548 10.95 10.38

#4→#2 0.9910 0.77 0.9900 1.67 6.31

#4→#3 0.9918 0.73 0.9918 1.06 7.70

Coral-PLSR

#1→#2 0.9953 0.72 0.8170 16.30 15.64

#1→#3 0.9960 0.67 0.9400 25.06 24.84

#1→#4 0.9953 0.72 0.2210 91.23 86.82

#2→#1 0.9997 0.15 0.4988 16.42 14.92

#2→#3 0.9996 0.17 0.9982 0.90 0.81

#2→#4 0.9997 0.15 0.8601 15.40 15.12

#3→#1 0.9995 0.20 0.5234 16.47 15.04

#3→#2 0.9996 0.19 0.9991 0.49 0.43

#3→#4 0.9999 0.07 0.7631 18.25 17.77

#4→#1 0.9991 0.24 0.6015 27.20 26.49

#4→#2 0.9991 0.24 0.9933 7.28 7.25

#4→#3 0.9929 0.68 0.9969 6.02 5.84
#1–#2 indicates that the model was developed using brand #1 and applied to estimate the tobacco proportions in brand #2. Similarly, #1–#3, #1–#4, and so on follow the same logic.
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improves predictive accuracy. Similar advantages of Updated-TCA-

PLSR over Updated-PLSR are observed in the Brand #2 → #4 and

Brand #3 → #4 tasks. Moreover, in transfer tasks such as Brand #1

→ #2, Brand #1→ #3, Brand #2→ #1, Brand #3→ #1, Brand #4→

#1, Brand #4 → #2, and Brand #4 → #3, Updated-TCA-PLSR

consistently achieves lower RMSEP than Updated-PLSR when only

1% of target domain samples are used for model updating. As the

proportion of target samples increases, the RMSEP of Updated-

TCA-PLSR gradually approaches that of Updated-PLSR, suggesting
Frontiers in Plant Science 11
that Updated-PLSR requires a larger amount of target domain data

to reach comparable transfer performance. These findings highlight

the advantage of combining model updating with TCA, particularly

when dealing with substantial domain discrepancies.

Figure 6 shows the RMSEP of Updated-PLSR and Updated-Coral-

PLSR when 1% to 10% of target domain samples were incorporated

into the source domain in the Brand #2 → #3 and Brand #3 → #2

transfer tasks. The two methods exhibit distinct RMSEP trends as the

proportion of added samples increases. For Updated-PLSR, RMSEP
FIGURE 5

RMSEP of Updated-PLSR and Updated-TCA-PLSR when introducing 1%-10% samples of the target domain to the source domain (Note: the
percentage represents the proportion of target domain samples added to the source domain relative to the total number of target domain samples).
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decreases steadily with the inclusion of more target domain samples. In

contrast, Updated-Coral-PLSR shows an initial increase in RMSEP at

lower sample proportions (1%–4%), followed by a notable decrease

once the proportion reaches 5% or higher. In particular, for the Brand

#2→ #3 task, Updated-Coral-PLSR outperforms Updated-PLSR when

10% of the target domain samples are added. This suggests that

Updated-Coral-PLSR may require a larger proportion of target

domain data in the source domain to effectively perform feature

alignment and achieve improved prediction performance. However,

across most sample proportions, the RMSEP of Updated-Coral-PLSR

remains higher than that of Updated-PLSR. As analyzed in Section 3.2,

the spectral feature distributions of Brand #2 and Brand #3 are

relatively similar, indicating that when the distributional divergence

between domains is small, Updated-PLSR can more effectively learn

the target domain characteristics. In such cases, applying Coral may

introduce unnecessary transformations, thereby degrading

model performance.
4 Conclusion

This study proposes a method for detecting the blending

proportions of tobacco silk in tobacco formulations based on NIRS

and explores the feasibility of transfer learning strategies to improve the

model’s generalization capability. The results indicated that establishing

a detection model for the blending proportions of tobacco silk in

tobacco formulations using NIRS is feasible. However, when the

model is applied to detect different cigarette brands, it performs

poorly, suggesting that data distribution differences have a significant

impact on the model’s adaptability. Therefore, this study investigates the

feasibility of using TCA and Coral strategies to enhance model transfer

performance, with TCA-PLSR demonstrating good performance in
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most model transfer tasks and improving the model’s cross-domain

applicability. Furthermore, by introducing a small number of target

domain samples to update the model, the cross-domain detection

accuracy of the Updated-TCA-PLSR model is further improved.

Overall, the method proposed in this study provides a viable technical

solution for efficient and accurate quality evaluation across different

cigarette brands, with significant implications for the intelligent

detection of the tobacco industry. Future research could cover more

cigarette brands and further integrate deep learningmethods to enhance

the model’s adaptability, enabling broader industrial applications.
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